diff options
Diffstat (limited to 'llvm/lib/IR/ConstantFold.cpp')
| -rw-r--r-- | llvm/lib/IR/ConstantFold.cpp | 2446 | 
1 files changed, 2446 insertions, 0 deletions
diff --git a/llvm/lib/IR/ConstantFold.cpp b/llvm/lib/IR/ConstantFold.cpp new file mode 100644 index 0000000000000..71fa795ec294a --- /dev/null +++ b/llvm/lib/IR/ConstantFold.cpp @@ -0,0 +1,2446 @@ +//===- ConstantFold.cpp - LLVM constant folder ----------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements folding of constants for LLVM.  This implements the +// (internal) ConstantFold.h interface, which is used by the +// ConstantExpr::get* methods to automatically fold constants when possible. +// +// The current constant folding implementation is implemented in two pieces: the +// pieces that don't need DataLayout, and the pieces that do. This is to avoid +// a dependence in IR on Target. +// +//===----------------------------------------------------------------------===// + +#include "ConstantFold.h" +#include "llvm/ADT/APSInt.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GetElementPtrTypeIterator.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/ManagedStatic.h" +#include "llvm/Support/MathExtras.h" +using namespace llvm; +using namespace llvm::PatternMatch; + +//===----------------------------------------------------------------------===// +//                ConstantFold*Instruction Implementations +//===----------------------------------------------------------------------===// + +/// Convert the specified vector Constant node to the specified vector type. +/// At this point, we know that the elements of the input vector constant are +/// all simple integer or FP values. +static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { + +  if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); +  if (CV->isNullValue()) return Constant::getNullValue(DstTy); + +  // If this cast changes element count then we can't handle it here: +  // doing so requires endianness information.  This should be handled by +  // Analysis/ConstantFolding.cpp +  unsigned NumElts = DstTy->getNumElements(); +  if (NumElts != CV->getType()->getVectorNumElements()) +    return nullptr; + +  Type *DstEltTy = DstTy->getElementType(); + +  SmallVector<Constant*, 16> Result; +  Type *Ty = IntegerType::get(CV->getContext(), 32); +  for (unsigned i = 0; i != NumElts; ++i) { +    Constant *C = +      ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); +    C = ConstantExpr::getBitCast(C, DstEltTy); +    Result.push_back(C); +  } + +  return ConstantVector::get(Result); +} + +/// This function determines which opcode to use to fold two constant cast +/// expressions together. It uses CastInst::isEliminableCastPair to determine +/// the opcode. Consequently its just a wrapper around that function. +/// Determine if it is valid to fold a cast of a cast +static unsigned +foldConstantCastPair( +  unsigned opc,          ///< opcode of the second cast constant expression +  ConstantExpr *Op,      ///< the first cast constant expression +  Type *DstTy            ///< destination type of the first cast +) { +  assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); +  assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); +  assert(CastInst::isCast(opc) && "Invalid cast opcode"); + +  // The types and opcodes for the two Cast constant expressions +  Type *SrcTy = Op->getOperand(0)->getType(); +  Type *MidTy = Op->getType(); +  Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); +  Instruction::CastOps secondOp = Instruction::CastOps(opc); + +  // Assume that pointers are never more than 64 bits wide, and only use this +  // for the middle type. Otherwise we could end up folding away illegal +  // bitcasts between address spaces with different sizes. +  IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); + +  // Let CastInst::isEliminableCastPair do the heavy lifting. +  return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, +                                        nullptr, FakeIntPtrTy, nullptr); +} + +static Constant *FoldBitCast(Constant *V, Type *DestTy) { +  Type *SrcTy = V->getType(); +  if (SrcTy == DestTy) +    return V; // no-op cast + +  // Check to see if we are casting a pointer to an aggregate to a pointer to +  // the first element.  If so, return the appropriate GEP instruction. +  if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) +    if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) +      if (PTy->getAddressSpace() == DPTy->getAddressSpace() +          && PTy->getElementType()->isSized()) { +        SmallVector<Value*, 8> IdxList; +        Value *Zero = +          Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); +        IdxList.push_back(Zero); +        Type *ElTy = PTy->getElementType(); +        while (ElTy != DPTy->getElementType()) { +          if (StructType *STy = dyn_cast<StructType>(ElTy)) { +            if (STy->getNumElements() == 0) break; +            ElTy = STy->getElementType(0); +            IdxList.push_back(Zero); +          } else if (SequentialType *STy = +                     dyn_cast<SequentialType>(ElTy)) { +            ElTy = STy->getElementType(); +            IdxList.push_back(Zero); +          } else { +            break; +          } +        } + +        if (ElTy == DPTy->getElementType()) +          // This GEP is inbounds because all indices are zero. +          return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(), +                                                        V, IdxList); +      } + +  // Handle casts from one vector constant to another.  We know that the src +  // and dest type have the same size (otherwise its an illegal cast). +  if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { +    if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { +      assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() && +             "Not cast between same sized vectors!"); +      SrcTy = nullptr; +      // First, check for null.  Undef is already handled. +      if (isa<ConstantAggregateZero>(V)) +        return Constant::getNullValue(DestTy); + +      // Handle ConstantVector and ConstantAggregateVector. +      return BitCastConstantVector(V, DestPTy); +    } + +    // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts +    // This allows for other simplifications (although some of them +    // can only be handled by Analysis/ConstantFolding.cpp). +    if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) +      return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); +  } + +  // Finally, implement bitcast folding now.   The code below doesn't handle +  // bitcast right. +  if (isa<ConstantPointerNull>(V))  // ptr->ptr cast. +    return ConstantPointerNull::get(cast<PointerType>(DestTy)); + +  // Handle integral constant input. +  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { +    if (DestTy->isIntegerTy()) +      // Integral -> Integral. This is a no-op because the bit widths must +      // be the same. Consequently, we just fold to V. +      return V; + +    // See note below regarding the PPC_FP128 restriction. +    if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) +      return ConstantFP::get(DestTy->getContext(), +                             APFloat(DestTy->getFltSemantics(), +                                     CI->getValue())); + +    // Otherwise, can't fold this (vector?) +    return nullptr; +  } + +  // Handle ConstantFP input: FP -> Integral. +  if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { +    // PPC_FP128 is really the sum of two consecutive doubles, where the first +    // double is always stored first in memory, regardless of the target +    // endianness. The memory layout of i128, however, depends on the target +    // endianness, and so we can't fold this without target endianness +    // information. This should instead be handled by +    // Analysis/ConstantFolding.cpp +    if (FP->getType()->isPPC_FP128Ty()) +      return nullptr; + +    // Make sure dest type is compatible with the folded integer constant. +    if (!DestTy->isIntegerTy()) +      return nullptr; + +    return ConstantInt::get(FP->getContext(), +                            FP->getValueAPF().bitcastToAPInt()); +  } + +  return nullptr; +} + + +/// V is an integer constant which only has a subset of its bytes used. +/// The bytes used are indicated by ByteStart (which is the first byte used, +/// counting from the least significant byte) and ByteSize, which is the number +/// of bytes used. +/// +/// This function analyzes the specified constant to see if the specified byte +/// range can be returned as a simplified constant.  If so, the constant is +/// returned, otherwise null is returned. +static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, +                                      unsigned ByteSize) { +  assert(C->getType()->isIntegerTy() && +         (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && +         "Non-byte sized integer input"); +  unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; +  assert(ByteSize && "Must be accessing some piece"); +  assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); +  assert(ByteSize != CSize && "Should not extract everything"); + +  // Constant Integers are simple. +  if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { +    APInt V = CI->getValue(); +    if (ByteStart) +      V.lshrInPlace(ByteStart*8); +    V = V.trunc(ByteSize*8); +    return ConstantInt::get(CI->getContext(), V); +  } + +  // In the input is a constant expr, we might be able to recursively simplify. +  // If not, we definitely can't do anything. +  ConstantExpr *CE = dyn_cast<ConstantExpr>(C); +  if (!CE) return nullptr; + +  switch (CE->getOpcode()) { +  default: return nullptr; +  case Instruction::Or: { +    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); +    if (!RHS) +      return nullptr; + +    // X | -1 -> -1. +    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) +      if (RHSC->isMinusOne()) +        return RHSC; + +    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); +    if (!LHS) +      return nullptr; +    return ConstantExpr::getOr(LHS, RHS); +  } +  case Instruction::And: { +    Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); +    if (!RHS) +      return nullptr; + +    // X & 0 -> 0. +    if (RHS->isNullValue()) +      return RHS; + +    Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); +    if (!LHS) +      return nullptr; +    return ConstantExpr::getAnd(LHS, RHS); +  } +  case Instruction::LShr: { +    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); +    if (!Amt) +      return nullptr; +    APInt ShAmt = Amt->getValue(); +    // Cannot analyze non-byte shifts. +    if ((ShAmt & 7) != 0) +      return nullptr; +    ShAmt.lshrInPlace(3); + +    // If the extract is known to be all zeros, return zero. +    if (ShAmt.uge(CSize - ByteStart)) +      return Constant::getNullValue( +          IntegerType::get(CE->getContext(), ByteSize * 8)); +    // If the extract is known to be fully in the input, extract it. +    if (ShAmt.ule(CSize - (ByteStart + ByteSize))) +      return ExtractConstantBytes(CE->getOperand(0), +                                  ByteStart + ShAmt.getZExtValue(), ByteSize); + +    // TODO: Handle the 'partially zero' case. +    return nullptr; +  } + +  case Instruction::Shl: { +    ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); +    if (!Amt) +      return nullptr; +    APInt ShAmt = Amt->getValue(); +    // Cannot analyze non-byte shifts. +    if ((ShAmt & 7) != 0) +      return nullptr; +    ShAmt.lshrInPlace(3); + +    // If the extract is known to be all zeros, return zero. +    if (ShAmt.uge(ByteStart + ByteSize)) +      return Constant::getNullValue( +          IntegerType::get(CE->getContext(), ByteSize * 8)); +    // If the extract is known to be fully in the input, extract it. +    if (ShAmt.ule(ByteStart)) +      return ExtractConstantBytes(CE->getOperand(0), +                                  ByteStart - ShAmt.getZExtValue(), ByteSize); + +    // TODO: Handle the 'partially zero' case. +    return nullptr; +  } + +  case Instruction::ZExt: { +    unsigned SrcBitSize = +      cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); + +    // If extracting something that is completely zero, return 0. +    if (ByteStart*8 >= SrcBitSize) +      return Constant::getNullValue(IntegerType::get(CE->getContext(), +                                                     ByteSize*8)); + +    // If exactly extracting the input, return it. +    if (ByteStart == 0 && ByteSize*8 == SrcBitSize) +      return CE->getOperand(0); + +    // If extracting something completely in the input, if the input is a +    // multiple of 8 bits, recurse. +    if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) +      return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); + +    // Otherwise, if extracting a subset of the input, which is not multiple of +    // 8 bits, do a shift and trunc to get the bits. +    if ((ByteStart+ByteSize)*8 < SrcBitSize) { +      assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); +      Constant *Res = CE->getOperand(0); +      if (ByteStart) +        Res = ConstantExpr::getLShr(Res, +                                 ConstantInt::get(Res->getType(), ByteStart*8)); +      return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), +                                                          ByteSize*8)); +    } + +    // TODO: Handle the 'partially zero' case. +    return nullptr; +  } +  } +} + +/// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known +/// factors factored out. If Folded is false, return null if no factoring was +/// possible, to avoid endlessly bouncing an unfoldable expression back into the +/// top-level folder. +static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) { +  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { +    Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); +    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); +    return ConstantExpr::getNUWMul(E, N); +  } + +  if (StructType *STy = dyn_cast<StructType>(Ty)) +    if (!STy->isPacked()) { +      unsigned NumElems = STy->getNumElements(); +      // An empty struct has size zero. +      if (NumElems == 0) +        return ConstantExpr::getNullValue(DestTy); +      // Check for a struct with all members having the same size. +      Constant *MemberSize = +        getFoldedSizeOf(STy->getElementType(0), DestTy, true); +      bool AllSame = true; +      for (unsigned i = 1; i != NumElems; ++i) +        if (MemberSize != +            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { +          AllSame = false; +          break; +        } +      if (AllSame) { +        Constant *N = ConstantInt::get(DestTy, NumElems); +        return ConstantExpr::getNUWMul(MemberSize, N); +      } +    } + +  // Pointer size doesn't depend on the pointee type, so canonicalize them +  // to an arbitrary pointee. +  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) +    if (!PTy->getElementType()->isIntegerTy(1)) +      return +        getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), +                                         PTy->getAddressSpace()), +                        DestTy, true); + +  // If there's no interesting folding happening, bail so that we don't create +  // a constant that looks like it needs folding but really doesn't. +  if (!Folded) +    return nullptr; + +  // Base case: Get a regular sizeof expression. +  Constant *C = ConstantExpr::getSizeOf(Ty); +  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, +                                                    DestTy, false), +                            C, DestTy); +  return C; +} + +/// Return a ConstantExpr with type DestTy for alignof on Ty, with any known +/// factors factored out. If Folded is false, return null if no factoring was +/// possible, to avoid endlessly bouncing an unfoldable expression back into the +/// top-level folder. +static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) { +  // The alignment of an array is equal to the alignment of the +  // array element. Note that this is not always true for vectors. +  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { +    Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); +    C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, +                                                      DestTy, +                                                      false), +                              C, DestTy); +    return C; +  } + +  if (StructType *STy = dyn_cast<StructType>(Ty)) { +    // Packed structs always have an alignment of 1. +    if (STy->isPacked()) +      return ConstantInt::get(DestTy, 1); + +    // Otherwise, struct alignment is the maximum alignment of any member. +    // Without target data, we can't compare much, but we can check to see +    // if all the members have the same alignment. +    unsigned NumElems = STy->getNumElements(); +    // An empty struct has minimal alignment. +    if (NumElems == 0) +      return ConstantInt::get(DestTy, 1); +    // Check for a struct with all members having the same alignment. +    Constant *MemberAlign = +      getFoldedAlignOf(STy->getElementType(0), DestTy, true); +    bool AllSame = true; +    for (unsigned i = 1; i != NumElems; ++i) +      if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { +        AllSame = false; +        break; +      } +    if (AllSame) +      return MemberAlign; +  } + +  // Pointer alignment doesn't depend on the pointee type, so canonicalize them +  // to an arbitrary pointee. +  if (PointerType *PTy = dyn_cast<PointerType>(Ty)) +    if (!PTy->getElementType()->isIntegerTy(1)) +      return +        getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), +                                                           1), +                                          PTy->getAddressSpace()), +                         DestTy, true); + +  // If there's no interesting folding happening, bail so that we don't create +  // a constant that looks like it needs folding but really doesn't. +  if (!Folded) +    return nullptr; + +  // Base case: Get a regular alignof expression. +  Constant *C = ConstantExpr::getAlignOf(Ty); +  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, +                                                    DestTy, false), +                            C, DestTy); +  return C; +} + +/// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with +/// any known factors factored out. If Folded is false, return null if no +/// factoring was possible, to avoid endlessly bouncing an unfoldable expression +/// back into the top-level folder. +static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy, +                                   bool Folded) { +  if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { +    Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, +                                                                DestTy, false), +                                        FieldNo, DestTy); +    Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); +    return ConstantExpr::getNUWMul(E, N); +  } + +  if (StructType *STy = dyn_cast<StructType>(Ty)) +    if (!STy->isPacked()) { +      unsigned NumElems = STy->getNumElements(); +      // An empty struct has no members. +      if (NumElems == 0) +        return nullptr; +      // Check for a struct with all members having the same size. +      Constant *MemberSize = +        getFoldedSizeOf(STy->getElementType(0), DestTy, true); +      bool AllSame = true; +      for (unsigned i = 1; i != NumElems; ++i) +        if (MemberSize != +            getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { +          AllSame = false; +          break; +        } +      if (AllSame) { +        Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, +                                                                    false, +                                                                    DestTy, +                                                                    false), +                                            FieldNo, DestTy); +        return ConstantExpr::getNUWMul(MemberSize, N); +      } +    } + +  // If there's no interesting folding happening, bail so that we don't create +  // a constant that looks like it needs folding but really doesn't. +  if (!Folded) +    return nullptr; + +  // Base case: Get a regular offsetof expression. +  Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); +  C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, +                                                    DestTy, false), +                            C, DestTy); +  return C; +} + +Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, +                                            Type *DestTy) { +  if (isa<UndefValue>(V)) { +    // zext(undef) = 0, because the top bits will be zero. +    // sext(undef) = 0, because the top bits will all be the same. +    // [us]itofp(undef) = 0, because the result value is bounded. +    if (opc == Instruction::ZExt || opc == Instruction::SExt || +        opc == Instruction::UIToFP || opc == Instruction::SIToFP) +      return Constant::getNullValue(DestTy); +    return UndefValue::get(DestTy); +  } + +  if (V->isNullValue() && !DestTy->isX86_MMXTy() && +      opc != Instruction::AddrSpaceCast) +    return Constant::getNullValue(DestTy); + +  // If the cast operand is a constant expression, there's a few things we can +  // do to try to simplify it. +  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { +    if (CE->isCast()) { +      // Try hard to fold cast of cast because they are often eliminable. +      if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) +        return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); +    } else if (CE->getOpcode() == Instruction::GetElementPtr && +               // Do not fold addrspacecast (gep 0, .., 0). It might make the +               // addrspacecast uncanonicalized. +               opc != Instruction::AddrSpaceCast && +               // Do not fold bitcast (gep) with inrange index, as this loses +               // information. +               !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() && +               // Do not fold if the gep type is a vector, as bitcasting +               // operand 0 of a vector gep will result in a bitcast between +               // different sizes. +               !CE->getType()->isVectorTy()) { +      // If all of the indexes in the GEP are null values, there is no pointer +      // adjustment going on.  We might as well cast the source pointer. +      bool isAllNull = true; +      for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) +        if (!CE->getOperand(i)->isNullValue()) { +          isAllNull = false; +          break; +        } +      if (isAllNull) +        // This is casting one pointer type to another, always BitCast +        return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); +    } +  } + +  // If the cast operand is a constant vector, perform the cast by +  // operating on each element. In the cast of bitcasts, the element +  // count may be mismatched; don't attempt to handle that here. +  if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && +      DestTy->isVectorTy() && +      DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) { +    SmallVector<Constant*, 16> res; +    VectorType *DestVecTy = cast<VectorType>(DestTy); +    Type *DstEltTy = DestVecTy->getElementType(); +    Type *Ty = IntegerType::get(V->getContext(), 32); +    for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) { +      Constant *C = +        ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); +      res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); +    } +    return ConstantVector::get(res); +  } + +  // We actually have to do a cast now. Perform the cast according to the +  // opcode specified. +  switch (opc) { +  default: +    llvm_unreachable("Failed to cast constant expression"); +  case Instruction::FPTrunc: +  case Instruction::FPExt: +    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { +      bool ignored; +      APFloat Val = FPC->getValueAPF(); +      Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() : +                  DestTy->isFloatTy() ? APFloat::IEEEsingle() : +                  DestTy->isDoubleTy() ? APFloat::IEEEdouble() : +                  DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() : +                  DestTy->isFP128Ty() ? APFloat::IEEEquad() : +                  DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() : +                  APFloat::Bogus(), +                  APFloat::rmNearestTiesToEven, &ignored); +      return ConstantFP::get(V->getContext(), Val); +    } +    return nullptr; // Can't fold. +  case Instruction::FPToUI: +  case Instruction::FPToSI: +    if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { +      const APFloat &V = FPC->getValueAPF(); +      bool ignored; +      uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); +      APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); +      if (APFloat::opInvalidOp == +          V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { +        // Undefined behavior invoked - the destination type can't represent +        // the input constant. +        return UndefValue::get(DestTy); +      } +      return ConstantInt::get(FPC->getContext(), IntVal); +    } +    return nullptr; // Can't fold. +  case Instruction::IntToPtr:   //always treated as unsigned +    if (V->isNullValue())       // Is it an integral null value? +      return ConstantPointerNull::get(cast<PointerType>(DestTy)); +    return nullptr;                   // Other pointer types cannot be casted +  case Instruction::PtrToInt:   // always treated as unsigned +    // Is it a null pointer value? +    if (V->isNullValue()) +      return ConstantInt::get(DestTy, 0); +    // If this is a sizeof-like expression, pull out multiplications by +    // known factors to expose them to subsequent folding. If it's an +    // alignof-like expression, factor out known factors. +    if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) +      if (CE->getOpcode() == Instruction::GetElementPtr && +          CE->getOperand(0)->isNullValue()) { +        // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and +        // getFoldedAlignOf() don't handle the case when DestTy is a vector of +        // pointers yet. We end up in asserts in CastInst::getCastOpcode (see +        // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this +        // happen in one "real" C-code test case, so it does not seem to be an +        // important optimization to handle vectors here. For now, simply bail +        // out. +        if (DestTy->isVectorTy()) +          return nullptr; +        GEPOperator *GEPO = cast<GEPOperator>(CE); +        Type *Ty = GEPO->getSourceElementType(); +        if (CE->getNumOperands() == 2) { +          // Handle a sizeof-like expression. +          Constant *Idx = CE->getOperand(1); +          bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); +          if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { +            Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, +                                                                DestTy, false), +                                        Idx, DestTy); +            return ConstantExpr::getMul(C, Idx); +          } +        } else if (CE->getNumOperands() == 3 && +                   CE->getOperand(1)->isNullValue()) { +          // Handle an alignof-like expression. +          if (StructType *STy = dyn_cast<StructType>(Ty)) +            if (!STy->isPacked()) { +              ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); +              if (CI->isOne() && +                  STy->getNumElements() == 2 && +                  STy->getElementType(0)->isIntegerTy(1)) { +                return getFoldedAlignOf(STy->getElementType(1), DestTy, false); +              } +            } +          // Handle an offsetof-like expression. +          if (Ty->isStructTy() || Ty->isArrayTy()) { +            if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), +                                                DestTy, false)) +              return C; +          } +        } +      } +    // Other pointer types cannot be casted +    return nullptr; +  case Instruction::UIToFP: +  case Instruction::SIToFP: +    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { +      const APInt &api = CI->getValue(); +      APFloat apf(DestTy->getFltSemantics(), +                  APInt::getNullValue(DestTy->getPrimitiveSizeInBits())); +      apf.convertFromAPInt(api, opc==Instruction::SIToFP, +                           APFloat::rmNearestTiesToEven); +      return ConstantFP::get(V->getContext(), apf); +    } +    return nullptr; +  case Instruction::ZExt: +    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { +      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); +      return ConstantInt::get(V->getContext(), +                              CI->getValue().zext(BitWidth)); +    } +    return nullptr; +  case Instruction::SExt: +    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { +      uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); +      return ConstantInt::get(V->getContext(), +                              CI->getValue().sext(BitWidth)); +    } +    return nullptr; +  case Instruction::Trunc: { +    if (V->getType()->isVectorTy()) +      return nullptr; + +    uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); +    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { +      return ConstantInt::get(V->getContext(), +                              CI->getValue().trunc(DestBitWidth)); +    } + +    // The input must be a constantexpr.  See if we can simplify this based on +    // the bytes we are demanding.  Only do this if the source and dest are an +    // even multiple of a byte. +    if ((DestBitWidth & 7) == 0 && +        (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) +      if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) +        return Res; + +    return nullptr; +  } +  case Instruction::BitCast: +    return FoldBitCast(V, DestTy); +  case Instruction::AddrSpaceCast: +    return nullptr; +  } +} + +Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, +                                              Constant *V1, Constant *V2) { +  // Check for i1 and vector true/false conditions. +  if (Cond->isNullValue()) return V2; +  if (Cond->isAllOnesValue()) return V1; + +  // If the condition is a vector constant, fold the result elementwise. +  if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { +    SmallVector<Constant*, 16> Result; +    Type *Ty = IntegerType::get(CondV->getContext(), 32); +    for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){ +      Constant *V; +      Constant *V1Element = ConstantExpr::getExtractElement(V1, +                                                    ConstantInt::get(Ty, i)); +      Constant *V2Element = ConstantExpr::getExtractElement(V2, +                                                    ConstantInt::get(Ty, i)); +      auto *Cond = cast<Constant>(CondV->getOperand(i)); +      if (V1Element == V2Element) { +        V = V1Element; +      } else if (isa<UndefValue>(Cond)) { +        V = isa<UndefValue>(V1Element) ? V1Element : V2Element; +      } else { +        if (!isa<ConstantInt>(Cond)) break; +        V = Cond->isNullValue() ? V2Element : V1Element; +      } +      Result.push_back(V); +    } + +    // If we were able to build the vector, return it. +    if (Result.size() == V1->getType()->getVectorNumElements()) +      return ConstantVector::get(Result); +  } + +  if (isa<UndefValue>(Cond)) { +    if (isa<UndefValue>(V1)) return V1; +    return V2; +  } +  if (isa<UndefValue>(V1)) return V2; +  if (isa<UndefValue>(V2)) return V1; +  if (V1 == V2) return V1; + +  if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { +    if (TrueVal->getOpcode() == Instruction::Select) +      if (TrueVal->getOperand(0) == Cond) +        return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); +  } +  if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { +    if (FalseVal->getOpcode() == Instruction::Select) +      if (FalseVal->getOperand(0) == Cond) +        return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); +  } + +  return nullptr; +} + +Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, +                                                      Constant *Idx) { +  // extractelt undef, C -> undef +  // extractelt C, undef -> undef +  if (isa<UndefValue>(Val) || isa<UndefValue>(Idx)) +    return UndefValue::get(Val->getType()->getVectorElementType()); + +  if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) { +    // ee({w,x,y,z}, wrong_value) -> undef +    if (CIdx->uge(Val->getType()->getVectorNumElements())) +      return UndefValue::get(Val->getType()->getVectorElementType()); +    return Val->getAggregateElement(CIdx->getZExtValue()); +  } +  return nullptr; +} + +Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, +                                                     Constant *Elt, +                                                     Constant *Idx) { +  if (isa<UndefValue>(Idx)) +    return UndefValue::get(Val->getType()); + +  ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); +  if (!CIdx) return nullptr; + +  unsigned NumElts = Val->getType()->getVectorNumElements(); +  if (CIdx->uge(NumElts)) +    return UndefValue::get(Val->getType()); + +  SmallVector<Constant*, 16> Result; +  Result.reserve(NumElts); +  auto *Ty = Type::getInt32Ty(Val->getContext()); +  uint64_t IdxVal = CIdx->getZExtValue(); +  for (unsigned i = 0; i != NumElts; ++i) { +    if (i == IdxVal) { +      Result.push_back(Elt); +      continue; +    } + +    Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); +    Result.push_back(C); +  } + +  return ConstantVector::get(Result); +} + +Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, +                                                     Constant *V2, +                                                     Constant *Mask) { +  unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); +  Type *EltTy = V1->getType()->getVectorElementType(); + +  // Undefined shuffle mask -> undefined value. +  if (isa<UndefValue>(Mask)) +    return UndefValue::get(VectorType::get(EltTy, MaskNumElts)); + +  // Don't break the bitcode reader hack. +  if (isa<ConstantExpr>(Mask)) return nullptr; + +  unsigned SrcNumElts = V1->getType()->getVectorNumElements(); + +  // Loop over the shuffle mask, evaluating each element. +  SmallVector<Constant*, 32> Result; +  for (unsigned i = 0; i != MaskNumElts; ++i) { +    int Elt = ShuffleVectorInst::getMaskValue(Mask, i); +    if (Elt == -1) { +      Result.push_back(UndefValue::get(EltTy)); +      continue; +    } +    Constant *InElt; +    if (unsigned(Elt) >= SrcNumElts*2) +      InElt = UndefValue::get(EltTy); +    else if (unsigned(Elt) >= SrcNumElts) { +      Type *Ty = IntegerType::get(V2->getContext(), 32); +      InElt = +        ConstantExpr::getExtractElement(V2, +                                        ConstantInt::get(Ty, Elt - SrcNumElts)); +    } else { +      Type *Ty = IntegerType::get(V1->getContext(), 32); +      InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); +    } +    Result.push_back(InElt); +  } + +  return ConstantVector::get(Result); +} + +Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, +                                                    ArrayRef<unsigned> Idxs) { +  // Base case: no indices, so return the entire value. +  if (Idxs.empty()) +    return Agg; + +  if (Constant *C = Agg->getAggregateElement(Idxs[0])) +    return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); + +  return nullptr; +} + +Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, +                                                   Constant *Val, +                                                   ArrayRef<unsigned> Idxs) { +  // Base case: no indices, so replace the entire value. +  if (Idxs.empty()) +    return Val; + +  unsigned NumElts; +  if (StructType *ST = dyn_cast<StructType>(Agg->getType())) +    NumElts = ST->getNumElements(); +  else +    NumElts = cast<SequentialType>(Agg->getType())->getNumElements(); + +  SmallVector<Constant*, 32> Result; +  for (unsigned i = 0; i != NumElts; ++i) { +    Constant *C = Agg->getAggregateElement(i); +    if (!C) return nullptr; + +    if (Idxs[0] == i) +      C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); + +    Result.push_back(C); +  } + +  if (StructType *ST = dyn_cast<StructType>(Agg->getType())) +    return ConstantStruct::get(ST, Result); +  if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType())) +    return ConstantArray::get(AT, Result); +  return ConstantVector::get(Result); +} + +Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { +  assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); + +  // Handle scalar UndefValue. Vectors are always evaluated per element. +  bool HasScalarUndef = !C->getType()->isVectorTy() && isa<UndefValue>(C); + +  if (HasScalarUndef) { +    switch (static_cast<Instruction::UnaryOps>(Opcode)) { +    case Instruction::FNeg: +      return C; // -undef -> undef +    case Instruction::UnaryOpsEnd: +      llvm_unreachable("Invalid UnaryOp"); +    } +  } + +  // Constant should not be UndefValue, unless these are vector constants. +  assert(!HasScalarUndef && "Unexpected UndefValue"); +  // We only have FP UnaryOps right now. +  assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); + +  if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { +    const APFloat &CV = CFP->getValueAPF(); +    switch (Opcode) { +    default: +      break; +    case Instruction::FNeg: +      return ConstantFP::get(C->getContext(), neg(CV)); +    } +  } else if (VectorType *VTy = dyn_cast<VectorType>(C->getType())) { +    // Fold each element and create a vector constant from those constants. +    SmallVector<Constant*, 16> Result; +    Type *Ty = IntegerType::get(VTy->getContext(), 32); +    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { +      Constant *ExtractIdx = ConstantInt::get(Ty, i); +      Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); + +      Result.push_back(ConstantExpr::get(Opcode, Elt)); +    } + +    return ConstantVector::get(Result); +  } + +  // We don't know how to fold this. +  return nullptr; +} + +Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, +                                              Constant *C2) { +  assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); + +  // Handle scalar UndefValue. Vectors are always evaluated per element. +  bool HasScalarUndef = !C1->getType()->isVectorTy() && +                        (isa<UndefValue>(C1) || isa<UndefValue>(C2)); +  if (HasScalarUndef) { +    switch (static_cast<Instruction::BinaryOps>(Opcode)) { +    case Instruction::Xor: +      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) +        // Handle undef ^ undef -> 0 special case. This is a common +        // idiom (misuse). +        return Constant::getNullValue(C1->getType()); +      LLVM_FALLTHROUGH; +    case Instruction::Add: +    case Instruction::Sub: +      return UndefValue::get(C1->getType()); +    case Instruction::And: +      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef +        return C1; +      return Constant::getNullValue(C1->getType());   // undef & X -> 0 +    case Instruction::Mul: { +      // undef * undef -> undef +      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) +        return C1; +      const APInt *CV; +      // X * undef -> undef   if X is odd +      if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) +        if ((*CV)[0]) +          return UndefValue::get(C1->getType()); + +      // X * undef -> 0       otherwise +      return Constant::getNullValue(C1->getType()); +    } +    case Instruction::SDiv: +    case Instruction::UDiv: +      // X / undef -> undef +      if (isa<UndefValue>(C2)) +        return C2; +      // undef / 0 -> undef +      // undef / 1 -> undef +      if (match(C2, m_Zero()) || match(C2, m_One())) +        return C1; +      // undef / X -> 0       otherwise +      return Constant::getNullValue(C1->getType()); +    case Instruction::URem: +    case Instruction::SRem: +      // X % undef -> undef +      if (match(C2, m_Undef())) +        return C2; +      // undef % 0 -> undef +      if (match(C2, m_Zero())) +        return C1; +      // undef % X -> 0       otherwise +      return Constant::getNullValue(C1->getType()); +    case Instruction::Or:                          // X | undef -> -1 +      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef +        return C1; +      return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 +    case Instruction::LShr: +      // X >>l undef -> undef +      if (isa<UndefValue>(C2)) +        return C2; +      // undef >>l 0 -> undef +      if (match(C2, m_Zero())) +        return C1; +      // undef >>l X -> 0 +      return Constant::getNullValue(C1->getType()); +    case Instruction::AShr: +      // X >>a undef -> undef +      if (isa<UndefValue>(C2)) +        return C2; +      // undef >>a 0 -> undef +      if (match(C2, m_Zero())) +        return C1; +      // TODO: undef >>a X -> undef if the shift is exact +      // undef >>a X -> 0 +      return Constant::getNullValue(C1->getType()); +    case Instruction::Shl: +      // X << undef -> undef +      if (isa<UndefValue>(C2)) +        return C2; +      // undef << 0 -> undef +      if (match(C2, m_Zero())) +        return C1; +      // undef << X -> 0 +      return Constant::getNullValue(C1->getType()); +    case Instruction::FAdd: +    case Instruction::FSub: +    case Instruction::FMul: +    case Instruction::FDiv: +    case Instruction::FRem: +      // [any flop] undef, undef -> undef +      if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) +        return C1; +      // [any flop] C, undef -> NaN +      // [any flop] undef, C -> NaN +      // We could potentially specialize NaN/Inf constants vs. 'normal' +      // constants (possibly differently depending on opcode and operand). This +      // would allow returning undef sometimes. But it is always safe to fold to +      // NaN because we can choose the undef operand as NaN, and any FP opcode +      // with a NaN operand will propagate NaN. +      return ConstantFP::getNaN(C1->getType()); +    case Instruction::BinaryOpsEnd: +      llvm_unreachable("Invalid BinaryOp"); +    } +  } + +  // Neither constant should be UndefValue, unless these are vector constants. +  assert(!HasScalarUndef && "Unexpected UndefValue"); + +  // Handle simplifications when the RHS is a constant int. +  if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { +    switch (Opcode) { +    case Instruction::Add: +      if (CI2->isZero()) return C1;                             // X + 0 == X +      break; +    case Instruction::Sub: +      if (CI2->isZero()) return C1;                             // X - 0 == X +      break; +    case Instruction::Mul: +      if (CI2->isZero()) return C2;                             // X * 0 == 0 +      if (CI2->isOne()) +        return C1;                                              // X * 1 == X +      break; +    case Instruction::UDiv: +    case Instruction::SDiv: +      if (CI2->isOne()) +        return C1;                                            // X / 1 == X +      if (CI2->isZero()) +        return UndefValue::get(CI2->getType());               // X / 0 == undef +      break; +    case Instruction::URem: +    case Instruction::SRem: +      if (CI2->isOne()) +        return Constant::getNullValue(CI2->getType());        // X % 1 == 0 +      if (CI2->isZero()) +        return UndefValue::get(CI2->getType());               // X % 0 == undef +      break; +    case Instruction::And: +      if (CI2->isZero()) return C2;                           // X & 0 == 0 +      if (CI2->isMinusOne()) +        return C1;                                            // X & -1 == X + +      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { +        // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) +        if (CE1->getOpcode() == Instruction::ZExt) { +          unsigned DstWidth = CI2->getType()->getBitWidth(); +          unsigned SrcWidth = +            CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); +          APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); +          if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) +            return C1; +        } + +        // If and'ing the address of a global with a constant, fold it. +        if (CE1->getOpcode() == Instruction::PtrToInt && +            isa<GlobalValue>(CE1->getOperand(0))) { +          GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); + +          MaybeAlign GVAlign; + +          if (Module *TheModule = GV->getParent()) { +            GVAlign = GV->getPointerAlignment(TheModule->getDataLayout()); + +            // If the function alignment is not specified then assume that it +            // is 4. +            // This is dangerous; on x86, the alignment of the pointer +            // corresponds to the alignment of the function, but might be less +            // than 4 if it isn't explicitly specified. +            // However, a fix for this behaviour was reverted because it +            // increased code size (see https://reviews.llvm.org/D55115) +            // FIXME: This code should be deleted once existing targets have +            // appropriate defaults +            if (!GVAlign && isa<Function>(GV)) +              GVAlign = Align(4); +          } else if (isa<Function>(GV)) { +            // Without a datalayout we have to assume the worst case: that the +            // function pointer isn't aligned at all. +            GVAlign = llvm::None; +          } else { +            GVAlign = MaybeAlign(GV->getAlignment()); +          } + +          if (GVAlign && *GVAlign > 1) { +            unsigned DstWidth = CI2->getType()->getBitWidth(); +            unsigned SrcWidth = std::min(DstWidth, Log2(*GVAlign)); +            APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); + +            // If checking bits we know are clear, return zero. +            if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) +              return Constant::getNullValue(CI2->getType()); +          } +        } +      } +      break; +    case Instruction::Or: +      if (CI2->isZero()) return C1;        // X | 0 == X +      if (CI2->isMinusOne()) +        return C2;                         // X | -1 == -1 +      break; +    case Instruction::Xor: +      if (CI2->isZero()) return C1;        // X ^ 0 == X + +      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { +        switch (CE1->getOpcode()) { +        default: break; +        case Instruction::ICmp: +        case Instruction::FCmp: +          // cmp pred ^ true -> cmp !pred +          assert(CI2->isOne()); +          CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); +          pred = CmpInst::getInversePredicate(pred); +          return ConstantExpr::getCompare(pred, CE1->getOperand(0), +                                          CE1->getOperand(1)); +        } +      } +      break; +    case Instruction::AShr: +      // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 +      if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) +        if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero. +          return ConstantExpr::getLShr(C1, C2); +      break; +    } +  } else if (isa<ConstantInt>(C1)) { +    // If C1 is a ConstantInt and C2 is not, swap the operands. +    if (Instruction::isCommutative(Opcode)) +      return ConstantExpr::get(Opcode, C2, C1); +  } + +  if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { +    if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { +      const APInt &C1V = CI1->getValue(); +      const APInt &C2V = CI2->getValue(); +      switch (Opcode) { +      default: +        break; +      case Instruction::Add: +        return ConstantInt::get(CI1->getContext(), C1V + C2V); +      case Instruction::Sub: +        return ConstantInt::get(CI1->getContext(), C1V - C2V); +      case Instruction::Mul: +        return ConstantInt::get(CI1->getContext(), C1V * C2V); +      case Instruction::UDiv: +        assert(!CI2->isZero() && "Div by zero handled above"); +        return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); +      case Instruction::SDiv: +        assert(!CI2->isZero() && "Div by zero handled above"); +        if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) +          return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef +        return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); +      case Instruction::URem: +        assert(!CI2->isZero() && "Div by zero handled above"); +        return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); +      case Instruction::SRem: +        assert(!CI2->isZero() && "Div by zero handled above"); +        if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) +          return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef +        return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); +      case Instruction::And: +        return ConstantInt::get(CI1->getContext(), C1V & C2V); +      case Instruction::Or: +        return ConstantInt::get(CI1->getContext(), C1V | C2V); +      case Instruction::Xor: +        return ConstantInt::get(CI1->getContext(), C1V ^ C2V); +      case Instruction::Shl: +        if (C2V.ult(C1V.getBitWidth())) +          return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); +        return UndefValue::get(C1->getType()); // too big shift is undef +      case Instruction::LShr: +        if (C2V.ult(C1V.getBitWidth())) +          return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); +        return UndefValue::get(C1->getType()); // too big shift is undef +      case Instruction::AShr: +        if (C2V.ult(C1V.getBitWidth())) +          return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); +        return UndefValue::get(C1->getType()); // too big shift is undef +      } +    } + +    switch (Opcode) { +    case Instruction::SDiv: +    case Instruction::UDiv: +    case Instruction::URem: +    case Instruction::SRem: +    case Instruction::LShr: +    case Instruction::AShr: +    case Instruction::Shl: +      if (CI1->isZero()) return C1; +      break; +    default: +      break; +    } +  } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { +    if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { +      const APFloat &C1V = CFP1->getValueAPF(); +      const APFloat &C2V = CFP2->getValueAPF(); +      APFloat C3V = C1V;  // copy for modification +      switch (Opcode) { +      default: +        break; +      case Instruction::FAdd: +        (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); +        return ConstantFP::get(C1->getContext(), C3V); +      case Instruction::FSub: +        (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); +        return ConstantFP::get(C1->getContext(), C3V); +      case Instruction::FMul: +        (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); +        return ConstantFP::get(C1->getContext(), C3V); +      case Instruction::FDiv: +        (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); +        return ConstantFP::get(C1->getContext(), C3V); +      case Instruction::FRem: +        (void)C3V.mod(C2V); +        return ConstantFP::get(C1->getContext(), C3V); +      } +    } +  } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) { +    // Fold each element and create a vector constant from those constants. +    SmallVector<Constant*, 16> Result; +    Type *Ty = IntegerType::get(VTy->getContext(), 32); +    for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { +      Constant *ExtractIdx = ConstantInt::get(Ty, i); +      Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); +      Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); + +      // If any element of a divisor vector is zero, the whole op is undef. +      if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) +        return UndefValue::get(VTy); + +      Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); +    } + +    return ConstantVector::get(Result); +  } + +  if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { +    // There are many possible foldings we could do here.  We should probably +    // at least fold add of a pointer with an integer into the appropriate +    // getelementptr.  This will improve alias analysis a bit. + +    // Given ((a + b) + c), if (b + c) folds to something interesting, return +    // (a + (b + c)). +    if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { +      Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); +      if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) +        return ConstantExpr::get(Opcode, CE1->getOperand(0), T); +    } +  } else if (isa<ConstantExpr>(C2)) { +    // If C2 is a constant expr and C1 isn't, flop them around and fold the +    // other way if possible. +    if (Instruction::isCommutative(Opcode)) +      return ConstantFoldBinaryInstruction(Opcode, C2, C1); +  } + +  // i1 can be simplified in many cases. +  if (C1->getType()->isIntegerTy(1)) { +    switch (Opcode) { +    case Instruction::Add: +    case Instruction::Sub: +      return ConstantExpr::getXor(C1, C2); +    case Instruction::Mul: +      return ConstantExpr::getAnd(C1, C2); +    case Instruction::Shl: +    case Instruction::LShr: +    case Instruction::AShr: +      // We can assume that C2 == 0.  If it were one the result would be +      // undefined because the shift value is as large as the bitwidth. +      return C1; +    case Instruction::SDiv: +    case Instruction::UDiv: +      // We can assume that C2 == 1.  If it were zero the result would be +      // undefined through division by zero. +      return C1; +    case Instruction::URem: +    case Instruction::SRem: +      // We can assume that C2 == 1.  If it were zero the result would be +      // undefined through division by zero. +      return ConstantInt::getFalse(C1->getContext()); +    default: +      break; +    } +  } + +  // We don't know how to fold this. +  return nullptr; +} + +/// This type is zero-sized if it's an array or structure of zero-sized types. +/// The only leaf zero-sized type is an empty structure. +static bool isMaybeZeroSizedType(Type *Ty) { +  if (StructType *STy = dyn_cast<StructType>(Ty)) { +    if (STy->isOpaque()) return true;  // Can't say. + +    // If all of elements have zero size, this does too. +    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) +      if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; +    return true; + +  } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { +    return isMaybeZeroSizedType(ATy->getElementType()); +  } +  return false; +} + +/// Compare the two constants as though they were getelementptr indices. +/// This allows coercion of the types to be the same thing. +/// +/// If the two constants are the "same" (after coercion), return 0.  If the +/// first is less than the second, return -1, if the second is less than the +/// first, return 1.  If the constants are not integral, return -2. +/// +static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { +  if (C1 == C2) return 0; + +  // Ok, we found a different index.  If they are not ConstantInt, we can't do +  // anything with them. +  if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) +    return -2; // don't know! + +  // We cannot compare the indices if they don't fit in an int64_t. +  if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 || +      cast<ConstantInt>(C2)->getValue().getActiveBits() > 64) +    return -2; // don't know! + +  // Ok, we have two differing integer indices.  Sign extend them to be the same +  // type. +  int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue(); +  int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue(); + +  if (C1Val == C2Val) return 0;  // They are equal + +  // If the type being indexed over is really just a zero sized type, there is +  // no pointer difference being made here. +  if (isMaybeZeroSizedType(ElTy)) +    return -2; // dunno. + +  // If they are really different, now that they are the same type, then we +  // found a difference! +  if (C1Val < C2Val) +    return -1; +  else +    return 1; +} + +/// This function determines if there is anything we can decide about the two +/// constants provided. This doesn't need to handle simple things like +/// ConstantFP comparisons, but should instead handle ConstantExprs. +/// If we can determine that the two constants have a particular relation to +/// each other, we should return the corresponding FCmpInst predicate, +/// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in +/// ConstantFoldCompareInstruction. +/// +/// To simplify this code we canonicalize the relation so that the first +/// operand is always the most "complex" of the two.  We consider ConstantFP +/// to be the simplest, and ConstantExprs to be the most complex. +static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { +  assert(V1->getType() == V2->getType() && +         "Cannot compare values of different types!"); + +  // We do not know if a constant expression will evaluate to a number or NaN. +  // Therefore, we can only say that the relation is unordered or equal. +  if (V1 == V2) return FCmpInst::FCMP_UEQ; + +  if (!isa<ConstantExpr>(V1)) { +    if (!isa<ConstantExpr>(V2)) { +      // Simple case, use the standard constant folder. +      ConstantInt *R = nullptr; +      R = dyn_cast<ConstantInt>( +                      ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); +      if (R && !R->isZero()) +        return FCmpInst::FCMP_OEQ; +      R = dyn_cast<ConstantInt>( +                      ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); +      if (R && !R->isZero()) +        return FCmpInst::FCMP_OLT; +      R = dyn_cast<ConstantInt>( +                      ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); +      if (R && !R->isZero()) +        return FCmpInst::FCMP_OGT; + +      // Nothing more we can do +      return FCmpInst::BAD_FCMP_PREDICATE; +    } + +    // If the first operand is simple and second is ConstantExpr, swap operands. +    FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); +    if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) +      return FCmpInst::getSwappedPredicate(SwappedRelation); +  } else { +    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a +    // constantexpr or a simple constant. +    ConstantExpr *CE1 = cast<ConstantExpr>(V1); +    switch (CE1->getOpcode()) { +    case Instruction::FPTrunc: +    case Instruction::FPExt: +    case Instruction::UIToFP: +    case Instruction::SIToFP: +      // We might be able to do something with these but we don't right now. +      break; +    default: +      break; +    } +  } +  // There are MANY other foldings that we could perform here.  They will +  // probably be added on demand, as they seem needed. +  return FCmpInst::BAD_FCMP_PREDICATE; +} + +static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, +                                                      const GlobalValue *GV2) { +  auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { +    if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage()) +      return true; +    if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { +      Type *Ty = GVar->getValueType(); +      // A global with opaque type might end up being zero sized. +      if (!Ty->isSized()) +        return true; +      // A global with an empty type might lie at the address of any other +      // global. +      if (Ty->isEmptyTy()) +        return true; +    } +    return false; +  }; +  // Don't try to decide equality of aliases. +  if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) +    if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) +      return ICmpInst::ICMP_NE; +  return ICmpInst::BAD_ICMP_PREDICATE; +} + +/// This function determines if there is anything we can decide about the two +/// constants provided. This doesn't need to handle simple things like integer +/// comparisons, but should instead handle ConstantExprs and GlobalValues. +/// If we can determine that the two constants have a particular relation to +/// each other, we should return the corresponding ICmp predicate, otherwise +/// return ICmpInst::BAD_ICMP_PREDICATE. +/// +/// To simplify this code we canonicalize the relation so that the first +/// operand is always the most "complex" of the two.  We consider simple +/// constants (like ConstantInt) to be the simplest, followed by +/// GlobalValues, followed by ConstantExpr's (the most complex). +/// +static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, +                                                bool isSigned) { +  assert(V1->getType() == V2->getType() && +         "Cannot compare different types of values!"); +  if (V1 == V2) return ICmpInst::ICMP_EQ; + +  if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && +      !isa<BlockAddress>(V1)) { +    if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && +        !isa<BlockAddress>(V2)) { +      // We distilled this down to a simple case, use the standard constant +      // folder. +      ConstantInt *R = nullptr; +      ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; +      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); +      if (R && !R->isZero()) +        return pred; +      pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; +      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); +      if (R && !R->isZero()) +        return pred; +      pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; +      R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); +      if (R && !R->isZero()) +        return pred; + +      // If we couldn't figure it out, bail. +      return ICmpInst::BAD_ICMP_PREDICATE; +    } + +    // If the first operand is simple, swap operands. +    ICmpInst::Predicate SwappedRelation = +      evaluateICmpRelation(V2, V1, isSigned); +    if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) +      return ICmpInst::getSwappedPredicate(SwappedRelation); + +  } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { +    if (isa<ConstantExpr>(V2)) {  // Swap as necessary. +      ICmpInst::Predicate SwappedRelation = +        evaluateICmpRelation(V2, V1, isSigned); +      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) +        return ICmpInst::getSwappedPredicate(SwappedRelation); +      return ICmpInst::BAD_ICMP_PREDICATE; +    } + +    // Now we know that the RHS is a GlobalValue, BlockAddress or simple +    // constant (which, since the types must match, means that it's a +    // ConstantPointerNull). +    if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { +      return areGlobalsPotentiallyEqual(GV, GV2); +    } else if (isa<BlockAddress>(V2)) { +      return ICmpInst::ICMP_NE; // Globals never equal labels. +    } else { +      assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); +      // GlobalVals can never be null unless they have external weak linkage. +      // We don't try to evaluate aliases here. +      // NOTE: We should not be doing this constant folding if null pointer +      // is considered valid for the function. But currently there is no way to +      // query it from the Constant type. +      if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && +          !NullPointerIsDefined(nullptr /* F */, +                                GV->getType()->getAddressSpace())) +        return ICmpInst::ICMP_NE; +    } +  } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { +    if (isa<ConstantExpr>(V2)) {  // Swap as necessary. +      ICmpInst::Predicate SwappedRelation = +        evaluateICmpRelation(V2, V1, isSigned); +      if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) +        return ICmpInst::getSwappedPredicate(SwappedRelation); +      return ICmpInst::BAD_ICMP_PREDICATE; +    } + +    // Now we know that the RHS is a GlobalValue, BlockAddress or simple +    // constant (which, since the types must match, means that it is a +    // ConstantPointerNull). +    if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { +      // Block address in another function can't equal this one, but block +      // addresses in the current function might be the same if blocks are +      // empty. +      if (BA2->getFunction() != BA->getFunction()) +        return ICmpInst::ICMP_NE; +    } else { +      // Block addresses aren't null, don't equal the address of globals. +      assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && +             "Canonicalization guarantee!"); +      return ICmpInst::ICMP_NE; +    } +  } else { +    // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a +    // constantexpr, a global, block address, or a simple constant. +    ConstantExpr *CE1 = cast<ConstantExpr>(V1); +    Constant *CE1Op0 = CE1->getOperand(0); + +    switch (CE1->getOpcode()) { +    case Instruction::Trunc: +    case Instruction::FPTrunc: +    case Instruction::FPExt: +    case Instruction::FPToUI: +    case Instruction::FPToSI: +      break; // We can't evaluate floating point casts or truncations. + +    case Instruction::UIToFP: +    case Instruction::SIToFP: +    case Instruction::BitCast: +    case Instruction::ZExt: +    case Instruction::SExt: +      // We can't evaluate floating point casts or truncations. +      if (CE1Op0->getType()->isFPOrFPVectorTy()) +        break; + +      // If the cast is not actually changing bits, and the second operand is a +      // null pointer, do the comparison with the pre-casted value. +      if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) { +        if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; +        if (CE1->getOpcode() == Instruction::SExt) isSigned = true; +        return evaluateICmpRelation(CE1Op0, +                                    Constant::getNullValue(CE1Op0->getType()), +                                    isSigned); +      } +      break; + +    case Instruction::GetElementPtr: { +      GEPOperator *CE1GEP = cast<GEPOperator>(CE1); +      // Ok, since this is a getelementptr, we know that the constant has a +      // pointer type.  Check the various cases. +      if (isa<ConstantPointerNull>(V2)) { +        // If we are comparing a GEP to a null pointer, check to see if the base +        // of the GEP equals the null pointer. +        if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { +          if (GV->hasExternalWeakLinkage()) +            // Weak linkage GVals could be zero or not. We're comparing that +            // to null pointer so its greater-or-equal +            return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; +          else +            // If its not weak linkage, the GVal must have a non-zero address +            // so the result is greater-than +            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; +        } else if (isa<ConstantPointerNull>(CE1Op0)) { +          // If we are indexing from a null pointer, check to see if we have any +          // non-zero indices. +          for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) +            if (!CE1->getOperand(i)->isNullValue()) +              // Offsetting from null, must not be equal. +              return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; +          // Only zero indexes from null, must still be zero. +          return ICmpInst::ICMP_EQ; +        } +        // Otherwise, we can't really say if the first operand is null or not. +      } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { +        if (isa<ConstantPointerNull>(CE1Op0)) { +          if (GV2->hasExternalWeakLinkage()) +            // Weak linkage GVals could be zero or not. We're comparing it to +            // a null pointer, so its less-or-equal +            return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; +          else +            // If its not weak linkage, the GVal must have a non-zero address +            // so the result is less-than +            return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; +        } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { +          if (GV == GV2) { +            // If this is a getelementptr of the same global, then it must be +            // different.  Because the types must match, the getelementptr could +            // only have at most one index, and because we fold getelementptr's +            // with a single zero index, it must be nonzero. +            assert(CE1->getNumOperands() == 2 && +                   !CE1->getOperand(1)->isNullValue() && +                   "Surprising getelementptr!"); +            return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; +          } else { +            if (CE1GEP->hasAllZeroIndices()) +              return areGlobalsPotentiallyEqual(GV, GV2); +            return ICmpInst::BAD_ICMP_PREDICATE; +          } +        } +      } else { +        ConstantExpr *CE2 = cast<ConstantExpr>(V2); +        Constant *CE2Op0 = CE2->getOperand(0); + +        // There are MANY other foldings that we could perform here.  They will +        // probably be added on demand, as they seem needed. +        switch (CE2->getOpcode()) { +        default: break; +        case Instruction::GetElementPtr: +          // By far the most common case to handle is when the base pointers are +          // obviously to the same global. +          if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { +            // Don't know relative ordering, but check for inequality. +            if (CE1Op0 != CE2Op0) { +              GEPOperator *CE2GEP = cast<GEPOperator>(CE2); +              if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) +                return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), +                                                  cast<GlobalValue>(CE2Op0)); +              return ICmpInst::BAD_ICMP_PREDICATE; +            } +            // Ok, we know that both getelementptr instructions are based on the +            // same global.  From this, we can precisely determine the relative +            // ordering of the resultant pointers. +            unsigned i = 1; + +            // The logic below assumes that the result of the comparison +            // can be determined by finding the first index that differs. +            // This doesn't work if there is over-indexing in any +            // subsequent indices, so check for that case first. +            if (!CE1->isGEPWithNoNotionalOverIndexing() || +                !CE2->isGEPWithNoNotionalOverIndexing()) +               return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. + +            // Compare all of the operands the GEP's have in common. +            gep_type_iterator GTI = gep_type_begin(CE1); +            for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); +                 ++i, ++GTI) +              switch (IdxCompare(CE1->getOperand(i), +                                 CE2->getOperand(i), GTI.getIndexedType())) { +              case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; +              case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; +              case -2: return ICmpInst::BAD_ICMP_PREDICATE; +              } + +            // Ok, we ran out of things they have in common.  If any leftovers +            // are non-zero then we have a difference, otherwise we are equal. +            for (; i < CE1->getNumOperands(); ++i) +              if (!CE1->getOperand(i)->isNullValue()) { +                if (isa<ConstantInt>(CE1->getOperand(i))) +                  return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; +                else +                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. +              } + +            for (; i < CE2->getNumOperands(); ++i) +              if (!CE2->getOperand(i)->isNullValue()) { +                if (isa<ConstantInt>(CE2->getOperand(i))) +                  return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; +                else +                  return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. +              } +            return ICmpInst::ICMP_EQ; +          } +        } +      } +      break; +    } +    default: +      break; +    } +  } + +  return ICmpInst::BAD_ICMP_PREDICATE; +} + +Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, +                                               Constant *C1, Constant *C2) { +  Type *ResultTy; +  if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) +    ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), +                               VT->getNumElements()); +  else +    ResultTy = Type::getInt1Ty(C1->getContext()); + +  // Fold FCMP_FALSE/FCMP_TRUE unconditionally. +  if (pred == FCmpInst::FCMP_FALSE) +    return Constant::getNullValue(ResultTy); + +  if (pred == FCmpInst::FCMP_TRUE) +    return Constant::getAllOnesValue(ResultTy); + +  // Handle some degenerate cases first +  if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { +    CmpInst::Predicate Predicate = CmpInst::Predicate(pred); +    bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); +    // For EQ and NE, we can always pick a value for the undef to make the +    // predicate pass or fail, so we can return undef. +    // Also, if both operands are undef, we can return undef for int comparison. +    if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) +      return UndefValue::get(ResultTy); + +    // Otherwise, for integer compare, pick the same value as the non-undef +    // operand, and fold it to true or false. +    if (isIntegerPredicate) +      return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); + +    // Choosing NaN for the undef will always make unordered comparison succeed +    // and ordered comparison fails. +    return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); +  } + +  // icmp eq/ne(null,GV) -> false/true +  if (C1->isNullValue()) { +    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) +      // Don't try to evaluate aliases.  External weak GV can be null. +      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && +          !NullPointerIsDefined(nullptr /* F */, +                                GV->getType()->getAddressSpace())) { +        if (pred == ICmpInst::ICMP_EQ) +          return ConstantInt::getFalse(C1->getContext()); +        else if (pred == ICmpInst::ICMP_NE) +          return ConstantInt::getTrue(C1->getContext()); +      } +  // icmp eq/ne(GV,null) -> false/true +  } else if (C2->isNullValue()) { +    if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) +      // Don't try to evaluate aliases.  External weak GV can be null. +      if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && +          !NullPointerIsDefined(nullptr /* F */, +                                GV->getType()->getAddressSpace())) { +        if (pred == ICmpInst::ICMP_EQ) +          return ConstantInt::getFalse(C1->getContext()); +        else if (pred == ICmpInst::ICMP_NE) +          return ConstantInt::getTrue(C1->getContext()); +      } +  } + +  // If the comparison is a comparison between two i1's, simplify it. +  if (C1->getType()->isIntegerTy(1)) { +    switch(pred) { +    case ICmpInst::ICMP_EQ: +      if (isa<ConstantInt>(C2)) +        return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); +      return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); +    case ICmpInst::ICMP_NE: +      return ConstantExpr::getXor(C1, C2); +    default: +      break; +    } +  } + +  if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { +    const APInt &V1 = cast<ConstantInt>(C1)->getValue(); +    const APInt &V2 = cast<ConstantInt>(C2)->getValue(); +    switch (pred) { +    default: llvm_unreachable("Invalid ICmp Predicate"); +    case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2); +    case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2); +    case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); +    case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); +    case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); +    case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); +    case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); +    case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); +    case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); +    case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); +    } +  } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { +    const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); +    const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); +    APFloat::cmpResult R = C1V.compare(C2V); +    switch (pred) { +    default: llvm_unreachable("Invalid FCmp Predicate"); +    case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); +    case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy); +    case FCmpInst::FCMP_UNO: +      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); +    case FCmpInst::FCMP_ORD: +      return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); +    case FCmpInst::FCMP_UEQ: +      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || +                                        R==APFloat::cmpEqual); +    case FCmpInst::FCMP_OEQ: +      return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); +    case FCmpInst::FCMP_UNE: +      return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); +    case FCmpInst::FCMP_ONE: +      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || +                                        R==APFloat::cmpGreaterThan); +    case FCmpInst::FCMP_ULT: +      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || +                                        R==APFloat::cmpLessThan); +    case FCmpInst::FCMP_OLT: +      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); +    case FCmpInst::FCMP_UGT: +      return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || +                                        R==APFloat::cmpGreaterThan); +    case FCmpInst::FCMP_OGT: +      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); +    case FCmpInst::FCMP_ULE: +      return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); +    case FCmpInst::FCMP_OLE: +      return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || +                                        R==APFloat::cmpEqual); +    case FCmpInst::FCMP_UGE: +      return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); +    case FCmpInst::FCMP_OGE: +      return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || +                                        R==APFloat::cmpEqual); +    } +  } else if (C1->getType()->isVectorTy()) { +    // If we can constant fold the comparison of each element, constant fold +    // the whole vector comparison. +    SmallVector<Constant*, 4> ResElts; +    Type *Ty = IntegerType::get(C1->getContext(), 32); +    // Compare the elements, producing an i1 result or constant expr. +    for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){ +      Constant *C1E = +        ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i)); +      Constant *C2E = +        ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i)); + +      ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); +    } + +    return ConstantVector::get(ResElts); +  } + +  if (C1->getType()->isFloatingPointTy() && +      // Only call evaluateFCmpRelation if we have a constant expr to avoid +      // infinite recursive loop +      (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { +    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true. +    switch (evaluateFCmpRelation(C1, C2)) { +    default: llvm_unreachable("Unknown relation!"); +    case FCmpInst::FCMP_UNO: +    case FCmpInst::FCMP_ORD: +    case FCmpInst::FCMP_UNE: +    case FCmpInst::FCMP_ULT: +    case FCmpInst::FCMP_UGT: +    case FCmpInst::FCMP_ULE: +    case FCmpInst::FCMP_UGE: +    case FCmpInst::FCMP_TRUE: +    case FCmpInst::FCMP_FALSE: +    case FCmpInst::BAD_FCMP_PREDICATE: +      break; // Couldn't determine anything about these constants. +    case FCmpInst::FCMP_OEQ: // We know that C1 == C2 +      Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || +                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || +                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); +      break; +    case FCmpInst::FCMP_OLT: // We know that C1 < C2 +      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || +                pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || +                pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); +      break; +    case FCmpInst::FCMP_OGT: // We know that C1 > C2 +      Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || +                pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || +                pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); +      break; +    case FCmpInst::FCMP_OLE: // We know that C1 <= C2 +      // We can only partially decide this relation. +      if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) +        Result = 0; +      else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) +        Result = 1; +      break; +    case FCmpInst::FCMP_OGE: // We known that C1 >= C2 +      // We can only partially decide this relation. +      if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) +        Result = 0; +      else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) +        Result = 1; +      break; +    case FCmpInst::FCMP_ONE: // We know that C1 != C2 +      // We can only partially decide this relation. +      if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) +        Result = 0; +      else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) +        Result = 1; +      break; +    case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2). +      // We can only partially decide this relation. +      if (pred == FCmpInst::FCMP_ONE) +        Result = 0; +      else if (pred == FCmpInst::FCMP_UEQ) +        Result = 1; +      break; +    } + +    // If we evaluated the result, return it now. +    if (Result != -1) +      return ConstantInt::get(ResultTy, Result); + +  } else { +    // Evaluate the relation between the two constants, per the predicate. +    int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true. +    switch (evaluateICmpRelation(C1, C2, +                                 CmpInst::isSigned((CmpInst::Predicate)pred))) { +    default: llvm_unreachable("Unknown relational!"); +    case ICmpInst::BAD_ICMP_PREDICATE: +      break;  // Couldn't determine anything about these constants. +    case ICmpInst::ICMP_EQ:   // We know the constants are equal! +      // If we know the constants are equal, we can decide the result of this +      // computation precisely. +      Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); +      break; +    case ICmpInst::ICMP_ULT: +      switch (pred) { +      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: +        Result = 1; break; +      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: +        Result = 0; break; +      } +      break; +    case ICmpInst::ICMP_SLT: +      switch (pred) { +      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: +        Result = 1; break; +      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: +        Result = 0; break; +      } +      break; +    case ICmpInst::ICMP_UGT: +      switch (pred) { +      case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: +        Result = 1; break; +      case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: +        Result = 0; break; +      } +      break; +    case ICmpInst::ICMP_SGT: +      switch (pred) { +      case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: +        Result = 1; break; +      case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: +        Result = 0; break; +      } +      break; +    case ICmpInst::ICMP_ULE: +      if (pred == ICmpInst::ICMP_UGT) Result = 0; +      if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; +      break; +    case ICmpInst::ICMP_SLE: +      if (pred == ICmpInst::ICMP_SGT) Result = 0; +      if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; +      break; +    case ICmpInst::ICMP_UGE: +      if (pred == ICmpInst::ICMP_ULT) Result = 0; +      if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; +      break; +    case ICmpInst::ICMP_SGE: +      if (pred == ICmpInst::ICMP_SLT) Result = 0; +      if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; +      break; +    case ICmpInst::ICMP_NE: +      if (pred == ICmpInst::ICMP_EQ) Result = 0; +      if (pred == ICmpInst::ICMP_NE) Result = 1; +      break; +    } + +    // If we evaluated the result, return it now. +    if (Result != -1) +      return ConstantInt::get(ResultTy, Result); + +    // If the right hand side is a bitcast, try using its inverse to simplify +    // it by moving it to the left hand side.  We can't do this if it would turn +    // a vector compare into a scalar compare or visa versa, or if it would turn +    // the operands into FP values. +    if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { +      Constant *CE2Op0 = CE2->getOperand(0); +      if (CE2->getOpcode() == Instruction::BitCast && +          CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() && +          !CE2Op0->getType()->isFPOrFPVectorTy()) { +        Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); +        return ConstantExpr::getICmp(pred, Inverse, CE2Op0); +      } +    } + +    // If the left hand side is an extension, try eliminating it. +    if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { +      if ((CE1->getOpcode() == Instruction::SExt && +           ICmpInst::isSigned((ICmpInst::Predicate)pred)) || +          (CE1->getOpcode() == Instruction::ZExt && +           !ICmpInst::isSigned((ICmpInst::Predicate)pred))){ +        Constant *CE1Op0 = CE1->getOperand(0); +        Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); +        if (CE1Inverse == CE1Op0) { +          // Check whether we can safely truncate the right hand side. +          Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); +          if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, +                                    C2->getType()) == C2) +            return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); +        } +      } +    } + +    if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || +        (C1->isNullValue() && !C2->isNullValue())) { +      // If C2 is a constant expr and C1 isn't, flip them around and fold the +      // other way if possible. +      // Also, if C1 is null and C2 isn't, flip them around. +      pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); +      return ConstantExpr::getICmp(pred, C2, C1); +    } +  } +  return nullptr; +} + +/// Test whether the given sequence of *normalized* indices is "inbounds". +template<typename IndexTy> +static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { +  // No indices means nothing that could be out of bounds. +  if (Idxs.empty()) return true; + +  // If the first index is zero, it's in bounds. +  if (cast<Constant>(Idxs[0])->isNullValue()) return true; + +  // If the first index is one and all the rest are zero, it's in bounds, +  // by the one-past-the-end rule. +  if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { +    if (!CI->isOne()) +      return false; +  } else { +    auto *CV = cast<ConstantDataVector>(Idxs[0]); +    CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); +    if (!CI || !CI->isOne()) +      return false; +  } + +  for (unsigned i = 1, e = Idxs.size(); i != e; ++i) +    if (!cast<Constant>(Idxs[i])->isNullValue()) +      return false; +  return true; +} + +/// Test whether a given ConstantInt is in-range for a SequentialType. +static bool isIndexInRangeOfArrayType(uint64_t NumElements, +                                      const ConstantInt *CI) { +  // We cannot bounds check the index if it doesn't fit in an int64_t. +  if (CI->getValue().getMinSignedBits() > 64) +    return false; + +  // A negative index or an index past the end of our sequential type is +  // considered out-of-range. +  int64_t IndexVal = CI->getSExtValue(); +  if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements)) +    return false; + +  // Otherwise, it is in-range. +  return true; +} + +Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, +                                          bool InBounds, +                                          Optional<unsigned> InRangeIndex, +                                          ArrayRef<Value *> Idxs) { +  if (Idxs.empty()) return C; + +  Type *GEPTy = GetElementPtrInst::getGEPReturnType( +      PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size())); + +  if (isa<UndefValue>(C)) +    return UndefValue::get(GEPTy); + +  Constant *Idx0 = cast<Constant>(Idxs[0]); +  if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0))) +    return GEPTy->isVectorTy() && !C->getType()->isVectorTy() +               ? ConstantVector::getSplat( +                     cast<VectorType>(GEPTy)->getNumElements(), C) +               : C; + +  if (C->isNullValue()) { +    bool isNull = true; +    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) +      if (!isa<UndefValue>(Idxs[i]) && +          !cast<Constant>(Idxs[i])->isNullValue()) { +        isNull = false; +        break; +      } +    if (isNull) { +      PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType()); +      Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs); + +      assert(Ty && "Invalid indices for GEP!"); +      Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); +      Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); +      if (VectorType *VT = dyn_cast<VectorType>(C->getType())) +        GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); + +      // The GEP returns a vector of pointers when one of more of +      // its arguments is a vector. +      for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { +        if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) { +          GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); +          break; +        } +      } + +      return Constant::getNullValue(GEPTy); +    } +  } + +  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { +    // Combine Indices - If the source pointer to this getelementptr instruction +    // is a getelementptr instruction, combine the indices of the two +    // getelementptr instructions into a single instruction. +    // +    if (CE->getOpcode() == Instruction::GetElementPtr) { +      gep_type_iterator LastI = gep_type_end(CE); +      for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); +           I != E; ++I) +        LastI = I; + +      // We cannot combine indices if doing so would take us outside of an +      // array or vector.  Doing otherwise could trick us if we evaluated such a +      // GEP as part of a load. +      // +      // e.g. Consider if the original GEP was: +      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, +      //                    i32 0, i32 0, i64 0) +      // +      // If we then tried to offset it by '8' to get to the third element, +      // an i8, we should *not* get: +      // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, +      //                    i32 0, i32 0, i64 8) +      // +      // This GEP tries to index array element '8  which runs out-of-bounds. +      // Subsequent evaluation would get confused and produce erroneous results. +      // +      // The following prohibits such a GEP from being formed by checking to see +      // if the index is in-range with respect to an array. +      // TODO: This code may be extended to handle vectors as well. +      bool PerformFold = false; +      if (Idx0->isNullValue()) +        PerformFold = true; +      else if (LastI.isSequential()) +        if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0)) +          PerformFold = (!LastI.isBoundedSequential() || +                         isIndexInRangeOfArrayType( +                             LastI.getSequentialNumElements(), CI)) && +                        !CE->getOperand(CE->getNumOperands() - 1) +                             ->getType() +                             ->isVectorTy(); + +      if (PerformFold) { +        SmallVector<Value*, 16> NewIndices; +        NewIndices.reserve(Idxs.size() + CE->getNumOperands()); +        NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1); + +        // Add the last index of the source with the first index of the new GEP. +        // Make sure to handle the case when they are actually different types. +        Constant *Combined = CE->getOperand(CE->getNumOperands()-1); +        // Otherwise it must be an array. +        if (!Idx0->isNullValue()) { +          Type *IdxTy = Combined->getType(); +          if (IdxTy != Idx0->getType()) { +            unsigned CommonExtendedWidth = +                std::max(IdxTy->getIntegerBitWidth(), +                         Idx0->getType()->getIntegerBitWidth()); +            CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); + +            Type *CommonTy = +                Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth); +            Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy); +            Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy); +            Combined = ConstantExpr::get(Instruction::Add, C1, C2); +          } else { +            Combined = +              ConstantExpr::get(Instruction::Add, Idx0, Combined); +          } +        } + +        NewIndices.push_back(Combined); +        NewIndices.append(Idxs.begin() + 1, Idxs.end()); + +        // The combined GEP normally inherits its index inrange attribute from +        // the inner GEP, but if the inner GEP's last index was adjusted by the +        // outer GEP, any inbounds attribute on that index is invalidated. +        Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex(); +        if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue()) +          IRIndex = None; + +        return ConstantExpr::getGetElementPtr( +            cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0), +            NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(), +            IRIndex); +      } +    } + +    // Attempt to fold casts to the same type away.  For example, folding: +    // +    //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), +    //                       i64 0, i64 0) +    // into: +    // +    //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) +    // +    // Don't fold if the cast is changing address spaces. +    if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { +      PointerType *SrcPtrTy = +        dyn_cast<PointerType>(CE->getOperand(0)->getType()); +      PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); +      if (SrcPtrTy && DstPtrTy) { +        ArrayType *SrcArrayTy = +          dyn_cast<ArrayType>(SrcPtrTy->getElementType()); +        ArrayType *DstArrayTy = +          dyn_cast<ArrayType>(DstPtrTy->getElementType()); +        if (SrcArrayTy && DstArrayTy +            && SrcArrayTy->getElementType() == DstArrayTy->getElementType() +            && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) +          return ConstantExpr::getGetElementPtr(SrcArrayTy, +                                                (Constant *)CE->getOperand(0), +                                                Idxs, InBounds, InRangeIndex); +      } +    } +  } + +  // Check to see if any array indices are not within the corresponding +  // notional array or vector bounds. If so, try to determine if they can be +  // factored out into preceding dimensions. +  SmallVector<Constant *, 8> NewIdxs; +  Type *Ty = PointeeTy; +  Type *Prev = C->getType(); +  bool Unknown = +      !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); +  for (unsigned i = 1, e = Idxs.size(); i != e; +       Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) { +    if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { +      // We don't know if it's in range or not. +      Unknown = true; +      continue; +    } +    if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) +      // Skip if the type of the previous index is not supported. +      continue; +    if (InRangeIndex && i == *InRangeIndex + 1) { +      // If an index is marked inrange, we cannot apply this canonicalization to +      // the following index, as that will cause the inrange index to point to +      // the wrong element. +      continue; +    } +    if (isa<StructType>(Ty)) { +      // The verify makes sure that GEPs into a struct are in range. +      continue; +    } +    auto *STy = cast<SequentialType>(Ty); +    if (isa<VectorType>(STy)) { +      // There can be awkward padding in after a non-power of two vector. +      Unknown = true; +      continue; +    } +    if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { +      if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) +        // It's in range, skip to the next index. +        continue; +      if (CI->getSExtValue() < 0) { +        // It's out of range and negative, don't try to factor it. +        Unknown = true; +        continue; +      } +    } else { +      auto *CV = cast<ConstantDataVector>(Idxs[i]); +      bool InRange = true; +      for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { +        auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); +        InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); +        if (CI->getSExtValue() < 0) { +          Unknown = true; +          break; +        } +      } +      if (InRange || Unknown) +        // It's in range, skip to the next index. +        // It's out of range and negative, don't try to factor it. +        continue; +    } +    if (isa<StructType>(Prev)) { +      // It's out of range, but the prior dimension is a struct +      // so we can't do anything about it. +      Unknown = true; +      continue; +    } +    // It's out of range, but we can factor it into the prior +    // dimension. +    NewIdxs.resize(Idxs.size()); +    // Determine the number of elements in our sequential type. +    uint64_t NumElements = STy->getArrayNumElements(); + +    // Expand the current index or the previous index to a vector from a scalar +    // if necessary. +    Constant *CurrIdx = cast<Constant>(Idxs[i]); +    auto *PrevIdx = +        NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); +    bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); +    bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); +    bool UseVector = IsCurrIdxVector || IsPrevIdxVector; + +    if (!IsCurrIdxVector && IsPrevIdxVector) +      CurrIdx = ConstantDataVector::getSplat( +          PrevIdx->getType()->getVectorNumElements(), CurrIdx); + +    if (!IsPrevIdxVector && IsCurrIdxVector) +      PrevIdx = ConstantDataVector::getSplat( +          CurrIdx->getType()->getVectorNumElements(), PrevIdx); + +    Constant *Factor = +        ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); +    if (UseVector) +      Factor = ConstantDataVector::getSplat( +          IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements() +                          : CurrIdx->getType()->getVectorNumElements(), +          Factor); + +    NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor); + +    Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor); + +    unsigned CommonExtendedWidth = +        std::max(PrevIdx->getType()->getScalarSizeInBits(), +                 Div->getType()->getScalarSizeInBits()); +    CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); + +    // Before adding, extend both operands to i64 to avoid +    // overflow trouble. +    Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); +    if (UseVector) +      ExtendedTy = VectorType::get( +          ExtendedTy, IsPrevIdxVector +                          ? PrevIdx->getType()->getVectorNumElements() +                          : CurrIdx->getType()->getVectorNumElements()); + +    if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) +      PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy); + +    if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) +      Div = ConstantExpr::getSExt(Div, ExtendedTy); + +    NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); +  } + +  // If we did any factoring, start over with the adjusted indices. +  if (!NewIdxs.empty()) { +    for (unsigned i = 0, e = Idxs.size(); i != e; ++i) +      if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); +    return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, +                                          InRangeIndex); +  } + +  // If all indices are known integers and normalized, we can do a simple +  // check for the "inbounds" property. +  if (!Unknown && !InBounds) +    if (auto *GV = dyn_cast<GlobalVariable>(C)) +      if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs)) +        return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, +                                              /*InBounds=*/true, InRangeIndex); + +  return nullptr; +}  | 
