diff options
Diffstat (limited to 'llvm/lib/IR/Instructions.cpp')
| -rw-r--r-- | llvm/lib/IR/Instructions.cpp | 4308 | 
1 files changed, 4308 insertions, 0 deletions
| diff --git a/llvm/lib/IR/Instructions.cpp b/llvm/lib/IR/Instructions.cpp new file mode 100644 index 0000000000000..245c7628b08e0 --- /dev/null +++ b/llvm/lib/IR/Instructions.cpp @@ -0,0 +1,4308 @@ +//===- Instructions.cpp - Implement the LLVM instructions -----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements all of the non-inline methods for the LLVM instruction +// classes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/Instructions.h" +#include "LLVMContextImpl.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Twine.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/TypeSize.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <vector> + +using namespace llvm; + +//===----------------------------------------------------------------------===// +//                            AllocaInst Class +//===----------------------------------------------------------------------===// + +Optional<uint64_t> +AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const { +  uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType()); +  if (isArrayAllocation()) { +    auto C = dyn_cast<ConstantInt>(getArraySize()); +    if (!C) +      return None; +    Size *= C->getZExtValue(); +  } +  return Size; +} + +//===----------------------------------------------------------------------===// +//                            CallSite Class +//===----------------------------------------------------------------------===// + +User::op_iterator CallSite::getCallee() const { +  return cast<CallBase>(getInstruction())->op_end() - 1; +} + +//===----------------------------------------------------------------------===// +//                              SelectInst Class +//===----------------------------------------------------------------------===// + +/// areInvalidOperands - Return a string if the specified operands are invalid +/// for a select operation, otherwise return null. +const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) { +  if (Op1->getType() != Op2->getType()) +    return "both values to select must have same type"; + +  if (Op1->getType()->isTokenTy()) +    return "select values cannot have token type"; + +  if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) { +    // Vector select. +    if (VT->getElementType() != Type::getInt1Ty(Op0->getContext())) +      return "vector select condition element type must be i1"; +    VectorType *ET = dyn_cast<VectorType>(Op1->getType()); +    if (!ET) +      return "selected values for vector select must be vectors"; +    if (ET->getNumElements() != VT->getNumElements()) +      return "vector select requires selected vectors to have " +                   "the same vector length as select condition"; +  } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) { +    return "select condition must be i1 or <n x i1>"; +  } +  return nullptr; +} + +//===----------------------------------------------------------------------===// +//                               PHINode Class +//===----------------------------------------------------------------------===// + +PHINode::PHINode(const PHINode &PN) +    : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()), +      ReservedSpace(PN.getNumOperands()) { +  allocHungoffUses(PN.getNumOperands()); +  std::copy(PN.op_begin(), PN.op_end(), op_begin()); +  std::copy(PN.block_begin(), PN.block_end(), block_begin()); +  SubclassOptionalData = PN.SubclassOptionalData; +} + +// removeIncomingValue - Remove an incoming value.  This is useful if a +// predecessor basic block is deleted. +Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) { +  Value *Removed = getIncomingValue(Idx); + +  // Move everything after this operand down. +  // +  // FIXME: we could just swap with the end of the list, then erase.  However, +  // clients might not expect this to happen.  The code as it is thrashes the +  // use/def lists, which is kinda lame. +  std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx); +  std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx); + +  // Nuke the last value. +  Op<-1>().set(nullptr); +  setNumHungOffUseOperands(getNumOperands() - 1); + +  // If the PHI node is dead, because it has zero entries, nuke it now. +  if (getNumOperands() == 0 && DeletePHIIfEmpty) { +    // If anyone is using this PHI, make them use a dummy value instead... +    replaceAllUsesWith(UndefValue::get(getType())); +    eraseFromParent(); +  } +  return Removed; +} + +/// growOperands - grow operands - This grows the operand list in response +/// to a push_back style of operation.  This grows the number of ops by 1.5 +/// times. +/// +void PHINode::growOperands() { +  unsigned e = getNumOperands(); +  unsigned NumOps = e + e / 2; +  if (NumOps < 2) NumOps = 2;      // 2 op PHI nodes are VERY common. + +  ReservedSpace = NumOps; +  growHungoffUses(ReservedSpace, /* IsPhi */ true); +} + +/// hasConstantValue - If the specified PHI node always merges together the same +/// value, return the value, otherwise return null. +Value *PHINode::hasConstantValue() const { +  // Exploit the fact that phi nodes always have at least one entry. +  Value *ConstantValue = getIncomingValue(0); +  for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i) +    if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) { +      if (ConstantValue != this) +        return nullptr; // Incoming values not all the same. +       // The case where the first value is this PHI. +      ConstantValue = getIncomingValue(i); +    } +  if (ConstantValue == this) +    return UndefValue::get(getType()); +  return ConstantValue; +} + +/// hasConstantOrUndefValue - Whether the specified PHI node always merges +/// together the same value, assuming that undefs result in the same value as +/// non-undefs. +/// Unlike \ref hasConstantValue, this does not return a value because the +/// unique non-undef incoming value need not dominate the PHI node. +bool PHINode::hasConstantOrUndefValue() const { +  Value *ConstantValue = nullptr; +  for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) { +    Value *Incoming = getIncomingValue(i); +    if (Incoming != this && !isa<UndefValue>(Incoming)) { +      if (ConstantValue && ConstantValue != Incoming) +        return false; +      ConstantValue = Incoming; +    } +  } +  return true; +} + +//===----------------------------------------------------------------------===// +//                       LandingPadInst Implementation +//===----------------------------------------------------------------------===// + +LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, +                               const Twine &NameStr, Instruction *InsertBefore) +    : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) { +  init(NumReservedValues, NameStr); +} + +LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues, +                               const Twine &NameStr, BasicBlock *InsertAtEnd) +    : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) { +  init(NumReservedValues, NameStr); +} + +LandingPadInst::LandingPadInst(const LandingPadInst &LP) +    : Instruction(LP.getType(), Instruction::LandingPad, nullptr, +                  LP.getNumOperands()), +      ReservedSpace(LP.getNumOperands()) { +  allocHungoffUses(LP.getNumOperands()); +  Use *OL = getOperandList(); +  const Use *InOL = LP.getOperandList(); +  for (unsigned I = 0, E = ReservedSpace; I != E; ++I) +    OL[I] = InOL[I]; + +  setCleanup(LP.isCleanup()); +} + +LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, +                                       const Twine &NameStr, +                                       Instruction *InsertBefore) { +  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore); +} + +LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses, +                                       const Twine &NameStr, +                                       BasicBlock *InsertAtEnd) { +  return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd); +} + +void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) { +  ReservedSpace = NumReservedValues; +  setNumHungOffUseOperands(0); +  allocHungoffUses(ReservedSpace); +  setName(NameStr); +  setCleanup(false); +} + +/// growOperands - grow operands - This grows the operand list in response to a +/// push_back style of operation. This grows the number of ops by 2 times. +void LandingPadInst::growOperands(unsigned Size) { +  unsigned e = getNumOperands(); +  if (ReservedSpace >= e + Size) return; +  ReservedSpace = (std::max(e, 1U) + Size / 2) * 2; +  growHungoffUses(ReservedSpace); +} + +void LandingPadInst::addClause(Constant *Val) { +  unsigned OpNo = getNumOperands(); +  growOperands(1); +  assert(OpNo < ReservedSpace && "Growing didn't work!"); +  setNumHungOffUseOperands(getNumOperands() + 1); +  getOperandList()[OpNo] = Val; +} + +//===----------------------------------------------------------------------===// +//                        CallBase Implementation +//===----------------------------------------------------------------------===// + +Function *CallBase::getCaller() { return getParent()->getParent(); } + +unsigned CallBase::getNumSubclassExtraOperandsDynamic() const { +  assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!"); +  return cast<CallBrInst>(this)->getNumIndirectDests() + 1; +} + +bool CallBase::isIndirectCall() const { +  const Value *V = getCalledValue(); +  if (isa<Function>(V) || isa<Constant>(V)) +    return false; +  if (const CallInst *CI = dyn_cast<CallInst>(this)) +    if (CI->isInlineAsm()) +      return false; +  return true; +} + +/// Tests if this call site must be tail call optimized. Only a CallInst can +/// be tail call optimized. +bool CallBase::isMustTailCall() const { +  if (auto *CI = dyn_cast<CallInst>(this)) +    return CI->isMustTailCall(); +  return false; +} + +/// Tests if this call site is marked as a tail call. +bool CallBase::isTailCall() const { +  if (auto *CI = dyn_cast<CallInst>(this)) +    return CI->isTailCall(); +  return false; +} + +Intrinsic::ID CallBase::getIntrinsicID() const { +  if (auto *F = getCalledFunction()) +    return F->getIntrinsicID(); +  return Intrinsic::not_intrinsic; +} + +bool CallBase::isReturnNonNull() const { +  if (hasRetAttr(Attribute::NonNull)) +    return true; + +  if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 && +           !NullPointerIsDefined(getCaller(), +                                 getType()->getPointerAddressSpace())) +    return true; + +  return false; +} + +Value *CallBase::getReturnedArgOperand() const { +  unsigned Index; + +  if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index) +    return getArgOperand(Index - AttributeList::FirstArgIndex); +  if (const Function *F = getCalledFunction()) +    if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) && +        Index) +      return getArgOperand(Index - AttributeList::FirstArgIndex); + +  return nullptr; +} + +bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const { +  if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind)) +    return true; + +  // Look at the callee, if available. +  if (const Function *F = getCalledFunction()) +    return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind); +  return false; +} + +/// Determine whether the argument or parameter has the given attribute. +bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const { +  assert(ArgNo < getNumArgOperands() && "Param index out of bounds!"); + +  if (Attrs.hasParamAttribute(ArgNo, Kind)) +    return true; +  if (const Function *F = getCalledFunction()) +    return F->getAttributes().hasParamAttribute(ArgNo, Kind); +  return false; +} + +bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const { +  if (const Function *F = getCalledFunction()) +    return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind); +  return false; +} + +bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const { +  if (const Function *F = getCalledFunction()) +    return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind); +  return false; +} + +CallBase::op_iterator +CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles, +                                     const unsigned BeginIndex) { +  auto It = op_begin() + BeginIndex; +  for (auto &B : Bundles) +    It = std::copy(B.input_begin(), B.input_end(), It); + +  auto *ContextImpl = getContext().pImpl; +  auto BI = Bundles.begin(); +  unsigned CurrentIndex = BeginIndex; + +  for (auto &BOI : bundle_op_infos()) { +    assert(BI != Bundles.end() && "Incorrect allocation?"); + +    BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag()); +    BOI.Begin = CurrentIndex; +    BOI.End = CurrentIndex + BI->input_size(); +    CurrentIndex = BOI.End; +    BI++; +  } + +  assert(BI == Bundles.end() && "Incorrect allocation?"); + +  return It; +} + +//===----------------------------------------------------------------------===// +//                        CallInst Implementation +//===----------------------------------------------------------------------===// + +void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, +                    ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { +  this->FTy = FTy; +  assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 && +         "NumOperands not set up?"); +  setCalledOperand(Func); + +#ifndef NDEBUG +  assert((Args.size() == FTy->getNumParams() || +          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && +         "Calling a function with bad signature!"); + +  for (unsigned i = 0; i != Args.size(); ++i) +    assert((i >= FTy->getNumParams() || +            FTy->getParamType(i) == Args[i]->getType()) && +           "Calling a function with a bad signature!"); +#endif + +  llvm::copy(Args, op_begin()); + +  auto It = populateBundleOperandInfos(Bundles, Args.size()); +  (void)It; +  assert(It + 1 == op_end() && "Should add up!"); + +  setName(NameStr); +} + +void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) { +  this->FTy = FTy; +  assert(getNumOperands() == 1 && "NumOperands not set up?"); +  setCalledOperand(Func); + +  assert(FTy->getNumParams() == 0 && "Calling a function with bad signature"); + +  setName(NameStr); +} + +CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, +                   Instruction *InsertBefore) +    : CallBase(Ty->getReturnType(), Instruction::Call, +               OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) { +  init(Ty, Func, Name); +} + +CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name, +                   BasicBlock *InsertAtEnd) +    : CallBase(Ty->getReturnType(), Instruction::Call, +               OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) { +  init(Ty, Func, Name); +} + +CallInst::CallInst(const CallInst &CI) +    : CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call, +               OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(), +               CI.getNumOperands()) { +  setTailCallKind(CI.getTailCallKind()); +  setCallingConv(CI.getCallingConv()); + +  std::copy(CI.op_begin(), CI.op_end(), op_begin()); +  std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(), +            bundle_op_info_begin()); +  SubclassOptionalData = CI.SubclassOptionalData; +} + +CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB, +                           Instruction *InsertPt) { +  std::vector<Value *> Args(CI->arg_begin(), CI->arg_end()); + +  auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(), +                                 Args, OpB, CI->getName(), InsertPt); +  NewCI->setTailCallKind(CI->getTailCallKind()); +  NewCI->setCallingConv(CI->getCallingConv()); +  NewCI->SubclassOptionalData = CI->SubclassOptionalData; +  NewCI->setAttributes(CI->getAttributes()); +  NewCI->setDebugLoc(CI->getDebugLoc()); +  return NewCI; +} + +// Update profile weight for call instruction by scaling it using the ratio +// of S/T. The meaning of "branch_weights" meta data for call instruction is +// transfered to represent call count. +void CallInst::updateProfWeight(uint64_t S, uint64_t T) { +  auto *ProfileData = getMetadata(LLVMContext::MD_prof); +  if (ProfileData == nullptr) +    return; + +  auto *ProfDataName = dyn_cast<MDString>(ProfileData->getOperand(0)); +  if (!ProfDataName || (!ProfDataName->getString().equals("branch_weights") && +                        !ProfDataName->getString().equals("VP"))) +    return; + +  if (T == 0) { +    LLVM_DEBUG(dbgs() << "Attempting to update profile weights will result in " +                         "div by 0. Ignoring. Likely the function " +                      << getParent()->getParent()->getName() +                      << " has 0 entry count, and contains call instructions " +                         "with non-zero prof info."); +    return; +  } + +  MDBuilder MDB(getContext()); +  SmallVector<Metadata *, 3> Vals; +  Vals.push_back(ProfileData->getOperand(0)); +  APInt APS(128, S), APT(128, T); +  if (ProfDataName->getString().equals("branch_weights") && +      ProfileData->getNumOperands() > 0) { +    // Using APInt::div may be expensive, but most cases should fit 64 bits. +    APInt Val(128, mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(1)) +                       ->getValue() +                       .getZExtValue()); +    Val *= APS; +    Vals.push_back(MDB.createConstant(ConstantInt::get( +        Type::getInt64Ty(getContext()), Val.udiv(APT).getLimitedValue()))); +  } else if (ProfDataName->getString().equals("VP")) +    for (unsigned i = 1; i < ProfileData->getNumOperands(); i += 2) { +      // The first value is the key of the value profile, which will not change. +      Vals.push_back(ProfileData->getOperand(i)); +      // Using APInt::div may be expensive, but most cases should fit 64 bits. +      APInt Val(128, +                mdconst::dyn_extract<ConstantInt>(ProfileData->getOperand(i + 1)) +                    ->getValue() +                    .getZExtValue()); +      Val *= APS; +      Vals.push_back(MDB.createConstant( +          ConstantInt::get(Type::getInt64Ty(getContext()), +                           Val.udiv(APT).getLimitedValue()))); +    } +  setMetadata(LLVMContext::MD_prof, MDNode::get(getContext(), Vals)); +} + +/// IsConstantOne - Return true only if val is constant int 1 +static bool IsConstantOne(Value *val) { +  assert(val && "IsConstantOne does not work with nullptr val"); +  const ConstantInt *CVal = dyn_cast<ConstantInt>(val); +  return CVal && CVal->isOne(); +} + +static Instruction *createMalloc(Instruction *InsertBefore, +                                 BasicBlock *InsertAtEnd, Type *IntPtrTy, +                                 Type *AllocTy, Value *AllocSize, +                                 Value *ArraySize, +                                 ArrayRef<OperandBundleDef> OpB, +                                 Function *MallocF, const Twine &Name) { +  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && +         "createMalloc needs either InsertBefore or InsertAtEnd"); + +  // malloc(type) becomes: +  //       bitcast (i8* malloc(typeSize)) to type* +  // malloc(type, arraySize) becomes: +  //       bitcast (i8* malloc(typeSize*arraySize)) to type* +  if (!ArraySize) +    ArraySize = ConstantInt::get(IntPtrTy, 1); +  else if (ArraySize->getType() != IntPtrTy) { +    if (InsertBefore) +      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, +                                              "", InsertBefore); +    else +      ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false, +                                              "", InsertAtEnd); +  } + +  if (!IsConstantOne(ArraySize)) { +    if (IsConstantOne(AllocSize)) { +      AllocSize = ArraySize;         // Operand * 1 = Operand +    } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) { +      Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy, +                                                     false /*ZExt*/); +      // Malloc arg is constant product of type size and array size +      AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize)); +    } else { +      // Multiply type size by the array size... +      if (InsertBefore) +        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, +                                              "mallocsize", InsertBefore); +      else +        AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize, +                                              "mallocsize", InsertAtEnd); +    } +  } + +  assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size"); +  // Create the call to Malloc. +  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; +  Module *M = BB->getParent()->getParent(); +  Type *BPTy = Type::getInt8PtrTy(BB->getContext()); +  FunctionCallee MallocFunc = MallocF; +  if (!MallocFunc) +    // prototype malloc as "void *malloc(size_t)" +    MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy); +  PointerType *AllocPtrType = PointerType::getUnqual(AllocTy); +  CallInst *MCall = nullptr; +  Instruction *Result = nullptr; +  if (InsertBefore) { +    MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall", +                             InsertBefore); +    Result = MCall; +    if (Result->getType() != AllocPtrType) +      // Create a cast instruction to convert to the right type... +      Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore); +  } else { +    MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall"); +    Result = MCall; +    if (Result->getType() != AllocPtrType) { +      InsertAtEnd->getInstList().push_back(MCall); +      // Create a cast instruction to convert to the right type... +      Result = new BitCastInst(MCall, AllocPtrType, Name); +    } +  } +  MCall->setTailCall(); +  if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) { +    MCall->setCallingConv(F->getCallingConv()); +    if (!F->returnDoesNotAlias()) +      F->setReturnDoesNotAlias(); +  } +  assert(!MCall->getType()->isVoidTy() && "Malloc has void return type"); + +  return Result; +} + +/// CreateMalloc - Generate the IR for a call to malloc: +/// 1. Compute the malloc call's argument as the specified type's size, +///    possibly multiplied by the array size if the array size is not +///    constant 1. +/// 2. Call malloc with that argument. +/// 3. Bitcast the result of the malloc call to the specified type. +Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, +                                    Type *IntPtrTy, Type *AllocTy, +                                    Value *AllocSize, Value *ArraySize, +                                    Function *MallocF, +                                    const Twine &Name) { +  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, +                      ArraySize, None, MallocF, Name); +} +Instruction *CallInst::CreateMalloc(Instruction *InsertBefore, +                                    Type *IntPtrTy, Type *AllocTy, +                                    Value *AllocSize, Value *ArraySize, +                                    ArrayRef<OperandBundleDef> OpB, +                                    Function *MallocF, +                                    const Twine &Name) { +  return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize, +                      ArraySize, OpB, MallocF, Name); +} + +/// CreateMalloc - Generate the IR for a call to malloc: +/// 1. Compute the malloc call's argument as the specified type's size, +///    possibly multiplied by the array size if the array size is not +///    constant 1. +/// 2. Call malloc with that argument. +/// 3. Bitcast the result of the malloc call to the specified type. +/// Note: This function does not add the bitcast to the basic block, that is the +/// responsibility of the caller. +Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, +                                    Type *IntPtrTy, Type *AllocTy, +                                    Value *AllocSize, Value *ArraySize, +                                    Function *MallocF, const Twine &Name) { +  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, +                      ArraySize, None, MallocF, Name); +} +Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd, +                                    Type *IntPtrTy, Type *AllocTy, +                                    Value *AllocSize, Value *ArraySize, +                                    ArrayRef<OperandBundleDef> OpB, +                                    Function *MallocF, const Twine &Name) { +  return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize, +                      ArraySize, OpB, MallocF, Name); +} + +static Instruction *createFree(Value *Source, +                               ArrayRef<OperandBundleDef> Bundles, +                               Instruction *InsertBefore, +                               BasicBlock *InsertAtEnd) { +  assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) && +         "createFree needs either InsertBefore or InsertAtEnd"); +  assert(Source->getType()->isPointerTy() && +         "Can not free something of nonpointer type!"); + +  BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd; +  Module *M = BB->getParent()->getParent(); + +  Type *VoidTy = Type::getVoidTy(M->getContext()); +  Type *IntPtrTy = Type::getInt8PtrTy(M->getContext()); +  // prototype free as "void free(void*)" +  FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy); +  CallInst *Result = nullptr; +  Value *PtrCast = Source; +  if (InsertBefore) { +    if (Source->getType() != IntPtrTy) +      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore); +    Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore); +  } else { +    if (Source->getType() != IntPtrTy) +      PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd); +    Result = CallInst::Create(FreeFunc, PtrCast, Bundles, ""); +  } +  Result->setTailCall(); +  if (Function *F = dyn_cast<Function>(FreeFunc.getCallee())) +    Result->setCallingConv(F->getCallingConv()); + +  return Result; +} + +/// CreateFree - Generate the IR for a call to the builtin free function. +Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) { +  return createFree(Source, None, InsertBefore, nullptr); +} +Instruction *CallInst::CreateFree(Value *Source, +                                  ArrayRef<OperandBundleDef> Bundles, +                                  Instruction *InsertBefore) { +  return createFree(Source, Bundles, InsertBefore, nullptr); +} + +/// CreateFree - Generate the IR for a call to the builtin free function. +/// Note: This function does not add the call to the basic block, that is the +/// responsibility of the caller. +Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) { +  Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd); +  assert(FreeCall && "CreateFree did not create a CallInst"); +  return FreeCall; +} +Instruction *CallInst::CreateFree(Value *Source, +                                  ArrayRef<OperandBundleDef> Bundles, +                                  BasicBlock *InsertAtEnd) { +  Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd); +  assert(FreeCall && "CreateFree did not create a CallInst"); +  return FreeCall; +} + +//===----------------------------------------------------------------------===// +//                        InvokeInst Implementation +//===----------------------------------------------------------------------===// + +void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal, +                      BasicBlock *IfException, ArrayRef<Value *> Args, +                      ArrayRef<OperandBundleDef> Bundles, +                      const Twine &NameStr) { +  this->FTy = FTy; + +  assert((int)getNumOperands() == +             ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) && +         "NumOperands not set up?"); +  setNormalDest(IfNormal); +  setUnwindDest(IfException); +  setCalledOperand(Fn); + +#ifndef NDEBUG +  assert(((Args.size() == FTy->getNumParams()) || +          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && +         "Invoking a function with bad signature"); + +  for (unsigned i = 0, e = Args.size(); i != e; i++) +    assert((i >= FTy->getNumParams() || +            FTy->getParamType(i) == Args[i]->getType()) && +           "Invoking a function with a bad signature!"); +#endif + +  llvm::copy(Args, op_begin()); + +  auto It = populateBundleOperandInfos(Bundles, Args.size()); +  (void)It; +  assert(It + 3 == op_end() && "Should add up!"); + +  setName(NameStr); +} + +InvokeInst::InvokeInst(const InvokeInst &II) +    : CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke, +               OperandTraits<CallBase>::op_end(this) - II.getNumOperands(), +               II.getNumOperands()) { +  setCallingConv(II.getCallingConv()); +  std::copy(II.op_begin(), II.op_end(), op_begin()); +  std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(), +            bundle_op_info_begin()); +  SubclassOptionalData = II.SubclassOptionalData; +} + +InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB, +                               Instruction *InsertPt) { +  std::vector<Value *> Args(II->arg_begin(), II->arg_end()); + +  auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(), +                                   II->getNormalDest(), II->getUnwindDest(), +                                   Args, OpB, II->getName(), InsertPt); +  NewII->setCallingConv(II->getCallingConv()); +  NewII->SubclassOptionalData = II->SubclassOptionalData; +  NewII->setAttributes(II->getAttributes()); +  NewII->setDebugLoc(II->getDebugLoc()); +  return NewII; +} + + +LandingPadInst *InvokeInst::getLandingPadInst() const { +  return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI()); +} + +//===----------------------------------------------------------------------===// +//                        CallBrInst Implementation +//===----------------------------------------------------------------------===// + +void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough, +                      ArrayRef<BasicBlock *> IndirectDests, +                      ArrayRef<Value *> Args, +                      ArrayRef<OperandBundleDef> Bundles, +                      const Twine &NameStr) { +  this->FTy = FTy; + +  assert((int)getNumOperands() == +             ComputeNumOperands(Args.size(), IndirectDests.size(), +                                CountBundleInputs(Bundles)) && +         "NumOperands not set up?"); +  NumIndirectDests = IndirectDests.size(); +  setDefaultDest(Fallthrough); +  for (unsigned i = 0; i != NumIndirectDests; ++i) +    setIndirectDest(i, IndirectDests[i]); +  setCalledOperand(Fn); + +#ifndef NDEBUG +  assert(((Args.size() == FTy->getNumParams()) || +          (FTy->isVarArg() && Args.size() > FTy->getNumParams())) && +         "Calling a function with bad signature"); + +  for (unsigned i = 0, e = Args.size(); i != e; i++) +    assert((i >= FTy->getNumParams() || +            FTy->getParamType(i) == Args[i]->getType()) && +           "Calling a function with a bad signature!"); +#endif + +  std::copy(Args.begin(), Args.end(), op_begin()); + +  auto It = populateBundleOperandInfos(Bundles, Args.size()); +  (void)It; +  assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!"); + +  setName(NameStr); +} + +void CallBrInst::updateArgBlockAddresses(unsigned i, BasicBlock *B) { +  assert(getNumIndirectDests() > i && "IndirectDest # out of range for callbr"); +  if (BasicBlock *OldBB = getIndirectDest(i)) { +    BlockAddress *Old = BlockAddress::get(OldBB); +    BlockAddress *New = BlockAddress::get(B); +    for (unsigned ArgNo = 0, e = getNumArgOperands(); ArgNo != e; ++ArgNo) +      if (dyn_cast<BlockAddress>(getArgOperand(ArgNo)) == Old) +        setArgOperand(ArgNo, New); +  } +} + +CallBrInst::CallBrInst(const CallBrInst &CBI) +    : CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr, +               OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(), +               CBI.getNumOperands()) { +  setCallingConv(CBI.getCallingConv()); +  std::copy(CBI.op_begin(), CBI.op_end(), op_begin()); +  std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(), +            bundle_op_info_begin()); +  SubclassOptionalData = CBI.SubclassOptionalData; +  NumIndirectDests = CBI.NumIndirectDests; +} + +CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB, +                               Instruction *InsertPt) { +  std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end()); + +  auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(), +                                    CBI->getCalledValue(), +                                    CBI->getDefaultDest(), +                                    CBI->getIndirectDests(), +                                    Args, OpB, CBI->getName(), InsertPt); +  NewCBI->setCallingConv(CBI->getCallingConv()); +  NewCBI->SubclassOptionalData = CBI->SubclassOptionalData; +  NewCBI->setAttributes(CBI->getAttributes()); +  NewCBI->setDebugLoc(CBI->getDebugLoc()); +  NewCBI->NumIndirectDests = CBI->NumIndirectDests; +  return NewCBI; +} + +//===----------------------------------------------------------------------===// +//                        ReturnInst Implementation +//===----------------------------------------------------------------------===// + +ReturnInst::ReturnInst(const ReturnInst &RI) +    : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret, +                  OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(), +                  RI.getNumOperands()) { +  if (RI.getNumOperands()) +    Op<0>() = RI.Op<0>(); +  SubclassOptionalData = RI.SubclassOptionalData; +} + +ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(C), Instruction::Ret, +                  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, +                  InsertBefore) { +  if (retVal) +    Op<0>() = retVal; +} + +ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(C), Instruction::Ret, +                  OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal, +                  InsertAtEnd) { +  if (retVal) +    Op<0>() = retVal; +} + +ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(Context), Instruction::Ret, +                  OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {} + +//===----------------------------------------------------------------------===// +//                        ResumeInst Implementation +//===----------------------------------------------------------------------===// + +ResumeInst::ResumeInst(const ResumeInst &RI) +    : Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume, +                  OperandTraits<ResumeInst>::op_begin(this), 1) { +  Op<0>() = RI.Op<0>(); +} + +ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, +                  OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) { +  Op<0>() = Exn; +} + +ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume, +                  OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) { +  Op<0>() = Exn; +} + +//===----------------------------------------------------------------------===// +//                        CleanupReturnInst Implementation +//===----------------------------------------------------------------------===// + +CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI) +    : Instruction(CRI.getType(), Instruction::CleanupRet, +                  OperandTraits<CleanupReturnInst>::op_end(this) - +                      CRI.getNumOperands(), +                  CRI.getNumOperands()) { +  setInstructionSubclassData(CRI.getSubclassDataFromInstruction()); +  Op<0>() = CRI.Op<0>(); +  if (CRI.hasUnwindDest()) +    Op<1>() = CRI.Op<1>(); +} + +void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) { +  if (UnwindBB) +    setInstructionSubclassData(getSubclassDataFromInstruction() | 1); + +  Op<0>() = CleanupPad; +  if (UnwindBB) +    Op<1>() = UnwindBB; +} + +CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, +                                     unsigned Values, Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(CleanupPad->getContext()), +                  Instruction::CleanupRet, +                  OperandTraits<CleanupReturnInst>::op_end(this) - Values, +                  Values, InsertBefore) { +  init(CleanupPad, UnwindBB); +} + +CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, +                                     unsigned Values, BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(CleanupPad->getContext()), +                  Instruction::CleanupRet, +                  OperandTraits<CleanupReturnInst>::op_end(this) - Values, +                  Values, InsertAtEnd) { +  init(CleanupPad, UnwindBB); +} + +//===----------------------------------------------------------------------===// +//                        CatchReturnInst Implementation +//===----------------------------------------------------------------------===// +void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) { +  Op<0>() = CatchPad; +  Op<1>() = BB; +} + +CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI) +    : Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet, +                  OperandTraits<CatchReturnInst>::op_begin(this), 2) { +  Op<0>() = CRI.Op<0>(); +  Op<1>() = CRI.Op<1>(); +} + +CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, +                                 Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, +                  OperandTraits<CatchReturnInst>::op_begin(this), 2, +                  InsertBefore) { +  init(CatchPad, BB); +} + +CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB, +                                 BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet, +                  OperandTraits<CatchReturnInst>::op_begin(this), 2, +                  InsertAtEnd) { +  init(CatchPad, BB); +} + +//===----------------------------------------------------------------------===// +//                       CatchSwitchInst Implementation +//===----------------------------------------------------------------------===// + +CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, +                                 unsigned NumReservedValues, +                                 const Twine &NameStr, +                                 Instruction *InsertBefore) +    : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, +                  InsertBefore) { +  if (UnwindDest) +    ++NumReservedValues; +  init(ParentPad, UnwindDest, NumReservedValues + 1); +  setName(NameStr); +} + +CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, +                                 unsigned NumReservedValues, +                                 const Twine &NameStr, BasicBlock *InsertAtEnd) +    : Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0, +                  InsertAtEnd) { +  if (UnwindDest) +    ++NumReservedValues; +  init(ParentPad, UnwindDest, NumReservedValues + 1); +  setName(NameStr); +} + +CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI) +    : Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr, +                  CSI.getNumOperands()) { +  init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands()); +  setNumHungOffUseOperands(ReservedSpace); +  Use *OL = getOperandList(); +  const Use *InOL = CSI.getOperandList(); +  for (unsigned I = 1, E = ReservedSpace; I != E; ++I) +    OL[I] = InOL[I]; +} + +void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest, +                           unsigned NumReservedValues) { +  assert(ParentPad && NumReservedValues); + +  ReservedSpace = NumReservedValues; +  setNumHungOffUseOperands(UnwindDest ? 2 : 1); +  allocHungoffUses(ReservedSpace); + +  Op<0>() = ParentPad; +  if (UnwindDest) { +    setInstructionSubclassData(getSubclassDataFromInstruction() | 1); +    setUnwindDest(UnwindDest); +  } +} + +/// growOperands - grow operands - This grows the operand list in response to a +/// push_back style of operation. This grows the number of ops by 2 times. +void CatchSwitchInst::growOperands(unsigned Size) { +  unsigned NumOperands = getNumOperands(); +  assert(NumOperands >= 1); +  if (ReservedSpace >= NumOperands + Size) +    return; +  ReservedSpace = (NumOperands + Size / 2) * 2; +  growHungoffUses(ReservedSpace); +} + +void CatchSwitchInst::addHandler(BasicBlock *Handler) { +  unsigned OpNo = getNumOperands(); +  growOperands(1); +  assert(OpNo < ReservedSpace && "Growing didn't work!"); +  setNumHungOffUseOperands(getNumOperands() + 1); +  getOperandList()[OpNo] = Handler; +} + +void CatchSwitchInst::removeHandler(handler_iterator HI) { +  // Move all subsequent handlers up one. +  Use *EndDst = op_end() - 1; +  for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst) +    *CurDst = *(CurDst + 1); +  // Null out the last handler use. +  *EndDst = nullptr; + +  setNumHungOffUseOperands(getNumOperands() - 1); +} + +//===----------------------------------------------------------------------===// +//                        FuncletPadInst Implementation +//===----------------------------------------------------------------------===// +void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args, +                          const Twine &NameStr) { +  assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?"); +  llvm::copy(Args, op_begin()); +  setParentPad(ParentPad); +  setName(NameStr); +} + +FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI) +    : Instruction(FPI.getType(), FPI.getOpcode(), +                  OperandTraits<FuncletPadInst>::op_end(this) - +                      FPI.getNumOperands(), +                  FPI.getNumOperands()) { +  std::copy(FPI.op_begin(), FPI.op_end(), op_begin()); +  setParentPad(FPI.getParentPad()); +} + +FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, +                               ArrayRef<Value *> Args, unsigned Values, +                               const Twine &NameStr, Instruction *InsertBefore) +    : Instruction(ParentPad->getType(), Op, +                  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, +                  InsertBefore) { +  init(ParentPad, Args, NameStr); +} + +FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad, +                               ArrayRef<Value *> Args, unsigned Values, +                               const Twine &NameStr, BasicBlock *InsertAtEnd) +    : Instruction(ParentPad->getType(), Op, +                  OperandTraits<FuncletPadInst>::op_end(this) - Values, Values, +                  InsertAtEnd) { +  init(ParentPad, Args, NameStr); +} + +//===----------------------------------------------------------------------===// +//                      UnreachableInst Implementation +//===----------------------------------------------------------------------===// + +UnreachableInst::UnreachableInst(LLVMContext &Context, +                                 Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, +                  0, InsertBefore) {} +UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr, +                  0, InsertAtEnd) {} + +//===----------------------------------------------------------------------===// +//                        BranchInst Implementation +//===----------------------------------------------------------------------===// + +void BranchInst::AssertOK() { +  if (isConditional()) +    assert(getCondition()->getType()->isIntegerTy(1) && +           "May only branch on boolean predicates!"); +} + +BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, +                  OperandTraits<BranchInst>::op_end(this) - 1, 1, +                  InsertBefore) { +  assert(IfTrue && "Branch destination may not be null!"); +  Op<-1>() = IfTrue; +} + +BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, +                       Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, +                  OperandTraits<BranchInst>::op_end(this) - 3, 3, +                  InsertBefore) { +  Op<-1>() = IfTrue; +  Op<-2>() = IfFalse; +  Op<-3>() = Cond; +#ifndef NDEBUG +  AssertOK(); +#endif +} + +BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, +                  OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) { +  assert(IfTrue && "Branch destination may not be null!"); +  Op<-1>() = IfTrue; +} + +BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, +                       BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br, +                  OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) { +  Op<-1>() = IfTrue; +  Op<-2>() = IfFalse; +  Op<-3>() = Cond; +#ifndef NDEBUG +  AssertOK(); +#endif +} + +BranchInst::BranchInst(const BranchInst &BI) +    : Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br, +                  OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(), +                  BI.getNumOperands()) { +  Op<-1>() = BI.Op<-1>(); +  if (BI.getNumOperands() != 1) { +    assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!"); +    Op<-3>() = BI.Op<-3>(); +    Op<-2>() = BI.Op<-2>(); +  } +  SubclassOptionalData = BI.SubclassOptionalData; +} + +void BranchInst::swapSuccessors() { +  assert(isConditional() && +         "Cannot swap successors of an unconditional branch"); +  Op<-1>().swap(Op<-2>()); + +  // Update profile metadata if present and it matches our structural +  // expectations. +  swapProfMetadata(); +} + +//===----------------------------------------------------------------------===// +//                        AllocaInst Implementation +//===----------------------------------------------------------------------===// + +static Value *getAISize(LLVMContext &Context, Value *Amt) { +  if (!Amt) +    Amt = ConstantInt::get(Type::getInt32Ty(Context), 1); +  else { +    assert(!isa<BasicBlock>(Amt) && +           "Passed basic block into allocation size parameter! Use other ctor"); +    assert(Amt->getType()->isIntegerTy() && +           "Allocation array size is not an integer!"); +  } +  return Amt; +} + +AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, +                       Instruction *InsertBefore) +  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {} + +AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name, +                       BasicBlock *InsertAtEnd) +  : AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {} + +AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, +                       const Twine &Name, Instruction *InsertBefore) +  : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {} + +AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, +                       const Twine &Name, BasicBlock *InsertAtEnd) +  : AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {} + +AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, +                       unsigned Align, const Twine &Name, +                       Instruction *InsertBefore) +  : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, +                     getAISize(Ty->getContext(), ArraySize), InsertBefore), +    AllocatedType(Ty) { +  setAlignment(MaybeAlign(Align)); +  assert(!Ty->isVoidTy() && "Cannot allocate void!"); +  setName(Name); +} + +AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize, +                       unsigned Align, const Twine &Name, +                       BasicBlock *InsertAtEnd) +  : UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca, +                     getAISize(Ty->getContext(), ArraySize), InsertAtEnd), +      AllocatedType(Ty) { +  setAlignment(MaybeAlign(Align)); +  assert(!Ty->isVoidTy() && "Cannot allocate void!"); +  setName(Name); +} + +void AllocaInst::setAlignment(MaybeAlign Align) { +  assert((!Align || *Align <= MaximumAlignment) && +         "Alignment is greater than MaximumAlignment!"); +  setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) | +                             encode(Align)); +  if (Align) +    assert(getAlignment() == Align->value() && +           "Alignment representation error!"); +  else +    assert(getAlignment() == 0 && "Alignment representation error!"); +} + +bool AllocaInst::isArrayAllocation() const { +  if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0))) +    return !CI->isOne(); +  return true; +} + +/// isStaticAlloca - Return true if this alloca is in the entry block of the +/// function and is a constant size.  If so, the code generator will fold it +/// into the prolog/epilog code, so it is basically free. +bool AllocaInst::isStaticAlloca() const { +  // Must be constant size. +  if (!isa<ConstantInt>(getArraySize())) return false; + +  // Must be in the entry block. +  const BasicBlock *Parent = getParent(); +  return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca(); +} + +//===----------------------------------------------------------------------===// +//                           LoadInst Implementation +//===----------------------------------------------------------------------===// + +void LoadInst::AssertOK() { +  assert(getOperand(0)->getType()->isPointerTy() && +         "Ptr must have pointer type."); +  assert(!(isAtomic() && getAlignment() == 0) && +         "Alignment required for atomic load"); +} + +LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, +                   Instruction *InsertBef) +    : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {} + +LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, +                   BasicBlock *InsertAE) +    : LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {} + +LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, +                   Instruction *InsertBef) +    : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/None, InsertBef) {} + +LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, +                   BasicBlock *InsertAE) +    : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/None, InsertAE) {} + +LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, +                   MaybeAlign Align, Instruction *InsertBef) +    : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, +               SyncScope::System, InsertBef) {} + +LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, +                   MaybeAlign Align, BasicBlock *InsertAE) +    : LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic, +               SyncScope::System, InsertAE) {} + +LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, +                   MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID, +                   Instruction *InsertBef) +    : UnaryInstruction(Ty, Load, Ptr, InsertBef) { +  assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); +  setVolatile(isVolatile); +  setAlignment(MaybeAlign(Align)); +  setAtomic(Order, SSID); +  AssertOK(); +  setName(Name); +} + +LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile, +                   MaybeAlign Align, AtomicOrdering Order, SyncScope::ID SSID, +                   BasicBlock *InsertAE) +    : UnaryInstruction(Ty, Load, Ptr, InsertAE) { +  assert(Ty == cast<PointerType>(Ptr->getType())->getElementType()); +  setVolatile(isVolatile); +  setAlignment(Align); +  setAtomic(Order, SSID); +  AssertOK(); +  setName(Name); +} + +void LoadInst::setAlignment(MaybeAlign Align) { +  assert((!Align || *Align <= MaximumAlignment) && +         "Alignment is greater than MaximumAlignment!"); +  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | +                             (encode(Align) << 1)); +  if (Align) +    assert(getAlignment() == Align->value() && +           "Alignment representation error!"); +  else +    assert(getAlignment() == 0 && "Alignment representation error!"); +} + +//===----------------------------------------------------------------------===// +//                           StoreInst Implementation +//===----------------------------------------------------------------------===// + +void StoreInst::AssertOK() { +  assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!"); +  assert(getOperand(1)->getType()->isPointerTy() && +         "Ptr must have pointer type!"); +  assert(getOperand(0)->getType() == +                 cast<PointerType>(getOperand(1)->getType())->getElementType() +         && "Ptr must be a pointer to Val type!"); +  assert(!(isAtomic() && getAlignment() == 0) && +         "Alignment required for atomic store"); +} + +StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore) +    : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {} + +StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd) +    : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, +                     Instruction *InsertBefore) +    : StoreInst(val, addr, isVolatile, /*Align=*/None, InsertBefore) {} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, +                     BasicBlock *InsertAtEnd) +    : StoreInst(val, addr, isVolatile, /*Align=*/None, InsertAtEnd) {} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align, +                     Instruction *InsertBefore) +    : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, +                SyncScope::System, InsertBefore) {} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align, +                     BasicBlock *InsertAtEnd) +    : StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic, +                SyncScope::System, InsertAtEnd) {} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align, +                     AtomicOrdering Order, SyncScope::ID SSID, +                     Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(val->getContext()), Store, +                  OperandTraits<StoreInst>::op_begin(this), +                  OperandTraits<StoreInst>::operands(this), InsertBefore) { +  Op<0>() = val; +  Op<1>() = addr; +  setVolatile(isVolatile); +  setAlignment(Align); +  setAtomic(Order, SSID); +  AssertOK(); +} + +StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, MaybeAlign Align, +                     AtomicOrdering Order, SyncScope::ID SSID, +                     BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(val->getContext()), Store, +                  OperandTraits<StoreInst>::op_begin(this), +                  OperandTraits<StoreInst>::operands(this), InsertAtEnd) { +  Op<0>() = val; +  Op<1>() = addr; +  setVolatile(isVolatile); +  setAlignment(Align); +  setAtomic(Order, SSID); +  AssertOK(); +} + +void StoreInst::setAlignment(MaybeAlign Align) { +  assert((!Align || *Align <= MaximumAlignment) && +         "Alignment is greater than MaximumAlignment!"); +  setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) | +                             (encode(Align) << 1)); +  if (Align) +    assert(getAlignment() == Align->value() && +           "Alignment representation error!"); +  else +    assert(getAlignment() == 0 && "Alignment representation error!"); +} + +//===----------------------------------------------------------------------===// +//                       AtomicCmpXchgInst Implementation +//===----------------------------------------------------------------------===// + +void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal, +                             AtomicOrdering SuccessOrdering, +                             AtomicOrdering FailureOrdering, +                             SyncScope::ID SSID) { +  Op<0>() = Ptr; +  Op<1>() = Cmp; +  Op<2>() = NewVal; +  setSuccessOrdering(SuccessOrdering); +  setFailureOrdering(FailureOrdering); +  setSyncScopeID(SSID); + +  assert(getOperand(0) && getOperand(1) && getOperand(2) && +         "All operands must be non-null!"); +  assert(getOperand(0)->getType()->isPointerTy() && +         "Ptr must have pointer type!"); +  assert(getOperand(1)->getType() == +                 cast<PointerType>(getOperand(0)->getType())->getElementType() +         && "Ptr must be a pointer to Cmp type!"); +  assert(getOperand(2)->getType() == +                 cast<PointerType>(getOperand(0)->getType())->getElementType() +         && "Ptr must be a pointer to NewVal type!"); +  assert(SuccessOrdering != AtomicOrdering::NotAtomic && +         "AtomicCmpXchg instructions must be atomic!"); +  assert(FailureOrdering != AtomicOrdering::NotAtomic && +         "AtomicCmpXchg instructions must be atomic!"); +  assert(!isStrongerThan(FailureOrdering, SuccessOrdering) && +         "AtomicCmpXchg failure argument shall be no stronger than the success " +         "argument"); +  assert(FailureOrdering != AtomicOrdering::Release && +         FailureOrdering != AtomicOrdering::AcquireRelease && +         "AtomicCmpXchg failure ordering cannot include release semantics"); +} + +AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, +                                     AtomicOrdering SuccessOrdering, +                                     AtomicOrdering FailureOrdering, +                                     SyncScope::ID SSID, +                                     Instruction *InsertBefore) +    : Instruction( +          StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), +          AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), +          OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) { +  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); +} + +AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, +                                     AtomicOrdering SuccessOrdering, +                                     AtomicOrdering FailureOrdering, +                                     SyncScope::ID SSID, +                                     BasicBlock *InsertAtEnd) +    : Instruction( +          StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())), +          AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this), +          OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) { +  Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID); +} + +//===----------------------------------------------------------------------===// +//                       AtomicRMWInst Implementation +//===----------------------------------------------------------------------===// + +void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val, +                         AtomicOrdering Ordering, +                         SyncScope::ID SSID) { +  Op<0>() = Ptr; +  Op<1>() = Val; +  setOperation(Operation); +  setOrdering(Ordering); +  setSyncScopeID(SSID); + +  assert(getOperand(0) && getOperand(1) && +         "All operands must be non-null!"); +  assert(getOperand(0)->getType()->isPointerTy() && +         "Ptr must have pointer type!"); +  assert(getOperand(1)->getType() == +         cast<PointerType>(getOperand(0)->getType())->getElementType() +         && "Ptr must be a pointer to Val type!"); +  assert(Ordering != AtomicOrdering::NotAtomic && +         "AtomicRMW instructions must be atomic!"); +} + +AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, +                             AtomicOrdering Ordering, +                             SyncScope::ID SSID, +                             Instruction *InsertBefore) +  : Instruction(Val->getType(), AtomicRMW, +                OperandTraits<AtomicRMWInst>::op_begin(this), +                OperandTraits<AtomicRMWInst>::operands(this), +                InsertBefore) { +  Init(Operation, Ptr, Val, Ordering, SSID); +} + +AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, +                             AtomicOrdering Ordering, +                             SyncScope::ID SSID, +                             BasicBlock *InsertAtEnd) +  : Instruction(Val->getType(), AtomicRMW, +                OperandTraits<AtomicRMWInst>::op_begin(this), +                OperandTraits<AtomicRMWInst>::operands(this), +                InsertAtEnd) { +  Init(Operation, Ptr, Val, Ordering, SSID); +} + +StringRef AtomicRMWInst::getOperationName(BinOp Op) { +  switch (Op) { +  case AtomicRMWInst::Xchg: +    return "xchg"; +  case AtomicRMWInst::Add: +    return "add"; +  case AtomicRMWInst::Sub: +    return "sub"; +  case AtomicRMWInst::And: +    return "and"; +  case AtomicRMWInst::Nand: +    return "nand"; +  case AtomicRMWInst::Or: +    return "or"; +  case AtomicRMWInst::Xor: +    return "xor"; +  case AtomicRMWInst::Max: +    return "max"; +  case AtomicRMWInst::Min: +    return "min"; +  case AtomicRMWInst::UMax: +    return "umax"; +  case AtomicRMWInst::UMin: +    return "umin"; +  case AtomicRMWInst::FAdd: +    return "fadd"; +  case AtomicRMWInst::FSub: +    return "fsub"; +  case AtomicRMWInst::BAD_BINOP: +    return "<invalid operation>"; +  } + +  llvm_unreachable("invalid atomicrmw operation"); +} + +//===----------------------------------------------------------------------===// +//                       FenceInst Implementation +//===----------------------------------------------------------------------===// + +FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, +                     SyncScope::ID SSID, +                     Instruction *InsertBefore) +  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) { +  setOrdering(Ordering); +  setSyncScopeID(SSID); +} + +FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering, +                     SyncScope::ID SSID, +                     BasicBlock *InsertAtEnd) +  : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) { +  setOrdering(Ordering); +  setSyncScopeID(SSID); +} + +//===----------------------------------------------------------------------===// +//                       GetElementPtrInst Implementation +//===----------------------------------------------------------------------===// + +void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList, +                             const Twine &Name) { +  assert(getNumOperands() == 1 + IdxList.size() && +         "NumOperands not initialized?"); +  Op<0>() = Ptr; +  llvm::copy(IdxList, op_begin() + 1); +  setName(Name); +} + +GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI) +    : Instruction(GEPI.getType(), GetElementPtr, +                  OperandTraits<GetElementPtrInst>::op_end(this) - +                      GEPI.getNumOperands(), +                  GEPI.getNumOperands()), +      SourceElementType(GEPI.SourceElementType), +      ResultElementType(GEPI.ResultElementType) { +  std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin()); +  SubclassOptionalData = GEPI.SubclassOptionalData; +} + +/// getIndexedType - Returns the type of the element that would be accessed with +/// a gep instruction with the specified parameters. +/// +/// The Idxs pointer should point to a continuous piece of memory containing the +/// indices, either as Value* or uint64_t. +/// +/// A null type is returned if the indices are invalid for the specified +/// pointer type. +/// +template <typename IndexTy> +static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) { +  // Handle the special case of the empty set index set, which is always valid. +  if (IdxList.empty()) +    return Agg; + +  // If there is at least one index, the top level type must be sized, otherwise +  // it cannot be 'stepped over'. +  if (!Agg->isSized()) +    return nullptr; + +  unsigned CurIdx = 1; +  for (; CurIdx != IdxList.size(); ++CurIdx) { +    CompositeType *CT = dyn_cast<CompositeType>(Agg); +    if (!CT || CT->isPointerTy()) return nullptr; +    IndexTy Index = IdxList[CurIdx]; +    if (!CT->indexValid(Index)) return nullptr; +    Agg = CT->getTypeAtIndex(Index); +  } +  return CurIdx == IdxList.size() ? Agg : nullptr; +} + +Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) { +  return getIndexedTypeInternal(Ty, IdxList); +} + +Type *GetElementPtrInst::getIndexedType(Type *Ty, +                                        ArrayRef<Constant *> IdxList) { +  return getIndexedTypeInternal(Ty, IdxList); +} + +Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) { +  return getIndexedTypeInternal(Ty, IdxList); +} + +/// hasAllZeroIndices - Return true if all of the indices of this GEP are +/// zeros.  If so, the result pointer and the first operand have the same +/// value, just potentially different types. +bool GetElementPtrInst::hasAllZeroIndices() const { +  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { +    if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) { +      if (!CI->isZero()) return false; +    } else { +      return false; +    } +  } +  return true; +} + +/// hasAllConstantIndices - Return true if all of the indices of this GEP are +/// constant integers.  If so, the result pointer and the first operand have +/// a constant offset between them. +bool GetElementPtrInst::hasAllConstantIndices() const { +  for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { +    if (!isa<ConstantInt>(getOperand(i))) +      return false; +  } +  return true; +} + +void GetElementPtrInst::setIsInBounds(bool B) { +  cast<GEPOperator>(this)->setIsInBounds(B); +} + +bool GetElementPtrInst::isInBounds() const { +  return cast<GEPOperator>(this)->isInBounds(); +} + +bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL, +                                                 APInt &Offset) const { +  // Delegate to the generic GEPOperator implementation. +  return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset); +} + +//===----------------------------------------------------------------------===// +//                           ExtractElementInst Implementation +//===----------------------------------------------------------------------===// + +ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, +                                       const Twine &Name, +                                       Instruction *InsertBef) +  : Instruction(cast<VectorType>(Val->getType())->getElementType(), +                ExtractElement, +                OperandTraits<ExtractElementInst>::op_begin(this), +                2, InsertBef) { +  assert(isValidOperands(Val, Index) && +         "Invalid extractelement instruction operands!"); +  Op<0>() = Val; +  Op<1>() = Index; +  setName(Name); +} + +ExtractElementInst::ExtractElementInst(Value *Val, Value *Index, +                                       const Twine &Name, +                                       BasicBlock *InsertAE) +  : Instruction(cast<VectorType>(Val->getType())->getElementType(), +                ExtractElement, +                OperandTraits<ExtractElementInst>::op_begin(this), +                2, InsertAE) { +  assert(isValidOperands(Val, Index) && +         "Invalid extractelement instruction operands!"); + +  Op<0>() = Val; +  Op<1>() = Index; +  setName(Name); +} + +bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) { +  if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy()) +    return false; +  return true; +} + +//===----------------------------------------------------------------------===// +//                           InsertElementInst Implementation +//===----------------------------------------------------------------------===// + +InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, +                                     const Twine &Name, +                                     Instruction *InsertBef) +  : Instruction(Vec->getType(), InsertElement, +                OperandTraits<InsertElementInst>::op_begin(this), +                3, InsertBef) { +  assert(isValidOperands(Vec, Elt, Index) && +         "Invalid insertelement instruction operands!"); +  Op<0>() = Vec; +  Op<1>() = Elt; +  Op<2>() = Index; +  setName(Name); +} + +InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index, +                                     const Twine &Name, +                                     BasicBlock *InsertAE) +  : Instruction(Vec->getType(), InsertElement, +                OperandTraits<InsertElementInst>::op_begin(this), +                3, InsertAE) { +  assert(isValidOperands(Vec, Elt, Index) && +         "Invalid insertelement instruction operands!"); + +  Op<0>() = Vec; +  Op<1>() = Elt; +  Op<2>() = Index; +  setName(Name); +} + +bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt, +                                        const Value *Index) { +  if (!Vec->getType()->isVectorTy()) +    return false;   // First operand of insertelement must be vector type. + +  if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType()) +    return false;// Second operand of insertelement must be vector element type. + +  if (!Index->getType()->isIntegerTy()) +    return false;  // Third operand of insertelement must be i32. +  return true; +} + +//===----------------------------------------------------------------------===// +//                      ShuffleVectorInst Implementation +//===----------------------------------------------------------------------===// + +ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, +                                     const Twine &Name, +                                     Instruction *InsertBefore) +: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), +                cast<VectorType>(Mask->getType())->getElementCount()), +              ShuffleVector, +              OperandTraits<ShuffleVectorInst>::op_begin(this), +              OperandTraits<ShuffleVectorInst>::operands(this), +              InsertBefore) { +  assert(isValidOperands(V1, V2, Mask) && +         "Invalid shuffle vector instruction operands!"); +  Op<0>() = V1; +  Op<1>() = V2; +  Op<2>() = Mask; +  setName(Name); +} + +ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, +                                     const Twine &Name, +                                     BasicBlock *InsertAtEnd) +: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(), +                cast<VectorType>(Mask->getType())->getElementCount()), +              ShuffleVector, +              OperandTraits<ShuffleVectorInst>::op_begin(this), +              OperandTraits<ShuffleVectorInst>::operands(this), +              InsertAtEnd) { +  assert(isValidOperands(V1, V2, Mask) && +         "Invalid shuffle vector instruction operands!"); + +  Op<0>() = V1; +  Op<1>() = V2; +  Op<2>() = Mask; +  setName(Name); +} + +void ShuffleVectorInst::commute() { +  int NumOpElts = Op<0>()->getType()->getVectorNumElements(); +  int NumMaskElts = getMask()->getType()->getVectorNumElements(); +  SmallVector<Constant*, 16> NewMask(NumMaskElts); +  Type *Int32Ty = Type::getInt32Ty(getContext()); +  for (int i = 0; i != NumMaskElts; ++i) { +    int MaskElt = getMaskValue(i); +    if (MaskElt == -1) { +      NewMask[i] = UndefValue::get(Int32Ty); +      continue; +    } +    assert(MaskElt >= 0 && MaskElt < 2 * NumOpElts && "Out-of-range mask"); +    MaskElt = (MaskElt < NumOpElts) ? MaskElt + NumOpElts : MaskElt - NumOpElts; +    NewMask[i] = ConstantInt::get(Int32Ty, MaskElt); +  } +  Op<2>() = ConstantVector::get(NewMask); +  Op<0>().swap(Op<1>()); +} + +bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2, +                                        const Value *Mask) { +  // V1 and V2 must be vectors of the same type. +  if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType()) +    return false; + +  // Mask must be vector of i32. +  auto *MaskTy = dyn_cast<VectorType>(Mask->getType()); +  if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32)) +    return false; + +  // Check to see if Mask is valid. +  if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask)) +    return true; + +  if (const auto *MV = dyn_cast<ConstantVector>(Mask)) { +    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); +    for (Value *Op : MV->operands()) { +      if (auto *CI = dyn_cast<ConstantInt>(Op)) { +        if (CI->uge(V1Size*2)) +          return false; +      } else if (!isa<UndefValue>(Op)) { +        return false; +      } +    } +    return true; +  } + +  if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { +    unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements(); +    for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i) +      if (CDS->getElementAsInteger(i) >= V1Size*2) +        return false; +    return true; +  } + +  // The bitcode reader can create a place holder for a forward reference +  // used as the shuffle mask. When this occurs, the shuffle mask will +  // fall into this case and fail. To avoid this error, do this bit of +  // ugliness to allow such a mask pass. +  if (const auto *CE = dyn_cast<ConstantExpr>(Mask)) +    if (CE->getOpcode() == Instruction::UserOp1) +      return true; + +  return false; +} + +int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) { +  assert(i < Mask->getType()->getVectorNumElements() && "Index out of range"); +  if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) +    return CDS->getElementAsInteger(i); +  Constant *C = Mask->getAggregateElement(i); +  if (isa<UndefValue>(C)) +    return -1; +  return cast<ConstantInt>(C)->getZExtValue(); +} + +void ShuffleVectorInst::getShuffleMask(const Constant *Mask, +                                       SmallVectorImpl<int> &Result) { +  unsigned NumElts = Mask->getType()->getVectorNumElements(); + +  if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) { +    for (unsigned i = 0; i != NumElts; ++i) +      Result.push_back(CDS->getElementAsInteger(i)); +    return; +  } +  for (unsigned i = 0; i != NumElts; ++i) { +    Constant *C = Mask->getAggregateElement(i); +    Result.push_back(isa<UndefValue>(C) ? -1 : +                     cast<ConstantInt>(C)->getZExtValue()); +  } +} + +static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) { +  assert(!Mask.empty() && "Shuffle mask must contain elements"); +  bool UsesLHS = false; +  bool UsesRHS = false; +  for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { +    if (Mask[i] == -1) +      continue; +    assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) && +           "Out-of-bounds shuffle mask element"); +    UsesLHS |= (Mask[i] < NumOpElts); +    UsesRHS |= (Mask[i] >= NumOpElts); +    if (UsesLHS && UsesRHS) +      return false; +  } +  assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source"); +  return true; +} + +bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) { +  // We don't have vector operand size information, so assume operands are the +  // same size as the mask. +  return isSingleSourceMaskImpl(Mask, Mask.size()); +} + +static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) { +  if (!isSingleSourceMaskImpl(Mask, NumOpElts)) +    return false; +  for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) { +    if (Mask[i] == -1) +      continue; +    if (Mask[i] != i && Mask[i] != (NumOpElts + i)) +      return false; +  } +  return true; +} + +bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) { +  // We don't have vector operand size information, so assume operands are the +  // same size as the mask. +  return isIdentityMaskImpl(Mask, Mask.size()); +} + +bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) { +  if (!isSingleSourceMask(Mask)) +    return false; +  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { +    if (Mask[i] == -1) +      continue; +    if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i)) +      return false; +  } +  return true; +} + +bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) { +  if (!isSingleSourceMask(Mask)) +    return false; +  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { +    if (Mask[i] == -1) +      continue; +    if (Mask[i] != 0 && Mask[i] != NumElts) +      return false; +  } +  return true; +} + +bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) { +  // Select is differentiated from identity. It requires using both sources. +  if (isSingleSourceMask(Mask)) +    return false; +  for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) { +    if (Mask[i] == -1) +      continue; +    if (Mask[i] != i && Mask[i] != (NumElts + i)) +      return false; +  } +  return true; +} + +bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) { +  // Example masks that will return true: +  // v1 = <a, b, c, d> +  // v2 = <e, f, g, h> +  // trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g> +  // trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h> + +  // 1. The number of elements in the mask must be a power-of-2 and at least 2. +  int NumElts = Mask.size(); +  if (NumElts < 2 || !isPowerOf2_32(NumElts)) +    return false; + +  // 2. The first element of the mask must be either a 0 or a 1. +  if (Mask[0] != 0 && Mask[0] != 1) +    return false; + +  // 3. The difference between the first 2 elements must be equal to the +  // number of elements in the mask. +  if ((Mask[1] - Mask[0]) != NumElts) +    return false; + +  // 4. The difference between consecutive even-numbered and odd-numbered +  // elements must be equal to 2. +  for (int i = 2; i < NumElts; ++i) { +    int MaskEltVal = Mask[i]; +    if (MaskEltVal == -1) +      return false; +    int MaskEltPrevVal = Mask[i - 2]; +    if (MaskEltVal - MaskEltPrevVal != 2) +      return false; +  } +  return true; +} + +bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask, +                                               int NumSrcElts, int &Index) { +  // Must extract from a single source. +  if (!isSingleSourceMaskImpl(Mask, NumSrcElts)) +    return false; + +  // Must be smaller (else this is an Identity shuffle). +  if (NumSrcElts <= (int)Mask.size()) +    return false; + +  // Find start of extraction, accounting that we may start with an UNDEF. +  int SubIndex = -1; +  for (int i = 0, e = Mask.size(); i != e; ++i) { +    int M = Mask[i]; +    if (M < 0) +      continue; +    int Offset = (M % NumSrcElts) - i; +    if (0 <= SubIndex && SubIndex != Offset) +      return false; +    SubIndex = Offset; +  } + +  if (0 <= SubIndex) { +    Index = SubIndex; +    return true; +  } +  return false; +} + +bool ShuffleVectorInst::isIdentityWithPadding() const { +  int NumOpElts = Op<0>()->getType()->getVectorNumElements(); +  int NumMaskElts = getType()->getVectorNumElements(); +  if (NumMaskElts <= NumOpElts) +    return false; + +  // The first part of the mask must choose elements from exactly 1 source op. +  SmallVector<int, 16> Mask = getShuffleMask(); +  if (!isIdentityMaskImpl(Mask, NumOpElts)) +    return false; + +  // All extending must be with undef elements. +  for (int i = NumOpElts; i < NumMaskElts; ++i) +    if (Mask[i] != -1) +      return false; + +  return true; +} + +bool ShuffleVectorInst::isIdentityWithExtract() const { +  int NumOpElts = Op<0>()->getType()->getVectorNumElements(); +  int NumMaskElts = getType()->getVectorNumElements(); +  if (NumMaskElts >= NumOpElts) +    return false; + +  return isIdentityMaskImpl(getShuffleMask(), NumOpElts); +} + +bool ShuffleVectorInst::isConcat() const { +  // Vector concatenation is differentiated from identity with padding. +  if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>())) +    return false; + +  int NumOpElts = Op<0>()->getType()->getVectorNumElements(); +  int NumMaskElts = getType()->getVectorNumElements(); +  if (NumMaskElts != NumOpElts * 2) +    return false; + +  // Use the mask length rather than the operands' vector lengths here. We +  // already know that the shuffle returns a vector twice as long as the inputs, +  // and neither of the inputs are undef vectors. If the mask picks consecutive +  // elements from both inputs, then this is a concatenation of the inputs. +  return isIdentityMaskImpl(getShuffleMask(), NumMaskElts); +} + +//===----------------------------------------------------------------------===// +//                             InsertValueInst Class +//===----------------------------------------------------------------------===// + +void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, +                           const Twine &Name) { +  assert(getNumOperands() == 2 && "NumOperands not initialized?"); + +  // There's no fundamental reason why we require at least one index +  // (other than weirdness with &*IdxBegin being invalid; see +  // getelementptr's init routine for example). But there's no +  // present need to support it. +  assert(!Idxs.empty() && "InsertValueInst must have at least one index"); + +  assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == +         Val->getType() && "Inserted value must match indexed type!"); +  Op<0>() = Agg; +  Op<1>() = Val; + +  Indices.append(Idxs.begin(), Idxs.end()); +  setName(Name); +} + +InsertValueInst::InsertValueInst(const InsertValueInst &IVI) +  : Instruction(IVI.getType(), InsertValue, +                OperandTraits<InsertValueInst>::op_begin(this), 2), +    Indices(IVI.Indices) { +  Op<0>() = IVI.getOperand(0); +  Op<1>() = IVI.getOperand(1); +  SubclassOptionalData = IVI.SubclassOptionalData; +} + +//===----------------------------------------------------------------------===// +//                             ExtractValueInst Class +//===----------------------------------------------------------------------===// + +void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) { +  assert(getNumOperands() == 1 && "NumOperands not initialized?"); + +  // There's no fundamental reason why we require at least one index. +  // But there's no present need to support it. +  assert(!Idxs.empty() && "ExtractValueInst must have at least one index"); + +  Indices.append(Idxs.begin(), Idxs.end()); +  setName(Name); +} + +ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI) +  : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)), +    Indices(EVI.Indices) { +  SubclassOptionalData = EVI.SubclassOptionalData; +} + +// getIndexedType - Returns the type of the element that would be extracted +// with an extractvalue instruction with the specified parameters. +// +// A null type is returned if the indices are invalid for the specified +// pointer type. +// +Type *ExtractValueInst::getIndexedType(Type *Agg, +                                       ArrayRef<unsigned> Idxs) { +  for (unsigned Index : Idxs) { +    // We can't use CompositeType::indexValid(Index) here. +    // indexValid() always returns true for arrays because getelementptr allows +    // out-of-bounds indices. Since we don't allow those for extractvalue and +    // insertvalue we need to check array indexing manually. +    // Since the only other types we can index into are struct types it's just +    // as easy to check those manually as well. +    if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) { +      if (Index >= AT->getNumElements()) +        return nullptr; +    } else if (StructType *ST = dyn_cast<StructType>(Agg)) { +      if (Index >= ST->getNumElements()) +        return nullptr; +    } else { +      // Not a valid type to index into. +      return nullptr; +    } + +    Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index); +  } +  return const_cast<Type*>(Agg); +} + +//===----------------------------------------------------------------------===// +//                             UnaryOperator Class +//===----------------------------------------------------------------------===// + +UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, +                             Type *Ty, const Twine &Name, +                             Instruction *InsertBefore) +  : UnaryInstruction(Ty, iType, S, InsertBefore) { +  Op<0>() = S; +  setName(Name); +  AssertOK(); +} + +UnaryOperator::UnaryOperator(UnaryOps iType, Value *S, +                             Type *Ty, const Twine &Name, +                             BasicBlock *InsertAtEnd) +  : UnaryInstruction(Ty, iType, S, InsertAtEnd) { +  Op<0>() = S; +  setName(Name); +  AssertOK(); +} + +UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, +                                     const Twine &Name, +                                     Instruction *InsertBefore) { +  return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore); +} + +UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S, +                                     const Twine &Name, +                                     BasicBlock *InsertAtEnd) { +  UnaryOperator *Res = Create(Op, S, Name); +  InsertAtEnd->getInstList().push_back(Res); +  return Res; +} + +void UnaryOperator::AssertOK() { +  Value *LHS = getOperand(0); +  (void)LHS; // Silence warnings. +#ifndef NDEBUG +  switch (getOpcode()) { +  case FNeg: +    assert(getType() == LHS->getType() && +           "Unary operation should return same type as operand!"); +    assert(getType()->isFPOrFPVectorTy() && +           "Tried to create a floating-point operation on a " +           "non-floating-point type!"); +    break; +  default: llvm_unreachable("Invalid opcode provided"); +  } +#endif +} + +//===----------------------------------------------------------------------===// +//                             BinaryOperator Class +//===----------------------------------------------------------------------===// + +BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, +                               Type *Ty, const Twine &Name, +                               Instruction *InsertBefore) +  : Instruction(Ty, iType, +                OperandTraits<BinaryOperator>::op_begin(this), +                OperandTraits<BinaryOperator>::operands(this), +                InsertBefore) { +  Op<0>() = S1; +  Op<1>() = S2; +  setName(Name); +  AssertOK(); +} + +BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2, +                               Type *Ty, const Twine &Name, +                               BasicBlock *InsertAtEnd) +  : Instruction(Ty, iType, +                OperandTraits<BinaryOperator>::op_begin(this), +                OperandTraits<BinaryOperator>::operands(this), +                InsertAtEnd) { +  Op<0>() = S1; +  Op<1>() = S2; +  setName(Name); +  AssertOK(); +} + +void BinaryOperator::AssertOK() { +  Value *LHS = getOperand(0), *RHS = getOperand(1); +  (void)LHS; (void)RHS; // Silence warnings. +  assert(LHS->getType() == RHS->getType() && +         "Binary operator operand types must match!"); +#ifndef NDEBUG +  switch (getOpcode()) { +  case Add: case Sub: +  case Mul: +    assert(getType() == LHS->getType() && +           "Arithmetic operation should return same type as operands!"); +    assert(getType()->isIntOrIntVectorTy() && +           "Tried to create an integer operation on a non-integer type!"); +    break; +  case FAdd: case FSub: +  case FMul: +    assert(getType() == LHS->getType() && +           "Arithmetic operation should return same type as operands!"); +    assert(getType()->isFPOrFPVectorTy() && +           "Tried to create a floating-point operation on a " +           "non-floating-point type!"); +    break; +  case UDiv: +  case SDiv: +    assert(getType() == LHS->getType() && +           "Arithmetic operation should return same type as operands!"); +    assert(getType()->isIntOrIntVectorTy() && +           "Incorrect operand type (not integer) for S/UDIV"); +    break; +  case FDiv: +    assert(getType() == LHS->getType() && +           "Arithmetic operation should return same type as operands!"); +    assert(getType()->isFPOrFPVectorTy() && +           "Incorrect operand type (not floating point) for FDIV"); +    break; +  case URem: +  case SRem: +    assert(getType() == LHS->getType() && +           "Arithmetic operation should return same type as operands!"); +    assert(getType()->isIntOrIntVectorTy() && +           "Incorrect operand type (not integer) for S/UREM"); +    break; +  case FRem: +    assert(getType() == LHS->getType() && +           "Arithmetic operation should return same type as operands!"); +    assert(getType()->isFPOrFPVectorTy() && +           "Incorrect operand type (not floating point) for FREM"); +    break; +  case Shl: +  case LShr: +  case AShr: +    assert(getType() == LHS->getType() && +           "Shift operation should return same type as operands!"); +    assert(getType()->isIntOrIntVectorTy() && +           "Tried to create a shift operation on a non-integral type!"); +    break; +  case And: case Or: +  case Xor: +    assert(getType() == LHS->getType() && +           "Logical operation should return same type as operands!"); +    assert(getType()->isIntOrIntVectorTy() && +           "Tried to create a logical operation on a non-integral type!"); +    break; +  default: llvm_unreachable("Invalid opcode provided"); +  } +#endif +} + +BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, +                                       const Twine &Name, +                                       Instruction *InsertBefore) { +  assert(S1->getType() == S2->getType() && +         "Cannot create binary operator with two operands of differing type!"); +  return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2, +                                       const Twine &Name, +                                       BasicBlock *InsertAtEnd) { +  BinaryOperator *Res = Create(Op, S1, S2, Name); +  InsertAtEnd->getInstList().push_back(Res); +  return Res; +} + +BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, +                                          Instruction *InsertBefore) { +  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); +  return new BinaryOperator(Instruction::Sub, +                            zero, Op, +                            Op->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name, +                                          BasicBlock *InsertAtEnd) { +  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); +  return new BinaryOperator(Instruction::Sub, +                            zero, Op, +                            Op->getType(), Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, +                                             Instruction *InsertBefore) { +  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); +  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name, +                                             BasicBlock *InsertAtEnd) { +  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); +  return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, +                                             Instruction *InsertBefore) { +  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); +  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name, +                                             BasicBlock *InsertAtEnd) { +  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); +  return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, +                                           Instruction *InsertBefore) { +  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); +  return new BinaryOperator(Instruction::FSub, zero, Op, +                            Op->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name, +                                           BasicBlock *InsertAtEnd) { +  Value *zero = ConstantFP::getZeroValueForNegation(Op->getType()); +  return new BinaryOperator(Instruction::FSub, zero, Op, +                            Op->getType(), Name, InsertAtEnd); +} + +BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, +                                          Instruction *InsertBefore) { +  Constant *C = Constant::getAllOnesValue(Op->getType()); +  return new BinaryOperator(Instruction::Xor, Op, C, +                            Op->getType(), Name, InsertBefore); +} + +BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name, +                                          BasicBlock *InsertAtEnd) { +  Constant *AllOnes = Constant::getAllOnesValue(Op->getType()); +  return new BinaryOperator(Instruction::Xor, Op, AllOnes, +                            Op->getType(), Name, InsertAtEnd); +} + +// Exchange the two operands to this instruction. This instruction is safe to +// use on any binary instruction and does not modify the semantics of the +// instruction. If the instruction is order-dependent (SetLT f.e.), the opcode +// is changed. +bool BinaryOperator::swapOperands() { +  if (!isCommutative()) +    return true; // Can't commute operands +  Op<0>().swap(Op<1>()); +  return false; +} + +//===----------------------------------------------------------------------===// +//                             FPMathOperator Class +//===----------------------------------------------------------------------===// + +float FPMathOperator::getFPAccuracy() const { +  const MDNode *MD = +      cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath); +  if (!MD) +    return 0.0; +  ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0)); +  return Accuracy->getValueAPF().convertToFloat(); +} + +//===----------------------------------------------------------------------===// +//                                CastInst Class +//===----------------------------------------------------------------------===// + +// Just determine if this cast only deals with integral->integral conversion. +bool CastInst::isIntegerCast() const { +  switch (getOpcode()) { +    default: return false; +    case Instruction::ZExt: +    case Instruction::SExt: +    case Instruction::Trunc: +      return true; +    case Instruction::BitCast: +      return getOperand(0)->getType()->isIntegerTy() && +        getType()->isIntegerTy(); +  } +} + +bool CastInst::isLosslessCast() const { +  // Only BitCast can be lossless, exit fast if we're not BitCast +  if (getOpcode() != Instruction::BitCast) +    return false; + +  // Identity cast is always lossless +  Type *SrcTy = getOperand(0)->getType(); +  Type *DstTy = getType(); +  if (SrcTy == DstTy) +    return true; + +  // Pointer to pointer is always lossless. +  if (SrcTy->isPointerTy()) +    return DstTy->isPointerTy(); +  return false;  // Other types have no identity values +} + +/// This function determines if the CastInst does not require any bits to be +/// changed in order to effect the cast. Essentially, it identifies cases where +/// no code gen is necessary for the cast, hence the name no-op cast.  For +/// example, the following are all no-op casts: +/// # bitcast i32* %x to i8* +/// # bitcast <2 x i32> %x to <4 x i16> +/// # ptrtoint i32* %x to i32     ; on 32-bit plaforms only +/// Determine if the described cast is a no-op. +bool CastInst::isNoopCast(Instruction::CastOps Opcode, +                          Type *SrcTy, +                          Type *DestTy, +                          const DataLayout &DL) { +  switch (Opcode) { +    default: llvm_unreachable("Invalid CastOp"); +    case Instruction::Trunc: +    case Instruction::ZExt: +    case Instruction::SExt: +    case Instruction::FPTrunc: +    case Instruction::FPExt: +    case Instruction::UIToFP: +    case Instruction::SIToFP: +    case Instruction::FPToUI: +    case Instruction::FPToSI: +    case Instruction::AddrSpaceCast: +      // TODO: Target informations may give a more accurate answer here. +      return false; +    case Instruction::BitCast: +      return true;  // BitCast never modifies bits. +    case Instruction::PtrToInt: +      return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() == +             DestTy->getScalarSizeInBits(); +    case Instruction::IntToPtr: +      return DL.getIntPtrType(DestTy)->getScalarSizeInBits() == +             SrcTy->getScalarSizeInBits(); +  } +} + +bool CastInst::isNoopCast(const DataLayout &DL) const { +  return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL); +} + +/// This function determines if a pair of casts can be eliminated and what +/// opcode should be used in the elimination. This assumes that there are two +/// instructions like this: +/// *  %F = firstOpcode SrcTy %x to MidTy +/// *  %S = secondOpcode MidTy %F to DstTy +/// The function returns a resultOpcode so these two casts can be replaced with: +/// *  %Replacement = resultOpcode %SrcTy %x to DstTy +/// If no such cast is permitted, the function returns 0. +unsigned CastInst::isEliminableCastPair( +  Instruction::CastOps firstOp, Instruction::CastOps secondOp, +  Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy, +  Type *DstIntPtrTy) { +  // Define the 144 possibilities for these two cast instructions. The values +  // in this matrix determine what to do in a given situation and select the +  // case in the switch below.  The rows correspond to firstOp, the columns +  // correspond to secondOp.  In looking at the table below, keep in mind +  // the following cast properties: +  // +  //          Size Compare       Source               Destination +  // Operator  Src ? Size   Type       Sign         Type       Sign +  // -------- ------------ -------------------   --------------------- +  // TRUNC         >       Integer      Any        Integral     Any +  // ZEXT          <       Integral   Unsigned     Integer      Any +  // SEXT          <       Integral    Signed      Integer      Any +  // FPTOUI       n/a      FloatPt      n/a        Integral   Unsigned +  // FPTOSI       n/a      FloatPt      n/a        Integral    Signed +  // UITOFP       n/a      Integral   Unsigned     FloatPt      n/a +  // SITOFP       n/a      Integral    Signed      FloatPt      n/a +  // FPTRUNC       >       FloatPt      n/a        FloatPt      n/a +  // FPEXT         <       FloatPt      n/a        FloatPt      n/a +  // PTRTOINT     n/a      Pointer      n/a        Integral   Unsigned +  // INTTOPTR     n/a      Integral   Unsigned     Pointer      n/a +  // BITCAST       =       FirstClass   n/a       FirstClass    n/a +  // ADDRSPCST    n/a      Pointer      n/a        Pointer      n/a +  // +  // NOTE: some transforms are safe, but we consider them to be non-profitable. +  // For example, we could merge "fptoui double to i32" + "zext i32 to i64", +  // into "fptoui double to i64", but this loses information about the range +  // of the produced value (we no longer know the top-part is all zeros). +  // Further this conversion is often much more expensive for typical hardware, +  // and causes issues when building libgcc.  We disallow fptosi+sext for the +  // same reason. +  const unsigned numCastOps = +    Instruction::CastOpsEnd - Instruction::CastOpsBegin; +  static const uint8_t CastResults[numCastOps][numCastOps] = { +    // T        F  F  U  S  F  F  P  I  B  A  -+ +    // R  Z  S  P  P  I  I  T  P  2  N  T  S   | +    // U  E  E  2  2  2  2  R  E  I  T  C  C   +- secondOp +    // N  X  X  U  S  F  F  N  X  N  2  V  V   | +    // C  T  T  I  I  P  P  C  T  T  P  T  T  -+ +    {  1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc         -+ +    {  8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt           | +    {  8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt           | +    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI         | +    {  0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI         | +    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP         +- firstOp +    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP         | +    { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc        | +    { 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt          | +    {  1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt       | +    { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr       | +    {  5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast        | +    {  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+ +  }; + +  // TODO: This logic could be encoded into the table above and handled in the +  // switch below. +  // If either of the casts are a bitcast from scalar to vector, disallow the +  // merging. However, any pair of bitcasts are allowed. +  bool IsFirstBitcast  = (firstOp == Instruction::BitCast); +  bool IsSecondBitcast = (secondOp == Instruction::BitCast); +  bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast; + +  // Check if any of the casts convert scalars <-> vectors. +  if ((IsFirstBitcast  && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) || +      (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy))) +    if (!AreBothBitcasts) +      return 0; + +  int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin] +                            [secondOp-Instruction::CastOpsBegin]; +  switch (ElimCase) { +    case 0: +      // Categorically disallowed. +      return 0; +    case 1: +      // Allowed, use first cast's opcode. +      return firstOp; +    case 2: +      // Allowed, use second cast's opcode. +      return secondOp; +    case 3: +      // No-op cast in second op implies firstOp as long as the DestTy +      // is integer and we are not converting between a vector and a +      // non-vector type. +      if (!SrcTy->isVectorTy() && DstTy->isIntegerTy()) +        return firstOp; +      return 0; +    case 4: +      // No-op cast in second op implies firstOp as long as the DestTy +      // is floating point. +      if (DstTy->isFloatingPointTy()) +        return firstOp; +      return 0; +    case 5: +      // No-op cast in first op implies secondOp as long as the SrcTy +      // is an integer. +      if (SrcTy->isIntegerTy()) +        return secondOp; +      return 0; +    case 6: +      // No-op cast in first op implies secondOp as long as the SrcTy +      // is a floating point. +      if (SrcTy->isFloatingPointTy()) +        return secondOp; +      return 0; +    case 7: { +      // Cannot simplify if address spaces are different! +      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) +        return 0; + +      unsigned MidSize = MidTy->getScalarSizeInBits(); +      // We can still fold this without knowing the actual sizes as long we +      // know that the intermediate pointer is the largest possible +      // pointer size. +      // FIXME: Is this always true? +      if (MidSize == 64) +        return Instruction::BitCast; + +      // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size. +      if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy) +        return 0; +      unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits(); +      if (MidSize >= PtrSize) +        return Instruction::BitCast; +      return 0; +    } +    case 8: { +      // ext, trunc -> bitcast,    if the SrcTy and DstTy are same size +      // ext, trunc -> ext,        if sizeof(SrcTy) < sizeof(DstTy) +      // ext, trunc -> trunc,      if sizeof(SrcTy) > sizeof(DstTy) +      unsigned SrcSize = SrcTy->getScalarSizeInBits(); +      unsigned DstSize = DstTy->getScalarSizeInBits(); +      if (SrcSize == DstSize) +        return Instruction::BitCast; +      else if (SrcSize < DstSize) +        return firstOp; +      return secondOp; +    } +    case 9: +      // zext, sext -> zext, because sext can't sign extend after zext +      return Instruction::ZExt; +    case 11: { +      // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize +      if (!MidIntPtrTy) +        return 0; +      unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits(); +      unsigned SrcSize = SrcTy->getScalarSizeInBits(); +      unsigned DstSize = DstTy->getScalarSizeInBits(); +      if (SrcSize <= PtrSize && SrcSize == DstSize) +        return Instruction::BitCast; +      return 0; +    } +    case 12: +      // addrspacecast, addrspacecast -> bitcast,       if SrcAS == DstAS +      // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS +      if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) +        return Instruction::AddrSpaceCast; +      return Instruction::BitCast; +    case 13: +      // FIXME: this state can be merged with (1), but the following assert +      // is useful to check the correcteness of the sequence due to semantic +      // change of bitcast. +      assert( +        SrcTy->isPtrOrPtrVectorTy() && +        MidTy->isPtrOrPtrVectorTy() && +        DstTy->isPtrOrPtrVectorTy() && +        SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() && +        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && +        "Illegal addrspacecast, bitcast sequence!"); +      // Allowed, use first cast's opcode +      return firstOp; +    case 14: +      // bitcast, addrspacecast -> addrspacecast if the element type of +      // bitcast's source is the same as that of addrspacecast's destination. +      if (SrcTy->getScalarType()->getPointerElementType() == +          DstTy->getScalarType()->getPointerElementType()) +        return Instruction::AddrSpaceCast; +      return 0; +    case 15: +      // FIXME: this state can be merged with (1), but the following assert +      // is useful to check the correcteness of the sequence due to semantic +      // change of bitcast. +      assert( +        SrcTy->isIntOrIntVectorTy() && +        MidTy->isPtrOrPtrVectorTy() && +        DstTy->isPtrOrPtrVectorTy() && +        MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() && +        "Illegal inttoptr, bitcast sequence!"); +      // Allowed, use first cast's opcode +      return firstOp; +    case 16: +      // FIXME: this state can be merged with (2), but the following assert +      // is useful to check the correcteness of the sequence due to semantic +      // change of bitcast. +      assert( +        SrcTy->isPtrOrPtrVectorTy() && +        MidTy->isPtrOrPtrVectorTy() && +        DstTy->isIntOrIntVectorTy() && +        SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() && +        "Illegal bitcast, ptrtoint sequence!"); +      // Allowed, use second cast's opcode +      return secondOp; +    case 17: +      // (sitofp (zext x)) -> (uitofp x) +      return Instruction::UIToFP; +    case 99: +      // Cast combination can't happen (error in input). This is for all cases +      // where the MidTy is not the same for the two cast instructions. +      llvm_unreachable("Invalid Cast Combination"); +    default: +      llvm_unreachable("Error in CastResults table!!!"); +  } +} + +CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, +  const Twine &Name, Instruction *InsertBefore) { +  assert(castIsValid(op, S, Ty) && "Invalid cast!"); +  // Construct and return the appropriate CastInst subclass +  switch (op) { +  case Trunc:         return new TruncInst         (S, Ty, Name, InsertBefore); +  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertBefore); +  case SExt:          return new SExtInst          (S, Ty, Name, InsertBefore); +  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertBefore); +  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertBefore); +  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertBefore); +  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertBefore); +  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertBefore); +  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertBefore); +  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertBefore); +  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertBefore); +  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertBefore); +  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore); +  default: llvm_unreachable("Invalid opcode provided"); +  } +} + +CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty, +  const Twine &Name, BasicBlock *InsertAtEnd) { +  assert(castIsValid(op, S, Ty) && "Invalid cast!"); +  // Construct and return the appropriate CastInst subclass +  switch (op) { +  case Trunc:         return new TruncInst         (S, Ty, Name, InsertAtEnd); +  case ZExt:          return new ZExtInst          (S, Ty, Name, InsertAtEnd); +  case SExt:          return new SExtInst          (S, Ty, Name, InsertAtEnd); +  case FPTrunc:       return new FPTruncInst       (S, Ty, Name, InsertAtEnd); +  case FPExt:         return new FPExtInst         (S, Ty, Name, InsertAtEnd); +  case UIToFP:        return new UIToFPInst        (S, Ty, Name, InsertAtEnd); +  case SIToFP:        return new SIToFPInst        (S, Ty, Name, InsertAtEnd); +  case FPToUI:        return new FPToUIInst        (S, Ty, Name, InsertAtEnd); +  case FPToSI:        return new FPToSIInst        (S, Ty, Name, InsertAtEnd); +  case PtrToInt:      return new PtrToIntInst      (S, Ty, Name, InsertAtEnd); +  case IntToPtr:      return new IntToPtrInst      (S, Ty, Name, InsertAtEnd); +  case BitCast:       return new BitCastInst       (S, Ty, Name, InsertAtEnd); +  case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd); +  default: llvm_unreachable("Invalid opcode provided"); +  } +} + +CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, +                                        const Twine &Name, +                                        Instruction *InsertBefore) { +  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) +    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); +  return Create(Instruction::ZExt, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty, +                                        const Twine &Name, +                                        BasicBlock *InsertAtEnd) { +  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) +    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); +  return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, +                                        const Twine &Name, +                                        Instruction *InsertBefore) { +  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) +    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); +  return Create(Instruction::SExt, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty, +                                        const Twine &Name, +                                        BasicBlock *InsertAtEnd) { +  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) +    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); +  return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, +                                         const Twine &Name, +                                         Instruction *InsertBefore) { +  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) +    return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); +  return Create(Instruction::Trunc, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty, +                                         const Twine &Name, +                                         BasicBlock *InsertAtEnd) { +  if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) +    return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); +  return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, +                                      const Twine &Name, +                                      BasicBlock *InsertAtEnd) { +  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); +  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && +         "Invalid cast"); +  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); +  assert((!Ty->isVectorTy() || +          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && +         "Invalid cast"); + +  if (Ty->isIntOrIntVectorTy()) +    return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd); + +  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd); +} + +/// Create a BitCast or a PtrToInt cast instruction +CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty, +                                      const Twine &Name, +                                      Instruction *InsertBefore) { +  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); +  assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && +         "Invalid cast"); +  assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast"); +  assert((!Ty->isVectorTy() || +          Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) && +         "Invalid cast"); + +  if (Ty->isIntOrIntVectorTy()) +    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); + +  return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( +  Value *S, Type *Ty, +  const Twine &Name, +  BasicBlock *InsertAtEnd) { +  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); +  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); + +  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) +    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd); + +  return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast( +  Value *S, Type *Ty, +  const Twine &Name, +  Instruction *InsertBefore) { +  assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); +  assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast"); + +  if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace()) +    return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore); + +  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty, +                                           const Twine &Name, +                                           Instruction *InsertBefore) { +  if (S->getType()->isPointerTy() && Ty->isIntegerTy()) +    return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore); +  if (S->getType()->isIntegerTy() && Ty->isPointerTy()) +    return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore); + +  return Create(Instruction::BitCast, S, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, +                                      bool isSigned, const Twine &Name, +                                      Instruction *InsertBefore) { +  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && +         "Invalid integer cast"); +  unsigned SrcBits = C->getType()->getScalarSizeInBits(); +  unsigned DstBits = Ty->getScalarSizeInBits(); +  Instruction::CastOps opcode = +    (SrcBits == DstBits ? Instruction::BitCast : +     (SrcBits > DstBits ? Instruction::Trunc : +      (isSigned ? Instruction::SExt : Instruction::ZExt))); +  return Create(opcode, C, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty, +                                      bool isSigned, const Twine &Name, +                                      BasicBlock *InsertAtEnd) { +  assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && +         "Invalid cast"); +  unsigned SrcBits = C->getType()->getScalarSizeInBits(); +  unsigned DstBits = Ty->getScalarSizeInBits(); +  Instruction::CastOps opcode = +    (SrcBits == DstBits ? Instruction::BitCast : +     (SrcBits > DstBits ? Instruction::Trunc : +      (isSigned ? Instruction::SExt : Instruction::ZExt))); +  return Create(opcode, C, Ty, Name, InsertAtEnd); +} + +CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, +                                 const Twine &Name, +                                 Instruction *InsertBefore) { +  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && +         "Invalid cast"); +  unsigned SrcBits = C->getType()->getScalarSizeInBits(); +  unsigned DstBits = Ty->getScalarSizeInBits(); +  Instruction::CastOps opcode = +    (SrcBits == DstBits ? Instruction::BitCast : +     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); +  return Create(opcode, C, Ty, Name, InsertBefore); +} + +CastInst *CastInst::CreateFPCast(Value *C, Type *Ty, +                                 const Twine &Name, +                                 BasicBlock *InsertAtEnd) { +  assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && +         "Invalid cast"); +  unsigned SrcBits = C->getType()->getScalarSizeInBits(); +  unsigned DstBits = Ty->getScalarSizeInBits(); +  Instruction::CastOps opcode = +    (SrcBits == DstBits ? Instruction::BitCast : +     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt)); +  return Create(opcode, C, Ty, Name, InsertAtEnd); +} + +// Check whether it is valid to call getCastOpcode for these types. +// This routine must be kept in sync with getCastOpcode. +bool CastInst::isCastable(Type *SrcTy, Type *DestTy) { +  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) +    return false; + +  if (SrcTy == DestTy) +    return true; + +  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) +    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) +      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { +        // An element by element cast.  Valid if casting the elements is valid. +        SrcTy = SrcVecTy->getElementType(); +        DestTy = DestVecTy->getElementType(); +      } + +  // Get the bit sizes, we'll need these +  TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr +  TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr + +  // Run through the possibilities ... +  if (DestTy->isIntegerTy()) {               // Casting to integral +    if (SrcTy->isIntegerTy())                // Casting from integral +        return true; +    if (SrcTy->isFloatingPointTy())   // Casting from floating pt +      return true; +    if (SrcTy->isVectorTy())          // Casting from vector +      return DestBits == SrcBits; +                                      // Casting from something else +    return SrcTy->isPointerTy(); +  } +  if (DestTy->isFloatingPointTy()) {  // Casting to floating pt +    if (SrcTy->isIntegerTy())                // Casting from integral +      return true; +    if (SrcTy->isFloatingPointTy())   // Casting from floating pt +      return true; +    if (SrcTy->isVectorTy())          // Casting from vector +      return DestBits == SrcBits; +                                    // Casting from something else +    return false; +  } +  if (DestTy->isVectorTy())         // Casting to vector +    return DestBits == SrcBits; +  if (DestTy->isPointerTy()) {        // Casting to pointer +    if (SrcTy->isPointerTy())                // Casting from pointer +      return true; +    return SrcTy->isIntegerTy();             // Casting from integral +  } +  if (DestTy->isX86_MMXTy()) { +    if (SrcTy->isVectorTy()) +      return DestBits == SrcBits;       // 64-bit vector to MMX +    return false; +  }                                    // Casting to something else +  return false; +} + +bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) { +  if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType()) +    return false; + +  if (SrcTy == DestTy) +    return true; + +  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { +    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) { +      if (SrcVecTy->getElementCount() == DestVecTy->getElementCount()) { +        // An element by element cast. Valid if casting the elements is valid. +        SrcTy = SrcVecTy->getElementType(); +        DestTy = DestVecTy->getElementType(); +      } +    } +  } + +  if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) { +    if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) { +      return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace(); +    } +  } + +  TypeSize SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr +  TypeSize DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr + +  // Could still have vectors of pointers if the number of elements doesn't +  // match +  if (SrcBits.getKnownMinSize() == 0 || DestBits.getKnownMinSize() == 0) +    return false; + +  if (SrcBits != DestBits) +    return false; + +  if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy()) +    return false; + +  return true; +} + +bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy, +                                          const DataLayout &DL) { +  // ptrtoint and inttoptr are not allowed on non-integral pointers +  if (auto *PtrTy = dyn_cast<PointerType>(SrcTy)) +    if (auto *IntTy = dyn_cast<IntegerType>(DestTy)) +      return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && +              !DL.isNonIntegralPointerType(PtrTy)); +  if (auto *PtrTy = dyn_cast<PointerType>(DestTy)) +    if (auto *IntTy = dyn_cast<IntegerType>(SrcTy)) +      return (IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy) && +              !DL.isNonIntegralPointerType(PtrTy)); + +  return isBitCastable(SrcTy, DestTy); +} + +// Provide a way to get a "cast" where the cast opcode is inferred from the +// types and size of the operand. This, basically, is a parallel of the +// logic in the castIsValid function below.  This axiom should hold: +//   castIsValid( getCastOpcode(Val, Ty), Val, Ty) +// should not assert in castIsValid. In other words, this produces a "correct" +// casting opcode for the arguments passed to it. +// This routine must be kept in sync with isCastable. +Instruction::CastOps +CastInst::getCastOpcode( +  const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) { +  Type *SrcTy = Src->getType(); + +  assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() && +         "Only first class types are castable!"); + +  if (SrcTy == DestTy) +    return BitCast; + +  // FIXME: Check address space sizes here +  if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) +    if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) +      if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) { +        // An element by element cast.  Find the appropriate opcode based on the +        // element types. +        SrcTy = SrcVecTy->getElementType(); +        DestTy = DestVecTy->getElementType(); +      } + +  // Get the bit sizes, we'll need these +  unsigned SrcBits = SrcTy->getPrimitiveSizeInBits();   // 0 for ptr +  unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr + +  // Run through the possibilities ... +  if (DestTy->isIntegerTy()) {                      // Casting to integral +    if (SrcTy->isIntegerTy()) {                     // Casting from integral +      if (DestBits < SrcBits) +        return Trunc;                               // int -> smaller int +      else if (DestBits > SrcBits) {                // its an extension +        if (SrcIsSigned) +          return SExt;                              // signed -> SEXT +        else +          return ZExt;                              // unsigned -> ZEXT +      } else { +        return BitCast;                             // Same size, No-op cast +      } +    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt +      if (DestIsSigned) +        return FPToSI;                              // FP -> sint +      else +        return FPToUI;                              // FP -> uint +    } else if (SrcTy->isVectorTy()) { +      assert(DestBits == SrcBits && +             "Casting vector to integer of different width"); +      return BitCast;                             // Same size, no-op cast +    } else { +      assert(SrcTy->isPointerTy() && +             "Casting from a value that is not first-class type"); +      return PtrToInt;                              // ptr -> int +    } +  } else if (DestTy->isFloatingPointTy()) {         // Casting to floating pt +    if (SrcTy->isIntegerTy()) {                     // Casting from integral +      if (SrcIsSigned) +        return SIToFP;                              // sint -> FP +      else +        return UIToFP;                              // uint -> FP +    } else if (SrcTy->isFloatingPointTy()) {        // Casting from floating pt +      if (DestBits < SrcBits) { +        return FPTrunc;                             // FP -> smaller FP +      } else if (DestBits > SrcBits) { +        return FPExt;                               // FP -> larger FP +      } else  { +        return BitCast;                             // same size, no-op cast +      } +    } else if (SrcTy->isVectorTy()) { +      assert(DestBits == SrcBits && +             "Casting vector to floating point of different width"); +      return BitCast;                             // same size, no-op cast +    } +    llvm_unreachable("Casting pointer or non-first class to float"); +  } else if (DestTy->isVectorTy()) { +    assert(DestBits == SrcBits && +           "Illegal cast to vector (wrong type or size)"); +    return BitCast; +  } else if (DestTy->isPointerTy()) { +    if (SrcTy->isPointerTy()) { +      if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace()) +        return AddrSpaceCast; +      return BitCast;                               // ptr -> ptr +    } else if (SrcTy->isIntegerTy()) { +      return IntToPtr;                              // int -> ptr +    } +    llvm_unreachable("Casting pointer to other than pointer or int"); +  } else if (DestTy->isX86_MMXTy()) { +    if (SrcTy->isVectorTy()) { +      assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX"); +      return BitCast;                               // 64-bit vector to MMX +    } +    llvm_unreachable("Illegal cast to X86_MMX"); +  } +  llvm_unreachable("Casting to type that is not first-class"); +} + +//===----------------------------------------------------------------------===// +//                    CastInst SubClass Constructors +//===----------------------------------------------------------------------===// + +/// Check that the construction parameters for a CastInst are correct. This +/// could be broken out into the separate constructors but it is useful to have +/// it in one place and to eliminate the redundant code for getting the sizes +/// of the types involved. +bool +CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) { +  // Check for type sanity on the arguments +  Type *SrcTy = S->getType(); + +  if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() || +      SrcTy->isAggregateType() || DstTy->isAggregateType()) +    return false; + +  // Get the size of the types in bits, we'll need this later +  unsigned SrcBitSize = SrcTy->getScalarSizeInBits(); +  unsigned DstBitSize = DstTy->getScalarSizeInBits(); + +  // If these are vector types, get the lengths of the vectors (using zero for +  // scalar types means that checking that vector lengths match also checks that +  // scalars are not being converted to vectors or vectors to scalars). +  unsigned SrcLength = SrcTy->isVectorTy() ? +    cast<VectorType>(SrcTy)->getNumElements() : 0; +  unsigned DstLength = DstTy->isVectorTy() ? +    cast<VectorType>(DstTy)->getNumElements() : 0; + +  // Switch on the opcode provided +  switch (op) { +  default: return false; // This is an input error +  case Instruction::Trunc: +    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && +      SrcLength == DstLength && SrcBitSize > DstBitSize; +  case Instruction::ZExt: +    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && +      SrcLength == DstLength && SrcBitSize < DstBitSize; +  case Instruction::SExt: +    return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() && +      SrcLength == DstLength && SrcBitSize < DstBitSize; +  case Instruction::FPTrunc: +    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && +      SrcLength == DstLength && SrcBitSize > DstBitSize; +  case Instruction::FPExt: +    return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() && +      SrcLength == DstLength && SrcBitSize < DstBitSize; +  case Instruction::UIToFP: +  case Instruction::SIToFP: +    return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() && +      SrcLength == DstLength; +  case Instruction::FPToUI: +  case Instruction::FPToSI: +    return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() && +      SrcLength == DstLength; +  case Instruction::PtrToInt: +    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) +      return false; +    if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) +      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) +        return false; +    return SrcTy->isPtrOrPtrVectorTy() && DstTy->isIntOrIntVectorTy(); +  case Instruction::IntToPtr: +    if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy)) +      return false; +    if (VectorType *VT = dyn_cast<VectorType>(SrcTy)) +      if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements()) +        return false; +    return SrcTy->isIntOrIntVectorTy() && DstTy->isPtrOrPtrVectorTy(); +  case Instruction::BitCast: { +    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); +    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); + +    // BitCast implies a no-op cast of type only. No bits change. +    // However, you can't cast pointers to anything but pointers. +    if (!SrcPtrTy != !DstPtrTy) +      return false; + +    // For non-pointer cases, the cast is okay if the source and destination bit +    // widths are identical. +    if (!SrcPtrTy) +      return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits(); + +    // If both are pointers then the address spaces must match. +    if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) +      return false; + +    // A vector of pointers must have the same number of elements. +    VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy); +    VectorType *DstVecTy = dyn_cast<VectorType>(DstTy); +    if (SrcVecTy && DstVecTy) +      return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); +    if (SrcVecTy) +      return SrcVecTy->getNumElements() == 1; +    if (DstVecTy) +      return DstVecTy->getNumElements() == 1; + +    return true; +  } +  case Instruction::AddrSpaceCast: { +    PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType()); +    if (!SrcPtrTy) +      return false; + +    PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType()); +    if (!DstPtrTy) +      return false; + +    if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) +      return false; + +    if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) { +      if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy)) +        return (SrcVecTy->getNumElements() == DstVecTy->getNumElements()); + +      return false; +    } + +    return true; +  } +  } +} + +TruncInst::TruncInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, Trunc, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); +} + +TruncInst::TruncInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc"); +} + +ZExtInst::ZExtInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +)  : CastInst(Ty, ZExt, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); +} + +ZExtInst::ZExtInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +)  : CastInst(Ty, ZExt, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt"); +} +SExtInst::SExtInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, SExt, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); +} + +SExtInst::SExtInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +)  : CastInst(Ty, SExt, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt"); +} + +FPTruncInst::FPTruncInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); +} + +FPTruncInst::FPTruncInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc"); +} + +FPExtInst::FPExtInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPExt, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); +} + +FPExtInst::FPExtInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt"); +} + +UIToFPInst::UIToFPInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, UIToFP, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); +} + +UIToFPInst::UIToFPInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP"); +} + +SIToFPInst::SIToFPInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, SIToFP, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); +} + +SIToFPInst::SIToFPInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP"); +} + +FPToUIInst::FPToUIInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPToUI, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); +} + +FPToUIInst::FPToUIInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI"); +} + +FPToSIInst::FPToSIInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, FPToSI, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); +} + +FPToSIInst::FPToSIInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI"); +} + +PtrToIntInst::PtrToIntInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); +} + +PtrToIntInst::PtrToIntInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt"); +} + +IntToPtrInst::IntToPtrInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); +} + +IntToPtrInst::IntToPtrInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr"); +} + +BitCastInst::BitCastInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, BitCast, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); +} + +BitCastInst::BitCastInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast"); +} + +AddrSpaceCastInst::AddrSpaceCastInst( +  Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore +) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); +} + +AddrSpaceCastInst::AddrSpaceCastInst( +  Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd +) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) { +  assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast"); +} + +//===----------------------------------------------------------------------===// +//                               CmpInst Classes +//===----------------------------------------------------------------------===// + +CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, +                 Value *RHS, const Twine &Name, Instruction *InsertBefore, +                 Instruction *FlagsSource) +  : Instruction(ty, op, +                OperandTraits<CmpInst>::op_begin(this), +                OperandTraits<CmpInst>::operands(this), +                InsertBefore) { +  Op<0>() = LHS; +  Op<1>() = RHS; +  setPredicate((Predicate)predicate); +  setName(Name); +  if (FlagsSource) +    copyIRFlags(FlagsSource); +} + +CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS, +                 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd) +  : Instruction(ty, op, +                OperandTraits<CmpInst>::op_begin(this), +                OperandTraits<CmpInst>::operands(this), +                InsertAtEnd) { +  Op<0>() = LHS; +  Op<1>() = RHS; +  setPredicate((Predicate)predicate); +  setName(Name); +} + +CmpInst * +CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, +                const Twine &Name, Instruction *InsertBefore) { +  if (Op == Instruction::ICmp) { +    if (InsertBefore) +      return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate), +                          S1, S2, Name); +    else +      return new ICmpInst(CmpInst::Predicate(predicate), +                          S1, S2, Name); +  } + +  if (InsertBefore) +    return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate), +                        S1, S2, Name); +  else +    return new FCmpInst(CmpInst::Predicate(predicate), +                        S1, S2, Name); +} + +CmpInst * +CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2, +                const Twine &Name, BasicBlock *InsertAtEnd) { +  if (Op == Instruction::ICmp) { +    return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), +                        S1, S2, Name); +  } +  return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate), +                      S1, S2, Name); +} + +void CmpInst::swapOperands() { +  if (ICmpInst *IC = dyn_cast<ICmpInst>(this)) +    IC->swapOperands(); +  else +    cast<FCmpInst>(this)->swapOperands(); +} + +bool CmpInst::isCommutative() const { +  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) +    return IC->isCommutative(); +  return cast<FCmpInst>(this)->isCommutative(); +} + +bool CmpInst::isEquality() const { +  if (const ICmpInst *IC = dyn_cast<ICmpInst>(this)) +    return IC->isEquality(); +  return cast<FCmpInst>(this)->isEquality(); +} + +CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) { +  switch (pred) { +    default: llvm_unreachable("Unknown cmp predicate!"); +    case ICMP_EQ: return ICMP_NE; +    case ICMP_NE: return ICMP_EQ; +    case ICMP_UGT: return ICMP_ULE; +    case ICMP_ULT: return ICMP_UGE; +    case ICMP_UGE: return ICMP_ULT; +    case ICMP_ULE: return ICMP_UGT; +    case ICMP_SGT: return ICMP_SLE; +    case ICMP_SLT: return ICMP_SGE; +    case ICMP_SGE: return ICMP_SLT; +    case ICMP_SLE: return ICMP_SGT; + +    case FCMP_OEQ: return FCMP_UNE; +    case FCMP_ONE: return FCMP_UEQ; +    case FCMP_OGT: return FCMP_ULE; +    case FCMP_OLT: return FCMP_UGE; +    case FCMP_OGE: return FCMP_ULT; +    case FCMP_OLE: return FCMP_UGT; +    case FCMP_UEQ: return FCMP_ONE; +    case FCMP_UNE: return FCMP_OEQ; +    case FCMP_UGT: return FCMP_OLE; +    case FCMP_ULT: return FCMP_OGE; +    case FCMP_UGE: return FCMP_OLT; +    case FCMP_ULE: return FCMP_OGT; +    case FCMP_ORD: return FCMP_UNO; +    case FCMP_UNO: return FCMP_ORD; +    case FCMP_TRUE: return FCMP_FALSE; +    case FCMP_FALSE: return FCMP_TRUE; +  } +} + +StringRef CmpInst::getPredicateName(Predicate Pred) { +  switch (Pred) { +  default:                   return "unknown"; +  case FCmpInst::FCMP_FALSE: return "false"; +  case FCmpInst::FCMP_OEQ:   return "oeq"; +  case FCmpInst::FCMP_OGT:   return "ogt"; +  case FCmpInst::FCMP_OGE:   return "oge"; +  case FCmpInst::FCMP_OLT:   return "olt"; +  case FCmpInst::FCMP_OLE:   return "ole"; +  case FCmpInst::FCMP_ONE:   return "one"; +  case FCmpInst::FCMP_ORD:   return "ord"; +  case FCmpInst::FCMP_UNO:   return "uno"; +  case FCmpInst::FCMP_UEQ:   return "ueq"; +  case FCmpInst::FCMP_UGT:   return "ugt"; +  case FCmpInst::FCMP_UGE:   return "uge"; +  case FCmpInst::FCMP_ULT:   return "ult"; +  case FCmpInst::FCMP_ULE:   return "ule"; +  case FCmpInst::FCMP_UNE:   return "une"; +  case FCmpInst::FCMP_TRUE:  return "true"; +  case ICmpInst::ICMP_EQ:    return "eq"; +  case ICmpInst::ICMP_NE:    return "ne"; +  case ICmpInst::ICMP_SGT:   return "sgt"; +  case ICmpInst::ICMP_SGE:   return "sge"; +  case ICmpInst::ICMP_SLT:   return "slt"; +  case ICmpInst::ICMP_SLE:   return "sle"; +  case ICmpInst::ICMP_UGT:   return "ugt"; +  case ICmpInst::ICMP_UGE:   return "uge"; +  case ICmpInst::ICMP_ULT:   return "ult"; +  case ICmpInst::ICMP_ULE:   return "ule"; +  } +} + +ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) { +  switch (pred) { +    default: llvm_unreachable("Unknown icmp predicate!"); +    case ICMP_EQ: case ICMP_NE: +    case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE: +       return pred; +    case ICMP_UGT: return ICMP_SGT; +    case ICMP_ULT: return ICMP_SLT; +    case ICMP_UGE: return ICMP_SGE; +    case ICMP_ULE: return ICMP_SLE; +  } +} + +ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) { +  switch (pred) { +    default: llvm_unreachable("Unknown icmp predicate!"); +    case ICMP_EQ: case ICMP_NE: +    case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE: +       return pred; +    case ICMP_SGT: return ICMP_UGT; +    case ICMP_SLT: return ICMP_ULT; +    case ICMP_SGE: return ICMP_UGE; +    case ICMP_SLE: return ICMP_ULE; +  } +} + +CmpInst::Predicate CmpInst::getFlippedStrictnessPredicate(Predicate pred) { +  switch (pred) { +    default: llvm_unreachable("Unknown or unsupported cmp predicate!"); +    case ICMP_SGT: return ICMP_SGE; +    case ICMP_SLT: return ICMP_SLE; +    case ICMP_SGE: return ICMP_SGT; +    case ICMP_SLE: return ICMP_SLT; +    case ICMP_UGT: return ICMP_UGE; +    case ICMP_ULT: return ICMP_ULE; +    case ICMP_UGE: return ICMP_UGT; +    case ICMP_ULE: return ICMP_ULT; + +    case FCMP_OGT: return FCMP_OGE; +    case FCMP_OLT: return FCMP_OLE; +    case FCMP_OGE: return FCMP_OGT; +    case FCMP_OLE: return FCMP_OLT; +    case FCMP_UGT: return FCMP_UGE; +    case FCMP_ULT: return FCMP_ULE; +    case FCMP_UGE: return FCMP_UGT; +    case FCMP_ULE: return FCMP_ULT; +  } +} + +CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) { +  switch (pred) { +    default: llvm_unreachable("Unknown cmp predicate!"); +    case ICMP_EQ: case ICMP_NE: +      return pred; +    case ICMP_SGT: return ICMP_SLT; +    case ICMP_SLT: return ICMP_SGT; +    case ICMP_SGE: return ICMP_SLE; +    case ICMP_SLE: return ICMP_SGE; +    case ICMP_UGT: return ICMP_ULT; +    case ICMP_ULT: return ICMP_UGT; +    case ICMP_UGE: return ICMP_ULE; +    case ICMP_ULE: return ICMP_UGE; + +    case FCMP_FALSE: case FCMP_TRUE: +    case FCMP_OEQ: case FCMP_ONE: +    case FCMP_UEQ: case FCMP_UNE: +    case FCMP_ORD: case FCMP_UNO: +      return pred; +    case FCMP_OGT: return FCMP_OLT; +    case FCMP_OLT: return FCMP_OGT; +    case FCMP_OGE: return FCMP_OLE; +    case FCMP_OLE: return FCMP_OGE; +    case FCMP_UGT: return FCMP_ULT; +    case FCMP_ULT: return FCMP_UGT; +    case FCMP_UGE: return FCMP_ULE; +    case FCMP_ULE: return FCMP_UGE; +  } +} + +CmpInst::Predicate CmpInst::getNonStrictPredicate(Predicate pred) { +  switch (pred) { +  case ICMP_SGT: return ICMP_SGE; +  case ICMP_SLT: return ICMP_SLE; +  case ICMP_UGT: return ICMP_UGE; +  case ICMP_ULT: return ICMP_ULE; +  case FCMP_OGT: return FCMP_OGE; +  case FCMP_OLT: return FCMP_OLE; +  case FCMP_UGT: return FCMP_UGE; +  case FCMP_ULT: return FCMP_ULE; +  default: return pred; +  } +} + +CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) { +  assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!"); + +  switch (pred) { +  default: +    llvm_unreachable("Unknown predicate!"); +  case CmpInst::ICMP_ULT: +    return CmpInst::ICMP_SLT; +  case CmpInst::ICMP_ULE: +    return CmpInst::ICMP_SLE; +  case CmpInst::ICMP_UGT: +    return CmpInst::ICMP_SGT; +  case CmpInst::ICMP_UGE: +    return CmpInst::ICMP_SGE; +  } +} + +bool CmpInst::isUnsigned(Predicate predicate) { +  switch (predicate) { +    default: return false; +    case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT: +    case ICmpInst::ICMP_UGE: return true; +  } +} + +bool CmpInst::isSigned(Predicate predicate) { +  switch (predicate) { +    default: return false; +    case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT: +    case ICmpInst::ICMP_SGE: return true; +  } +} + +bool CmpInst::isOrdered(Predicate predicate) { +  switch (predicate) { +    default: return false; +    case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT: +    case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE: +    case FCmpInst::FCMP_ORD: return true; +  } +} + +bool CmpInst::isUnordered(Predicate predicate) { +  switch (predicate) { +    default: return false; +    case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT: +    case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE: +    case FCmpInst::FCMP_UNO: return true; +  } +} + +bool CmpInst::isTrueWhenEqual(Predicate predicate) { +  switch(predicate) { +    default: return false; +    case ICMP_EQ:   case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE: +    case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true; +  } +} + +bool CmpInst::isFalseWhenEqual(Predicate predicate) { +  switch(predicate) { +  case ICMP_NE:    case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT: +  case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true; +  default: return false; +  } +} + +bool CmpInst::isImpliedTrueByMatchingCmp(Predicate Pred1, Predicate Pred2) { +  // If the predicates match, then we know the first condition implies the +  // second is true. +  if (Pred1 == Pred2) +    return true; + +  switch (Pred1) { +  default: +    break; +  case ICMP_EQ: +    // A == B implies A >=u B, A <=u B, A >=s B, and A <=s B are true. +    return Pred2 == ICMP_UGE || Pred2 == ICMP_ULE || Pred2 == ICMP_SGE || +           Pred2 == ICMP_SLE; +  case ICMP_UGT: // A >u B implies A != B and A >=u B are true. +    return Pred2 == ICMP_NE || Pred2 == ICMP_UGE; +  case ICMP_ULT: // A <u B implies A != B and A <=u B are true. +    return Pred2 == ICMP_NE || Pred2 == ICMP_ULE; +  case ICMP_SGT: // A >s B implies A != B and A >=s B are true. +    return Pred2 == ICMP_NE || Pred2 == ICMP_SGE; +  case ICMP_SLT: // A <s B implies A != B and A <=s B are true. +    return Pred2 == ICMP_NE || Pred2 == ICMP_SLE; +  } +  return false; +} + +bool CmpInst::isImpliedFalseByMatchingCmp(Predicate Pred1, Predicate Pred2) { +  return isImpliedTrueByMatchingCmp(Pred1, getInversePredicate(Pred2)); +} + +//===----------------------------------------------------------------------===// +//                        SwitchInst Implementation +//===----------------------------------------------------------------------===// + +void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) { +  assert(Value && Default && NumReserved); +  ReservedSpace = NumReserved; +  setNumHungOffUseOperands(2); +  allocHungoffUses(ReservedSpace); + +  Op<0>() = Value; +  Op<1>() = Default; +} + +/// SwitchInst ctor - Create a new switch instruction, specifying a value to +/// switch on and a default destination.  The number of additional cases can +/// be specified here to make memory allocation more efficient.  This +/// constructor can also autoinsert before another instruction. +SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, +                       Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, +                  nullptr, 0, InsertBefore) { +  init(Value, Default, 2+NumCases*2); +} + +/// SwitchInst ctor - Create a new switch instruction, specifying a value to +/// switch on and a default destination.  The number of additional cases can +/// be specified here to make memory allocation more efficient.  This +/// constructor also autoinserts at the end of the specified BasicBlock. +SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, +                       BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(Value->getContext()), Instruction::Switch, +                  nullptr, 0, InsertAtEnd) { +  init(Value, Default, 2+NumCases*2); +} + +SwitchInst::SwitchInst(const SwitchInst &SI) +    : Instruction(SI.getType(), Instruction::Switch, nullptr, 0) { +  init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands()); +  setNumHungOffUseOperands(SI.getNumOperands()); +  Use *OL = getOperandList(); +  const Use *InOL = SI.getOperandList(); +  for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) { +    OL[i] = InOL[i]; +    OL[i+1] = InOL[i+1]; +  } +  SubclassOptionalData = SI.SubclassOptionalData; +} + +/// addCase - Add an entry to the switch instruction... +/// +void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) { +  unsigned NewCaseIdx = getNumCases(); +  unsigned OpNo = getNumOperands(); +  if (OpNo+2 > ReservedSpace) +    growOperands();  // Get more space! +  // Initialize some new operands. +  assert(OpNo+1 < ReservedSpace && "Growing didn't work!"); +  setNumHungOffUseOperands(OpNo+2); +  CaseHandle Case(this, NewCaseIdx); +  Case.setValue(OnVal); +  Case.setSuccessor(Dest); +} + +/// removeCase - This method removes the specified case and its successor +/// from the switch instruction. +SwitchInst::CaseIt SwitchInst::removeCase(CaseIt I) { +  unsigned idx = I->getCaseIndex(); + +  assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!"); + +  unsigned NumOps = getNumOperands(); +  Use *OL = getOperandList(); + +  // Overwrite this case with the end of the list. +  if (2 + (idx + 1) * 2 != NumOps) { +    OL[2 + idx * 2] = OL[NumOps - 2]; +    OL[2 + idx * 2 + 1] = OL[NumOps - 1]; +  } + +  // Nuke the last value. +  OL[NumOps-2].set(nullptr); +  OL[NumOps-2+1].set(nullptr); +  setNumHungOffUseOperands(NumOps-2); + +  return CaseIt(this, idx); +} + +/// growOperands - grow operands - This grows the operand list in response +/// to a push_back style of operation.  This grows the number of ops by 3 times. +/// +void SwitchInst::growOperands() { +  unsigned e = getNumOperands(); +  unsigned NumOps = e*3; + +  ReservedSpace = NumOps; +  growHungoffUses(ReservedSpace); +} + +MDNode * +SwitchInstProfUpdateWrapper::getProfBranchWeightsMD(const SwitchInst &SI) { +  if (MDNode *ProfileData = SI.getMetadata(LLVMContext::MD_prof)) +    if (auto *MDName = dyn_cast<MDString>(ProfileData->getOperand(0))) +      if (MDName->getString() == "branch_weights") +        return ProfileData; +  return nullptr; +} + +MDNode *SwitchInstProfUpdateWrapper::buildProfBranchWeightsMD() { +  assert(Changed && "called only if metadata has changed"); + +  if (!Weights) +    return nullptr; + +  assert(SI.getNumSuccessors() == Weights->size() && +         "num of prof branch_weights must accord with num of successors"); + +  bool AllZeroes = +      all_of(Weights.getValue(), [](uint32_t W) { return W == 0; }); + +  if (AllZeroes || Weights.getValue().size() < 2) +    return nullptr; + +  return MDBuilder(SI.getParent()->getContext()).createBranchWeights(*Weights); +} + +void SwitchInstProfUpdateWrapper::init() { +  MDNode *ProfileData = getProfBranchWeightsMD(SI); +  if (!ProfileData) +    return; + +  if (ProfileData->getNumOperands() != SI.getNumSuccessors() + 1) { +    llvm_unreachable("number of prof branch_weights metadata operands does " +                     "not correspond to number of succesors"); +  } + +  SmallVector<uint32_t, 8> Weights; +  for (unsigned CI = 1, CE = SI.getNumSuccessors(); CI <= CE; ++CI) { +    ConstantInt *C = mdconst::extract<ConstantInt>(ProfileData->getOperand(CI)); +    uint32_t CW = C->getValue().getZExtValue(); +    Weights.push_back(CW); +  } +  this->Weights = std::move(Weights); +} + +SwitchInst::CaseIt +SwitchInstProfUpdateWrapper::removeCase(SwitchInst::CaseIt I) { +  if (Weights) { +    assert(SI.getNumSuccessors() == Weights->size() && +           "num of prof branch_weights must accord with num of successors"); +    Changed = true; +    // Copy the last case to the place of the removed one and shrink. +    // This is tightly coupled with the way SwitchInst::removeCase() removes +    // the cases in SwitchInst::removeCase(CaseIt). +    Weights.getValue()[I->getCaseIndex() + 1] = Weights.getValue().back(); +    Weights.getValue().pop_back(); +  } +  return SI.removeCase(I); +} + +void SwitchInstProfUpdateWrapper::addCase( +    ConstantInt *OnVal, BasicBlock *Dest, +    SwitchInstProfUpdateWrapper::CaseWeightOpt W) { +  SI.addCase(OnVal, Dest); + +  if (!Weights && W && *W) { +    Changed = true; +    Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); +    Weights.getValue()[SI.getNumSuccessors() - 1] = *W; +  } else if (Weights) { +    Changed = true; +    Weights.getValue().push_back(W ? *W : 0); +  } +  if (Weights) +    assert(SI.getNumSuccessors() == Weights->size() && +           "num of prof branch_weights must accord with num of successors"); +} + +SymbolTableList<Instruction>::iterator +SwitchInstProfUpdateWrapper::eraseFromParent() { +  // Instruction is erased. Mark as unchanged to not touch it in the destructor. +  Changed = false; +  if (Weights) +    Weights->resize(0); +  return SI.eraseFromParent(); +} + +SwitchInstProfUpdateWrapper::CaseWeightOpt +SwitchInstProfUpdateWrapper::getSuccessorWeight(unsigned idx) { +  if (!Weights) +    return None; +  return Weights.getValue()[idx]; +} + +void SwitchInstProfUpdateWrapper::setSuccessorWeight( +    unsigned idx, SwitchInstProfUpdateWrapper::CaseWeightOpt W) { +  if (!W) +    return; + +  if (!Weights && *W) +    Weights = SmallVector<uint32_t, 8>(SI.getNumSuccessors(), 0); + +  if (Weights) { +    auto &OldW = Weights.getValue()[idx]; +    if (*W != OldW) { +      Changed = true; +      OldW = *W; +    } +  } +} + +SwitchInstProfUpdateWrapper::CaseWeightOpt +SwitchInstProfUpdateWrapper::getSuccessorWeight(const SwitchInst &SI, +                                                unsigned idx) { +  if (MDNode *ProfileData = getProfBranchWeightsMD(SI)) +    if (ProfileData->getNumOperands() == SI.getNumSuccessors() + 1) +      return mdconst::extract<ConstantInt>(ProfileData->getOperand(idx + 1)) +          ->getValue() +          .getZExtValue(); + +  return None; +} + +//===----------------------------------------------------------------------===// +//                        IndirectBrInst Implementation +//===----------------------------------------------------------------------===// + +void IndirectBrInst::init(Value *Address, unsigned NumDests) { +  assert(Address && Address->getType()->isPointerTy() && +         "Address of indirectbr must be a pointer"); +  ReservedSpace = 1+NumDests; +  setNumHungOffUseOperands(1); +  allocHungoffUses(ReservedSpace); + +  Op<0>() = Address; +} + + +/// growOperands - grow operands - This grows the operand list in response +/// to a push_back style of operation.  This grows the number of ops by 2 times. +/// +void IndirectBrInst::growOperands() { +  unsigned e = getNumOperands(); +  unsigned NumOps = e*2; + +  ReservedSpace = NumOps; +  growHungoffUses(ReservedSpace); +} + +IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, +                               Instruction *InsertBefore) +    : Instruction(Type::getVoidTy(Address->getContext()), +                  Instruction::IndirectBr, nullptr, 0, InsertBefore) { +  init(Address, NumCases); +} + +IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases, +                               BasicBlock *InsertAtEnd) +    : Instruction(Type::getVoidTy(Address->getContext()), +                  Instruction::IndirectBr, nullptr, 0, InsertAtEnd) { +  init(Address, NumCases); +} + +IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI) +    : Instruction(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr, +                  nullptr, IBI.getNumOperands()) { +  allocHungoffUses(IBI.getNumOperands()); +  Use *OL = getOperandList(); +  const Use *InOL = IBI.getOperandList(); +  for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i) +    OL[i] = InOL[i]; +  SubclassOptionalData = IBI.SubclassOptionalData; +} + +/// addDestination - Add a destination. +/// +void IndirectBrInst::addDestination(BasicBlock *DestBB) { +  unsigned OpNo = getNumOperands(); +  if (OpNo+1 > ReservedSpace) +    growOperands();  // Get more space! +  // Initialize some new operands. +  assert(OpNo < ReservedSpace && "Growing didn't work!"); +  setNumHungOffUseOperands(OpNo+1); +  getOperandList()[OpNo] = DestBB; +} + +/// removeDestination - This method removes the specified successor from the +/// indirectbr instruction. +void IndirectBrInst::removeDestination(unsigned idx) { +  assert(idx < getNumOperands()-1 && "Successor index out of range!"); + +  unsigned NumOps = getNumOperands(); +  Use *OL = getOperandList(); + +  // Replace this value with the last one. +  OL[idx+1] = OL[NumOps-1]; + +  // Nuke the last value. +  OL[NumOps-1].set(nullptr); +  setNumHungOffUseOperands(NumOps-1); +} + +//===----------------------------------------------------------------------===// +//                           cloneImpl() implementations +//===----------------------------------------------------------------------===// + +// Define these methods here so vtables don't get emitted into every translation +// unit that uses these classes. + +GetElementPtrInst *GetElementPtrInst::cloneImpl() const { +  return new (getNumOperands()) GetElementPtrInst(*this); +} + +UnaryOperator *UnaryOperator::cloneImpl() const { +  return Create(getOpcode(), Op<0>()); +} + +BinaryOperator *BinaryOperator::cloneImpl() const { +  return Create(getOpcode(), Op<0>(), Op<1>()); +} + +FCmpInst *FCmpInst::cloneImpl() const { +  return new FCmpInst(getPredicate(), Op<0>(), Op<1>()); +} + +ICmpInst *ICmpInst::cloneImpl() const { +  return new ICmpInst(getPredicate(), Op<0>(), Op<1>()); +} + +ExtractValueInst *ExtractValueInst::cloneImpl() const { +  return new ExtractValueInst(*this); +} + +InsertValueInst *InsertValueInst::cloneImpl() const { +  return new InsertValueInst(*this); +} + +AllocaInst *AllocaInst::cloneImpl() const { +  AllocaInst *Result = new AllocaInst(getAllocatedType(), +                                      getType()->getAddressSpace(), +                                      (Value *)getOperand(0), getAlignment()); +  Result->setUsedWithInAlloca(isUsedWithInAlloca()); +  Result->setSwiftError(isSwiftError()); +  return Result; +} + +LoadInst *LoadInst::cloneImpl() const { +  return new LoadInst(getType(), getOperand(0), Twine(), isVolatile(), +                      MaybeAlign(getAlignment()), getOrdering(), +                      getSyncScopeID()); +} + +StoreInst *StoreInst::cloneImpl() const { +  return new StoreInst(getOperand(0), getOperand(1), isVolatile(), +                       MaybeAlign(getAlignment()), getOrdering(), +                       getSyncScopeID()); +} + +AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const { +  AtomicCmpXchgInst *Result = +    new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2), +                          getSuccessOrdering(), getFailureOrdering(), +                          getSyncScopeID()); +  Result->setVolatile(isVolatile()); +  Result->setWeak(isWeak()); +  return Result; +} + +AtomicRMWInst *AtomicRMWInst::cloneImpl() const { +  AtomicRMWInst *Result = +    new AtomicRMWInst(getOperation(), getOperand(0), getOperand(1), +                      getOrdering(), getSyncScopeID()); +  Result->setVolatile(isVolatile()); +  return Result; +} + +FenceInst *FenceInst::cloneImpl() const { +  return new FenceInst(getContext(), getOrdering(), getSyncScopeID()); +} + +TruncInst *TruncInst::cloneImpl() const { +  return new TruncInst(getOperand(0), getType()); +} + +ZExtInst *ZExtInst::cloneImpl() const { +  return new ZExtInst(getOperand(0), getType()); +} + +SExtInst *SExtInst::cloneImpl() const { +  return new SExtInst(getOperand(0), getType()); +} + +FPTruncInst *FPTruncInst::cloneImpl() const { +  return new FPTruncInst(getOperand(0), getType()); +} + +FPExtInst *FPExtInst::cloneImpl() const { +  return new FPExtInst(getOperand(0), getType()); +} + +UIToFPInst *UIToFPInst::cloneImpl() const { +  return new UIToFPInst(getOperand(0), getType()); +} + +SIToFPInst *SIToFPInst::cloneImpl() const { +  return new SIToFPInst(getOperand(0), getType()); +} + +FPToUIInst *FPToUIInst::cloneImpl() const { +  return new FPToUIInst(getOperand(0), getType()); +} + +FPToSIInst *FPToSIInst::cloneImpl() const { +  return new FPToSIInst(getOperand(0), getType()); +} + +PtrToIntInst *PtrToIntInst::cloneImpl() const { +  return new PtrToIntInst(getOperand(0), getType()); +} + +IntToPtrInst *IntToPtrInst::cloneImpl() const { +  return new IntToPtrInst(getOperand(0), getType()); +} + +BitCastInst *BitCastInst::cloneImpl() const { +  return new BitCastInst(getOperand(0), getType()); +} + +AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const { +  return new AddrSpaceCastInst(getOperand(0), getType()); +} + +CallInst *CallInst::cloneImpl() const { +  if (hasOperandBundles()) { +    unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); +    return new(getNumOperands(), DescriptorBytes) CallInst(*this); +  } +  return  new(getNumOperands()) CallInst(*this); +} + +SelectInst *SelectInst::cloneImpl() const { +  return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2)); +} + +VAArgInst *VAArgInst::cloneImpl() const { +  return new VAArgInst(getOperand(0), getType()); +} + +ExtractElementInst *ExtractElementInst::cloneImpl() const { +  return ExtractElementInst::Create(getOperand(0), getOperand(1)); +} + +InsertElementInst *InsertElementInst::cloneImpl() const { +  return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2)); +} + +ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const { +  return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2)); +} + +PHINode *PHINode::cloneImpl() const { return new PHINode(*this); } + +LandingPadInst *LandingPadInst::cloneImpl() const { +  return new LandingPadInst(*this); +} + +ReturnInst *ReturnInst::cloneImpl() const { +  return new(getNumOperands()) ReturnInst(*this); +} + +BranchInst *BranchInst::cloneImpl() const { +  return new(getNumOperands()) BranchInst(*this); +} + +SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); } + +IndirectBrInst *IndirectBrInst::cloneImpl() const { +  return new IndirectBrInst(*this); +} + +InvokeInst *InvokeInst::cloneImpl() const { +  if (hasOperandBundles()) { +    unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); +    return new(getNumOperands(), DescriptorBytes) InvokeInst(*this); +  } +  return new(getNumOperands()) InvokeInst(*this); +} + +CallBrInst *CallBrInst::cloneImpl() const { +  if (hasOperandBundles()) { +    unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo); +    return new (getNumOperands(), DescriptorBytes) CallBrInst(*this); +  } +  return new (getNumOperands()) CallBrInst(*this); +} + +ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); } + +CleanupReturnInst *CleanupReturnInst::cloneImpl() const { +  return new (getNumOperands()) CleanupReturnInst(*this); +} + +CatchReturnInst *CatchReturnInst::cloneImpl() const { +  return new (getNumOperands()) CatchReturnInst(*this); +} + +CatchSwitchInst *CatchSwitchInst::cloneImpl() const { +  return new CatchSwitchInst(*this); +} + +FuncletPadInst *FuncletPadInst::cloneImpl() const { +  return new (getNumOperands()) FuncletPadInst(*this); +} + +UnreachableInst *UnreachableInst::cloneImpl() const { +  LLVMContext &Context = getContext(); +  return new UnreachableInst(Context); +} | 
