summaryrefslogtreecommitdiff
path: root/llvm/lib/IR/SafepointIRVerifier.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/IR/SafepointIRVerifier.cpp')
-rw-r--r--llvm/lib/IR/SafepointIRVerifier.cpp902
1 files changed, 902 insertions, 0 deletions
diff --git a/llvm/lib/IR/SafepointIRVerifier.cpp b/llvm/lib/IR/SafepointIRVerifier.cpp
new file mode 100644
index 0000000000000..c90347ec48fdc
--- /dev/null
+++ b/llvm/lib/IR/SafepointIRVerifier.cpp
@@ -0,0 +1,902 @@
+//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Run a sanity check on the IR to ensure that Safepoints - if they've been
+// inserted - were inserted correctly. In particular, look for use of
+// non-relocated values after a safepoint. It's primary use is to check the
+// correctness of safepoint insertion immediately after insertion, but it can
+// also be used to verify that later transforms have not found a way to break
+// safepoint semenatics.
+//
+// In its current form, this verify checks a property which is sufficient, but
+// not neccessary for correctness. There are some cases where an unrelocated
+// pointer can be used after the safepoint. Consider this example:
+//
+// a = ...
+// b = ...
+// (a',b') = safepoint(a,b)
+// c = cmp eq a b
+// br c, ..., ....
+//
+// Because it is valid to reorder 'c' above the safepoint, this is legal. In
+// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
+// idioms like this. The verifier knows about these cases and avoids reporting
+// false positives.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/SafepointIRVerifier.h"
+#include "llvm/IR/Statepoint.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/raw_ostream.h"
+
+#define DEBUG_TYPE "safepoint-ir-verifier"
+
+using namespace llvm;
+
+/// This option is used for writing test cases. Instead of crashing the program
+/// when verification fails, report a message to the console (for FileCheck
+/// usage) and continue execution as if nothing happened.
+static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
+ cl::init(false));
+
+namespace {
+
+/// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set
+/// of blocks unreachable from entry then propagates deadness using foldable
+/// conditional branches without modifying CFG. So GVN does but it changes CFG
+/// by splitting critical edges. In most cases passes rely on SimplifyCFG to
+/// clean up dead blocks, but in some cases, like verification or loop passes
+/// it's not possible.
+class CFGDeadness {
+ const DominatorTree *DT = nullptr;
+ SetVector<const BasicBlock *> DeadBlocks;
+ SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks.
+
+public:
+ /// Return the edge that coresponds to the predecessor.
+ static const Use& getEdge(const_pred_iterator &PredIt) {
+ auto &PU = PredIt.getUse();
+ return PU.getUser()->getOperandUse(PU.getOperandNo());
+ }
+
+ /// Return true if there is at least one live edge that corresponds to the
+ /// basic block InBB listed in the phi node.
+ bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
+ assert(!isDeadBlock(InBB) && "block must be live");
+ const BasicBlock* BB = PN->getParent();
+ bool Listed = false;
+ for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
+ if (InBB == *PredIt) {
+ if (!isDeadEdge(&getEdge(PredIt)))
+ return true;
+ Listed = true;
+ }
+ }
+ (void)Listed;
+ assert(Listed && "basic block is not found among incoming blocks");
+ return false;
+ }
+
+
+ bool isDeadBlock(const BasicBlock *BB) const {
+ return DeadBlocks.count(BB);
+ }
+
+ bool isDeadEdge(const Use *U) const {
+ assert(cast<Instruction>(U->getUser())->isTerminator() &&
+ "edge must be operand of terminator");
+ assert(cast_or_null<BasicBlock>(U->get()) &&
+ "edge must refer to basic block");
+ assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) &&
+ "isDeadEdge() must be applied to edge from live block");
+ return DeadEdges.count(U);
+ }
+
+ bool hasLiveIncomingEdges(const BasicBlock *BB) const {
+ // Check if all incoming edges are dead.
+ for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
+ auto &PU = PredIt.getUse();
+ const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo());
+ if (!isDeadBlock(*PredIt) && !isDeadEdge(&U))
+ return true; // Found a live edge.
+ }
+ return false;
+ }
+
+ void processFunction(const Function &F, const DominatorTree &DT) {
+ this->DT = &DT;
+
+ // Start with all blocks unreachable from entry.
+ for (const BasicBlock &BB : F)
+ if (!DT.isReachableFromEntry(&BB))
+ DeadBlocks.insert(&BB);
+
+ // Top-down walk of the dominator tree
+ ReversePostOrderTraversal<const Function *> RPOT(&F);
+ for (const BasicBlock *BB : RPOT) {
+ const Instruction *TI = BB->getTerminator();
+ assert(TI && "blocks must be well formed");
+
+ // For conditional branches, we can perform simple conditional propagation on
+ // the condition value itself.
+ const BranchInst *BI = dyn_cast<BranchInst>(TI);
+ if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition()))
+ continue;
+
+ // If a branch has two identical successors, we cannot declare either dead.
+ if (BI->getSuccessor(0) == BI->getSuccessor(1))
+ continue;
+
+ ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
+ if (!Cond)
+ continue;
+
+ addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2));
+ }
+ }
+
+protected:
+ void addDeadBlock(const BasicBlock *BB) {
+ SmallVector<const BasicBlock *, 4> NewDead;
+ SmallSetVector<const BasicBlock *, 4> DF;
+
+ NewDead.push_back(BB);
+ while (!NewDead.empty()) {
+ const BasicBlock *D = NewDead.pop_back_val();
+ if (isDeadBlock(D))
+ continue;
+
+ // All blocks dominated by D are dead.
+ SmallVector<BasicBlock *, 8> Dom;
+ DT->getDescendants(const_cast<BasicBlock*>(D), Dom);
+ // Do not need to mark all in and out edges dead
+ // because BB is marked dead and this is enough
+ // to run further.
+ DeadBlocks.insert(Dom.begin(), Dom.end());
+
+ // Figure out the dominance-frontier(D).
+ for (BasicBlock *B : Dom)
+ for (BasicBlock *S : successors(B))
+ if (!isDeadBlock(S) && !hasLiveIncomingEdges(S))
+ NewDead.push_back(S);
+ }
+ }
+
+ void addDeadEdge(const Use &DeadEdge) {
+ if (!DeadEdges.insert(&DeadEdge))
+ return;
+
+ BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get());
+ if (hasLiveIncomingEdges(BB))
+ return;
+
+ addDeadBlock(BB);
+ }
+};
+} // namespace
+
+static void Verify(const Function &F, const DominatorTree &DT,
+ const CFGDeadness &CD);
+
+namespace llvm {
+PreservedAnalyses SafepointIRVerifierPass::run(Function &F,
+ FunctionAnalysisManager &AM) {
+ const auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
+ CFGDeadness CD;
+ CD.processFunction(F, DT);
+ Verify(F, DT, CD);
+ return PreservedAnalyses::all();
+}
+}
+
+namespace {
+
+struct SafepointIRVerifier : public FunctionPass {
+ static char ID; // Pass identification, replacement for typeid
+ SafepointIRVerifier() : FunctionPass(ID) {
+ initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnFunction(Function &F) override {
+ auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ CFGDeadness CD;
+ CD.processFunction(F, DT);
+ Verify(F, DT, CD);
+ return false; // no modifications
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequiredID(DominatorTreeWrapperPass::ID);
+ AU.setPreservesAll();
+ }
+
+ StringRef getPassName() const override { return "safepoint verifier"; }
+};
+} // namespace
+
+void llvm::verifySafepointIR(Function &F) {
+ SafepointIRVerifier pass;
+ pass.runOnFunction(F);
+}
+
+char SafepointIRVerifier::ID = 0;
+
+FunctionPass *llvm::createSafepointIRVerifierPass() {
+ return new SafepointIRVerifier();
+}
+
+INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
+ "Safepoint IR Verifier", false, false)
+INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
+INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
+ "Safepoint IR Verifier", false, false)
+
+static bool isGCPointerType(Type *T) {
+ if (auto *PT = dyn_cast<PointerType>(T))
+ // For the sake of this example GC, we arbitrarily pick addrspace(1) as our
+ // GC managed heap. We know that a pointer into this heap needs to be
+ // updated and that no other pointer does.
+ return (1 == PT->getAddressSpace());
+ return false;
+}
+
+static bool containsGCPtrType(Type *Ty) {
+ if (isGCPointerType(Ty))
+ return true;
+ if (VectorType *VT = dyn_cast<VectorType>(Ty))
+ return isGCPointerType(VT->getScalarType());
+ if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
+ return containsGCPtrType(AT->getElementType());
+ if (StructType *ST = dyn_cast<StructType>(Ty))
+ return llvm::any_of(ST->elements(), containsGCPtrType);
+ return false;
+}
+
+// Debugging aid -- prints a [Begin, End) range of values.
+template<typename IteratorTy>
+static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
+ OS << "[ ";
+ while (Begin != End) {
+ OS << **Begin << " ";
+ ++Begin;
+ }
+ OS << "]";
+}
+
+/// The verifier algorithm is phrased in terms of availability. The set of
+/// values "available" at a given point in the control flow graph is the set of
+/// correctly relocated value at that point, and is a subset of the set of
+/// definitions dominating that point.
+
+using AvailableValueSet = DenseSet<const Value *>;
+
+/// State we compute and track per basic block.
+struct BasicBlockState {
+ // Set of values available coming in, before the phi nodes
+ AvailableValueSet AvailableIn;
+
+ // Set of values available going out
+ AvailableValueSet AvailableOut;
+
+ // AvailableOut minus AvailableIn.
+ // All elements are Instructions
+ AvailableValueSet Contribution;
+
+ // True if this block contains a safepoint and thus AvailableIn does not
+ // contribute to AvailableOut.
+ bool Cleared = false;
+};
+
+/// A given derived pointer can have multiple base pointers through phi/selects.
+/// This type indicates when the base pointer is exclusively constant
+/// (ExclusivelySomeConstant), and if that constant is proven to be exclusively
+/// null, we record that as ExclusivelyNull. In all other cases, the BaseType is
+/// NonConstant.
+enum BaseType {
+ NonConstant = 1, // Base pointers is not exclusively constant.
+ ExclusivelyNull,
+ ExclusivelySomeConstant // Base pointers for a given derived pointer is from a
+ // set of constants, but they are not exclusively
+ // null.
+};
+
+/// Return the baseType for Val which states whether Val is exclusively
+/// derived from constant/null, or not exclusively derived from constant.
+/// Val is exclusively derived off a constant base when all operands of phi and
+/// selects are derived off a constant base.
+static enum BaseType getBaseType(const Value *Val) {
+
+ SmallVector<const Value *, 32> Worklist;
+ DenseSet<const Value *> Visited;
+ bool isExclusivelyDerivedFromNull = true;
+ Worklist.push_back(Val);
+ // Strip through all the bitcasts and geps to get base pointer. Also check for
+ // the exclusive value when there can be multiple base pointers (through phis
+ // or selects).
+ while(!Worklist.empty()) {
+ const Value *V = Worklist.pop_back_val();
+ if (!Visited.insert(V).second)
+ continue;
+
+ if (const auto *CI = dyn_cast<CastInst>(V)) {
+ Worklist.push_back(CI->stripPointerCasts());
+ continue;
+ }
+ if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) {
+ Worklist.push_back(GEP->getPointerOperand());
+ continue;
+ }
+ // Push all the incoming values of phi node into the worklist for
+ // processing.
+ if (const auto *PN = dyn_cast<PHINode>(V)) {
+ for (Value *InV: PN->incoming_values())
+ Worklist.push_back(InV);
+ continue;
+ }
+ if (const auto *SI = dyn_cast<SelectInst>(V)) {
+ // Push in the true and false values
+ Worklist.push_back(SI->getTrueValue());
+ Worklist.push_back(SI->getFalseValue());
+ continue;
+ }
+ if (isa<Constant>(V)) {
+ // We found at least one base pointer which is non-null, so this derived
+ // pointer is not exclusively derived from null.
+ if (V != Constant::getNullValue(V->getType()))
+ isExclusivelyDerivedFromNull = false;
+ // Continue processing the remaining values to make sure it's exclusively
+ // constant.
+ continue;
+ }
+ // At this point, we know that the base pointer is not exclusively
+ // constant.
+ return BaseType::NonConstant;
+ }
+ // Now, we know that the base pointer is exclusively constant, but we need to
+ // differentiate between exclusive null constant and non-null constant.
+ return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull
+ : BaseType::ExclusivelySomeConstant;
+}
+
+static bool isNotExclusivelyConstantDerived(const Value *V) {
+ return getBaseType(V) == BaseType::NonConstant;
+}
+
+namespace {
+class InstructionVerifier;
+
+/// Builds BasicBlockState for each BB of the function.
+/// It can traverse function for verification and provides all required
+/// information.
+///
+/// GC pointer may be in one of three states: relocated, unrelocated and
+/// poisoned.
+/// Relocated pointer may be used without any restrictions.
+/// Unrelocated pointer cannot be dereferenced, passed as argument to any call
+/// or returned. Unrelocated pointer may be safely compared against another
+/// unrelocated pointer or against a pointer exclusively derived from null.
+/// Poisoned pointers are produced when we somehow derive pointer from relocated
+/// and unrelocated pointers (e.g. phi, select). This pointers may be safely
+/// used in a very limited number of situations. Currently the only way to use
+/// it is comparison against constant exclusively derived from null. All
+/// limitations arise due to their undefined state: this pointers should be
+/// treated as relocated and unrelocated simultaneously.
+/// Rules of deriving:
+/// R + U = P - that's where the poisoned pointers come from
+/// P + X = P
+/// U + U = U
+/// R + R = R
+/// X + C = X
+/// Where "+" - any operation that somehow derive pointer, U - unrelocated,
+/// R - relocated and P - poisoned, C - constant, X - U or R or P or C or
+/// nothing (in case when "+" is unary operation).
+/// Deriving of pointers by itself is always safe.
+/// NOTE: when we are making decision on the status of instruction's result:
+/// a) for phi we need to check status of each input *at the end of
+/// corresponding predecessor BB*.
+/// b) for other instructions we need to check status of each input *at the
+/// current point*.
+///
+/// FIXME: This works fairly well except one case
+/// bb1:
+/// p = *some GC-ptr def*
+/// p1 = gep p, offset
+/// / |
+/// / |
+/// bb2: |
+/// safepoint |
+/// \ |
+/// \ |
+/// bb3:
+/// p2 = phi [p, bb2] [p1, bb1]
+/// p3 = phi [p, bb2] [p, bb1]
+/// here p and p1 is unrelocated
+/// p2 and p3 is poisoned (though they shouldn't be)
+///
+/// This leads to some weird results:
+/// cmp eq p, p2 - illegal instruction (false-positive)
+/// cmp eq p1, p2 - illegal instruction (false-positive)
+/// cmp eq p, p3 - illegal instruction (false-positive)
+/// cmp eq p, p1 - ok
+/// To fix this we need to introduce conception of generations and be able to
+/// check if two values belong to one generation or not. This way p2 will be
+/// considered to be unrelocated and no false alarm will happen.
+class GCPtrTracker {
+ const Function &F;
+ const CFGDeadness &CD;
+ SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
+ DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
+ // This set contains defs of unrelocated pointers that are proved to be legal
+ // and don't need verification.
+ DenseSet<const Instruction *> ValidUnrelocatedDefs;
+ // This set contains poisoned defs. They can be safely ignored during
+ // verification too.
+ DenseSet<const Value *> PoisonedDefs;
+
+public:
+ GCPtrTracker(const Function &F, const DominatorTree &DT,
+ const CFGDeadness &CD);
+
+ bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const {
+ return CD.hasLiveIncomingEdge(PN, InBB);
+ }
+
+ BasicBlockState *getBasicBlockState(const BasicBlock *BB);
+ const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const;
+
+ bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); }
+
+ /// Traverse each BB of the function and call
+ /// InstructionVerifier::verifyInstruction for each possibly invalid
+ /// instruction.
+ /// It destructively modifies GCPtrTracker so it's passed via rvalue reference
+ /// in order to prohibit further usages of GCPtrTracker as it'll be in
+ /// inconsistent state.
+ static void verifyFunction(GCPtrTracker &&Tracker,
+ InstructionVerifier &Verifier);
+
+ /// Returns true for reachable and live blocks.
+ bool isMapped(const BasicBlock *BB) const {
+ return BlockMap.find(BB) != BlockMap.end();
+ }
+
+private:
+ /// Returns true if the instruction may be safely skipped during verification.
+ bool instructionMayBeSkipped(const Instruction *I) const;
+
+ /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for
+ /// each of them until it converges.
+ void recalculateBBsStates();
+
+ /// Remove from Contribution all defs that legally produce unrelocated
+ /// pointers and saves them to ValidUnrelocatedDefs.
+ /// Though Contribution should belong to BBS it is passed separately with
+ /// different const-modifier in order to emphasize (and guarantee) that only
+ /// Contribution will be changed.
+ /// Returns true if Contribution was changed otherwise false.
+ bool removeValidUnrelocatedDefs(const BasicBlock *BB,
+ const BasicBlockState *BBS,
+ AvailableValueSet &Contribution);
+
+ /// Gather all the definitions dominating the start of BB into Result. This is
+ /// simply the defs introduced by every dominating basic block and the
+ /// function arguments.
+ void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result,
+ const DominatorTree &DT);
+
+ /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS,
+ /// which is the BasicBlockState for BB.
+ /// ContributionChanged is set when the verifier runs for the first time
+ /// (in this case Contribution was changed from 'empty' to its initial state)
+ /// or when Contribution of this BB was changed since last computation.
+ static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
+ bool ContributionChanged);
+
+ /// Model the effect of an instruction on the set of available values.
+ static void transferInstruction(const Instruction &I, bool &Cleared,
+ AvailableValueSet &Available);
+};
+
+/// It is a visitor for GCPtrTracker::verifyFunction. It decides if the
+/// instruction (which uses heap reference) is legal or not, given our safepoint
+/// semantics.
+class InstructionVerifier {
+ bool AnyInvalidUses = false;
+
+public:
+ void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I,
+ const AvailableValueSet &AvailableSet);
+
+ bool hasAnyInvalidUses() const { return AnyInvalidUses; }
+
+private:
+ void reportInvalidUse(const Value &V, const Instruction &I);
+};
+} // end anonymous namespace
+
+GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT,
+ const CFGDeadness &CD) : F(F), CD(CD) {
+ // Calculate Contribution of each live BB.
+ // Allocate BB states for live blocks.
+ for (const BasicBlock &BB : F)
+ if (!CD.isDeadBlock(&BB)) {
+ BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState;
+ for (const auto &I : BB)
+ transferInstruction(I, BBS->Cleared, BBS->Contribution);
+ BlockMap[&BB] = BBS;
+ }
+
+ // Initialize AvailableIn/Out sets of each BB using only information about
+ // dominating BBs.
+ for (auto &BBI : BlockMap) {
+ gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT);
+ transferBlock(BBI.first, *BBI.second, true);
+ }
+
+ // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out
+ // sets of each BB until it converges. If any def is proved to be an
+ // unrelocated pointer, it will be removed from all BBSs.
+ recalculateBBsStates();
+}
+
+BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) {
+ auto it = BlockMap.find(BB);
+ return it != BlockMap.end() ? it->second : nullptr;
+}
+
+const BasicBlockState *GCPtrTracker::getBasicBlockState(
+ const BasicBlock *BB) const {
+ return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB);
+}
+
+bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const {
+ // Poisoned defs are skipped since they are always safe by itself by
+ // definition (for details see comment to this class).
+ return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I);
+}
+
+void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker,
+ InstructionVerifier &Verifier) {
+ // We need RPO here to a) report always the first error b) report errors in
+ // same order from run to run.
+ ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F);
+ for (const BasicBlock *BB : RPOT) {
+ BasicBlockState *BBS = Tracker.getBasicBlockState(BB);
+ if (!BBS)
+ continue;
+
+ // We destructively modify AvailableIn as we traverse the block instruction
+ // by instruction.
+ AvailableValueSet &AvailableSet = BBS->AvailableIn;
+ for (const Instruction &I : *BB) {
+ if (Tracker.instructionMayBeSkipped(&I))
+ continue; // This instruction shouldn't be added to AvailableSet.
+
+ Verifier.verifyInstruction(&Tracker, I, AvailableSet);
+
+ // Model the effect of current instruction on AvailableSet to keep the set
+ // relevant at each point of BB.
+ bool Cleared = false;
+ transferInstruction(I, Cleared, AvailableSet);
+ (void)Cleared;
+ }
+ }
+}
+
+void GCPtrTracker::recalculateBBsStates() {
+ SetVector<const BasicBlock *> Worklist;
+ // TODO: This order is suboptimal, it's better to replace it with priority
+ // queue where priority is RPO number of BB.
+ for (auto &BBI : BlockMap)
+ Worklist.insert(BBI.first);
+
+ // This loop iterates the AvailableIn/Out sets until it converges.
+ // The AvailableIn and AvailableOut sets decrease as we iterate.
+ while (!Worklist.empty()) {
+ const BasicBlock *BB = Worklist.pop_back_val();
+ BasicBlockState *BBS = getBasicBlockState(BB);
+ if (!BBS)
+ continue; // Ignore dead successors.
+
+ size_t OldInCount = BBS->AvailableIn.size();
+ for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) {
+ const BasicBlock *PBB = *PredIt;
+ BasicBlockState *PBBS = getBasicBlockState(PBB);
+ if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt)))
+ set_intersect(BBS->AvailableIn, PBBS->AvailableOut);
+ }
+
+ assert(OldInCount >= BBS->AvailableIn.size() && "invariant!");
+
+ bool InputsChanged = OldInCount != BBS->AvailableIn.size();
+ bool ContributionChanged =
+ removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution);
+ if (!InputsChanged && !ContributionChanged)
+ continue;
+
+ size_t OldOutCount = BBS->AvailableOut.size();
+ transferBlock(BB, *BBS, ContributionChanged);
+ if (OldOutCount != BBS->AvailableOut.size()) {
+ assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
+ Worklist.insert(succ_begin(BB), succ_end(BB));
+ }
+ }
+}
+
+bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB,
+ const BasicBlockState *BBS,
+ AvailableValueSet &Contribution) {
+ assert(&BBS->Contribution == &Contribution &&
+ "Passed Contribution should be from the passed BasicBlockState!");
+ AvailableValueSet AvailableSet = BBS->AvailableIn;
+ bool ContributionChanged = false;
+ // For explanation why instructions are processed this way see
+ // "Rules of deriving" in the comment to this class.
+ for (const Instruction &I : *BB) {
+ bool ValidUnrelocatedPointerDef = false;
+ bool PoisonedPointerDef = false;
+ // TODO: `select` instructions should be handled here too.
+ if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
+ if (containsGCPtrType(PN->getType())) {
+ // If both is true, output is poisoned.
+ bool HasRelocatedInputs = false;
+ bool HasUnrelocatedInputs = false;
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ const BasicBlock *InBB = PN->getIncomingBlock(i);
+ if (!isMapped(InBB) ||
+ !CD.hasLiveIncomingEdge(PN, InBB))
+ continue; // Skip dead block or dead edge.
+
+ const Value *InValue = PN->getIncomingValue(i);
+
+ if (isNotExclusivelyConstantDerived(InValue)) {
+ if (isValuePoisoned(InValue)) {
+ // If any of inputs is poisoned, output is always poisoned too.
+ HasRelocatedInputs = true;
+ HasUnrelocatedInputs = true;
+ break;
+ }
+ if (BlockMap[InBB]->AvailableOut.count(InValue))
+ HasRelocatedInputs = true;
+ else
+ HasUnrelocatedInputs = true;
+ }
+ }
+ if (HasUnrelocatedInputs) {
+ if (HasRelocatedInputs)
+ PoisonedPointerDef = true;
+ else
+ ValidUnrelocatedPointerDef = true;
+ }
+ }
+ } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) &&
+ containsGCPtrType(I.getType())) {
+ // GEP/bitcast of unrelocated pointer is legal by itself but this def
+ // shouldn't appear in any AvailableSet.
+ for (const Value *V : I.operands())
+ if (containsGCPtrType(V->getType()) &&
+ isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) {
+ if (isValuePoisoned(V))
+ PoisonedPointerDef = true;
+ else
+ ValidUnrelocatedPointerDef = true;
+ break;
+ }
+ }
+ assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) &&
+ "Value cannot be both unrelocated and poisoned!");
+ if (ValidUnrelocatedPointerDef) {
+ // Remove def of unrelocated pointer from Contribution of this BB and
+ // trigger update of all its successors.
+ Contribution.erase(&I);
+ PoisonedDefs.erase(&I);
+ ValidUnrelocatedDefs.insert(&I);
+ LLVM_DEBUG(dbgs() << "Removing urelocated " << I
+ << " from Contribution of " << BB->getName() << "\n");
+ ContributionChanged = true;
+ } else if (PoisonedPointerDef) {
+ // Mark pointer as poisoned, remove its def from Contribution and trigger
+ // update of all successors.
+ Contribution.erase(&I);
+ PoisonedDefs.insert(&I);
+ LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of "
+ << BB->getName() << "\n");
+ ContributionChanged = true;
+ } else {
+ bool Cleared = false;
+ transferInstruction(I, Cleared, AvailableSet);
+ (void)Cleared;
+ }
+ }
+ return ContributionChanged;
+}
+
+void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB,
+ AvailableValueSet &Result,
+ const DominatorTree &DT) {
+ DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
+
+ assert(DTN && "Unreachable blocks are ignored");
+ while (DTN->getIDom()) {
+ DTN = DTN->getIDom();
+ auto BBS = getBasicBlockState(DTN->getBlock());
+ assert(BBS && "immediate dominator cannot be dead for a live block");
+ const auto &Defs = BBS->Contribution;
+ Result.insert(Defs.begin(), Defs.end());
+ // If this block is 'Cleared', then nothing LiveIn to this block can be
+ // available after this block completes. Note: This turns out to be
+ // really important for reducing memory consuption of the initial available
+ // sets and thus peak memory usage by this verifier.
+ if (BBS->Cleared)
+ return;
+ }
+
+ for (const Argument &A : BB->getParent()->args())
+ if (containsGCPtrType(A.getType()))
+ Result.insert(&A);
+}
+
+void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS,
+ bool ContributionChanged) {
+ const AvailableValueSet &AvailableIn = BBS.AvailableIn;
+ AvailableValueSet &AvailableOut = BBS.AvailableOut;
+
+ if (BBS.Cleared) {
+ // AvailableOut will change only when Contribution changed.
+ if (ContributionChanged)
+ AvailableOut = BBS.Contribution;
+ } else {
+ // Otherwise, we need to reduce the AvailableOut set by things which are no
+ // longer in our AvailableIn
+ AvailableValueSet Temp = BBS.Contribution;
+ set_union(Temp, AvailableIn);
+ AvailableOut = std::move(Temp);
+ }
+
+ LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
+ PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
+ dbgs() << " to ";
+ PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
+ dbgs() << "\n";);
+}
+
+void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared,
+ AvailableValueSet &Available) {
+ if (isStatepoint(I)) {
+ Cleared = true;
+ Available.clear();
+ } else if (containsGCPtrType(I.getType()))
+ Available.insert(&I);
+}
+
+void InstructionVerifier::verifyInstruction(
+ const GCPtrTracker *Tracker, const Instruction &I,
+ const AvailableValueSet &AvailableSet) {
+ if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
+ if (containsGCPtrType(PN->getType()))
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ const BasicBlock *InBB = PN->getIncomingBlock(i);
+ const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB);
+ if (!InBBS ||
+ !Tracker->hasLiveIncomingEdge(PN, InBB))
+ continue; // Skip dead block or dead edge.
+
+ const Value *InValue = PN->getIncomingValue(i);
+
+ if (isNotExclusivelyConstantDerived(InValue) &&
+ !InBBS->AvailableOut.count(InValue))
+ reportInvalidUse(*InValue, *PN);
+ }
+ } else if (isa<CmpInst>(I) &&
+ containsGCPtrType(I.getOperand(0)->getType())) {
+ Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
+ enum BaseType baseTyLHS = getBaseType(LHS),
+ baseTyRHS = getBaseType(RHS);
+
+ // Returns true if LHS and RHS are unrelocated pointers and they are
+ // valid unrelocated uses.
+ auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS,
+ &LHS, &RHS] () {
+ // A cmp instruction has valid unrelocated pointer operands only if
+ // both operands are unrelocated pointers.
+ // In the comparison between two pointers, if one is an unrelocated
+ // use, the other *should be* an unrelocated use, for this
+ // instruction to contain valid unrelocated uses. This unrelocated
+ // use can be a null constant as well, or another unrelocated
+ // pointer.
+ if (AvailableSet.count(LHS) || AvailableSet.count(RHS))
+ return false;
+ // Constant pointers (that are not exclusively null) may have
+ // meaning in different VMs, so we cannot reorder the compare
+ // against constant pointers before the safepoint. In other words,
+ // comparison of an unrelocated use against a non-null constant
+ // maybe invalid.
+ if ((baseTyLHS == BaseType::ExclusivelySomeConstant &&
+ baseTyRHS == BaseType::NonConstant) ||
+ (baseTyLHS == BaseType::NonConstant &&
+ baseTyRHS == BaseType::ExclusivelySomeConstant))
+ return false;
+
+ // If one of pointers is poisoned and other is not exclusively derived
+ // from null it is an invalid expression: it produces poisoned result
+ // and unless we want to track all defs (not only gc pointers) the only
+ // option is to prohibit such instructions.
+ if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) ||
+ (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull))
+ return false;
+
+ // All other cases are valid cases enumerated below:
+ // 1. Comparison between an exclusively derived null pointer and a
+ // constant base pointer.
+ // 2. Comparison between an exclusively derived null pointer and a
+ // non-constant unrelocated base pointer.
+ // 3. Comparison between 2 unrelocated pointers.
+ // 4. Comparison between a pointer exclusively derived from null and a
+ // non-constant poisoned pointer.
+ return true;
+ };
+ if (!hasValidUnrelocatedUse()) {
+ // Print out all non-constant derived pointers that are unrelocated
+ // uses, which are invalid.
+ if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS))
+ reportInvalidUse(*LHS, I);
+ if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS))
+ reportInvalidUse(*RHS, I);
+ }
+ } else {
+ for (const Value *V : I.operands())
+ if (containsGCPtrType(V->getType()) &&
+ isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V))
+ reportInvalidUse(*V, I);
+ }
+}
+
+void InstructionVerifier::reportInvalidUse(const Value &V,
+ const Instruction &I) {
+ errs() << "Illegal use of unrelocated value found!\n";
+ errs() << "Def: " << V << "\n";
+ errs() << "Use: " << I << "\n";
+ if (!PrintOnly)
+ abort();
+ AnyInvalidUses = true;
+}
+
+static void Verify(const Function &F, const DominatorTree &DT,
+ const CFGDeadness &CD) {
+ LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName()
+ << "\n");
+ if (PrintOnly)
+ dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
+
+ GCPtrTracker Tracker(F, DT, CD);
+
+ // We now have all the information we need to decide if the use of a heap
+ // reference is legal or not, given our safepoint semantics.
+
+ InstructionVerifier Verifier;
+ GCPtrTracker::verifyFunction(std::move(Tracker), Verifier);
+
+ if (PrintOnly && !Verifier.hasAnyInvalidUses()) {
+ dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
+ << "\n";
+ }
+}