diff options
Diffstat (limited to 'llvm/lib/IR/ConstantRange.cpp')
| -rw-r--r-- | llvm/lib/IR/ConstantRange.cpp | 1499 | 
1 files changed, 1499 insertions, 0 deletions
| diff --git a/llvm/lib/IR/ConstantRange.cpp b/llvm/lib/IR/ConstantRange.cpp new file mode 100644 index 0000000000000..642bf0f39342b --- /dev/null +++ b/llvm/lib/IR/ConstantRange.cpp @@ -0,0 +1,1499 @@ +//===- ConstantRange.cpp - ConstantRange implementation -------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Represent a range of possible values that may occur when the program is run +// for an integral value.  This keeps track of a lower and upper bound for the +// constant, which MAY wrap around the end of the numeric range.  To do this, it +// keeps track of a [lower, upper) bound, which specifies an interval just like +// STL iterators.  When used with boolean values, the following are important +// ranges (other integral ranges use min/max values for special range values): +// +//  [F, F) = {}     = Empty set +//  [T, F) = {T} +//  [F, T) = {F} +//  [T, T) = {F, T} = Full set +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/APInt.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/KnownBits.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstdint> + +using namespace llvm; + +ConstantRange::ConstantRange(uint32_t BitWidth, bool Full) +    : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)), +      Upper(Lower) {} + +ConstantRange::ConstantRange(APInt V) +    : Lower(std::move(V)), Upper(Lower + 1) {} + +ConstantRange::ConstantRange(APInt L, APInt U) +    : Lower(std::move(L)), Upper(std::move(U)) { +  assert(Lower.getBitWidth() == Upper.getBitWidth() && +         "ConstantRange with unequal bit widths"); +  assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) && +         "Lower == Upper, but they aren't min or max value!"); +} + +ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known, +                                           bool IsSigned) { +  assert(!Known.hasConflict() && "Expected valid KnownBits"); + +  if (Known.isUnknown()) +    return getFull(Known.getBitWidth()); + +  // For unsigned ranges, or signed ranges with known sign bit, create a simple +  // range between the smallest and largest possible value. +  if (!IsSigned || Known.isNegative() || Known.isNonNegative()) +    return ConstantRange(Known.One, ~Known.Zero + 1); + +  // If we don't know the sign bit, pick the lower bound as a negative number +  // and the upper bound as a non-negative one. +  APInt Lower = Known.One, Upper = ~Known.Zero; +  Lower.setSignBit(); +  Upper.clearSignBit(); +  return ConstantRange(Lower, Upper + 1); +} + +ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred, +                                                   const ConstantRange &CR) { +  if (CR.isEmptySet()) +    return CR; + +  uint32_t W = CR.getBitWidth(); +  switch (Pred) { +  default: +    llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()"); +  case CmpInst::ICMP_EQ: +    return CR; +  case CmpInst::ICMP_NE: +    if (CR.isSingleElement()) +      return ConstantRange(CR.getUpper(), CR.getLower()); +    return getFull(W); +  case CmpInst::ICMP_ULT: { +    APInt UMax(CR.getUnsignedMax()); +    if (UMax.isMinValue()) +      return getEmpty(W); +    return ConstantRange(APInt::getMinValue(W), std::move(UMax)); +  } +  case CmpInst::ICMP_SLT: { +    APInt SMax(CR.getSignedMax()); +    if (SMax.isMinSignedValue()) +      return getEmpty(W); +    return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax)); +  } +  case CmpInst::ICMP_ULE: +    return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1); +  case CmpInst::ICMP_SLE: +    return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1); +  case CmpInst::ICMP_UGT: { +    APInt UMin(CR.getUnsignedMin()); +    if (UMin.isMaxValue()) +      return getEmpty(W); +    return ConstantRange(std::move(UMin) + 1, APInt::getNullValue(W)); +  } +  case CmpInst::ICMP_SGT: { +    APInt SMin(CR.getSignedMin()); +    if (SMin.isMaxSignedValue()) +      return getEmpty(W); +    return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W)); +  } +  case CmpInst::ICMP_UGE: +    return getNonEmpty(CR.getUnsignedMin(), APInt::getNullValue(W)); +  case CmpInst::ICMP_SGE: +    return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W)); +  } +} + +ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred, +                                                      const ConstantRange &CR) { +  // Follows from De-Morgan's laws: +  // +  // ~(~A union ~B) == A intersect B. +  // +  return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR) +      .inverse(); +} + +ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred, +                                                 const APInt &C) { +  // Computes the exact range that is equal to both the constant ranges returned +  // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true +  // when RHS is a singleton such as an APInt and so the assert is valid. +  // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion +  // returns [0,4) but makeSatisfyICmpRegion returns [0,2). +  // +  assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C)); +  return makeAllowedICmpRegion(Pred, C); +} + +bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred, +                                      APInt &RHS) const { +  bool Success = false; + +  if (isFullSet() || isEmptySet()) { +    Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE; +    RHS = APInt(getBitWidth(), 0); +    Success = true; +  } else if (auto *OnlyElt = getSingleElement()) { +    Pred = CmpInst::ICMP_EQ; +    RHS = *OnlyElt; +    Success = true; +  } else if (auto *OnlyMissingElt = getSingleMissingElement()) { +    Pred = CmpInst::ICMP_NE; +    RHS = *OnlyMissingElt; +    Success = true; +  } else if (getLower().isMinSignedValue() || getLower().isMinValue()) { +    Pred = +        getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT; +    RHS = getUpper(); +    Success = true; +  } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) { +    Pred = +        getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE; +    RHS = getLower(); +    Success = true; +  } + +  assert((!Success || ConstantRange::makeExactICmpRegion(Pred, RHS) == *this) && +         "Bad result!"); + +  return Success; +} + +/// Exact mul nuw region for single element RHS. +static ConstantRange makeExactMulNUWRegion(const APInt &V) { +  unsigned BitWidth = V.getBitWidth(); +  if (V == 0) +    return ConstantRange::getFull(V.getBitWidth()); + +  return ConstantRange::getNonEmpty( +      APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V, +                             APInt::Rounding::UP), +      APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V, +                             APInt::Rounding::DOWN) + 1); +} + +/// Exact mul nsw region for single element RHS. +static ConstantRange makeExactMulNSWRegion(const APInt &V) { +  // Handle special case for 0, -1 and 1. See the last for reason why we +  // specialize -1 and 1. +  unsigned BitWidth = V.getBitWidth(); +  if (V == 0 || V.isOneValue()) +    return ConstantRange::getFull(BitWidth); + +  APInt MinValue = APInt::getSignedMinValue(BitWidth); +  APInt MaxValue = APInt::getSignedMaxValue(BitWidth); +  // e.g. Returning [-127, 127], represented as [-127, -128). +  if (V.isAllOnesValue()) +    return ConstantRange(-MaxValue, MinValue); + +  APInt Lower, Upper; +  if (V.isNegative()) { +    Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP); +    Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN); +  } else { +    Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP); +    Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN); +  } +  // ConstantRange ctor take a half inclusive interval [Lower, Upper + 1). +  // Upper + 1 is guaranteed not to overflow, because |divisor| > 1. 0, -1, +  // and 1 are already handled as special cases. +  return ConstantRange(Lower, Upper + 1); +} + +ConstantRange +ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, +                                          const ConstantRange &Other, +                                          unsigned NoWrapKind) { +  using OBO = OverflowingBinaryOperator; + +  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); + +  assert((NoWrapKind == OBO::NoSignedWrap || +          NoWrapKind == OBO::NoUnsignedWrap) && +         "NoWrapKind invalid!"); + +  bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap; +  unsigned BitWidth = Other.getBitWidth(); + +  switch (BinOp) { +  default: +    llvm_unreachable("Unsupported binary op"); + +  case Instruction::Add: { +    if (Unsigned) +      return getNonEmpty(APInt::getNullValue(BitWidth), +                         -Other.getUnsignedMax()); + +    APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); +    APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); +    return getNonEmpty( +        SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal, +        SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal); +  } + +  case Instruction::Sub: { +    if (Unsigned) +      return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth)); + +    APInt SignedMinVal = APInt::getSignedMinValue(BitWidth); +    APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax(); +    return getNonEmpty( +        SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal, +        SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal); +  } + +  case Instruction::Mul: +    if (Unsigned) +      return makeExactMulNUWRegion(Other.getUnsignedMax()); + +    return makeExactMulNSWRegion(Other.getSignedMin()) +        .intersectWith(makeExactMulNSWRegion(Other.getSignedMax())); + +  case Instruction::Shl: { +    // For given range of shift amounts, if we ignore all illegal shift amounts +    // (that always produce poison), what shift amount range is left? +    ConstantRange ShAmt = Other.intersectWith( +        ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1))); +    if (ShAmt.isEmptySet()) { +      // If the entire range of shift amounts is already poison-producing, +      // then we can freely add more poison-producing flags ontop of that. +      return getFull(BitWidth); +    } +    // There are some legal shift amounts, we can compute conservatively-correct +    // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax +    // to be at most bitwidth-1, which results in most conservative range. +    APInt ShAmtUMax = ShAmt.getUnsignedMax(); +    if (Unsigned) +      return getNonEmpty(APInt::getNullValue(BitWidth), +                         APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1); +    return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax), +                       APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1); +  } +  } +} + +ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp, +                                                   const APInt &Other, +                                                   unsigned NoWrapKind) { +  // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as +  // "for all" and "for any" coincide in this case. +  return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind); +} + +bool ConstantRange::isFullSet() const { +  return Lower == Upper && Lower.isMaxValue(); +} + +bool ConstantRange::isEmptySet() const { +  return Lower == Upper && Lower.isMinValue(); +} + +bool ConstantRange::isWrappedSet() const { +  return Lower.ugt(Upper) && !Upper.isNullValue(); +} + +bool ConstantRange::isUpperWrapped() const { +  return Lower.ugt(Upper); +} + +bool ConstantRange::isSignWrappedSet() const { +  return Lower.sgt(Upper) && !Upper.isMinSignedValue(); +} + +bool ConstantRange::isUpperSignWrapped() const { +  return Lower.sgt(Upper); +} + +bool +ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const { +  assert(getBitWidth() == Other.getBitWidth()); +  if (isFullSet()) +    return false; +  if (Other.isFullSet()) +    return true; +  return (Upper - Lower).ult(Other.Upper - Other.Lower); +} + +bool +ConstantRange::isSizeLargerThan(uint64_t MaxSize) const { +  assert(MaxSize && "MaxSize can't be 0."); +  // If this a full set, we need special handling to avoid needing an extra bit +  // to represent the size. +  if (isFullSet()) +    return APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1); + +  return (Upper - Lower).ugt(MaxSize); +} + +bool ConstantRange::isAllNegative() const { +  // Empty set is all negative, full set is not. +  if (isEmptySet()) +    return true; +  if (isFullSet()) +    return false; + +  return !isUpperSignWrapped() && !Upper.isStrictlyPositive(); +} + +bool ConstantRange::isAllNonNegative() const { +  // Empty and full set are automatically treated correctly. +  return !isSignWrappedSet() && Lower.isNonNegative(); +} + +APInt ConstantRange::getUnsignedMax() const { +  if (isFullSet() || isUpperWrapped()) +    return APInt::getMaxValue(getBitWidth()); +  return getUpper() - 1; +} + +APInt ConstantRange::getUnsignedMin() const { +  if (isFullSet() || isWrappedSet()) +    return APInt::getMinValue(getBitWidth()); +  return getLower(); +} + +APInt ConstantRange::getSignedMax() const { +  if (isFullSet() || isUpperSignWrapped()) +    return APInt::getSignedMaxValue(getBitWidth()); +  return getUpper() - 1; +} + +APInt ConstantRange::getSignedMin() const { +  if (isFullSet() || isSignWrappedSet()) +    return APInt::getSignedMinValue(getBitWidth()); +  return getLower(); +} + +bool ConstantRange::contains(const APInt &V) const { +  if (Lower == Upper) +    return isFullSet(); + +  if (!isUpperWrapped()) +    return Lower.ule(V) && V.ult(Upper); +  return Lower.ule(V) || V.ult(Upper); +} + +bool ConstantRange::contains(const ConstantRange &Other) const { +  if (isFullSet() || Other.isEmptySet()) return true; +  if (isEmptySet() || Other.isFullSet()) return false; + +  if (!isUpperWrapped()) { +    if (Other.isUpperWrapped()) +      return false; + +    return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper); +  } + +  if (!Other.isUpperWrapped()) +    return Other.getUpper().ule(Upper) || +           Lower.ule(Other.getLower()); + +  return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower()); +} + +ConstantRange ConstantRange::subtract(const APInt &Val) const { +  assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width"); +  // If the set is empty or full, don't modify the endpoints. +  if (Lower == Upper) +    return *this; +  return ConstantRange(Lower - Val, Upper - Val); +} + +ConstantRange ConstantRange::difference(const ConstantRange &CR) const { +  return intersectWith(CR.inverse()); +} + +static ConstantRange getPreferredRange( +    const ConstantRange &CR1, const ConstantRange &CR2, +    ConstantRange::PreferredRangeType Type) { +  if (Type == ConstantRange::Unsigned) { +    if (!CR1.isWrappedSet() && CR2.isWrappedSet()) +      return CR1; +    if (CR1.isWrappedSet() && !CR2.isWrappedSet()) +      return CR2; +  } else if (Type == ConstantRange::Signed) { +    if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet()) +      return CR1; +    if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet()) +      return CR2; +  } + +  if (CR1.isSizeStrictlySmallerThan(CR2)) +    return CR1; +  return CR2; +} + +ConstantRange ConstantRange::intersectWith(const ConstantRange &CR, +                                           PreferredRangeType Type) const { +  assert(getBitWidth() == CR.getBitWidth() && +         "ConstantRange types don't agree!"); + +  // Handle common cases. +  if (   isEmptySet() || CR.isFullSet()) return *this; +  if (CR.isEmptySet() ||    isFullSet()) return CR; + +  if (!isUpperWrapped() && CR.isUpperWrapped()) +    return CR.intersectWith(*this, Type); + +  if (!isUpperWrapped() && !CR.isUpperWrapped()) { +    if (Lower.ult(CR.Lower)) { +      // L---U       : this +      //       L---U : CR +      if (Upper.ule(CR.Lower)) +        return getEmpty(); + +      // L---U       : this +      //   L---U     : CR +      if (Upper.ult(CR.Upper)) +        return ConstantRange(CR.Lower, Upper); + +      // L-------U   : this +      //   L---U     : CR +      return CR; +    } +    //   L---U     : this +    // L-------U   : CR +    if (Upper.ult(CR.Upper)) +      return *this; + +    //   L-----U   : this +    // L-----U     : CR +    if (Lower.ult(CR.Upper)) +      return ConstantRange(Lower, CR.Upper); + +    //       L---U : this +    // L---U       : CR +    return getEmpty(); +  } + +  if (isUpperWrapped() && !CR.isUpperWrapped()) { +    if (CR.Lower.ult(Upper)) { +      // ------U   L--- : this +      //  L--U          : CR +      if (CR.Upper.ult(Upper)) +        return CR; + +      // ------U   L--- : this +      //  L------U      : CR +      if (CR.Upper.ule(Lower)) +        return ConstantRange(CR.Lower, Upper); + +      // ------U   L--- : this +      //  L----------U  : CR +      return getPreferredRange(*this, CR, Type); +    } +    if (CR.Lower.ult(Lower)) { +      // --U      L---- : this +      //     L--U       : CR +      if (CR.Upper.ule(Lower)) +        return getEmpty(); + +      // --U      L---- : this +      //     L------U   : CR +      return ConstantRange(Lower, CR.Upper); +    } + +    // --U  L------ : this +    //        L--U  : CR +    return CR; +  } + +  if (CR.Upper.ult(Upper)) { +    // ------U L-- : this +    // --U L------ : CR +    if (CR.Lower.ult(Upper)) +      return getPreferredRange(*this, CR, Type); + +    // ----U   L-- : this +    // --U   L---- : CR +    if (CR.Lower.ult(Lower)) +      return ConstantRange(Lower, CR.Upper); + +    // ----U L---- : this +    // --U     L-- : CR +    return CR; +  } +  if (CR.Upper.ule(Lower)) { +    // --U     L-- : this +    // ----U L---- : CR +    if (CR.Lower.ult(Lower)) +      return *this; + +    // --U   L---- : this +    // ----U   L-- : CR +    return ConstantRange(CR.Lower, Upper); +  } + +  // --U L------ : this +  // ------U L-- : CR +  return getPreferredRange(*this, CR, Type); +} + +ConstantRange ConstantRange::unionWith(const ConstantRange &CR, +                                       PreferredRangeType Type) const { +  assert(getBitWidth() == CR.getBitWidth() && +         "ConstantRange types don't agree!"); + +  if (   isFullSet() || CR.isEmptySet()) return *this; +  if (CR.isFullSet() ||    isEmptySet()) return CR; + +  if (!isUpperWrapped() && CR.isUpperWrapped()) +    return CR.unionWith(*this, Type); + +  if (!isUpperWrapped() && !CR.isUpperWrapped()) { +    //        L---U  and  L---U        : this +    //  L---U                   L---U  : CR +    // result in one of +    //  L---------U +    // -----U L----- +    if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower)) +      return getPreferredRange( +          ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); + +    APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; +    APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper; + +    if (L.isNullValue() && U.isNullValue()) +      return getFull(); + +    return ConstantRange(std::move(L), std::move(U)); +  } + +  if (!CR.isUpperWrapped()) { +    // ------U   L-----  and  ------U   L----- : this +    //   L--U                            L--U  : CR +    if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower)) +      return *this; + +    // ------U   L----- : this +    //    L---------U   : CR +    if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper)) +      return getFull(); + +    // ----U       L---- : this +    //       L---U       : CR +    // results in one of +    // ----------U L---- +    // ----U L---------- +    if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower)) +      return getPreferredRange( +          ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type); + +    // ----U     L----- : this +    //        L----U    : CR +    if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper)) +      return ConstantRange(CR.Lower, Upper); + +    // ------U    L---- : this +    //    L-----U       : CR +    assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) && +           "ConstantRange::unionWith missed a case with one range wrapped"); +    return ConstantRange(Lower, CR.Upper); +  } + +  // ------U    L----  and  ------U    L---- : this +  // -U  L-----------  and  ------------U  L : CR +  if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper)) +    return getFull(); + +  APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower; +  APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper; + +  return ConstantRange(std::move(L), std::move(U)); +} + +ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp, +                                    uint32_t ResultBitWidth) const { +  switch (CastOp) { +  default: +    llvm_unreachable("unsupported cast type"); +  case Instruction::Trunc: +    return truncate(ResultBitWidth); +  case Instruction::SExt: +    return signExtend(ResultBitWidth); +  case Instruction::ZExt: +    return zeroExtend(ResultBitWidth); +  case Instruction::BitCast: +    return *this; +  case Instruction::FPToUI: +  case Instruction::FPToSI: +    if (getBitWidth() == ResultBitWidth) +      return *this; +    else +      return getFull(); +  case Instruction::UIToFP: { +    // TODO: use input range if available +    auto BW = getBitWidth(); +    APInt Min = APInt::getMinValue(BW).zextOrSelf(ResultBitWidth); +    APInt Max = APInt::getMaxValue(BW).zextOrSelf(ResultBitWidth); +    return ConstantRange(std::move(Min), std::move(Max)); +  } +  case Instruction::SIToFP: { +    // TODO: use input range if available +    auto BW = getBitWidth(); +    APInt SMin = APInt::getSignedMinValue(BW).sextOrSelf(ResultBitWidth); +    APInt SMax = APInt::getSignedMaxValue(BW).sextOrSelf(ResultBitWidth); +    return ConstantRange(std::move(SMin), std::move(SMax)); +  } +  case Instruction::FPTrunc: +  case Instruction::FPExt: +  case Instruction::IntToPtr: +  case Instruction::PtrToInt: +  case Instruction::AddrSpaceCast: +    // Conservatively return getFull set. +    return getFull(); +  }; +} + +ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const { +  if (isEmptySet()) return getEmpty(DstTySize); + +  unsigned SrcTySize = getBitWidth(); +  assert(SrcTySize < DstTySize && "Not a value extension"); +  if (isFullSet() || isUpperWrapped()) { +    // Change into [0, 1 << src bit width) +    APInt LowerExt(DstTySize, 0); +    if (!Upper) // special case: [X, 0) -- not really wrapping around +      LowerExt = Lower.zext(DstTySize); +    return ConstantRange(std::move(LowerExt), +                         APInt::getOneBitSet(DstTySize, SrcTySize)); +  } + +  return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize)); +} + +ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const { +  if (isEmptySet()) return getEmpty(DstTySize); + +  unsigned SrcTySize = getBitWidth(); +  assert(SrcTySize < DstTySize && "Not a value extension"); + +  // special case: [X, INT_MIN) -- not really wrapping around +  if (Upper.isMinSignedValue()) +    return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize)); + +  if (isFullSet() || isSignWrappedSet()) { +    return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1), +                         APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1); +  } + +  return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize)); +} + +ConstantRange ConstantRange::truncate(uint32_t DstTySize) const { +  assert(getBitWidth() > DstTySize && "Not a value truncation"); +  if (isEmptySet()) +    return getEmpty(DstTySize); +  if (isFullSet()) +    return getFull(DstTySize); + +  APInt LowerDiv(Lower), UpperDiv(Upper); +  ConstantRange Union(DstTySize, /*isFullSet=*/false); + +  // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue] +  // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and +  // then we do the union with [MaxValue, Upper) +  if (isUpperWrapped()) { +    // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole +    // truncated range. +    if (Upper.getActiveBits() > DstTySize || +        Upper.countTrailingOnes() == DstTySize) +      return getFull(DstTySize); + +    Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize)); +    UpperDiv.setAllBits(); + +    // Union covers the MaxValue case, so return if the remaining range is just +    // MaxValue(DstTy). +    if (LowerDiv == UpperDiv) +      return Union; +  } + +  // Chop off the most significant bits that are past the destination bitwidth. +  if (LowerDiv.getActiveBits() > DstTySize) { +    // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv. +    APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize); +    LowerDiv -= Adjust; +    UpperDiv -= Adjust; +  } + +  unsigned UpperDivWidth = UpperDiv.getActiveBits(); +  if (UpperDivWidth <= DstTySize) +    return ConstantRange(LowerDiv.trunc(DstTySize), +                         UpperDiv.trunc(DstTySize)).unionWith(Union); + +  // The truncated value wraps around. Check if we can do better than fullset. +  if (UpperDivWidth == DstTySize + 1) { +    // Clear the MSB so that UpperDiv wraps around. +    UpperDiv.clearBit(DstTySize); +    if (UpperDiv.ult(LowerDiv)) +      return ConstantRange(LowerDiv.trunc(DstTySize), +                           UpperDiv.trunc(DstTySize)).unionWith(Union); +  } + +  return getFull(DstTySize); +} + +ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const { +  unsigned SrcTySize = getBitWidth(); +  if (SrcTySize > DstTySize) +    return truncate(DstTySize); +  if (SrcTySize < DstTySize) +    return zeroExtend(DstTySize); +  return *this; +} + +ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const { +  unsigned SrcTySize = getBitWidth(); +  if (SrcTySize > DstTySize) +    return truncate(DstTySize); +  if (SrcTySize < DstTySize) +    return signExtend(DstTySize); +  return *this; +} + +ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp, +                                      const ConstantRange &Other) const { +  assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!"); + +  switch (BinOp) { +  case Instruction::Add: +    return add(Other); +  case Instruction::Sub: +    return sub(Other); +  case Instruction::Mul: +    return multiply(Other); +  case Instruction::UDiv: +    return udiv(Other); +  case Instruction::SDiv: +    return sdiv(Other); +  case Instruction::URem: +    return urem(Other); +  case Instruction::SRem: +    return srem(Other); +  case Instruction::Shl: +    return shl(Other); +  case Instruction::LShr: +    return lshr(Other); +  case Instruction::AShr: +    return ashr(Other); +  case Instruction::And: +    return binaryAnd(Other); +  case Instruction::Or: +    return binaryOr(Other); +  // Note: floating point operations applied to abstract ranges are just +  // ideal integer operations with a lossy representation +  case Instruction::FAdd: +    return add(Other); +  case Instruction::FSub: +    return sub(Other); +  case Instruction::FMul: +    return multiply(Other); +  default: +    // Conservatively return getFull set. +    return getFull(); +  } +} + +ConstantRange +ConstantRange::add(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); +  if (isFullSet() || Other.isFullSet()) +    return getFull(); + +  APInt NewLower = getLower() + Other.getLower(); +  APInt NewUpper = getUpper() + Other.getUpper() - 1; +  if (NewLower == NewUpper) +    return getFull(); + +  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); +  if (X.isSizeStrictlySmallerThan(*this) || +      X.isSizeStrictlySmallerThan(Other)) +    // We've wrapped, therefore, full set. +    return getFull(); +  return X; +} + +ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other, +                                           unsigned NoWrapKind, +                                           PreferredRangeType RangeType) const { +  // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow). +  // (X is from this, and Y is from Other) +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); +  if (isFullSet() && Other.isFullSet()) +    return getFull(); + +  using OBO = OverflowingBinaryOperator; +  ConstantRange Result = add(Other); + +  auto addWithNoUnsignedWrap = [this](const ConstantRange &Other) { +    APInt LMin = getUnsignedMin(), LMax = getUnsignedMax(); +    APInt RMin = Other.getUnsignedMin(), RMax = Other.getUnsignedMax(); +    bool Overflow; +    APInt NewMin = LMin.uadd_ov(RMin, Overflow); +    if (Overflow) +      return getEmpty(); +    APInt NewMax = LMax.uadd_sat(RMax); +    return getNonEmpty(std::move(NewMin), std::move(NewMax) + 1); +  }; + +  auto addWithNoSignedWrap = [this](const ConstantRange &Other) { +    APInt LMin = getSignedMin(), LMax = getSignedMax(); +    APInt RMin = Other.getSignedMin(), RMax = Other.getSignedMax(); +    if (LMin.isNonNegative()) { +      bool Overflow; +      APInt Temp = LMin.sadd_ov(RMin, Overflow); +      if (Overflow) +        return getEmpty(); +    } +    if (LMax.isNegative()) { +      bool Overflow; +      APInt Temp = LMax.sadd_ov(RMax, Overflow); +      if (Overflow) +        return getEmpty(); +    } +    APInt NewMin = LMin.sadd_sat(RMin); +    APInt NewMax = LMax.sadd_sat(RMax); +    return getNonEmpty(std::move(NewMin), std::move(NewMax) + 1); +  }; + +  if (NoWrapKind & OBO::NoSignedWrap) +    Result = Result.intersectWith(addWithNoSignedWrap(Other), RangeType); +  if (NoWrapKind & OBO::NoUnsignedWrap) +    Result = Result.intersectWith(addWithNoUnsignedWrap(Other), RangeType); +  return Result; +} + +ConstantRange +ConstantRange::sub(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); +  if (isFullSet() || Other.isFullSet()) +    return getFull(); + +  APInt NewLower = getLower() - Other.getUpper() + 1; +  APInt NewUpper = getUpper() - Other.getLower(); +  if (NewLower == NewUpper) +    return getFull(); + +  ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper)); +  if (X.isSizeStrictlySmallerThan(*this) || +      X.isSizeStrictlySmallerThan(Other)) +    // We've wrapped, therefore, full set. +    return getFull(); +  return X; +} + +ConstantRange +ConstantRange::multiply(const ConstantRange &Other) const { +  // TODO: If either operand is a single element and the multiply is known to +  // be non-wrapping, round the result min and max value to the appropriate +  // multiple of that element. If wrapping is possible, at least adjust the +  // range according to the greatest power-of-two factor of the single element. + +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  // Multiplication is signedness-independent. However different ranges can be +  // obtained depending on how the input ranges are treated. These different +  // ranges are all conservatively correct, but one might be better than the +  // other. We calculate two ranges; one treating the inputs as unsigned +  // and the other signed, then return the smallest of these ranges. + +  // Unsigned range first. +  APInt this_min = getUnsignedMin().zext(getBitWidth() * 2); +  APInt this_max = getUnsignedMax().zext(getBitWidth() * 2); +  APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2); +  APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2); + +  ConstantRange Result_zext = ConstantRange(this_min * Other_min, +                                            this_max * Other_max + 1); +  ConstantRange UR = Result_zext.truncate(getBitWidth()); + +  // If the unsigned range doesn't wrap, and isn't negative then it's a range +  // from one positive number to another which is as good as we can generate. +  // In this case, skip the extra work of generating signed ranges which aren't +  // going to be better than this range. +  if (!UR.isUpperWrapped() && +      (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue())) +    return UR; + +  // Now the signed range. Because we could be dealing with negative numbers +  // here, the lower bound is the smallest of the cartesian product of the +  // lower and upper ranges; for example: +  //   [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6. +  // Similarly for the upper bound, swapping min for max. + +  this_min = getSignedMin().sext(getBitWidth() * 2); +  this_max = getSignedMax().sext(getBitWidth() * 2); +  Other_min = Other.getSignedMin().sext(getBitWidth() * 2); +  Other_max = Other.getSignedMax().sext(getBitWidth() * 2); + +  auto L = {this_min * Other_min, this_min * Other_max, +            this_max * Other_min, this_max * Other_max}; +  auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); }; +  ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1); +  ConstantRange SR = Result_sext.truncate(getBitWidth()); + +  return UR.isSizeStrictlySmallerThan(SR) ? UR : SR; +} + +ConstantRange +ConstantRange::smax(const ConstantRange &Other) const { +  // X smax Y is: range(smax(X_smin, Y_smin), +  //                    smax(X_smax, Y_smax)) +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); +  APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin()); +  APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1; +  return getNonEmpty(std::move(NewL), std::move(NewU)); +} + +ConstantRange +ConstantRange::umax(const ConstantRange &Other) const { +  // X umax Y is: range(umax(X_umin, Y_umin), +  //                    umax(X_umax, Y_umax)) +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); +  APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); +  APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1; +  return getNonEmpty(std::move(NewL), std::move(NewU)); +} + +ConstantRange +ConstantRange::smin(const ConstantRange &Other) const { +  // X smin Y is: range(smin(X_smin, Y_smin), +  //                    smin(X_smax, Y_smax)) +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); +  APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin()); +  APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1; +  return getNonEmpty(std::move(NewL), std::move(NewU)); +} + +ConstantRange +ConstantRange::umin(const ConstantRange &Other) const { +  // X umin Y is: range(umin(X_umin, Y_umin), +  //                    umin(X_umax, Y_umax)) +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); +  APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin()); +  APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1; +  return getNonEmpty(std::move(NewL), std::move(NewU)); +} + +ConstantRange +ConstantRange::udiv(const ConstantRange &RHS) const { +  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) +    return getEmpty(); + +  APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax()); + +  APInt RHS_umin = RHS.getUnsignedMin(); +  if (RHS_umin.isNullValue()) { +    // We want the lowest value in RHS excluding zero. Usually that would be 1 +    // except for a range in the form of [X, 1) in which case it would be X. +    if (RHS.getUpper() == 1) +      RHS_umin = RHS.getLower(); +    else +      RHS_umin = 1; +  } + +  APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1; +  return getNonEmpty(std::move(Lower), std::move(Upper)); +} + +ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const { +  // We split up the LHS and RHS into positive and negative components +  // and then also compute the positive and negative components of the result +  // separately by combining division results with the appropriate signs. +  APInt Zero = APInt::getNullValue(getBitWidth()); +  APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); +  ConstantRange PosFilter(APInt(getBitWidth(), 1), SignedMin); +  ConstantRange NegFilter(SignedMin, Zero); +  ConstantRange PosL = intersectWith(PosFilter); +  ConstantRange NegL = intersectWith(NegFilter); +  ConstantRange PosR = RHS.intersectWith(PosFilter); +  ConstantRange NegR = RHS.intersectWith(NegFilter); + +  ConstantRange PosRes = getEmpty(); +  if (!PosL.isEmptySet() && !PosR.isEmptySet()) +    // pos / pos = pos. +    PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1), +                           (PosL.Upper - 1).sdiv(PosR.Lower) + 1); + +  if (!NegL.isEmptySet() && !NegR.isEmptySet()) { +    // neg / neg = pos. +    // +    // We need to deal with one tricky case here: SignedMin / -1 is UB on the +    // IR level, so we'll want to exclude this case when calculating bounds. +    // (For APInts the operation is well-defined and yields SignedMin.) We +    // handle this by dropping either SignedMin from the LHS or -1 from the RHS. +    APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower); +    if (NegL.Lower.isMinSignedValue() && NegR.Upper.isNullValue()) { +      // Remove -1 from the LHS. Skip if it's the only element, as this would +      // leave us with an empty set. +      if (!NegR.Lower.isAllOnesValue()) { +        APInt AdjNegRUpper; +        if (RHS.Lower.isAllOnesValue()) +          // Negative part of [-1, X] without -1 is [SignedMin, X]. +          AdjNegRUpper = RHS.Upper; +        else +          // [X, -1] without -1 is [X, -2]. +          AdjNegRUpper = NegR.Upper - 1; + +        PosRes = PosRes.unionWith( +            ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1)); +      } + +      // Remove SignedMin from the RHS. Skip if it's the only element, as this +      // would leave us with an empty set. +      if (NegL.Upper != SignedMin + 1) { +        APInt AdjNegLLower; +        if (Upper == SignedMin + 1) +          // Negative part of [X, SignedMin] without SignedMin is [X, -1]. +          AdjNegLLower = Lower; +        else +          // [SignedMin, X] without SignedMin is [SignedMin + 1, X]. +          AdjNegLLower = NegL.Lower + 1; + +        PosRes = PosRes.unionWith( +            ConstantRange(std::move(Lo), +                          AdjNegLLower.sdiv(NegR.Upper - 1) + 1)); +      } +    } else { +      PosRes = PosRes.unionWith( +          ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1)); +    } +  } + +  ConstantRange NegRes = getEmpty(); +  if (!PosL.isEmptySet() && !NegR.isEmptySet()) +    // pos / neg = neg. +    NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1), +                           PosL.Lower.sdiv(NegR.Lower) + 1); + +  if (!NegL.isEmptySet() && !PosR.isEmptySet()) +    // neg / pos = neg. +    NegRes = NegRes.unionWith( +        ConstantRange(NegL.Lower.sdiv(PosR.Lower), +                      (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1)); + +  // Prefer a non-wrapping signed range here. +  ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed); + +  // Preserve the zero that we dropped when splitting the LHS by sign. +  if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet())) +    Res = Res.unionWith(ConstantRange(Zero)); +  return Res; +} + +ConstantRange ConstantRange::urem(const ConstantRange &RHS) const { +  if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isNullValue()) +    return getEmpty(); + +  // L % R for L < R is L. +  if (getUnsignedMax().ult(RHS.getUnsignedMin())) +    return *this; + +  // L % R is <= L and < R. +  APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1; +  return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(Upper)); +} + +ConstantRange ConstantRange::srem(const ConstantRange &RHS) const { +  if (isEmptySet() || RHS.isEmptySet()) +    return getEmpty(); + +  ConstantRange AbsRHS = RHS.abs(); +  APInt MinAbsRHS = AbsRHS.getUnsignedMin(); +  APInt MaxAbsRHS = AbsRHS.getUnsignedMax(); + +  // Modulus by zero is UB. +  if (MaxAbsRHS.isNullValue()) +    return getEmpty(); + +  if (MinAbsRHS.isNullValue()) +    ++MinAbsRHS; + +  APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax(); + +  if (MinLHS.isNonNegative()) { +    // L % R for L < R is L. +    if (MaxLHS.ult(MinAbsRHS)) +      return *this; + +    // L % R is <= L and < R. +    APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; +    return ConstantRange(APInt::getNullValue(getBitWidth()), std::move(Upper)); +  } + +  // Same basic logic as above, but the result is negative. +  if (MaxLHS.isNegative()) { +    if (MinLHS.ugt(-MinAbsRHS)) +      return *this; + +    APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); +    return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1)); +  } + +  // LHS range crosses zero. +  APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1); +  APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1; +  return ConstantRange(std::move(Lower), std::move(Upper)); +} + +ConstantRange +ConstantRange::binaryAnd(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  // TODO: replace this with something less conservative + +  APInt umin = APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()); +  return getNonEmpty(APInt::getNullValue(getBitWidth()), std::move(umin) + 1); +} + +ConstantRange +ConstantRange::binaryOr(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  // TODO: replace this with something less conservative + +  APInt umax = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()); +  return getNonEmpty(std::move(umax), APInt::getNullValue(getBitWidth())); +} + +ConstantRange +ConstantRange::shl(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  APInt max = getUnsignedMax(); +  APInt Other_umax = Other.getUnsignedMax(); + +  // If we are shifting by maximum amount of +  // zero return return the original range. +  if (Other_umax.isNullValue()) +    return *this; +  // there's overflow! +  if (Other_umax.ugt(max.countLeadingZeros())) +    return getFull(); + +  // FIXME: implement the other tricky cases + +  APInt min = getUnsignedMin(); +  min <<= Other.getUnsignedMin(); +  max <<= Other_umax; + +  return ConstantRange(std::move(min), std::move(max) + 1); +} + +ConstantRange +ConstantRange::lshr(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1; +  APInt min = getUnsignedMin().lshr(Other.getUnsignedMax()); +  return getNonEmpty(std::move(min), std::move(max)); +} + +ConstantRange +ConstantRange::ashr(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  // May straddle zero, so handle both positive and negative cases. +  // 'PosMax' is the upper bound of the result of the ashr +  // operation, when Upper of the LHS of ashr is a non-negative. +  // number. Since ashr of a non-negative number will result in a +  // smaller number, the Upper value of LHS is shifted right with +  // the minimum value of 'Other' instead of the maximum value. +  APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1; + +  // 'PosMin' is the lower bound of the result of the ashr +  // operation, when Lower of the LHS is a non-negative number. +  // Since ashr of a non-negative number will result in a smaller +  // number, the Lower value of LHS is shifted right with the +  // maximum value of 'Other'. +  APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax()); + +  // 'NegMax' is the upper bound of the result of the ashr +  // operation, when Upper of the LHS of ashr is a negative number. +  // Since 'ashr' of a negative number will result in a bigger +  // number, the Upper value of LHS is shifted right with the +  // maximum value of 'Other'. +  APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1; + +  // 'NegMin' is the lower bound of the result of the ashr +  // operation, when Lower of the LHS of ashr is a negative number. +  // Since 'ashr' of a negative number will result in a bigger +  // number, the Lower value of LHS is shifted right with the +  // minimum value of 'Other'. +  APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin()); + +  APInt max, min; +  if (getSignedMin().isNonNegative()) { +    // Upper and Lower of LHS are non-negative. +    min = PosMin; +    max = PosMax; +  } else if (getSignedMax().isNegative()) { +    // Upper and Lower of LHS are negative. +    min = NegMin; +    max = NegMax; +  } else { +    // Upper is non-negative and Lower is negative. +    min = NegMin; +    max = PosMax; +  } +  return getNonEmpty(std::move(min), std::move(max)); +} + +ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin()); +  APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1; +  return getNonEmpty(std::move(NewL), std::move(NewU)); +} + +ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin()); +  APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1; +  return getNonEmpty(std::move(NewL), std::move(NewU)); +} + +ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax()); +  APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1; +  return getNonEmpty(std::move(NewL), std::move(NewU)); +} + +ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return getEmpty(); + +  APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax()); +  APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1; +  return getNonEmpty(std::move(NewL), std::move(NewU)); +} + +ConstantRange ConstantRange::inverse() const { +  if (isFullSet()) +    return getEmpty(); +  if (isEmptySet()) +    return getFull(); +  return ConstantRange(Upper, Lower); +} + +ConstantRange ConstantRange::abs() const { +  if (isEmptySet()) +    return getEmpty(); + +  if (isSignWrappedSet()) { +    APInt Lo; +    // Check whether the range crosses zero. +    if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive()) +      Lo = APInt::getNullValue(getBitWidth()); +    else +      Lo = APIntOps::umin(Lower, -Upper + 1); + +    // SignedMin is included in the result range. +    return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1); +  } + +  APInt SMin = getSignedMin(), SMax = getSignedMax(); + +  // All non-negative. +  if (SMin.isNonNegative()) +    return *this; + +  // All negative. +  if (SMax.isNegative()) +    return ConstantRange(-SMax, -SMin + 1); + +  // Range crosses zero. +  return ConstantRange(APInt::getNullValue(getBitWidth()), +                       APIntOps::umax(-SMin, SMax) + 1); +} + +ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow( +    const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return OverflowResult::MayOverflow; + +  APInt Min = getUnsignedMin(), Max = getUnsignedMax(); +  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); + +  // a u+ b overflows high iff a u> ~b. +  if (Min.ugt(~OtherMin)) +    return OverflowResult::AlwaysOverflowsHigh; +  if (Max.ugt(~OtherMax)) +    return OverflowResult::MayOverflow; +  return OverflowResult::NeverOverflows; +} + +ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow( +    const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return OverflowResult::MayOverflow; + +  APInt Min = getSignedMin(), Max = getSignedMax(); +  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); + +  APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); +  APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); + +  // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b. +  // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b. +  if (Min.isNonNegative() && OtherMin.isNonNegative() && +      Min.sgt(SignedMax - OtherMin)) +    return OverflowResult::AlwaysOverflowsHigh; +  if (Max.isNegative() && OtherMax.isNegative() && +      Max.slt(SignedMin - OtherMax)) +    return OverflowResult::AlwaysOverflowsLow; + +  if (Max.isNonNegative() && OtherMax.isNonNegative() && +      Max.sgt(SignedMax - OtherMax)) +    return OverflowResult::MayOverflow; +  if (Min.isNegative() && OtherMin.isNegative() && +      Min.slt(SignedMin - OtherMin)) +    return OverflowResult::MayOverflow; + +  return OverflowResult::NeverOverflows; +} + +ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow( +    const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return OverflowResult::MayOverflow; + +  APInt Min = getUnsignedMin(), Max = getUnsignedMax(); +  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); + +  // a u- b overflows low iff a u< b. +  if (Max.ult(OtherMin)) +    return OverflowResult::AlwaysOverflowsLow; +  if (Min.ult(OtherMax)) +    return OverflowResult::MayOverflow; +  return OverflowResult::NeverOverflows; +} + +ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow( +    const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return OverflowResult::MayOverflow; + +  APInt Min = getSignedMin(), Max = getSignedMax(); +  APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax(); + +  APInt SignedMin = APInt::getSignedMinValue(getBitWidth()); +  APInt SignedMax = APInt::getSignedMaxValue(getBitWidth()); + +  // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b. +  // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b. +  if (Min.isNonNegative() && OtherMax.isNegative() && +      Min.sgt(SignedMax + OtherMax)) +    return OverflowResult::AlwaysOverflowsHigh; +  if (Max.isNegative() && OtherMin.isNonNegative() && +      Max.slt(SignedMin + OtherMin)) +    return OverflowResult::AlwaysOverflowsLow; + +  if (Max.isNonNegative() && OtherMin.isNegative() && +      Max.sgt(SignedMax + OtherMin)) +    return OverflowResult::MayOverflow; +  if (Min.isNegative() && OtherMax.isNonNegative() && +      Min.slt(SignedMin + OtherMax)) +    return OverflowResult::MayOverflow; + +  return OverflowResult::NeverOverflows; +} + +ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow( +    const ConstantRange &Other) const { +  if (isEmptySet() || Other.isEmptySet()) +    return OverflowResult::MayOverflow; + +  APInt Min = getUnsignedMin(), Max = getUnsignedMax(); +  APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax(); +  bool Overflow; + +  (void) Min.umul_ov(OtherMin, Overflow); +  if (Overflow) +    return OverflowResult::AlwaysOverflowsHigh; + +  (void) Max.umul_ov(OtherMax, Overflow); +  if (Overflow) +    return OverflowResult::MayOverflow; + +  return OverflowResult::NeverOverflows; +} + +void ConstantRange::print(raw_ostream &OS) const { +  if (isFullSet()) +    OS << "full-set"; +  else if (isEmptySet()) +    OS << "empty-set"; +  else +    OS << "[" << Lower << "," << Upper << ")"; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void ConstantRange::dump() const { +  print(dbgs()); +} +#endif + +ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) { +  const unsigned NumRanges = Ranges.getNumOperands() / 2; +  assert(NumRanges >= 1 && "Must have at least one range!"); +  assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs"); + +  auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0)); +  auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1)); + +  ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue()); + +  for (unsigned i = 1; i < NumRanges; ++i) { +    auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0)); +    auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1)); + +    // Note: unionWith will potentially create a range that contains values not +    // contained in any of the original N ranges. +    CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue())); +  } + +  return CR; +} | 
