diff options
Diffstat (limited to 'llvm/lib/IR/Function.cpp')
-rw-r--r-- | llvm/lib/IR/Function.cpp | 1612 |
1 files changed, 1612 insertions, 0 deletions
diff --git a/llvm/lib/IR/Function.cpp b/llvm/lib/IR/Function.cpp new file mode 100644 index 0000000000000..3f70d2c904e5c --- /dev/null +++ b/llvm/lib/IR/Function.cpp @@ -0,0 +1,1612 @@ +//===- Function.cpp - Implement the Global object classes -----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the Function class for the IR library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Function.h" +#include "SymbolTableListTraitsImpl.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/SymbolTableListTraits.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueSymbolTable.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/ErrorHandling.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <cstring> +#include <string> + +using namespace llvm; +using ProfileCount = Function::ProfileCount; + +// Explicit instantiations of SymbolTableListTraits since some of the methods +// are not in the public header file... +template class llvm::SymbolTableListTraits<BasicBlock>; + +//===----------------------------------------------------------------------===// +// Argument Implementation +//===----------------------------------------------------------------------===// + +Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) + : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { + setName(Name); +} + +void Argument::setParent(Function *parent) { + Parent = parent; +} + +bool Argument::hasNonNullAttr() const { + if (!getType()->isPointerTy()) return false; + if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) + return true; + else if (getDereferenceableBytes() > 0 && + !NullPointerIsDefined(getParent(), + getType()->getPointerAddressSpace())) + return true; + return false; +} + +bool Argument::hasByValAttr() const { + if (!getType()->isPointerTy()) return false; + return hasAttribute(Attribute::ByVal); +} + +bool Argument::hasSwiftSelfAttr() const { + return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); +} + +bool Argument::hasSwiftErrorAttr() const { + return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); +} + +bool Argument::hasInAllocaAttr() const { + if (!getType()->isPointerTy()) return false; + return hasAttribute(Attribute::InAlloca); +} + +bool Argument::hasByValOrInAllocaAttr() const { + if (!getType()->isPointerTy()) return false; + AttributeList Attrs = getParent()->getAttributes(); + return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || + Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); +} + +unsigned Argument::getParamAlignment() const { + assert(getType()->isPointerTy() && "Only pointers have alignments"); + return getParent()->getParamAlignment(getArgNo()); +} + +Type *Argument::getParamByValType() const { + assert(getType()->isPointerTy() && "Only pointers have byval types"); + return getParent()->getParamByValType(getArgNo()); +} + +uint64_t Argument::getDereferenceableBytes() const { + assert(getType()->isPointerTy() && + "Only pointers have dereferenceable bytes"); + return getParent()->getParamDereferenceableBytes(getArgNo()); +} + +uint64_t Argument::getDereferenceableOrNullBytes() const { + assert(getType()->isPointerTy() && + "Only pointers have dereferenceable bytes"); + return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); +} + +bool Argument::hasNestAttr() const { + if (!getType()->isPointerTy()) return false; + return hasAttribute(Attribute::Nest); +} + +bool Argument::hasNoAliasAttr() const { + if (!getType()->isPointerTy()) return false; + return hasAttribute(Attribute::NoAlias); +} + +bool Argument::hasNoCaptureAttr() const { + if (!getType()->isPointerTy()) return false; + return hasAttribute(Attribute::NoCapture); +} + +bool Argument::hasStructRetAttr() const { + if (!getType()->isPointerTy()) return false; + return hasAttribute(Attribute::StructRet); +} + +bool Argument::hasInRegAttr() const { + return hasAttribute(Attribute::InReg); +} + +bool Argument::hasReturnedAttr() const { + return hasAttribute(Attribute::Returned); +} + +bool Argument::hasZExtAttr() const { + return hasAttribute(Attribute::ZExt); +} + +bool Argument::hasSExtAttr() const { + return hasAttribute(Attribute::SExt); +} + +bool Argument::onlyReadsMemory() const { + AttributeList Attrs = getParent()->getAttributes(); + return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || + Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); +} + +void Argument::addAttrs(AttrBuilder &B) { + AttributeList AL = getParent()->getAttributes(); + AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); + getParent()->setAttributes(AL); +} + +void Argument::addAttr(Attribute::AttrKind Kind) { + getParent()->addParamAttr(getArgNo(), Kind); +} + +void Argument::addAttr(Attribute Attr) { + getParent()->addParamAttr(getArgNo(), Attr); +} + +void Argument::removeAttr(Attribute::AttrKind Kind) { + getParent()->removeParamAttr(getArgNo(), Kind); +} + +bool Argument::hasAttribute(Attribute::AttrKind Kind) const { + return getParent()->hasParamAttribute(getArgNo(), Kind); +} + +Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { + return getParent()->getParamAttribute(getArgNo(), Kind); +} + +//===----------------------------------------------------------------------===// +// Helper Methods in Function +//===----------------------------------------------------------------------===// + +LLVMContext &Function::getContext() const { + return getType()->getContext(); +} + +unsigned Function::getInstructionCount() const { + unsigned NumInstrs = 0; + for (const BasicBlock &BB : BasicBlocks) + NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), + BB.instructionsWithoutDebug().end()); + return NumInstrs; +} + +Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, + const Twine &N, Module &M) { + return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); +} + +void Function::removeFromParent() { + getParent()->getFunctionList().remove(getIterator()); +} + +void Function::eraseFromParent() { + getParent()->getFunctionList().erase(getIterator()); +} + +//===----------------------------------------------------------------------===// +// Function Implementation +//===----------------------------------------------------------------------===// + +static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { + // If AS == -1 and we are passed a valid module pointer we place the function + // in the program address space. Otherwise we default to AS0. + if (AddrSpace == static_cast<unsigned>(-1)) + return M ? M->getDataLayout().getProgramAddressSpace() : 0; + return AddrSpace; +} + +Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, + const Twine &name, Module *ParentModule) + : GlobalObject(Ty, Value::FunctionVal, + OperandTraits<Function>::op_begin(this), 0, Linkage, name, + computeAddrSpace(AddrSpace, ParentModule)), + NumArgs(Ty->getNumParams()) { + assert(FunctionType::isValidReturnType(getReturnType()) && + "invalid return type"); + setGlobalObjectSubClassData(0); + + // We only need a symbol table for a function if the context keeps value names + if (!getContext().shouldDiscardValueNames()) + SymTab = std::make_unique<ValueSymbolTable>(); + + // If the function has arguments, mark them as lazily built. + if (Ty->getNumParams()) + setValueSubclassData(1); // Set the "has lazy arguments" bit. + + if (ParentModule) + ParentModule->getFunctionList().push_back(this); + + HasLLVMReservedName = getName().startswith("llvm."); + // Ensure intrinsics have the right parameter attributes. + // Note, the IntID field will have been set in Value::setName if this function + // name is a valid intrinsic ID. + if (IntID) + setAttributes(Intrinsic::getAttributes(getContext(), IntID)); +} + +Function::~Function() { + dropAllReferences(); // After this it is safe to delete instructions. + + // Delete all of the method arguments and unlink from symbol table... + if (Arguments) + clearArguments(); + + // Remove the function from the on-the-side GC table. + clearGC(); +} + +void Function::BuildLazyArguments() const { + // Create the arguments vector, all arguments start out unnamed. + auto *FT = getFunctionType(); + if (NumArgs > 0) { + Arguments = std::allocator<Argument>().allocate(NumArgs); + for (unsigned i = 0, e = NumArgs; i != e; ++i) { + Type *ArgTy = FT->getParamType(i); + assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); + new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); + } + } + + // Clear the lazy arguments bit. + unsigned SDC = getSubclassDataFromValue(); + SDC &= ~(1 << 0); + const_cast<Function*>(this)->setValueSubclassData(SDC); + assert(!hasLazyArguments()); +} + +static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { + return MutableArrayRef<Argument>(Args, Count); +} + +void Function::clearArguments() { + for (Argument &A : makeArgArray(Arguments, NumArgs)) { + A.setName(""); + A.~Argument(); + } + std::allocator<Argument>().deallocate(Arguments, NumArgs); + Arguments = nullptr; +} + +void Function::stealArgumentListFrom(Function &Src) { + assert(isDeclaration() && "Expected no references to current arguments"); + + // Drop the current arguments, if any, and set the lazy argument bit. + if (!hasLazyArguments()) { + assert(llvm::all_of(makeArgArray(Arguments, NumArgs), + [](const Argument &A) { return A.use_empty(); }) && + "Expected arguments to be unused in declaration"); + clearArguments(); + setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); + } + + // Nothing to steal if Src has lazy arguments. + if (Src.hasLazyArguments()) + return; + + // Steal arguments from Src, and fix the lazy argument bits. + assert(arg_size() == Src.arg_size()); + Arguments = Src.Arguments; + Src.Arguments = nullptr; + for (Argument &A : makeArgArray(Arguments, NumArgs)) { + // FIXME: This does the work of transferNodesFromList inefficiently. + SmallString<128> Name; + if (A.hasName()) + Name = A.getName(); + if (!Name.empty()) + A.setName(""); + A.setParent(this); + if (!Name.empty()) + A.setName(Name); + } + + setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); + assert(!hasLazyArguments()); + Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); +} + +// dropAllReferences() - This function causes all the subinstructions to "let +// go" of all references that they are maintaining. This allows one to +// 'delete' a whole class at a time, even though there may be circular +// references... first all references are dropped, and all use counts go to +// zero. Then everything is deleted for real. Note that no operations are +// valid on an object that has "dropped all references", except operator +// delete. +// +void Function::dropAllReferences() { + setIsMaterializable(false); + + for (BasicBlock &BB : *this) + BB.dropAllReferences(); + + // Delete all basic blocks. They are now unused, except possibly by + // blockaddresses, but BasicBlock's destructor takes care of those. + while (!BasicBlocks.empty()) + BasicBlocks.begin()->eraseFromParent(); + + // Drop uses of any optional data (real or placeholder). + if (getNumOperands()) { + User::dropAllReferences(); + setNumHungOffUseOperands(0); + setValueSubclassData(getSubclassDataFromValue() & ~0xe); + } + + // Metadata is stored in a side-table. + clearMetadata(); +} + +void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { + AttributeList PAL = getAttributes(); + PAL = PAL.addAttribute(getContext(), i, Kind); + setAttributes(PAL); +} + +void Function::addAttribute(unsigned i, Attribute Attr) { + AttributeList PAL = getAttributes(); + PAL = PAL.addAttribute(getContext(), i, Attr); + setAttributes(PAL); +} + +void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { + AttributeList PAL = getAttributes(); + PAL = PAL.addAttributes(getContext(), i, Attrs); + setAttributes(PAL); +} + +void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { + AttributeList PAL = getAttributes(); + PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); + setAttributes(PAL); +} + +void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { + AttributeList PAL = getAttributes(); + PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); + setAttributes(PAL); +} + +void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { + AttributeList PAL = getAttributes(); + PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); + setAttributes(PAL); +} + +void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { + AttributeList PAL = getAttributes(); + PAL = PAL.removeAttribute(getContext(), i, Kind); + setAttributes(PAL); +} + +void Function::removeAttribute(unsigned i, StringRef Kind) { + AttributeList PAL = getAttributes(); + PAL = PAL.removeAttribute(getContext(), i, Kind); + setAttributes(PAL); +} + +void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { + AttributeList PAL = getAttributes(); + PAL = PAL.removeAttributes(getContext(), i, Attrs); + setAttributes(PAL); +} + +void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { + AttributeList PAL = getAttributes(); + PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); + setAttributes(PAL); +} + +void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { + AttributeList PAL = getAttributes(); + PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); + setAttributes(PAL); +} + +void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { + AttributeList PAL = getAttributes(); + PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); + setAttributes(PAL); +} + +void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { + AttributeList PAL = getAttributes(); + PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); + setAttributes(PAL); +} + +void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { + AttributeList PAL = getAttributes(); + PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); + setAttributes(PAL); +} + +void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { + AttributeList PAL = getAttributes(); + PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); + setAttributes(PAL); +} + +void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, + uint64_t Bytes) { + AttributeList PAL = getAttributes(); + PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); + setAttributes(PAL); +} + +const std::string &Function::getGC() const { + assert(hasGC() && "Function has no collector"); + return getContext().getGC(*this); +} + +void Function::setGC(std::string Str) { + setValueSubclassDataBit(14, !Str.empty()); + getContext().setGC(*this, std::move(Str)); +} + +void Function::clearGC() { + if (!hasGC()) + return; + getContext().deleteGC(*this); + setValueSubclassDataBit(14, false); +} + +/// Copy all additional attributes (those not needed to create a Function) from +/// the Function Src to this one. +void Function::copyAttributesFrom(const Function *Src) { + GlobalObject::copyAttributesFrom(Src); + setCallingConv(Src->getCallingConv()); + setAttributes(Src->getAttributes()); + if (Src->hasGC()) + setGC(Src->getGC()); + else + clearGC(); + if (Src->hasPersonalityFn()) + setPersonalityFn(Src->getPersonalityFn()); + if (Src->hasPrefixData()) + setPrefixData(Src->getPrefixData()); + if (Src->hasPrologueData()) + setPrologueData(Src->getPrologueData()); +} + +/// Table of string intrinsic names indexed by enum value. +static const char * const IntrinsicNameTable[] = { + "not_intrinsic", +#define GET_INTRINSIC_NAME_TABLE +#include "llvm/IR/IntrinsicImpl.inc" +#undef GET_INTRINSIC_NAME_TABLE +}; + +/// Table of per-target intrinsic name tables. +#define GET_INTRINSIC_TARGET_DATA +#include "llvm/IR/IntrinsicImpl.inc" +#undef GET_INTRINSIC_TARGET_DATA + +/// Find the segment of \c IntrinsicNameTable for intrinsics with the same +/// target as \c Name, or the generic table if \c Name is not target specific. +/// +/// Returns the relevant slice of \c IntrinsicNameTable +static ArrayRef<const char *> findTargetSubtable(StringRef Name) { + assert(Name.startswith("llvm.")); + + ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); + // Drop "llvm." and take the first dotted component. That will be the target + // if this is target specific. + StringRef Target = Name.drop_front(5).split('.').first; + auto It = partition_point( + Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); + // We've either found the target or just fall back to the generic set, which + // is always first. + const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; + return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); +} + +/// This does the actual lookup of an intrinsic ID which +/// matches the given function name. +Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { + ArrayRef<const char *> NameTable = findTargetSubtable(Name); + int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); + if (Idx == -1) + return Intrinsic::not_intrinsic; + + // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have + // an index into a sub-table. + int Adjust = NameTable.data() - IntrinsicNameTable; + Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); + + // If the intrinsic is not overloaded, require an exact match. If it is + // overloaded, require either exact or prefix match. + const auto MatchSize = strlen(NameTable[Idx]); + assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); + bool IsExactMatch = Name.size() == MatchSize; + return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; +} + +void Function::recalculateIntrinsicID() { + StringRef Name = getName(); + if (!Name.startswith("llvm.")) { + HasLLVMReservedName = false; + IntID = Intrinsic::not_intrinsic; + return; + } + HasLLVMReservedName = true; + IntID = lookupIntrinsicID(Name); +} + +/// Returns a stable mangling for the type specified for use in the name +/// mangling scheme used by 'any' types in intrinsic signatures. The mangling +/// of named types is simply their name. Manglings for unnamed types consist +/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) +/// combined with the mangling of their component types. A vararg function +/// type will have a suffix of 'vararg'. Since function types can contain +/// other function types, we close a function type mangling with suffix 'f' +/// which can't be confused with it's prefix. This ensures we don't have +/// collisions between two unrelated function types. Otherwise, you might +/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) +/// +static std::string getMangledTypeStr(Type* Ty) { + std::string Result; + if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { + Result += "p" + utostr(PTyp->getAddressSpace()) + + getMangledTypeStr(PTyp->getElementType()); + } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { + Result += "a" + utostr(ATyp->getNumElements()) + + getMangledTypeStr(ATyp->getElementType()); + } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { + if (!STyp->isLiteral()) { + Result += "s_"; + Result += STyp->getName(); + } else { + Result += "sl_"; + for (auto Elem : STyp->elements()) + Result += getMangledTypeStr(Elem); + } + // Ensure nested structs are distinguishable. + Result += "s"; + } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { + Result += "f_" + getMangledTypeStr(FT->getReturnType()); + for (size_t i = 0; i < FT->getNumParams(); i++) + Result += getMangledTypeStr(FT->getParamType(i)); + if (FT->isVarArg()) + Result += "vararg"; + // Ensure nested function types are distinguishable. + Result += "f"; + } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { + if (VTy->isScalable()) + Result += "nx"; + Result += "v" + utostr(VTy->getVectorNumElements()) + + getMangledTypeStr(VTy->getVectorElementType()); + } else if (Ty) { + switch (Ty->getTypeID()) { + default: llvm_unreachable("Unhandled type"); + case Type::VoidTyID: Result += "isVoid"; break; + case Type::MetadataTyID: Result += "Metadata"; break; + case Type::HalfTyID: Result += "f16"; break; + case Type::FloatTyID: Result += "f32"; break; + case Type::DoubleTyID: Result += "f64"; break; + case Type::X86_FP80TyID: Result += "f80"; break; + case Type::FP128TyID: Result += "f128"; break; + case Type::PPC_FP128TyID: Result += "ppcf128"; break; + case Type::X86_MMXTyID: Result += "x86mmx"; break; + case Type::IntegerTyID: + Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); + break; + } + } + return Result; +} + +StringRef Intrinsic::getName(ID id) { + assert(id < num_intrinsics && "Invalid intrinsic ID!"); + assert(!isOverloaded(id) && + "This version of getName does not support overloading"); + return IntrinsicNameTable[id]; +} + +std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { + assert(id < num_intrinsics && "Invalid intrinsic ID!"); + std::string Result(IntrinsicNameTable[id]); + for (Type *Ty : Tys) { + Result += "." + getMangledTypeStr(Ty); + } + return Result; +} + +/// IIT_Info - These are enumerators that describe the entries returned by the +/// getIntrinsicInfoTableEntries function. +/// +/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! +enum IIT_Info { + // Common values should be encoded with 0-15. + IIT_Done = 0, + IIT_I1 = 1, + IIT_I8 = 2, + IIT_I16 = 3, + IIT_I32 = 4, + IIT_I64 = 5, + IIT_F16 = 6, + IIT_F32 = 7, + IIT_F64 = 8, + IIT_V2 = 9, + IIT_V4 = 10, + IIT_V8 = 11, + IIT_V16 = 12, + IIT_V32 = 13, + IIT_PTR = 14, + IIT_ARG = 15, + + // Values from 16+ are only encodable with the inefficient encoding. + IIT_V64 = 16, + IIT_MMX = 17, + IIT_TOKEN = 18, + IIT_METADATA = 19, + IIT_EMPTYSTRUCT = 20, + IIT_STRUCT2 = 21, + IIT_STRUCT3 = 22, + IIT_STRUCT4 = 23, + IIT_STRUCT5 = 24, + IIT_EXTEND_ARG = 25, + IIT_TRUNC_ARG = 26, + IIT_ANYPTR = 27, + IIT_V1 = 28, + IIT_VARARG = 29, + IIT_HALF_VEC_ARG = 30, + IIT_SAME_VEC_WIDTH_ARG = 31, + IIT_PTR_TO_ARG = 32, + IIT_PTR_TO_ELT = 33, + IIT_VEC_OF_ANYPTRS_TO_ELT = 34, + IIT_I128 = 35, + IIT_V512 = 36, + IIT_V1024 = 37, + IIT_STRUCT6 = 38, + IIT_STRUCT7 = 39, + IIT_STRUCT8 = 40, + IIT_F128 = 41, + IIT_VEC_ELEMENT = 42, + IIT_SCALABLE_VEC = 43, + IIT_SUBDIVIDE2_ARG = 44, + IIT_SUBDIVIDE4_ARG = 45, + IIT_VEC_OF_BITCASTS_TO_INT = 46 +}; + +static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, + SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { + using namespace Intrinsic; + + IIT_Info Info = IIT_Info(Infos[NextElt++]); + unsigned StructElts = 2; + + switch (Info) { + case IIT_Done: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); + return; + case IIT_VARARG: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); + return; + case IIT_MMX: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); + return; + case IIT_TOKEN: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); + return; + case IIT_METADATA: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); + return; + case IIT_F16: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); + return; + case IIT_F32: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); + return; + case IIT_F64: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); + return; + case IIT_F128: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); + return; + case IIT_I1: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); + return; + case IIT_I8: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); + return; + case IIT_I16: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); + return; + case IIT_I32: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); + return; + case IIT_I64: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); + return; + case IIT_I128: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); + return; + case IIT_V1: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_V2: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_V4: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_V8: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_V16: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_V32: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_V64: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_V512: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_V1024: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_PTR: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, + Infos[NextElt++])); + DecodeIITType(NextElt, Infos, OutputTable); + return; + } + case IIT_ARG: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); + return; + } + case IIT_EXTEND_ARG: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, + ArgInfo)); + return; + } + case IIT_TRUNC_ARG: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, + ArgInfo)); + return; + } + case IIT_HALF_VEC_ARG: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, + ArgInfo)); + return; + } + case IIT_SAME_VEC_WIDTH_ARG: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, + ArgInfo)); + return; + } + case IIT_PTR_TO_ARG: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, + ArgInfo)); + return; + } + case IIT_PTR_TO_ELT: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); + return; + } + case IIT_VEC_OF_ANYPTRS_TO_ELT: { + unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back( + IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); + return; + } + case IIT_EMPTYSTRUCT: + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); + return; + case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; + case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; + case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; + case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; + case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; + case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; + case IIT_STRUCT2: { + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); + + for (unsigned i = 0; i != StructElts; ++i) + DecodeIITType(NextElt, Infos, OutputTable); + return; + } + case IIT_SUBDIVIDE2_ARG: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, + ArgInfo)); + return; + } + case IIT_SUBDIVIDE4_ARG: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, + ArgInfo)); + return; + } + case IIT_VEC_ELEMENT: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, + ArgInfo)); + return; + } + case IIT_SCALABLE_VEC: { + OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument, + 0)); + DecodeIITType(NextElt, Infos, OutputTable); + return; + } + case IIT_VEC_OF_BITCASTS_TO_INT: { + unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); + OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, + ArgInfo)); + return; + } + } + llvm_unreachable("unhandled"); +} + +#define GET_INTRINSIC_GENERATOR_GLOBAL +#include "llvm/IR/IntrinsicImpl.inc" +#undef GET_INTRINSIC_GENERATOR_GLOBAL + +void Intrinsic::getIntrinsicInfoTableEntries(ID id, + SmallVectorImpl<IITDescriptor> &T){ + // Check to see if the intrinsic's type was expressible by the table. + unsigned TableVal = IIT_Table[id-1]; + + // Decode the TableVal into an array of IITValues. + SmallVector<unsigned char, 8> IITValues; + ArrayRef<unsigned char> IITEntries; + unsigned NextElt = 0; + if ((TableVal >> 31) != 0) { + // This is an offset into the IIT_LongEncodingTable. + IITEntries = IIT_LongEncodingTable; + + // Strip sentinel bit. + NextElt = (TableVal << 1) >> 1; + } else { + // Decode the TableVal into an array of IITValues. If the entry was encoded + // into a single word in the table itself, decode it now. + do { + IITValues.push_back(TableVal & 0xF); + TableVal >>= 4; + } while (TableVal); + + IITEntries = IITValues; + NextElt = 0; + } + + // Okay, decode the table into the output vector of IITDescriptors. + DecodeIITType(NextElt, IITEntries, T); + while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) + DecodeIITType(NextElt, IITEntries, T); +} + +static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, + ArrayRef<Type*> Tys, LLVMContext &Context) { + using namespace Intrinsic; + + IITDescriptor D = Infos.front(); + Infos = Infos.slice(1); + + switch (D.Kind) { + case IITDescriptor::Void: return Type::getVoidTy(Context); + case IITDescriptor::VarArg: return Type::getVoidTy(Context); + case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); + case IITDescriptor::Token: return Type::getTokenTy(Context); + case IITDescriptor::Metadata: return Type::getMetadataTy(Context); + case IITDescriptor::Half: return Type::getHalfTy(Context); + case IITDescriptor::Float: return Type::getFloatTy(Context); + case IITDescriptor::Double: return Type::getDoubleTy(Context); + case IITDescriptor::Quad: return Type::getFP128Ty(Context); + + case IITDescriptor::Integer: + return IntegerType::get(Context, D.Integer_Width); + case IITDescriptor::Vector: + return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); + case IITDescriptor::Pointer: + return PointerType::get(DecodeFixedType(Infos, Tys, Context), + D.Pointer_AddressSpace); + case IITDescriptor::Struct: { + SmallVector<Type *, 8> Elts; + for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) + Elts.push_back(DecodeFixedType(Infos, Tys, Context)); + return StructType::get(Context, Elts); + } + case IITDescriptor::Argument: + return Tys[D.getArgumentNumber()]; + case IITDescriptor::ExtendArgument: { + Type *Ty = Tys[D.getArgumentNumber()]; + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + return VectorType::getExtendedElementVectorType(VTy); + + return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); + } + case IITDescriptor::TruncArgument: { + Type *Ty = Tys[D.getArgumentNumber()]; + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + return VectorType::getTruncatedElementVectorType(VTy); + + IntegerType *ITy = cast<IntegerType>(Ty); + assert(ITy->getBitWidth() % 2 == 0); + return IntegerType::get(Context, ITy->getBitWidth() / 2); + } + case IITDescriptor::Subdivide2Argument: + case IITDescriptor::Subdivide4Argument: { + Type *Ty = Tys[D.getArgumentNumber()]; + VectorType *VTy = dyn_cast<VectorType>(Ty); + assert(VTy && "Expected an argument of Vector Type"); + int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; + return VectorType::getSubdividedVectorType(VTy, SubDivs); + } + case IITDescriptor::HalfVecArgument: + return VectorType::getHalfElementsVectorType(cast<VectorType>( + Tys[D.getArgumentNumber()])); + case IITDescriptor::SameVecWidthArgument: { + Type *EltTy = DecodeFixedType(Infos, Tys, Context); + Type *Ty = Tys[D.getArgumentNumber()]; + if (auto *VTy = dyn_cast<VectorType>(Ty)) + return VectorType::get(EltTy, VTy->getElementCount()); + return EltTy; + } + case IITDescriptor::PtrToArgument: { + Type *Ty = Tys[D.getArgumentNumber()]; + return PointerType::getUnqual(Ty); + } + case IITDescriptor::PtrToElt: { + Type *Ty = Tys[D.getArgumentNumber()]; + VectorType *VTy = dyn_cast<VectorType>(Ty); + if (!VTy) + llvm_unreachable("Expected an argument of Vector Type"); + Type *EltTy = VTy->getVectorElementType(); + return PointerType::getUnqual(EltTy); + } + case IITDescriptor::VecElementArgument: { + Type *Ty = Tys[D.getArgumentNumber()]; + if (VectorType *VTy = dyn_cast<VectorType>(Ty)) + return VTy->getElementType(); + llvm_unreachable("Expected an argument of Vector Type"); + } + case IITDescriptor::VecOfBitcastsToInt: { + Type *Ty = Tys[D.getArgumentNumber()]; + VectorType *VTy = dyn_cast<VectorType>(Ty); + assert(VTy && "Expected an argument of Vector Type"); + return VectorType::getInteger(VTy); + } + case IITDescriptor::VecOfAnyPtrsToElt: + // Return the overloaded type (which determines the pointers address space) + return Tys[D.getOverloadArgNumber()]; + case IITDescriptor::ScalableVecArgument: { + Type *Ty = DecodeFixedType(Infos, Tys, Context); + return VectorType::get(Ty->getVectorElementType(), + { Ty->getVectorNumElements(), true }); + } + } + llvm_unreachable("unhandled"); +} + +FunctionType *Intrinsic::getType(LLVMContext &Context, + ID id, ArrayRef<Type*> Tys) { + SmallVector<IITDescriptor, 8> Table; + getIntrinsicInfoTableEntries(id, Table); + + ArrayRef<IITDescriptor> TableRef = Table; + Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); + + SmallVector<Type*, 8> ArgTys; + while (!TableRef.empty()) + ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); + + // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg + // If we see void type as the type of the last argument, it is vararg intrinsic + if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { + ArgTys.pop_back(); + return FunctionType::get(ResultTy, ArgTys, true); + } + return FunctionType::get(ResultTy, ArgTys, false); +} + +bool Intrinsic::isOverloaded(ID id) { +#define GET_INTRINSIC_OVERLOAD_TABLE +#include "llvm/IR/IntrinsicImpl.inc" +#undef GET_INTRINSIC_OVERLOAD_TABLE +} + +bool Intrinsic::isLeaf(ID id) { + switch (id) { + default: + return true; + + case Intrinsic::experimental_gc_statepoint: + case Intrinsic::experimental_patchpoint_void: + case Intrinsic::experimental_patchpoint_i64: + return false; + } +} + +/// This defines the "Intrinsic::getAttributes(ID id)" method. +#define GET_INTRINSIC_ATTRIBUTES +#include "llvm/IR/IntrinsicImpl.inc" +#undef GET_INTRINSIC_ATTRIBUTES + +Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { + // There can never be multiple globals with the same name of different types, + // because intrinsics must be a specific type. + return cast<Function>( + M->getOrInsertFunction(getName(id, Tys), + getType(M->getContext(), id, Tys)) + .getCallee()); +} + +// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. +#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN +#include "llvm/IR/IntrinsicImpl.inc" +#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN + +// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. +#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN +#include "llvm/IR/IntrinsicImpl.inc" +#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN + +using DeferredIntrinsicMatchPair = + std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; + +static bool matchIntrinsicType( + Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, + SmallVectorImpl<Type *> &ArgTys, + SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, + bool IsDeferredCheck) { + using namespace Intrinsic; + + // If we ran out of descriptors, there are too many arguments. + if (Infos.empty()) return true; + + // Do this before slicing off the 'front' part + auto InfosRef = Infos; + auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { + DeferredChecks.emplace_back(T, InfosRef); + return false; + }; + + IITDescriptor D = Infos.front(); + Infos = Infos.slice(1); + + switch (D.Kind) { + case IITDescriptor::Void: return !Ty->isVoidTy(); + case IITDescriptor::VarArg: return true; + case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); + case IITDescriptor::Token: return !Ty->isTokenTy(); + case IITDescriptor::Metadata: return !Ty->isMetadataTy(); + case IITDescriptor::Half: return !Ty->isHalfTy(); + case IITDescriptor::Float: return !Ty->isFloatTy(); + case IITDescriptor::Double: return !Ty->isDoubleTy(); + case IITDescriptor::Quad: return !Ty->isFP128Ty(); + case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); + case IITDescriptor::Vector: { + VectorType *VT = dyn_cast<VectorType>(Ty); + return !VT || VT->getNumElements() != D.Vector_Width || + matchIntrinsicType(VT->getElementType(), Infos, ArgTys, + DeferredChecks, IsDeferredCheck); + } + case IITDescriptor::Pointer: { + PointerType *PT = dyn_cast<PointerType>(Ty); + return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || + matchIntrinsicType(PT->getElementType(), Infos, ArgTys, + DeferredChecks, IsDeferredCheck); + } + + case IITDescriptor::Struct: { + StructType *ST = dyn_cast<StructType>(Ty); + if (!ST || ST->getNumElements() != D.Struct_NumElements) + return true; + + for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) + if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, + DeferredChecks, IsDeferredCheck)) + return true; + return false; + } + + case IITDescriptor::Argument: + // If this is the second occurrence of an argument, + // verify that the later instance matches the previous instance. + if (D.getArgumentNumber() < ArgTys.size()) + return Ty != ArgTys[D.getArgumentNumber()]; + + if (D.getArgumentNumber() > ArgTys.size() || + D.getArgumentKind() == IITDescriptor::AK_MatchType) + return IsDeferredCheck || DeferCheck(Ty); + + assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && + "Table consistency error"); + ArgTys.push_back(Ty); + + switch (D.getArgumentKind()) { + case IITDescriptor::AK_Any: return false; // Success + case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); + case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); + case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); + case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); + default: break; + } + llvm_unreachable("all argument kinds not covered"); + + case IITDescriptor::ExtendArgument: { + // If this is a forward reference, defer the check for later. + if (D.getArgumentNumber() >= ArgTys.size()) + return IsDeferredCheck || DeferCheck(Ty); + + Type *NewTy = ArgTys[D.getArgumentNumber()]; + if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) + NewTy = VectorType::getExtendedElementVectorType(VTy); + else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) + NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); + else + return true; + + return Ty != NewTy; + } + case IITDescriptor::TruncArgument: { + // If this is a forward reference, defer the check for later. + if (D.getArgumentNumber() >= ArgTys.size()) + return IsDeferredCheck || DeferCheck(Ty); + + Type *NewTy = ArgTys[D.getArgumentNumber()]; + if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) + NewTy = VectorType::getTruncatedElementVectorType(VTy); + else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) + NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); + else + return true; + + return Ty != NewTy; + } + case IITDescriptor::HalfVecArgument: + // If this is a forward reference, defer the check for later. + if (D.getArgumentNumber() >= ArgTys.size()) + return IsDeferredCheck || DeferCheck(Ty); + return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || + VectorType::getHalfElementsVectorType( + cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; + case IITDescriptor::SameVecWidthArgument: { + if (D.getArgumentNumber() >= ArgTys.size()) { + // Defer check and subsequent check for the vector element type. + Infos = Infos.slice(1); + return IsDeferredCheck || DeferCheck(Ty); + } + auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); + auto *ThisArgType = dyn_cast<VectorType>(Ty); + // Both must be vectors of the same number of elements or neither. + if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) + return true; + Type *EltTy = Ty; + if (ThisArgType) { + if (ReferenceType->getElementCount() != + ThisArgType->getElementCount()) + return true; + EltTy = ThisArgType->getVectorElementType(); + } + return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, + IsDeferredCheck); + } + case IITDescriptor::PtrToArgument: { + if (D.getArgumentNumber() >= ArgTys.size()) + return IsDeferredCheck || DeferCheck(Ty); + Type * ReferenceType = ArgTys[D.getArgumentNumber()]; + PointerType *ThisArgType = dyn_cast<PointerType>(Ty); + return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); + } + case IITDescriptor::PtrToElt: { + if (D.getArgumentNumber() >= ArgTys.size()) + return IsDeferredCheck || DeferCheck(Ty); + VectorType * ReferenceType = + dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); + PointerType *ThisArgType = dyn_cast<PointerType>(Ty); + + return (!ThisArgType || !ReferenceType || + ThisArgType->getElementType() != ReferenceType->getElementType()); + } + case IITDescriptor::VecOfAnyPtrsToElt: { + unsigned RefArgNumber = D.getRefArgNumber(); + if (RefArgNumber >= ArgTys.size()) { + if (IsDeferredCheck) + return true; + // If forward referencing, already add the pointer-vector type and + // defer the checks for later. + ArgTys.push_back(Ty); + return DeferCheck(Ty); + } + + if (!IsDeferredCheck){ + assert(D.getOverloadArgNumber() == ArgTys.size() && + "Table consistency error"); + ArgTys.push_back(Ty); + } + + // Verify the overloaded type "matches" the Ref type. + // i.e. Ty is a vector with the same width as Ref. + // Composed of pointers to the same element type as Ref. + VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); + VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); + if (!ThisArgVecTy || !ReferenceType || + (ReferenceType->getVectorNumElements() != + ThisArgVecTy->getVectorNumElements())) + return true; + PointerType *ThisArgEltTy = + dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); + if (!ThisArgEltTy) + return true; + return ThisArgEltTy->getElementType() != + ReferenceType->getVectorElementType(); + } + case IITDescriptor::VecElementArgument: { + if (D.getArgumentNumber() >= ArgTys.size()) + return IsDeferredCheck ? true : DeferCheck(Ty); + auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); + return !ReferenceType || Ty != ReferenceType->getElementType(); + } + case IITDescriptor::Subdivide2Argument: + case IITDescriptor::Subdivide4Argument: { + // If this is a forward reference, defer the check for later. + if (D.getArgumentNumber() >= ArgTys.size()) + return IsDeferredCheck || DeferCheck(Ty); + + Type *NewTy = ArgTys[D.getArgumentNumber()]; + if (auto *VTy = dyn_cast<VectorType>(NewTy)) { + int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; + NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); + return Ty != NewTy; + } + return true; + } + case IITDescriptor::ScalableVecArgument: { + VectorType *VTy = dyn_cast<VectorType>(Ty); + if (!VTy || !VTy->isScalable()) + return true; + return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks, + IsDeferredCheck); + } + case IITDescriptor::VecOfBitcastsToInt: { + if (D.getArgumentNumber() >= ArgTys.size()) + return IsDeferredCheck || DeferCheck(Ty); + auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); + auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); + if (!ThisArgVecTy || !ReferenceType) + return true; + return ThisArgVecTy != VectorType::getInteger(ReferenceType); + } + } + llvm_unreachable("unhandled"); +} + +Intrinsic::MatchIntrinsicTypesResult +Intrinsic::matchIntrinsicSignature(FunctionType *FTy, + ArrayRef<Intrinsic::IITDescriptor> &Infos, + SmallVectorImpl<Type *> &ArgTys) { + SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; + if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, + false)) + return MatchIntrinsicTypes_NoMatchRet; + + unsigned NumDeferredReturnChecks = DeferredChecks.size(); + + for (auto Ty : FTy->params()) + if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) + return MatchIntrinsicTypes_NoMatchArg; + + for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { + DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; + if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, + true)) + return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet + : MatchIntrinsicTypes_NoMatchArg; + } + + return MatchIntrinsicTypes_Match; +} + +bool +Intrinsic::matchIntrinsicVarArg(bool isVarArg, + ArrayRef<Intrinsic::IITDescriptor> &Infos) { + // If there are no descriptors left, then it can't be a vararg. + if (Infos.empty()) + return isVarArg; + + // There should be only one descriptor remaining at this point. + if (Infos.size() != 1) + return true; + + // Check and verify the descriptor. + IITDescriptor D = Infos.front(); + Infos = Infos.slice(1); + if (D.Kind == IITDescriptor::VarArg) + return !isVarArg; + + return true; +} + +Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { + Intrinsic::ID ID = F->getIntrinsicID(); + if (!ID) + return None; + + FunctionType *FTy = F->getFunctionType(); + // Accumulate an array of overloaded types for the given intrinsic + SmallVector<Type *, 4> ArgTys; + { + SmallVector<Intrinsic::IITDescriptor, 8> Table; + getIntrinsicInfoTableEntries(ID, Table); + ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; + + if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys)) + return None; + if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) + return None; + } + + StringRef Name = F->getName(); + if (Name == Intrinsic::getName(ID, ArgTys)) + return None; + + auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); + NewDecl->setCallingConv(F->getCallingConv()); + assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); + return NewDecl; +} + +/// hasAddressTaken - returns true if there are any uses of this function +/// other than direct calls or invokes to it. +bool Function::hasAddressTaken(const User* *PutOffender) const { + for (const Use &U : uses()) { + const User *FU = U.getUser(); + if (isa<BlockAddress>(FU)) + continue; + const auto *Call = dyn_cast<CallBase>(FU); + if (!Call) { + if (PutOffender) + *PutOffender = FU; + return true; + } + if (!Call->isCallee(&U)) { + if (PutOffender) + *PutOffender = FU; + return true; + } + } + return false; +} + +bool Function::isDefTriviallyDead() const { + // Check the linkage + if (!hasLinkOnceLinkage() && !hasLocalLinkage() && + !hasAvailableExternallyLinkage()) + return false; + + // Check if the function is used by anything other than a blockaddress. + for (const User *U : users()) + if (!isa<BlockAddress>(U)) + return false; + + return true; +} + +/// callsFunctionThatReturnsTwice - Return true if the function has a call to +/// setjmp or other function that gcc recognizes as "returning twice". +bool Function::callsFunctionThatReturnsTwice() const { + for (const Instruction &I : instructions(this)) + if (const auto *Call = dyn_cast<CallBase>(&I)) + if (Call->hasFnAttr(Attribute::ReturnsTwice)) + return true; + + return false; +} + +Constant *Function::getPersonalityFn() const { + assert(hasPersonalityFn() && getNumOperands()); + return cast<Constant>(Op<0>()); +} + +void Function::setPersonalityFn(Constant *Fn) { + setHungoffOperand<0>(Fn); + setValueSubclassDataBit(3, Fn != nullptr); +} + +Constant *Function::getPrefixData() const { + assert(hasPrefixData() && getNumOperands()); + return cast<Constant>(Op<1>()); +} + +void Function::setPrefixData(Constant *PrefixData) { + setHungoffOperand<1>(PrefixData); + setValueSubclassDataBit(1, PrefixData != nullptr); +} + +Constant *Function::getPrologueData() const { + assert(hasPrologueData() && getNumOperands()); + return cast<Constant>(Op<2>()); +} + +void Function::setPrologueData(Constant *PrologueData) { + setHungoffOperand<2>(PrologueData); + setValueSubclassDataBit(2, PrologueData != nullptr); +} + +void Function::allocHungoffUselist() { + // If we've already allocated a uselist, stop here. + if (getNumOperands()) + return; + + allocHungoffUses(3, /*IsPhi=*/ false); + setNumHungOffUseOperands(3); + + // Initialize the uselist with placeholder operands to allow traversal. + auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); + Op<0>().set(CPN); + Op<1>().set(CPN); + Op<2>().set(CPN); +} + +template <int Idx> +void Function::setHungoffOperand(Constant *C) { + if (C) { + allocHungoffUselist(); + Op<Idx>().set(C); + } else if (getNumOperands()) { + Op<Idx>().set( + ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); + } +} + +void Function::setValueSubclassDataBit(unsigned Bit, bool On) { + assert(Bit < 16 && "SubclassData contains only 16 bits"); + if (On) + setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); + else + setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); +} + +void Function::setEntryCount(ProfileCount Count, + const DenseSet<GlobalValue::GUID> *S) { + assert(Count.hasValue()); +#if !defined(NDEBUG) + auto PrevCount = getEntryCount(); + assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); +#endif + MDBuilder MDB(getContext()); + setMetadata( + LLVMContext::MD_prof, + MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); +} + +void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, + const DenseSet<GlobalValue::GUID> *Imports) { + setEntryCount(ProfileCount(Count, Type), Imports); +} + +ProfileCount Function::getEntryCount(bool AllowSynthetic) const { + MDNode *MD = getMetadata(LLVMContext::MD_prof); + if (MD && MD->getOperand(0)) + if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { + if (MDS->getString().equals("function_entry_count")) { + ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); + uint64_t Count = CI->getValue().getZExtValue(); + // A value of -1 is used for SamplePGO when there were no samples. + // Treat this the same as unknown. + if (Count == (uint64_t)-1) + return ProfileCount::getInvalid(); + return ProfileCount(Count, PCT_Real); + } else if (AllowSynthetic && + MDS->getString().equals("synthetic_function_entry_count")) { + ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); + uint64_t Count = CI->getValue().getZExtValue(); + return ProfileCount(Count, PCT_Synthetic); + } + } + return ProfileCount::getInvalid(); +} + +DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { + DenseSet<GlobalValue::GUID> R; + if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) + if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) + if (MDS->getString().equals("function_entry_count")) + for (unsigned i = 2; i < MD->getNumOperands(); i++) + R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) + ->getValue() + .getZExtValue()); + return R; +} + +void Function::setSectionPrefix(StringRef Prefix) { + MDBuilder MDB(getContext()); + setMetadata(LLVMContext::MD_section_prefix, + MDB.createFunctionSectionPrefix(Prefix)); +} + +Optional<StringRef> Function::getSectionPrefix() const { + if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { + assert(cast<MDString>(MD->getOperand(0)) + ->getString() + .equals("function_section_prefix") && + "Metadata not match"); + return cast<MDString>(MD->getOperand(1))->getString(); + } + return None; +} + +bool Function::nullPointerIsDefined() const { + return getFnAttribute("null-pointer-is-valid") + .getValueAsString() + .equals("true"); +} + +bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { + if (F && F->nullPointerIsDefined()) + return true; + + if (AS != 0) + return true; + + return false; +} |