summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/Hexagon/RDFGraph.h
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/Hexagon/RDFGraph.h')
-rw-r--r--llvm/lib/Target/Hexagon/RDFGraph.h968
1 files changed, 0 insertions, 968 deletions
diff --git a/llvm/lib/Target/Hexagon/RDFGraph.h b/llvm/lib/Target/Hexagon/RDFGraph.h
deleted file mode 100644
index 585f43e116f96..0000000000000
--- a/llvm/lib/Target/Hexagon/RDFGraph.h
+++ /dev/null
@@ -1,968 +0,0 @@
-//===- RDFGraph.h -----------------------------------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// Target-independent, SSA-based data flow graph for register data flow (RDF)
-// for a non-SSA program representation (e.g. post-RA machine code).
-//
-//
-// *** Introduction
-//
-// The RDF graph is a collection of nodes, each of which denotes some element
-// of the program. There are two main types of such elements: code and refe-
-// rences. Conceptually, "code" is something that represents the structure
-// of the program, e.g. basic block or a statement, while "reference" is an
-// instance of accessing a register, e.g. a definition or a use. Nodes are
-// connected with each other based on the structure of the program (such as
-// blocks, instructions, etc.), and based on the data flow (e.g. reaching
-// definitions, reached uses, etc.). The single-reaching-definition principle
-// of SSA is generally observed, although, due to the non-SSA representation
-// of the program, there are some differences between the graph and a "pure"
-// SSA representation.
-//
-//
-// *** Implementation remarks
-//
-// Since the graph can contain a large number of nodes, memory consumption
-// was one of the major design considerations. As a result, there is a single
-// base class NodeBase which defines all members used by all possible derived
-// classes. The members are arranged in a union, and a derived class cannot
-// add any data members of its own. Each derived class only defines the
-// functional interface, i.e. member functions. NodeBase must be a POD,
-// which implies that all of its members must also be PODs.
-// Since nodes need to be connected with other nodes, pointers have been
-// replaced with 32-bit identifiers: each node has an id of type NodeId.
-// There are mapping functions in the graph that translate between actual
-// memory addresses and the corresponding identifiers.
-// A node id of 0 is equivalent to nullptr.
-//
-//
-// *** Structure of the graph
-//
-// A code node is always a collection of other nodes. For example, a code
-// node corresponding to a basic block will contain code nodes corresponding
-// to instructions. In turn, a code node corresponding to an instruction will
-// contain a list of reference nodes that correspond to the definitions and
-// uses of registers in that instruction. The members are arranged into a
-// circular list, which is yet another consequence of the effort to save
-// memory: for each member node it should be possible to obtain its owner,
-// and it should be possible to access all other members. There are other
-// ways to accomplish that, but the circular list seemed the most natural.
-//
-// +- CodeNode -+
-// | | <---------------------------------------------------+
-// +-+--------+-+ |
-// |FirstM |LastM |
-// | +-------------------------------------+ |
-// | | |
-// V V |
-// +----------+ Next +----------+ Next Next +----------+ Next |
-// | |----->| |-----> ... ----->| |----->-+
-// +- Member -+ +- Member -+ +- Member -+
-//
-// The order of members is such that related reference nodes (see below)
-// should be contiguous on the member list.
-//
-// A reference node is a node that encapsulates an access to a register,
-// in other words, data flowing into or out of a register. There are two
-// major kinds of reference nodes: defs and uses. A def node will contain
-// the id of the first reached use, and the id of the first reached def.
-// Each def and use will contain the id of the reaching def, and also the
-// id of the next reached def (for def nodes) or use (for use nodes).
-// The "next node sharing the same reaching def" is denoted as "sibling".
-// In summary:
-// - Def node contains: reaching def, sibling, first reached def, and first
-// reached use.
-// - Use node contains: reaching def and sibling.
-//
-// +-- DefNode --+
-// | R2 = ... | <---+--------------------+
-// ++---------+--+ | |
-// |Reached |Reached | |
-// |Def |Use | |
-// | | |Reaching |Reaching
-// | V |Def |Def
-// | +-- UseNode --+ Sib +-- UseNode --+ Sib Sib
-// | | ... = R2 |----->| ... = R2 |----> ... ----> 0
-// | +-------------+ +-------------+
-// V
-// +-- DefNode --+ Sib
-// | R2 = ... |----> ...
-// ++---------+--+
-// | |
-// | |
-// ... ...
-//
-// To get a full picture, the circular lists connecting blocks within a
-// function, instructions within a block, etc. should be superimposed with
-// the def-def, def-use links shown above.
-// To illustrate this, consider a small example in a pseudo-assembly:
-// foo:
-// add r2, r0, r1 ; r2 = r0+r1
-// addi r0, r2, 1 ; r0 = r2+1
-// ret r0 ; return value in r0
-//
-// The graph (in a format used by the debugging functions) would look like:
-//
-// DFG dump:[
-// f1: Function foo
-// b2: === %bb.0 === preds(0), succs(0):
-// p3: phi [d4<r0>(,d12,u9):]
-// p5: phi [d6<r1>(,,u10):]
-// s7: add [d8<r2>(,,u13):, u9<r0>(d4):, u10<r1>(d6):]
-// s11: addi [d12<r0>(d4,,u15):, u13<r2>(d8):]
-// s14: ret [u15<r0>(d12):]
-// ]
-//
-// The f1, b2, p3, etc. are node ids. The letter is prepended to indicate the
-// kind of the node (i.e. f - function, b - basic block, p - phi, s - state-
-// ment, d - def, u - use).
-// The format of a def node is:
-// dN<R>(rd,d,u):sib,
-// where
-// N - numeric node id,
-// R - register being defined
-// rd - reaching def,
-// d - reached def,
-// u - reached use,
-// sib - sibling.
-// The format of a use node is:
-// uN<R>[!](rd):sib,
-// where
-// N - numeric node id,
-// R - register being used,
-// rd - reaching def,
-// sib - sibling.
-// Possible annotations (usually preceding the node id):
-// + - preserving def,
-// ~ - clobbering def,
-// " - shadow ref (follows the node id),
-// ! - fixed register (appears after register name).
-//
-// The circular lists are not explicit in the dump.
-//
-//
-// *** Node attributes
-//
-// NodeBase has a member "Attrs", which is the primary way of determining
-// the node's characteristics. The fields in this member decide whether
-// the node is a code node or a reference node (i.e. node's "type"), then
-// within each type, the "kind" determines what specifically this node
-// represents. The remaining bits, "flags", contain additional information
-// that is even more detailed than the "kind".
-// CodeNode's kinds are:
-// - Phi: Phi node, members are reference nodes.
-// - Stmt: Statement, members are reference nodes.
-// - Block: Basic block, members are instruction nodes (i.e. Phi or Stmt).
-// - Func: The whole function. The members are basic block nodes.
-// RefNode's kinds are:
-// - Use.
-// - Def.
-//
-// Meaning of flags:
-// - Preserving: applies only to defs. A preserving def is one that can
-// preserve some of the original bits among those that are included in
-// the register associated with that def. For example, if R0 is a 32-bit
-// register, but a def can only change the lower 16 bits, then it will
-// be marked as preserving.
-// - Shadow: a reference that has duplicates holding additional reaching
-// defs (see more below).
-// - Clobbering: applied only to defs, indicates that the value generated
-// by this def is unspecified. A typical example would be volatile registers
-// after function calls.
-// - Fixed: the register in this def/use cannot be replaced with any other
-// register. A typical case would be a parameter register to a call, or
-// the register with the return value from a function.
-// - Undef: the register in this reference the register is assumed to have
-// no pre-existing value, even if it appears to be reached by some def.
-// This is typically used to prevent keeping registers artificially live
-// in cases when they are defined via predicated instructions. For example:
-// r0 = add-if-true cond, r10, r11 (1)
-// r0 = add-if-false cond, r12, r13, implicit r0 (2)
-// ... = r0 (3)
-// Before (1), r0 is not intended to be live, and the use of r0 in (3) is
-// not meant to be reached by any def preceding (1). However, since the
-// defs in (1) and (2) are both preserving, these properties alone would
-// imply that the use in (3) may indeed be reached by some prior def.
-// Adding Undef flag to the def in (1) prevents that. The Undef flag
-// may be applied to both defs and uses.
-// - Dead: applies only to defs. The value coming out of a "dead" def is
-// assumed to be unused, even if the def appears to be reaching other defs
-// or uses. The motivation for this flag comes from dead defs on function
-// calls: there is no way to determine if such a def is dead without
-// analyzing the target's ABI. Hence the graph should contain this info,
-// as it is unavailable otherwise. On the other hand, a def without any
-// uses on a typical instruction is not the intended target for this flag.
-//
-// *** Shadow references
-//
-// It may happen that a super-register can have two (or more) non-overlapping
-// sub-registers. When both of these sub-registers are defined and followed
-// by a use of the super-register, the use of the super-register will not
-// have a unique reaching def: both defs of the sub-registers need to be
-// accounted for. In such cases, a duplicate use of the super-register is
-// added and it points to the extra reaching def. Both uses are marked with
-// a flag "shadow". Example:
-// Assume t0 is a super-register of r0 and r1, r0 and r1 do not overlap:
-// set r0, 1 ; r0 = 1
-// set r1, 1 ; r1 = 1
-// addi t1, t0, 1 ; t1 = t0+1
-//
-// The DFG:
-// s1: set [d2<r0>(,,u9):]
-// s3: set [d4<r1>(,,u10):]
-// s5: addi [d6<t1>(,,):, u7"<t0>(d2):, u8"<t0>(d4):]
-//
-// The statement s5 has two use nodes for t0: u7" and u9". The quotation
-// mark " indicates that the node is a shadow.
-//
-
-#ifndef LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
-#define LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H
-
-#include "RDFRegisters.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/MC/LaneBitmask.h"
-#include "llvm/Support/Allocator.h"
-#include "llvm/Support/MathExtras.h"
-#include <cassert>
-#include <cstdint>
-#include <cstring>
-#include <map>
-#include <set>
-#include <unordered_map>
-#include <utility>
-#include <vector>
-
-// RDF uses uint32_t to refer to registers. This is to ensure that the type
-// size remains specific. In other places, registers are often stored using
-// unsigned.
-static_assert(sizeof(uint32_t) == sizeof(unsigned), "Those should be equal");
-
-namespace llvm {
-
-class MachineBasicBlock;
-class MachineDominanceFrontier;
-class MachineDominatorTree;
-class MachineFunction;
-class MachineInstr;
-class MachineOperand;
-class raw_ostream;
-class TargetInstrInfo;
-class TargetRegisterInfo;
-
-namespace rdf {
-
- using NodeId = uint32_t;
-
- struct DataFlowGraph;
-
- struct NodeAttrs {
- enum : uint16_t {
- None = 0x0000, // Nothing
-
- // Types: 2 bits
- TypeMask = 0x0003,
- Code = 0x0001, // 01, Container
- Ref = 0x0002, // 10, Reference
-
- // Kind: 3 bits
- KindMask = 0x0007 << 2,
- Def = 0x0001 << 2, // 001
- Use = 0x0002 << 2, // 010
- Phi = 0x0003 << 2, // 011
- Stmt = 0x0004 << 2, // 100
- Block = 0x0005 << 2, // 101
- Func = 0x0006 << 2, // 110
-
- // Flags: 7 bits for now
- FlagMask = 0x007F << 5,
- Shadow = 0x0001 << 5, // 0000001, Has extra reaching defs.
- Clobbering = 0x0002 << 5, // 0000010, Produces unspecified values.
- PhiRef = 0x0004 << 5, // 0000100, Member of PhiNode.
- Preserving = 0x0008 << 5, // 0001000, Def can keep original bits.
- Fixed = 0x0010 << 5, // 0010000, Fixed register.
- Undef = 0x0020 << 5, // 0100000, Has no pre-existing value.
- Dead = 0x0040 << 5, // 1000000, Does not define a value.
- };
-
- static uint16_t type(uint16_t T) { return T & TypeMask; }
- static uint16_t kind(uint16_t T) { return T & KindMask; }
- static uint16_t flags(uint16_t T) { return T & FlagMask; }
-
- static uint16_t set_type(uint16_t A, uint16_t T) {
- return (A & ~TypeMask) | T;
- }
-
- static uint16_t set_kind(uint16_t A, uint16_t K) {
- return (A & ~KindMask) | K;
- }
-
- static uint16_t set_flags(uint16_t A, uint16_t F) {
- return (A & ~FlagMask) | F;
- }
-
- // Test if A contains B.
- static bool contains(uint16_t A, uint16_t B) {
- if (type(A) != Code)
- return false;
- uint16_t KB = kind(B);
- switch (kind(A)) {
- case Func:
- return KB == Block;
- case Block:
- return KB == Phi || KB == Stmt;
- case Phi:
- case Stmt:
- return type(B) == Ref;
- }
- return false;
- }
- };
-
- struct BuildOptions {
- enum : unsigned {
- None = 0x00,
- KeepDeadPhis = 0x01, // Do not remove dead phis during build.
- };
- };
-
- template <typename T> struct NodeAddr {
- NodeAddr() = default;
- NodeAddr(T A, NodeId I) : Addr(A), Id(I) {}
-
- // Type cast (casting constructor). The reason for having this class
- // instead of std::pair.
- template <typename S> NodeAddr(const NodeAddr<S> &NA)
- : Addr(static_cast<T>(NA.Addr)), Id(NA.Id) {}
-
- bool operator== (const NodeAddr<T> &NA) const {
- assert((Addr == NA.Addr) == (Id == NA.Id));
- return Addr == NA.Addr;
- }
- bool operator!= (const NodeAddr<T> &NA) const {
- return !operator==(NA);
- }
-
- T Addr = nullptr;
- NodeId Id = 0;
- };
-
- struct NodeBase;
-
- // Fast memory allocation and translation between node id and node address.
- // This is really the same idea as the one underlying the "bump pointer
- // allocator", the difference being in the translation. A node id is
- // composed of two components: the index of the block in which it was
- // allocated, and the index within the block. With the default settings,
- // where the number of nodes per block is 4096, the node id (minus 1) is:
- //
- // bit position: 11 0
- // +----------------------------+--------------+
- // | Index of the block |Index in block|
- // +----------------------------+--------------+
- //
- // The actual node id is the above plus 1, to avoid creating a node id of 0.
- //
- // This method significantly improved the build time, compared to using maps
- // (std::unordered_map or DenseMap) to translate between pointers and ids.
- struct NodeAllocator {
- // Amount of storage for a single node.
- enum { NodeMemSize = 32 };
-
- NodeAllocator(uint32_t NPB = 4096)
- : NodesPerBlock(NPB), BitsPerIndex(Log2_32(NPB)),
- IndexMask((1 << BitsPerIndex)-1) {
- assert(isPowerOf2_32(NPB));
- }
-
- NodeBase *ptr(NodeId N) const {
- uint32_t N1 = N-1;
- uint32_t BlockN = N1 >> BitsPerIndex;
- uint32_t Offset = (N1 & IndexMask) * NodeMemSize;
- return reinterpret_cast<NodeBase*>(Blocks[BlockN]+Offset);
- }
-
- NodeId id(const NodeBase *P) const;
- NodeAddr<NodeBase*> New();
- void clear();
-
- private:
- void startNewBlock();
- bool needNewBlock();
-
- uint32_t makeId(uint32_t Block, uint32_t Index) const {
- // Add 1 to the id, to avoid the id of 0, which is treated as "null".
- return ((Block << BitsPerIndex) | Index) + 1;
- }
-
- const uint32_t NodesPerBlock;
- const uint32_t BitsPerIndex;
- const uint32_t IndexMask;
- char *ActiveEnd = nullptr;
- std::vector<char*> Blocks;
- using AllocatorTy = BumpPtrAllocatorImpl<MallocAllocator, 65536>;
- AllocatorTy MemPool;
- };
-
- using RegisterSet = std::set<RegisterRef>;
-
- struct TargetOperandInfo {
- TargetOperandInfo(const TargetInstrInfo &tii) : TII(tii) {}
- virtual ~TargetOperandInfo() = default;
-
- virtual bool isPreserving(const MachineInstr &In, unsigned OpNum) const;
- virtual bool isClobbering(const MachineInstr &In, unsigned OpNum) const;
- virtual bool isFixedReg(const MachineInstr &In, unsigned OpNum) const;
-
- const TargetInstrInfo &TII;
- };
-
- // Packed register reference. Only used for storage.
- struct PackedRegisterRef {
- RegisterId Reg;
- uint32_t MaskId;
- };
-
- struct LaneMaskIndex : private IndexedSet<LaneBitmask> {
- LaneMaskIndex() = default;
-
- LaneBitmask getLaneMaskForIndex(uint32_t K) const {
- return K == 0 ? LaneBitmask::getAll() : get(K);
- }
-
- uint32_t getIndexForLaneMask(LaneBitmask LM) {
- assert(LM.any());
- return LM.all() ? 0 : insert(LM);
- }
-
- uint32_t getIndexForLaneMask(LaneBitmask LM) const {
- assert(LM.any());
- return LM.all() ? 0 : find(LM);
- }
- };
-
- struct NodeBase {
- public:
- // Make sure this is a POD.
- NodeBase() = default;
-
- uint16_t getType() const { return NodeAttrs::type(Attrs); }
- uint16_t getKind() const { return NodeAttrs::kind(Attrs); }
- uint16_t getFlags() const { return NodeAttrs::flags(Attrs); }
- NodeId getNext() const { return Next; }
-
- uint16_t getAttrs() const { return Attrs; }
- void setAttrs(uint16_t A) { Attrs = A; }
- void setFlags(uint16_t F) { setAttrs(NodeAttrs::set_flags(getAttrs(), F)); }
-
- // Insert node NA after "this" in the circular chain.
- void append(NodeAddr<NodeBase*> NA);
-
- // Initialize all members to 0.
- void init() { memset(this, 0, sizeof *this); }
-
- void setNext(NodeId N) { Next = N; }
-
- protected:
- uint16_t Attrs;
- uint16_t Reserved;
- NodeId Next; // Id of the next node in the circular chain.
- // Definitions of nested types. Using anonymous nested structs would make
- // this class definition clearer, but unnamed structs are not a part of
- // the standard.
- struct Def_struct {
- NodeId DD, DU; // Ids of the first reached def and use.
- };
- struct PhiU_struct {
- NodeId PredB; // Id of the predecessor block for a phi use.
- };
- struct Code_struct {
- void *CP; // Pointer to the actual code.
- NodeId FirstM, LastM; // Id of the first member and last.
- };
- struct Ref_struct {
- NodeId RD, Sib; // Ids of the reaching def and the sibling.
- union {
- Def_struct Def;
- PhiU_struct PhiU;
- };
- union {
- MachineOperand *Op; // Non-phi refs point to a machine operand.
- PackedRegisterRef PR; // Phi refs store register info directly.
- };
- };
-
- // The actual payload.
- union {
- Ref_struct Ref;
- Code_struct Code;
- };
- };
- // The allocator allocates chunks of 32 bytes for each node. The fact that
- // each node takes 32 bytes in memory is used for fast translation between
- // the node id and the node address.
- static_assert(sizeof(NodeBase) <= NodeAllocator::NodeMemSize,
- "NodeBase must be at most NodeAllocator::NodeMemSize bytes");
-
- using NodeList = SmallVector<NodeAddr<NodeBase *>, 4>;
- using NodeSet = std::set<NodeId>;
-
- struct RefNode : public NodeBase {
- RefNode() = default;
-
- RegisterRef getRegRef(const DataFlowGraph &G) const;
-
- MachineOperand &getOp() {
- assert(!(getFlags() & NodeAttrs::PhiRef));
- return *Ref.Op;
- }
-
- void setRegRef(RegisterRef RR, DataFlowGraph &G);
- void setRegRef(MachineOperand *Op, DataFlowGraph &G);
-
- NodeId getReachingDef() const {
- return Ref.RD;
- }
- void setReachingDef(NodeId RD) {
- Ref.RD = RD;
- }
-
- NodeId getSibling() const {
- return Ref.Sib;
- }
- void setSibling(NodeId Sib) {
- Ref.Sib = Sib;
- }
-
- bool isUse() const {
- assert(getType() == NodeAttrs::Ref);
- return getKind() == NodeAttrs::Use;
- }
-
- bool isDef() const {
- assert(getType() == NodeAttrs::Ref);
- return getKind() == NodeAttrs::Def;
- }
-
- template <typename Predicate>
- NodeAddr<RefNode*> getNextRef(RegisterRef RR, Predicate P, bool NextOnly,
- const DataFlowGraph &G);
- NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
- };
-
- struct DefNode : public RefNode {
- NodeId getReachedDef() const {
- return Ref.Def.DD;
- }
- void setReachedDef(NodeId D) {
- Ref.Def.DD = D;
- }
- NodeId getReachedUse() const {
- return Ref.Def.DU;
- }
- void setReachedUse(NodeId U) {
- Ref.Def.DU = U;
- }
-
- void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
- };
-
- struct UseNode : public RefNode {
- void linkToDef(NodeId Self, NodeAddr<DefNode*> DA);
- };
-
- struct PhiUseNode : public UseNode {
- NodeId getPredecessor() const {
- assert(getFlags() & NodeAttrs::PhiRef);
- return Ref.PhiU.PredB;
- }
- void setPredecessor(NodeId B) {
- assert(getFlags() & NodeAttrs::PhiRef);
- Ref.PhiU.PredB = B;
- }
- };
-
- struct CodeNode : public NodeBase {
- template <typename T> T getCode() const {
- return static_cast<T>(Code.CP);
- }
- void setCode(void *C) {
- Code.CP = C;
- }
-
- NodeAddr<NodeBase*> getFirstMember(const DataFlowGraph &G) const;
- NodeAddr<NodeBase*> getLastMember(const DataFlowGraph &G) const;
- void addMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
- void addMemberAfter(NodeAddr<NodeBase*> MA, NodeAddr<NodeBase*> NA,
- const DataFlowGraph &G);
- void removeMember(NodeAddr<NodeBase*> NA, const DataFlowGraph &G);
-
- NodeList members(const DataFlowGraph &G) const;
- template <typename Predicate>
- NodeList members_if(Predicate P, const DataFlowGraph &G) const;
- };
-
- struct InstrNode : public CodeNode {
- NodeAddr<NodeBase*> getOwner(const DataFlowGraph &G);
- };
-
- struct PhiNode : public InstrNode {
- MachineInstr *getCode() const {
- return nullptr;
- }
- };
-
- struct StmtNode : public InstrNode {
- MachineInstr *getCode() const {
- return CodeNode::getCode<MachineInstr*>();
- }
- };
-
- struct BlockNode : public CodeNode {
- MachineBasicBlock *getCode() const {
- return CodeNode::getCode<MachineBasicBlock*>();
- }
-
- void addPhi(NodeAddr<PhiNode*> PA, const DataFlowGraph &G);
- };
-
- struct FuncNode : public CodeNode {
- MachineFunction *getCode() const {
- return CodeNode::getCode<MachineFunction*>();
- }
-
- NodeAddr<BlockNode*> findBlock(const MachineBasicBlock *BB,
- const DataFlowGraph &G) const;
- NodeAddr<BlockNode*> getEntryBlock(const DataFlowGraph &G);
- };
-
- struct DataFlowGraph {
- DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
- const TargetRegisterInfo &tri, const MachineDominatorTree &mdt,
- const MachineDominanceFrontier &mdf, const TargetOperandInfo &toi);
-
- NodeBase *ptr(NodeId N) const;
- template <typename T> T ptr(NodeId N) const {
- return static_cast<T>(ptr(N));
- }
-
- NodeId id(const NodeBase *P) const;
-
- template <typename T> NodeAddr<T> addr(NodeId N) const {
- return { ptr<T>(N), N };
- }
-
- NodeAddr<FuncNode*> getFunc() const { return Func; }
- MachineFunction &getMF() const { return MF; }
- const TargetInstrInfo &getTII() const { return TII; }
- const TargetRegisterInfo &getTRI() const { return TRI; }
- const PhysicalRegisterInfo &getPRI() const { return PRI; }
- const MachineDominatorTree &getDT() const { return MDT; }
- const MachineDominanceFrontier &getDF() const { return MDF; }
- const RegisterAggr &getLiveIns() const { return LiveIns; }
-
- struct DefStack {
- DefStack() = default;
-
- bool empty() const { return Stack.empty() || top() == bottom(); }
-
- private:
- using value_type = NodeAddr<DefNode *>;
- struct Iterator {
- using value_type = DefStack::value_type;
-
- Iterator &up() { Pos = DS.nextUp(Pos); return *this; }
- Iterator &down() { Pos = DS.nextDown(Pos); return *this; }
-
- value_type operator*() const {
- assert(Pos >= 1);
- return DS.Stack[Pos-1];
- }
- const value_type *operator->() const {
- assert(Pos >= 1);
- return &DS.Stack[Pos-1];
- }
- bool operator==(const Iterator &It) const { return Pos == It.Pos; }
- bool operator!=(const Iterator &It) const { return Pos != It.Pos; }
-
- private:
- friend struct DefStack;
-
- Iterator(const DefStack &S, bool Top);
-
- // Pos-1 is the index in the StorageType object that corresponds to
- // the top of the DefStack.
- const DefStack &DS;
- unsigned Pos;
- };
-
- public:
- using iterator = Iterator;
-
- iterator top() const { return Iterator(*this, true); }
- iterator bottom() const { return Iterator(*this, false); }
- unsigned size() const;
-
- void push(NodeAddr<DefNode*> DA) { Stack.push_back(DA); }
- void pop();
- void start_block(NodeId N);
- void clear_block(NodeId N);
-
- private:
- friend struct Iterator;
-
- using StorageType = std::vector<value_type>;
-
- bool isDelimiter(const StorageType::value_type &P, NodeId N = 0) const {
- return (P.Addr == nullptr) && (N == 0 || P.Id == N);
- }
-
- unsigned nextUp(unsigned P) const;
- unsigned nextDown(unsigned P) const;
-
- StorageType Stack;
- };
-
- // Make this std::unordered_map for speed of accessing elements.
- // Map: Register (physical or virtual) -> DefStack
- using DefStackMap = std::unordered_map<RegisterId, DefStack>;
-
- void build(unsigned Options = BuildOptions::None);
- void pushAllDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
- void markBlock(NodeId B, DefStackMap &DefM);
- void releaseBlock(NodeId B, DefStackMap &DefM);
-
- PackedRegisterRef pack(RegisterRef RR) {
- return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
- }
- PackedRegisterRef pack(RegisterRef RR) const {
- return { RR.Reg, LMI.getIndexForLaneMask(RR.Mask) };
- }
- RegisterRef unpack(PackedRegisterRef PR) const {
- return RegisterRef(PR.Reg, LMI.getLaneMaskForIndex(PR.MaskId));
- }
-
- RegisterRef makeRegRef(unsigned Reg, unsigned Sub) const;
- RegisterRef makeRegRef(const MachineOperand &Op) const;
- RegisterRef restrictRef(RegisterRef AR, RegisterRef BR) const;
-
- NodeAddr<RefNode*> getNextRelated(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const;
- NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA, bool Create);
- NodeAddr<RefNode*> getNextImp(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const;
- NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA, bool Create);
- NodeAddr<RefNode*> getNextShadow(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const;
-
- NodeList getRelatedRefs(NodeAddr<InstrNode*> IA,
- NodeAddr<RefNode*> RA) const;
-
- NodeAddr<BlockNode*> findBlock(MachineBasicBlock *BB) const {
- return BlockNodes.at(BB);
- }
-
- void unlinkUse(NodeAddr<UseNode*> UA, bool RemoveFromOwner) {
- unlinkUseDF(UA);
- if (RemoveFromOwner)
- removeFromOwner(UA);
- }
-
- void unlinkDef(NodeAddr<DefNode*> DA, bool RemoveFromOwner) {
- unlinkDefDF(DA);
- if (RemoveFromOwner)
- removeFromOwner(DA);
- }
-
- // Some useful filters.
- template <uint16_t Kind>
- static bool IsRef(const NodeAddr<NodeBase*> BA) {
- return BA.Addr->getType() == NodeAttrs::Ref &&
- BA.Addr->getKind() == Kind;
- }
-
- template <uint16_t Kind>
- static bool IsCode(const NodeAddr<NodeBase*> BA) {
- return BA.Addr->getType() == NodeAttrs::Code &&
- BA.Addr->getKind() == Kind;
- }
-
- static bool IsDef(const NodeAddr<NodeBase*> BA) {
- return BA.Addr->getType() == NodeAttrs::Ref &&
- BA.Addr->getKind() == NodeAttrs::Def;
- }
-
- static bool IsUse(const NodeAddr<NodeBase*> BA) {
- return BA.Addr->getType() == NodeAttrs::Ref &&
- BA.Addr->getKind() == NodeAttrs::Use;
- }
-
- static bool IsPhi(const NodeAddr<NodeBase*> BA) {
- return BA.Addr->getType() == NodeAttrs::Code &&
- BA.Addr->getKind() == NodeAttrs::Phi;
- }
-
- static bool IsPreservingDef(const NodeAddr<DefNode*> DA) {
- uint16_t Flags = DA.Addr->getFlags();
- return (Flags & NodeAttrs::Preserving) && !(Flags & NodeAttrs::Undef);
- }
-
- private:
- void reset();
-
- RegisterSet getLandingPadLiveIns() const;
-
- NodeAddr<NodeBase*> newNode(uint16_t Attrs);
- NodeAddr<NodeBase*> cloneNode(const NodeAddr<NodeBase*> B);
- NodeAddr<UseNode*> newUse(NodeAddr<InstrNode*> Owner,
- MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
- NodeAddr<PhiUseNode*> newPhiUse(NodeAddr<PhiNode*> Owner,
- RegisterRef RR, NodeAddr<BlockNode*> PredB,
- uint16_t Flags = NodeAttrs::PhiRef);
- NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
- MachineOperand &Op, uint16_t Flags = NodeAttrs::None);
- NodeAddr<DefNode*> newDef(NodeAddr<InstrNode*> Owner,
- RegisterRef RR, uint16_t Flags = NodeAttrs::PhiRef);
- NodeAddr<PhiNode*> newPhi(NodeAddr<BlockNode*> Owner);
- NodeAddr<StmtNode*> newStmt(NodeAddr<BlockNode*> Owner,
- MachineInstr *MI);
- NodeAddr<BlockNode*> newBlock(NodeAddr<FuncNode*> Owner,
- MachineBasicBlock *BB);
- NodeAddr<FuncNode*> newFunc(MachineFunction *MF);
-
- template <typename Predicate>
- std::pair<NodeAddr<RefNode*>,NodeAddr<RefNode*>>
- locateNextRef(NodeAddr<InstrNode*> IA, NodeAddr<RefNode*> RA,
- Predicate P) const;
-
- using BlockRefsMap = std::map<NodeId, RegisterSet>;
-
- void buildStmt(NodeAddr<BlockNode*> BA, MachineInstr &In);
- void recordDefsForDF(BlockRefsMap &PhiM, NodeAddr<BlockNode*> BA);
- void buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
- NodeAddr<BlockNode*> BA);
- void removeUnusedPhis();
-
- void pushClobbers(NodeAddr<InstrNode*> IA, DefStackMap &DM);
- void pushDefs(NodeAddr<InstrNode*> IA, DefStackMap &DM);
- template <typename T> void linkRefUp(NodeAddr<InstrNode*> IA,
- NodeAddr<T> TA, DefStack &DS);
- template <typename Predicate> void linkStmtRefs(DefStackMap &DefM,
- NodeAddr<StmtNode*> SA, Predicate P);
- void linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode*> BA);
-
- void unlinkUseDF(NodeAddr<UseNode*> UA);
- void unlinkDefDF(NodeAddr<DefNode*> DA);
-
- void removeFromOwner(NodeAddr<RefNode*> RA) {
- NodeAddr<InstrNode*> IA = RA.Addr->getOwner(*this);
- IA.Addr->removeMember(RA, *this);
- }
-
- MachineFunction &MF;
- const TargetInstrInfo &TII;
- const TargetRegisterInfo &TRI;
- const PhysicalRegisterInfo PRI;
- const MachineDominatorTree &MDT;
- const MachineDominanceFrontier &MDF;
- const TargetOperandInfo &TOI;
-
- RegisterAggr LiveIns;
- NodeAddr<FuncNode*> Func;
- NodeAllocator Memory;
- // Local map: MachineBasicBlock -> NodeAddr<BlockNode*>
- std::map<MachineBasicBlock*,NodeAddr<BlockNode*>> BlockNodes;
- // Lane mask map.
- LaneMaskIndex LMI;
- }; // struct DataFlowGraph
-
- template <typename Predicate>
- NodeAddr<RefNode*> RefNode::getNextRef(RegisterRef RR, Predicate P,
- bool NextOnly, const DataFlowGraph &G) {
- // Get the "Next" reference in the circular list that references RR and
- // satisfies predicate "Pred".
- auto NA = G.addr<NodeBase*>(getNext());
-
- while (NA.Addr != this) {
- if (NA.Addr->getType() == NodeAttrs::Ref) {
- NodeAddr<RefNode*> RA = NA;
- if (RA.Addr->getRegRef(G) == RR && P(NA))
- return NA;
- if (NextOnly)
- break;
- NA = G.addr<NodeBase*>(NA.Addr->getNext());
- } else {
- // We've hit the beginning of the chain.
- assert(NA.Addr->getType() == NodeAttrs::Code);
- NodeAddr<CodeNode*> CA = NA;
- NA = CA.Addr->getFirstMember(G);
- }
- }
- // Return the equivalent of "nullptr" if such a node was not found.
- return NodeAddr<RefNode*>();
- }
-
- template <typename Predicate>
- NodeList CodeNode::members_if(Predicate P, const DataFlowGraph &G) const {
- NodeList MM;
- auto M = getFirstMember(G);
- if (M.Id == 0)
- return MM;
-
- while (M.Addr != this) {
- if (P(M))
- MM.push_back(M);
- M = G.addr<NodeBase*>(M.Addr->getNext());
- }
- return MM;
- }
-
- template <typename T>
- struct Print {
- Print(const T &x, const DataFlowGraph &g) : Obj(x), G(g) {}
-
- const T &Obj;
- const DataFlowGraph &G;
- };
-
- template <typename T>
- struct PrintNode : Print<NodeAddr<T>> {
- PrintNode(const NodeAddr<T> &x, const DataFlowGraph &g)
- : Print<NodeAddr<T>>(x, g) {}
- };
-
- raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P);
- raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P);
- raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P);
- raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P);
- raw_ostream &operator<<(raw_ostream &OS,
- const Print<NodeAddr<PhiUseNode *>> &P);
- raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P);
- raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P);
- raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P);
- raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P);
- raw_ostream &operator<<(raw_ostream &OS,
- const Print<NodeAddr<StmtNode *>> &P);
- raw_ostream &operator<<(raw_ostream &OS,
- const Print<NodeAddr<InstrNode *>> &P);
- raw_ostream &operator<<(raw_ostream &OS,
- const Print<NodeAddr<BlockNode *>> &P);
- raw_ostream &operator<<(raw_ostream &OS,
- const Print<NodeAddr<FuncNode *>> &P);
- raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P);
- raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P);
- raw_ostream &operator<<(raw_ostream &OS,
- const Print<DataFlowGraph::DefStack> &P);
-
-} // end namespace rdf
-
-} // end namespace llvm
-
-#endif // LLVM_LIB_TARGET_HEXAGON_RDFGRAPH_H