diff options
Diffstat (limited to 'llvm/lib/Target/X86/X86ISelDAGToDAG.cpp')
-rw-r--r-- | llvm/lib/Target/X86/X86ISelDAGToDAG.cpp | 1219 |
1 files changed, 780 insertions, 439 deletions
diff --git a/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp b/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp index bf33f399db28a..3cd80cb04ab84 100644 --- a/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp +++ b/llvm/lib/Target/X86/X86ISelDAGToDAG.cpp @@ -17,8 +17,6 @@ #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/Statistic.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/ConstantRange.h" @@ -31,9 +29,6 @@ #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetMachine.h" -#include "llvm/Target/TargetOptions.h" #include <stdint.h> using namespace llvm; @@ -45,6 +40,10 @@ static cl::opt<bool> AndImmShrink("x86-and-imm-shrink", cl::init(true), cl::desc("Enable setting constant bits to reduce size of mask immediates"), cl::Hidden); +static cl::opt<bool> EnablePromoteAnyextLoad( + "x86-promote-anyext-load", cl::init(true), + cl::desc("Enable promoting aligned anyext load to wider load"), cl::Hidden); + //===----------------------------------------------------------------------===// // Pattern Matcher Implementation //===----------------------------------------------------------------------===// @@ -72,14 +71,14 @@ namespace { const char *ES; MCSymbol *MCSym; int JT; - unsigned Align; // CP alignment. + Align Alignment; // CP alignment. unsigned char SymbolFlags; // X86II::MO_* bool NegateIndex = false; X86ISelAddressMode() : BaseType(RegBase), Base_FrameIndex(0), Scale(1), IndexReg(), Disp(0), Segment(), GV(nullptr), CP(nullptr), BlockAddr(nullptr), ES(nullptr), - MCSym(nullptr), JT(-1), Align(0), SymbolFlags(X86II::MO_NO_FLAG) {} + MCSym(nullptr), JT(-1), SymbolFlags(X86II::MO_NO_FLAG) {} bool hasSymbolicDisplacement() const { return GV != nullptr || CP != nullptr || ES != nullptr || @@ -145,7 +144,7 @@ namespace { dbgs() << MCSym; else dbgs() << "nul"; - dbgs() << " JT" << JT << " Align" << Align << '\n'; + dbgs() << " JT" << JT << " Align" << Alignment.value() << '\n'; } #endif }; @@ -161,10 +160,6 @@ namespace { /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; - /// If true, selector should try to optimize for code size instead of - /// performance. - bool OptForSize; - /// If true, selector should try to optimize for minimum code size. bool OptForMinSize; @@ -173,7 +168,7 @@ namespace { public: explicit X86DAGToDAGISel(X86TargetMachine &tm, CodeGenOpt::Level OptLevel) - : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr), OptForSize(false), + : SelectionDAGISel(tm, OptLevel), Subtarget(nullptr), OptForMinSize(false), IndirectTlsSegRefs(false) {} StringRef getPassName() const override { @@ -187,16 +182,15 @@ namespace { "indirect-tls-seg-refs"); // OptFor[Min]Size are used in pattern predicates that isel is matching. - OptForSize = MF.getFunction().hasOptSize(); OptForMinSize = MF.getFunction().hasMinSize(); - assert((!OptForMinSize || OptForSize) && + assert((!OptForMinSize || MF.getFunction().hasOptSize()) && "OptForMinSize implies OptForSize"); SelectionDAGISel::runOnMachineFunction(MF); return true; } - void EmitFunctionEntryCode() override; + void emitFunctionEntryCode() override; bool IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const override; @@ -221,9 +215,9 @@ namespace { bool selectAddr(SDNode *Parent, SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); - bool selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base, - SDValue &Scale, SDValue &Index, SDValue &Disp, - SDValue &Segment); + bool selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, SDValue IndexOp, + SDValue ScaleOp, SDValue &Base, SDValue &Scale, + SDValue &Index, SDValue &Disp, SDValue &Segment); bool selectMOV64Imm32(SDValue N, SDValue &Imm); bool selectLEAAddr(SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, @@ -234,11 +228,6 @@ namespace { bool selectTLSADDRAddr(SDValue N, SDValue &Base, SDValue &Scale, SDValue &Index, SDValue &Disp, SDValue &Segment); - bool selectScalarSSELoad(SDNode *Root, SDNode *Parent, SDValue N, - SDValue &Base, SDValue &Scale, - SDValue &Index, SDValue &Disp, - SDValue &Segment, - SDValue &NodeWithChain); bool selectRelocImm(SDValue N, SDValue &Op); bool tryFoldLoad(SDNode *Root, SDNode *P, SDValue N, @@ -259,6 +248,8 @@ namespace { SDValue &Index, SDValue &Disp, SDValue &Segment); + bool isProfitableToFormMaskedOp(SDNode *N) const; + /// Implement addressing mode selection for inline asm expressions. bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, @@ -300,8 +291,8 @@ namespace { MVT::i32, AM.Disp, AM.SymbolFlags); else if (AM.CP) - Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, - AM.Align, AM.Disp, AM.SymbolFlags); + Disp = CurDAG->getTargetConstantPool(AM.CP, MVT::i32, AM.Alignment, + AM.Disp, AM.SymbolFlags); else if (AM.ES) { assert(!AM.Disp && "Non-zero displacement is ignored with ES."); Disp = CurDAG->getTargetExternalSymbol(AM.ES, MVT::i32, AM.SymbolFlags); @@ -368,9 +359,10 @@ namespace { if (User->getNumOperands() != 2) continue; - // If this can match to INC/DEC, don't count it as a use. - if (User->getOpcode() == ISD::ADD && - (isOneConstant(SDValue(N, 0)) || isAllOnesConstant(SDValue(N, 0)))) + // If this is a sign-extended 8-bit integer immediate used in an ALU + // instruction, there is probably an opcode encoding to save space. + auto *C = dyn_cast<ConstantSDNode>(N); + if (C && isInt<8>(C->getSExtValue())) continue; // Immediates that are used for offsets as part of stack @@ -475,14 +467,6 @@ namespace { bool isSExtAbsoluteSymbolRef(unsigned Width, SDNode *N) const; - /// Returns whether this is a relocatable immediate in the range - /// [-2^Width .. 2^Width-1]. - template <unsigned Width> bool isSExtRelocImm(SDNode *N) const { - if (auto *CN = dyn_cast<ConstantSDNode>(N)) - return isInt<Width>(CN->getSExtValue()); - return isSExtAbsoluteSymbolRef(Width, N); - } - // Indicates we should prefer to use a non-temporal load for this load. bool useNonTemporalLoad(LoadSDNode *N) const { if (!N->isNonTemporal()) @@ -513,8 +497,8 @@ namespace { bool shrinkAndImmediate(SDNode *N); bool isMaskZeroExtended(SDNode *N) const; bool tryShiftAmountMod(SDNode *N); - bool combineIncDecVector(SDNode *Node); bool tryShrinkShlLogicImm(SDNode *N); + bool tryVPTERNLOG(SDNode *N); bool tryVPTESTM(SDNode *Root, SDValue Setcc, SDValue Mask); bool tryMatchBitSelect(SDNode *N); @@ -581,12 +565,6 @@ X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { if (!N.hasOneUse()) return false; - // FIXME: Temporary hack to prevent strict floating point nodes from - // folding into masked operations illegally. - if (U == Root && Root->getOpcode() == ISD::VSELECT && - N.getOpcode() != ISD::LOAD && N.getOpcode() != X86ISD::VBROADCAST_LOAD) - return false; - if (N.getOpcode() != ISD::LOAD) return true; @@ -650,6 +628,11 @@ X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB) && (-Imm->getAPIntValue()).isSignedIntN(8)) return false; + + if ((U->getOpcode() == X86ISD::ADD || U->getOpcode() == X86ISD::SUB) && + (-Imm->getAPIntValue()).isSignedIntN(8) && + hasNoCarryFlagUses(SDValue(U, 1))) + return false; } // If the other operand is a TLS address, we should fold it instead. @@ -724,6 +707,20 @@ X86DAGToDAGISel::IsProfitableToFold(SDValue N, SDNode *U, SDNode *Root) const { return true; } +// Indicates it is profitable to form an AVX512 masked operation. Returning +// false will favor a masked register-register masked move or vblendm and the +// operation will be selected separately. +bool X86DAGToDAGISel::isProfitableToFormMaskedOp(SDNode *N) const { + assert( + (N->getOpcode() == ISD::VSELECT || N->getOpcode() == X86ISD::SELECTS) && + "Unexpected opcode!"); + + // If the operation has additional users, the operation will be duplicated. + // Check the use count to prevent that. + // FIXME: Are there cheap opcodes we might want to duplicate? + return N->getOperand(1).hasOneUse(); +} + /// Replace the original chain operand of the call with /// load's chain operand and move load below the call's chain operand. static void moveBelowOrigChain(SelectionDAG *CurDAG, SDValue Load, @@ -799,6 +796,7 @@ static bool isCalleeLoad(SDValue Callee, SDValue &Chain, bool HasCallSeq) { } void X86DAGToDAGISel::PreprocessISelDAG() { + bool MadeChange = false; for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E; ) { SDNode *N = &*I++; // Preincrement iterator to avoid invalidation issues. @@ -811,11 +809,111 @@ void X86DAGToDAGISel::PreprocessISelDAG() { --I; CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); ++I; - CurDAG->DeleteNode(N); + MadeChange = true; continue; } + /// Convert vector increment or decrement to sub/add with an all-ones + /// constant: + /// add X, <1, 1...> --> sub X, <-1, -1...> + /// sub X, <1, 1...> --> add X, <-1, -1...> + /// The all-ones vector constant can be materialized using a pcmpeq + /// instruction that is commonly recognized as an idiom (has no register + /// dependency), so that's better/smaller than loading a splat 1 constant. + if ((N->getOpcode() == ISD::ADD || N->getOpcode() == ISD::SUB) && + N->getSimpleValueType(0).isVector()) { + + APInt SplatVal; + if (X86::isConstantSplat(N->getOperand(1), SplatVal) && + SplatVal.isOneValue()) { + SDLoc DL(N); + + MVT VT = N->getSimpleValueType(0); + unsigned NumElts = VT.getSizeInBits() / 32; + SDValue AllOnes = + CurDAG->getAllOnesConstant(DL, MVT::getVectorVT(MVT::i32, NumElts)); + AllOnes = CurDAG->getBitcast(VT, AllOnes); + + unsigned NewOpcode = N->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD; + SDValue Res = + CurDAG->getNode(NewOpcode, DL, VT, N->getOperand(0), AllOnes); + --I; + CurDAG->ReplaceAllUsesWith(N, Res.getNode()); + ++I; + MadeChange = true; + continue; + } + } + switch (N->getOpcode()) { + case X86ISD::VBROADCAST: { + MVT VT = N->getSimpleValueType(0); + // Emulate v32i16/v64i8 broadcast without BWI. + if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) { + MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8; + SDLoc dl(N); + SDValue NarrowBCast = + CurDAG->getNode(X86ISD::VBROADCAST, dl, NarrowVT, N->getOperand(0)); + SDValue Res = + CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT), + NarrowBCast, CurDAG->getIntPtrConstant(0, dl)); + unsigned Index = VT == MVT::v32i16 ? 16 : 32; + Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast, + CurDAG->getIntPtrConstant(Index, dl)); + + --I; + CurDAG->ReplaceAllUsesWith(N, Res.getNode()); + ++I; + MadeChange = true; + continue; + } + + break; + } + case X86ISD::VBROADCAST_LOAD: { + MVT VT = N->getSimpleValueType(0); + // Emulate v32i16/v64i8 broadcast without BWI. + if (!Subtarget->hasBWI() && (VT == MVT::v32i16 || VT == MVT::v64i8)) { + MVT NarrowVT = VT == MVT::v32i16 ? MVT::v16i16 : MVT::v32i8; + auto *MemNode = cast<MemSDNode>(N); + SDLoc dl(N); + SDVTList VTs = CurDAG->getVTList(NarrowVT, MVT::Other); + SDValue Ops[] = {MemNode->getChain(), MemNode->getBasePtr()}; + SDValue NarrowBCast = CurDAG->getMemIntrinsicNode( + X86ISD::VBROADCAST_LOAD, dl, VTs, Ops, MemNode->getMemoryVT(), + MemNode->getMemOperand()); + SDValue Res = + CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, CurDAG->getUNDEF(VT), + NarrowBCast, CurDAG->getIntPtrConstant(0, dl)); + unsigned Index = VT == MVT::v32i16 ? 16 : 32; + Res = CurDAG->getNode(ISD::INSERT_SUBVECTOR, dl, VT, Res, NarrowBCast, + CurDAG->getIntPtrConstant(Index, dl)); + + --I; + SDValue To[] = {Res, NarrowBCast.getValue(1)}; + CurDAG->ReplaceAllUsesWith(N, To); + ++I; + MadeChange = true; + continue; + } + + break; + } + case ISD::VSELECT: { + // Replace VSELECT with non-mask conditions with with BLENDV. + if (N->getOperand(0).getValueType().getVectorElementType() == MVT::i1) + break; + + assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!"); + SDValue Blendv = + CurDAG->getNode(X86ISD::BLENDV, SDLoc(N), N->getValueType(0), + N->getOperand(0), N->getOperand(1), N->getOperand(2)); + --I; + CurDAG->ReplaceAllUsesWith(N, Blendv.getNode()); + ++I; + MadeChange = true; + continue; + } case ISD::FP_ROUND: case ISD::STRICT_FP_ROUND: case ISD::FP_TO_SINT: @@ -849,7 +947,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() { --I; CurDAG->ReplaceAllUsesWith(N, Res.getNode()); ++I; - CurDAG->DeleteNode(N); + MadeChange = true; continue; } case ISD::SHL: @@ -872,27 +970,33 @@ void X86DAGToDAGISel::PreprocessISelDAG() { --I; CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); ++I; - CurDAG->DeleteNode(N); + MadeChange = true; continue; } case ISD::ANY_EXTEND: case ISD::ANY_EXTEND_VECTOR_INREG: { // Replace vector any extend with the zero extend equivalents so we don't // need 2 sets of patterns. Ignore vXi1 extensions. - if (!N->getValueType(0).isVector() || - N->getOperand(0).getScalarValueSizeInBits() == 1) + if (!N->getValueType(0).isVector()) break; - unsigned NewOpc = N->getOpcode() == ISD::ANY_EXTEND - ? ISD::ZERO_EXTEND - : ISD::ZERO_EXTEND_VECTOR_INREG; + unsigned NewOpc; + if (N->getOperand(0).getScalarValueSizeInBits() == 1) { + assert(N->getOpcode() == ISD::ANY_EXTEND && + "Unexpected opcode for mask vector!"); + NewOpc = ISD::SIGN_EXTEND; + } else { + NewOpc = N->getOpcode() == ISD::ANY_EXTEND + ? ISD::ZERO_EXTEND + : ISD::ZERO_EXTEND_VECTOR_INREG; + } SDValue Res = CurDAG->getNode(NewOpc, SDLoc(N), N->getValueType(0), N->getOperand(0)); --I; CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); ++I; - CurDAG->DeleteNode(N); + MadeChange = true; continue; } case ISD::FCEIL: @@ -936,7 +1040,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() { --I; CurDAG->ReplaceAllUsesWith(N, Res.getNode()); ++I; - CurDAG->DeleteNode(N); + MadeChange = true; continue; } case X86ISD::FANDN: @@ -979,7 +1083,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() { --I; CurDAG->ReplaceAllUsesOfValueWith(SDValue(N, 0), Res); ++I; - CurDAG->DeleteNode(N); + MadeChange = true; continue; } } @@ -987,7 +1091,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() { if (OptLevel != CodeGenOpt::None && // Only do this when the target can fold the load into the call or // jmp. - !Subtarget->useRetpolineIndirectCalls() && + !Subtarget->useIndirectThunkCalls() && ((N->getOpcode() == X86ISD::CALL && !Subtarget->slowTwoMemOps()) || (N->getOpcode() == X86ISD::TC_RETURN && (Subtarget->is64Bit() || @@ -1018,6 +1122,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() { continue; moveBelowOrigChain(CurDAG, Load, SDValue(N, 0), Chain); ++NumLoadMoved; + MadeChange = true; continue; } @@ -1064,14 +1169,17 @@ void X86DAGToDAGISel::PreprocessISelDAG() { // operations. Based on this, decide what we want to do. MVT MemVT = (N->getOpcode() == ISD::FP_ROUND) ? DstVT : SrcVT; SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); + int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex(); + MachinePointerInfo MPI = + MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI); SDLoc dl(N); // FIXME: optimize the case where the src/dest is a load or store? - SDValue Store = CurDAG->getTruncStore(CurDAG->getEntryNode(), dl, N->getOperand(0), - MemTmp, MachinePointerInfo(), MemVT); - SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, MemTmp, - MachinePointerInfo(), MemVT); + SDValue Store = CurDAG->getTruncStore( + CurDAG->getEntryNode(), dl, N->getOperand(0), MemTmp, MPI, MemVT); + SDValue Result = CurDAG->getExtLoad(ISD::EXTLOAD, dl, DstVT, Store, + MemTmp, MPI, MemVT); // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the // extload we created. This will cause general havok on the dag because @@ -1117,6 +1225,9 @@ void X86DAGToDAGISel::PreprocessISelDAG() { // operations. Based on this, decide what we want to do. MVT MemVT = (N->getOpcode() == ISD::STRICT_FP_ROUND) ? DstVT : SrcVT; SDValue MemTmp = CurDAG->CreateStackTemporary(MemVT); + int SPFI = cast<FrameIndexSDNode>(MemTmp)->getIndex(); + MachinePointerInfo MPI = + MachinePointerInfo::getFixedStack(CurDAG->getMachineFunction(), SPFI); SDLoc dl(N); // FIXME: optimize the case where the src/dest is a load or store? @@ -1127,7 +1238,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() { SDVTList VTs = CurDAG->getVTList(MVT::Other); SDValue Ops[] = {N->getOperand(0), N->getOperand(1), MemTmp}; Store = CurDAG->getMemIntrinsicNode(X86ISD::FST, dl, VTs, Ops, MemVT, - MachinePointerInfo(), 0, + MPI, /*Align*/ None, MachineMemOperand::MOStore); if (N->getFlags().hasNoFPExcept()) { SDNodeFlags Flags = Store->getFlags(); @@ -1137,15 +1248,15 @@ void X86DAGToDAGISel::PreprocessISelDAG() { } else { assert(SrcVT == MemVT && "Unexpected VT!"); Store = CurDAG->getStore(N->getOperand(0), dl, N->getOperand(1), MemTmp, - MachinePointerInfo()); + MPI); } if (!DstIsSSE) { SDVTList VTs = CurDAG->getVTList(DstVT, MVT::Other); SDValue Ops[] = {Store, MemTmp}; - Result = CurDAG->getMemIntrinsicNode(X86ISD::FLD, dl, VTs, Ops, MemVT, - MachinePointerInfo(), 0, - MachineMemOperand::MOLoad); + Result = CurDAG->getMemIntrinsicNode( + X86ISD::FLD, dl, VTs, Ops, MemVT, MPI, + /*Align*/ None, MachineMemOperand::MOLoad); if (N->getFlags().hasNoFPExcept()) { SDNodeFlags Flags = Result->getFlags(); Flags.setNoFPExcept(true); @@ -1153,8 +1264,7 @@ void X86DAGToDAGISel::PreprocessISelDAG() { } } else { assert(DstVT == MemVT && "Unexpected VT!"); - Result = - CurDAG->getLoad(DstVT, dl, Store, MemTmp, MachinePointerInfo()); + Result = CurDAG->getLoad(DstVT, dl, Store, MemTmp, MPI); } // We're about to replace all uses of the FP_ROUND/FP_EXTEND with the @@ -1171,13 +1281,12 @@ void X86DAGToDAGISel::PreprocessISelDAG() { // Now that we did that, the node is dead. Increment the iterator to the // next node to process, then delete N. ++I; - CurDAG->DeleteNode(N); + MadeChange = true; } - // The load+call transform above can leave some dead nodes in the graph. Make - // sure we remove them. Its possible some of the other transforms do to so - // just remove dead nodes unconditionally. - CurDAG->RemoveDeadNodes(); + // Remove any dead nodes that may have been left behind. + if (MadeChange) + CurDAG->RemoveDeadNodes(); } // Look for a redundant movzx/movsx that can occur after an 8-bit divrem. @@ -1275,6 +1384,8 @@ void X86DAGToDAGISel::PostprocessISelDAG() { And.getOperand(6) /* Chain */ }; MachineSDNode *Test = CurDAG->getMachineNode(NewOpc, SDLoc(N), MVT::i32, MVT::Other, Ops); + CurDAG->setNodeMemRefs( + Test, cast<MachineSDNode>(And.getNode())->memoperands()); ReplaceUses(N, Test); MadeChange = true; continue; @@ -1390,7 +1501,7 @@ void X86DAGToDAGISel::emitSpecialCodeForMain() { } } -void X86DAGToDAGISel::EmitFunctionEntryCode() { +void X86DAGToDAGISel::emitFunctionEntryCode() { // If this is main, emit special code for main. const Function &F = MF->getFunction(); if (F.hasExternalLinkage() && F.getName() == "main") @@ -1409,18 +1520,20 @@ static bool isDispSafeForFrameIndex(int64_t Val) { bool X86DAGToDAGISel::foldOffsetIntoAddress(uint64_t Offset, X86ISelAddressMode &AM) { - // If there's no offset to fold, we don't need to do any work. - if (Offset == 0) - return false; + // We may have already matched a displacement and the caller just added the + // symbolic displacement. So we still need to do the checks even if Offset + // is zero. + + int64_t Val = AM.Disp + Offset; // Cannot combine ExternalSymbol displacements with integer offsets. - if (AM.ES || AM.MCSym) + if (Val != 0 && (AM.ES || AM.MCSym)) return true; - int64_t Val = AM.Disp + Offset; CodeModel::Model M = TM.getCodeModel(); if (Subtarget->is64Bit()) { - if (!X86::isOffsetSuitableForCodeModel(Val, M, + if (Val != 0 && + !X86::isOffsetSuitableForCodeModel(Val, M, AM.hasSymbolicDisplacement())) return true; // In addition to the checks required for a register base, check that @@ -1449,13 +1562,13 @@ bool X86DAGToDAGISel::matchLoadInAddress(LoadSDNode *N, X86ISelAddressMode &AM){ (Subtarget->isTargetGlibc() || Subtarget->isTargetAndroid() || Subtarget->isTargetFuchsia())) switch (N->getPointerInfo().getAddrSpace()) { - case 256: + case X86AS::GS: AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); return false; - case 257: + case X86AS::FS: AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); return false; - // Address space 258 is not handled here, because it is not used to + // Address space X86AS::SS is not handled here, because it is not used to // address TLS areas. } @@ -1505,7 +1618,7 @@ bool X86DAGToDAGISel::matchWrapper(SDValue N, X86ISelAddressMode &AM) { Offset = G->getOffset(); } else if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(N0)) { AM.CP = CP->getConstVal(); - AM.Align = CP->getAlignment(); + AM.Alignment = CP->getAlign(); AM.SymbolFlags = CP->getTargetFlags(); Offset = CP->getOffset(); } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(N0)) { @@ -1583,9 +1696,10 @@ bool X86DAGToDAGISel::matchAdd(SDValue &N, X86ISelAddressMode &AM, return false; AM = Backup; - // Try again after commuting the operands. - if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, Depth+1) && - !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth+1)) + // Try again after commutating the operands. + if (!matchAddressRecursively(Handle.getValue().getOperand(1), AM, + Depth + 1) && + !matchAddressRecursively(Handle.getValue().getOperand(0), AM, Depth + 1)) return false; AM = Backup; @@ -1782,7 +1896,7 @@ static bool foldMaskAndShiftToScale(SelectionDAG &DAG, SDValue N, // There is nothing we can do here unless the mask is removing some bits. // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. - if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; + if (AMShiftAmt == 0 || AMShiftAmt > 3) return true; // We also need to ensure that mask is a continuous run of bits. if (countTrailingOnes(Mask >> MaskTZ) + MaskTZ + MaskLZ != 64) return true; @@ -1877,7 +1991,7 @@ static bool foldMaskedShiftToBEXTR(SelectionDAG &DAG, SDValue N, // There is nothing we can do here unless the mask is removing some bits. // Also, the addressing mode can only represent shifts of 1, 2, or 3 bits. - if (AMShiftAmt <= 0 || AMShiftAmt > 3) return true; + if (AMShiftAmt == 0 || AMShiftAmt > 3) return true; MVT VT = N.getSimpleValueType(); SDLoc DL(N); @@ -2280,15 +2394,16 @@ bool X86DAGToDAGISel::matchVectorAddress(SDValue N, X86ISelAddressMode &AM) { return matchAddressBase(N, AM); } -bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base, - SDValue &Scale, SDValue &Index, - SDValue &Disp, SDValue &Segment) { +bool X86DAGToDAGISel::selectVectorAddr(MemSDNode *Parent, SDValue BasePtr, + SDValue IndexOp, SDValue ScaleOp, + SDValue &Base, SDValue &Scale, + SDValue &Index, SDValue &Disp, + SDValue &Segment) { X86ISelAddressMode AM; - auto *Mgs = cast<X86MaskedGatherScatterSDNode>(Parent); - AM.IndexReg = Mgs->getIndex(); - AM.Scale = cast<ConstantSDNode>(Mgs->getScale())->getZExtValue(); + AM.IndexReg = IndexOp; + AM.Scale = cast<ConstantSDNode>(ScaleOp)->getZExtValue(); - unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); + unsigned AddrSpace = Parent->getPointerInfo().getAddrSpace(); if (AddrSpace == X86AS::GS) AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); if (AddrSpace == X86AS::FS) @@ -2296,11 +2411,11 @@ bool X86DAGToDAGISel::selectVectorAddr(SDNode *Parent, SDValue N, SDValue &Base, if (AddrSpace == X86AS::SS) AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); - SDLoc DL(N); - MVT VT = N.getSimpleValueType(); + SDLoc DL(BasePtr); + MVT VT = BasePtr.getSimpleValueType(); // Try to match into the base and displacement fields. - if (matchVectorAddress(N, AM)) + if (matchVectorAddress(BasePtr, AM)) return false; getAddressOperands(AM, DL, VT, Base, Scale, Index, Disp, Segment); @@ -2331,12 +2446,11 @@ bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base, Parent->getOpcode() != X86ISD::EH_SJLJ_LONGJMP) { // longjmp unsigned AddrSpace = cast<MemSDNode>(Parent)->getPointerInfo().getAddrSpace(); - // AddrSpace 256 -> GS, 257 -> FS, 258 -> SS. - if (AddrSpace == 256) + if (AddrSpace == X86AS::GS) AM.Segment = CurDAG->getRegister(X86::GS, MVT::i16); - if (AddrSpace == 257) + if (AddrSpace == X86AS::FS) AM.Segment = CurDAG->getRegister(X86::FS, MVT::i16); - if (AddrSpace == 258) + if (AddrSpace == X86AS::SS) AM.Segment = CurDAG->getRegister(X86::SS, MVT::i16); } @@ -2351,86 +2465,7 @@ bool X86DAGToDAGISel::selectAddr(SDNode *Parent, SDValue N, SDValue &Base, return true; } -// We can only fold a load if all nodes between it and the root node have a -// single use. If there are additional uses, we could end up duplicating the -// load. -static bool hasSingleUsesFromRoot(SDNode *Root, SDNode *User) { - while (User != Root) { - if (!User->hasOneUse()) - return false; - User = *User->use_begin(); - } - - return true; -} - -/// Match a scalar SSE load. In particular, we want to match a load whose top -/// elements are either undef or zeros. The load flavor is derived from the -/// type of N, which is either v4f32 or v2f64. -/// -/// We also return: -/// PatternChainNode: this is the matched node that has a chain input and -/// output. -bool X86DAGToDAGISel::selectScalarSSELoad(SDNode *Root, SDNode *Parent, - SDValue N, SDValue &Base, - SDValue &Scale, SDValue &Index, - SDValue &Disp, SDValue &Segment, - SDValue &PatternNodeWithChain) { - if (!hasSingleUsesFromRoot(Root, Parent)) - return false; - - // We can allow a full vector load here since narrowing a load is ok unless - // it's volatile or atomic. - if (ISD::isNON_EXTLoad(N.getNode())) { - LoadSDNode *LD = cast<LoadSDNode>(N); - if (LD->isSimple() && - IsProfitableToFold(N, LD, Root) && - IsLegalToFold(N, Parent, Root, OptLevel)) { - PatternNodeWithChain = N; - return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, - Segment); - } - } - - // We can also match the special zero extended load opcode. - if (N.getOpcode() == X86ISD::VZEXT_LOAD) { - PatternNodeWithChain = N; - if (IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && - IsLegalToFold(PatternNodeWithChain, Parent, Root, OptLevel)) { - auto *MI = cast<MemIntrinsicSDNode>(PatternNodeWithChain); - return selectAddr(MI, MI->getBasePtr(), Base, Scale, Index, Disp, - Segment); - } - } - - // Need to make sure that the SCALAR_TO_VECTOR and load are both only used - // once. Otherwise the load might get duplicated and the chain output of the - // duplicate load will not be observed by all dependencies. - if (N.getOpcode() == ISD::SCALAR_TO_VECTOR && N.getNode()->hasOneUse()) { - PatternNodeWithChain = N.getOperand(0); - if (ISD::isNON_EXTLoad(PatternNodeWithChain.getNode()) && - IsProfitableToFold(PatternNodeWithChain, N.getNode(), Root) && - IsLegalToFold(PatternNodeWithChain, N.getNode(), Root, OptLevel)) { - LoadSDNode *LD = cast<LoadSDNode>(PatternNodeWithChain); - return selectAddr(LD, LD->getBasePtr(), Base, Scale, Index, Disp, - Segment); - } - } - - return false; -} - - bool X86DAGToDAGISel::selectMOV64Imm32(SDValue N, SDValue &Imm) { - if (const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) { - uint64_t ImmVal = CN->getZExtValue(); - if (!isUInt<32>(ImmVal)) - return false; - - Imm = CurDAG->getTargetConstant(ImmVal, SDLoc(N), MVT::i64); - return true; - } - // In static codegen with small code model, we can get the address of a label // into a register with 'movl' if (N->getOpcode() != X86ISD::Wrapper) @@ -2604,12 +2639,6 @@ bool X86DAGToDAGISel::selectTLSADDRAddr(SDValue N, SDValue &Base, } bool X86DAGToDAGISel::selectRelocImm(SDValue N, SDValue &Op) { - if (auto *CN = dyn_cast<ConstantSDNode>(N)) { - Op = CurDAG->getTargetConstant(CN->getAPIntValue(), SDLoc(CN), - N.getValueType()); - return true; - } - // Keep track of the original value type and whether this value was // truncated. If we see a truncation from pointer type to VT that truncates // bits that are known to be zero, we can use a narrow reference. @@ -3896,49 +3925,82 @@ bool X86DAGToDAGISel::tryShrinkShlLogicImm(SDNode *N) { return true; } -/// Convert vector increment or decrement to sub/add with an all-ones constant: -/// add X, <1, 1...> --> sub X, <-1, -1...> -/// sub X, <1, 1...> --> add X, <-1, -1...> -/// The all-ones vector constant can be materialized using a pcmpeq instruction -/// that is commonly recognized as an idiom (has no register dependency), so -/// that's better/smaller than loading a splat 1 constant. -bool X86DAGToDAGISel::combineIncDecVector(SDNode *Node) { - assert((Node->getOpcode() == ISD::ADD || Node->getOpcode() == ISD::SUB) && - "Unexpected opcode for increment/decrement transform"); - - EVT VT = Node->getValueType(0); - assert(VT.isVector() && "Should only be called for vectors."); - - SDValue X = Node->getOperand(0); - SDValue OneVec = Node->getOperand(1); +// Try to match two logic ops to a VPTERNLOG. +// FIXME: Handle inverted inputs? +// FIXME: Handle more complex patterns that use an operand more than once? +bool X86DAGToDAGISel::tryVPTERNLOG(SDNode *N) { + MVT NVT = N->getSimpleValueType(0); - APInt SplatVal; - if (!X86::isConstantSplat(OneVec, SplatVal) || !SplatVal.isOneValue()) + // Make sure we support VPTERNLOG. + if (!NVT.isVector() || !Subtarget->hasAVX512() || + NVT.getVectorElementType() == MVT::i1) return false; - SDLoc DL(Node); - SDValue OneConstant, AllOnesVec; + // We need VLX for 128/256-bit. + if (!(Subtarget->hasVLX() || NVT.is512BitVector())) + return false; - APInt Ones = APInt::getAllOnesValue(32); - assert(VT.getSizeInBits() % 32 == 0 && - "Expected bit count to be a multiple of 32"); - OneConstant = CurDAG->getConstant(Ones, DL, MVT::i32); - insertDAGNode(*CurDAG, X, OneConstant); + unsigned Opc1 = N->getOpcode(); + SDValue N0 = N->getOperand(0); + SDValue N1 = N->getOperand(1); - unsigned NumElts = VT.getSizeInBits() / 32; - assert(NumElts > 0 && "Expected to get non-empty vector."); - AllOnesVec = CurDAG->getSplatBuildVector(MVT::getVectorVT(MVT::i32, NumElts), - DL, OneConstant); - insertDAGNode(*CurDAG, X, AllOnesVec); + auto isLogicOp = [](unsigned Opc) { + return Opc == ISD::AND || Opc == ISD::OR || Opc == ISD::XOR || + Opc == X86ISD::ANDNP; + }; - AllOnesVec = CurDAG->getBitcast(VT, AllOnesVec); - insertDAGNode(*CurDAG, X, AllOnesVec); + SDValue A, B, C; + unsigned Opc2; + if (isLogicOp(N1.getOpcode()) && N1.hasOneUse()) { + Opc2 = N1.getOpcode(); + A = N0; + B = N1.getOperand(0); + C = N1.getOperand(1); + } else if (isLogicOp(N0.getOpcode()) && N0.hasOneUse()) { + Opc2 = N0.getOpcode(); + A = N1; + B = N0.getOperand(0); + C = N0.getOperand(1); + } else + return false; - unsigned NewOpcode = Node->getOpcode() == ISD::ADD ? ISD::SUB : ISD::ADD; - SDValue NewNode = CurDAG->getNode(NewOpcode, DL, VT, X, AllOnesVec); + uint64_t Imm; + switch (Opc1) { + default: llvm_unreachable("Unexpected opcode!"); + case ISD::AND: + switch (Opc2) { + default: llvm_unreachable("Unexpected opcode!"); + case ISD::AND: Imm = 0x80; break; + case ISD::OR: Imm = 0xe0; break; + case ISD::XOR: Imm = 0x60; break; + case X86ISD::ANDNP: Imm = 0x20; break; + } + break; + case ISD::OR: + switch (Opc2) { + default: llvm_unreachable("Unexpected opcode!"); + case ISD::AND: Imm = 0xf8; break; + case ISD::OR: Imm = 0xfe; break; + case ISD::XOR: Imm = 0xf6; break; + case X86ISD::ANDNP: Imm = 0xf2; break; + } + break; + case ISD::XOR: + switch (Opc2) { + default: llvm_unreachable("Unexpected opcode!"); + case ISD::AND: Imm = 0x78; break; + case ISD::OR: Imm = 0x1e; break; + case ISD::XOR: Imm = 0x96; break; + case X86ISD::ANDNP: Imm = 0xd2; break; + } + break; + } - ReplaceNode(Node, NewNode.getNode()); - SelectCode(NewNode.getNode()); + SDLoc DL(N); + SDValue New = CurDAG->getNode(X86ISD::VPTERNLOG, DL, NVT, A, B, C, + CurDAG->getTargetConstant(Imm, DL, MVT::i8)); + ReplaceNode(N, New.getNode()); + SelectCode(New.getNode()); return true; } @@ -4014,159 +4076,50 @@ bool X86DAGToDAGISel::shrinkAndImmediate(SDNode *And) { static unsigned getVPTESTMOpc(MVT TestVT, bool IsTestN, bool FoldedLoad, bool FoldedBCast, bool Masked) { - if (Masked) { - if (FoldedLoad) { - switch (TestVT.SimpleTy) { - default: llvm_unreachable("Unexpected VT!"); - case MVT::v16i8: - return IsTestN ? X86::VPTESTNMBZ128rmk : X86::VPTESTMBZ128rmk; - case MVT::v8i16: - return IsTestN ? X86::VPTESTNMWZ128rmk : X86::VPTESTMWZ128rmk; - case MVT::v4i32: - return IsTestN ? X86::VPTESTNMDZ128rmk : X86::VPTESTMDZ128rmk; - case MVT::v2i64: - return IsTestN ? X86::VPTESTNMQZ128rmk : X86::VPTESTMQZ128rmk; - case MVT::v32i8: - return IsTestN ? X86::VPTESTNMBZ256rmk : X86::VPTESTMBZ256rmk; - case MVT::v16i16: - return IsTestN ? X86::VPTESTNMWZ256rmk : X86::VPTESTMWZ256rmk; - case MVT::v8i32: - return IsTestN ? X86::VPTESTNMDZ256rmk : X86::VPTESTMDZ256rmk; - case MVT::v4i64: - return IsTestN ? X86::VPTESTNMQZ256rmk : X86::VPTESTMQZ256rmk; - case MVT::v64i8: - return IsTestN ? X86::VPTESTNMBZrmk : X86::VPTESTMBZrmk; - case MVT::v32i16: - return IsTestN ? X86::VPTESTNMWZrmk : X86::VPTESTMWZrmk; - case MVT::v16i32: - return IsTestN ? X86::VPTESTNMDZrmk : X86::VPTESTMDZrmk; - case MVT::v8i64: - return IsTestN ? X86::VPTESTNMQZrmk : X86::VPTESTMQZrmk; - } - } - - if (FoldedBCast) { - switch (TestVT.SimpleTy) { - default: llvm_unreachable("Unexpected VT!"); - case MVT::v4i32: - return IsTestN ? X86::VPTESTNMDZ128rmbk : X86::VPTESTMDZ128rmbk; - case MVT::v2i64: - return IsTestN ? X86::VPTESTNMQZ128rmbk : X86::VPTESTMQZ128rmbk; - case MVT::v8i32: - return IsTestN ? X86::VPTESTNMDZ256rmbk : X86::VPTESTMDZ256rmbk; - case MVT::v4i64: - return IsTestN ? X86::VPTESTNMQZ256rmbk : X86::VPTESTMQZ256rmbk; - case MVT::v16i32: - return IsTestN ? X86::VPTESTNMDZrmbk : X86::VPTESTMDZrmbk; - case MVT::v8i64: - return IsTestN ? X86::VPTESTNMQZrmbk : X86::VPTESTMQZrmbk; - } - } - - switch (TestVT.SimpleTy) { - default: llvm_unreachable("Unexpected VT!"); - case MVT::v16i8: - return IsTestN ? X86::VPTESTNMBZ128rrk : X86::VPTESTMBZ128rrk; - case MVT::v8i16: - return IsTestN ? X86::VPTESTNMWZ128rrk : X86::VPTESTMWZ128rrk; - case MVT::v4i32: - return IsTestN ? X86::VPTESTNMDZ128rrk : X86::VPTESTMDZ128rrk; - case MVT::v2i64: - return IsTestN ? X86::VPTESTNMQZ128rrk : X86::VPTESTMQZ128rrk; - case MVT::v32i8: - return IsTestN ? X86::VPTESTNMBZ256rrk : X86::VPTESTMBZ256rrk; - case MVT::v16i16: - return IsTestN ? X86::VPTESTNMWZ256rrk : X86::VPTESTMWZ256rrk; - case MVT::v8i32: - return IsTestN ? X86::VPTESTNMDZ256rrk : X86::VPTESTMDZ256rrk; - case MVT::v4i64: - return IsTestN ? X86::VPTESTNMQZ256rrk : X86::VPTESTMQZ256rrk; - case MVT::v64i8: - return IsTestN ? X86::VPTESTNMBZrrk : X86::VPTESTMBZrrk; - case MVT::v32i16: - return IsTestN ? X86::VPTESTNMWZrrk : X86::VPTESTMWZrrk; - case MVT::v16i32: - return IsTestN ? X86::VPTESTNMDZrrk : X86::VPTESTMDZrrk; - case MVT::v8i64: - return IsTestN ? X86::VPTESTNMQZrrk : X86::VPTESTMQZrrk; - } - } +#define VPTESTM_CASE(VT, SUFFIX) \ +case MVT::VT: \ + if (Masked) \ + return IsTestN ? X86::VPTESTNM##SUFFIX##k: X86::VPTESTM##SUFFIX##k; \ + return IsTestN ? X86::VPTESTNM##SUFFIX : X86::VPTESTM##SUFFIX; + + +#define VPTESTM_BROADCAST_CASES(SUFFIX) \ +default: llvm_unreachable("Unexpected VT!"); \ +VPTESTM_CASE(v4i32, DZ128##SUFFIX) \ +VPTESTM_CASE(v2i64, QZ128##SUFFIX) \ +VPTESTM_CASE(v8i32, DZ256##SUFFIX) \ +VPTESTM_CASE(v4i64, QZ256##SUFFIX) \ +VPTESTM_CASE(v16i32, DZ##SUFFIX) \ +VPTESTM_CASE(v8i64, QZ##SUFFIX) + +#define VPTESTM_FULL_CASES(SUFFIX) \ +VPTESTM_BROADCAST_CASES(SUFFIX) \ +VPTESTM_CASE(v16i8, BZ128##SUFFIX) \ +VPTESTM_CASE(v8i16, WZ128##SUFFIX) \ +VPTESTM_CASE(v32i8, BZ256##SUFFIX) \ +VPTESTM_CASE(v16i16, WZ256##SUFFIX) \ +VPTESTM_CASE(v64i8, BZ##SUFFIX) \ +VPTESTM_CASE(v32i16, WZ##SUFFIX) if (FoldedLoad) { switch (TestVT.SimpleTy) { - default: llvm_unreachable("Unexpected VT!"); - case MVT::v16i8: - return IsTestN ? X86::VPTESTNMBZ128rm : X86::VPTESTMBZ128rm; - case MVT::v8i16: - return IsTestN ? X86::VPTESTNMWZ128rm : X86::VPTESTMWZ128rm; - case MVT::v4i32: - return IsTestN ? X86::VPTESTNMDZ128rm : X86::VPTESTMDZ128rm; - case MVT::v2i64: - return IsTestN ? X86::VPTESTNMQZ128rm : X86::VPTESTMQZ128rm; - case MVT::v32i8: - return IsTestN ? X86::VPTESTNMBZ256rm : X86::VPTESTMBZ256rm; - case MVT::v16i16: - return IsTestN ? X86::VPTESTNMWZ256rm : X86::VPTESTMWZ256rm; - case MVT::v8i32: - return IsTestN ? X86::VPTESTNMDZ256rm : X86::VPTESTMDZ256rm; - case MVT::v4i64: - return IsTestN ? X86::VPTESTNMQZ256rm : X86::VPTESTMQZ256rm; - case MVT::v64i8: - return IsTestN ? X86::VPTESTNMBZrm : X86::VPTESTMBZrm; - case MVT::v32i16: - return IsTestN ? X86::VPTESTNMWZrm : X86::VPTESTMWZrm; - case MVT::v16i32: - return IsTestN ? X86::VPTESTNMDZrm : X86::VPTESTMDZrm; - case MVT::v8i64: - return IsTestN ? X86::VPTESTNMQZrm : X86::VPTESTMQZrm; + VPTESTM_FULL_CASES(rm) } } if (FoldedBCast) { switch (TestVT.SimpleTy) { - default: llvm_unreachable("Unexpected VT!"); - case MVT::v4i32: - return IsTestN ? X86::VPTESTNMDZ128rmb : X86::VPTESTMDZ128rmb; - case MVT::v2i64: - return IsTestN ? X86::VPTESTNMQZ128rmb : X86::VPTESTMQZ128rmb; - case MVT::v8i32: - return IsTestN ? X86::VPTESTNMDZ256rmb : X86::VPTESTMDZ256rmb; - case MVT::v4i64: - return IsTestN ? X86::VPTESTNMQZ256rmb : X86::VPTESTMQZ256rmb; - case MVT::v16i32: - return IsTestN ? X86::VPTESTNMDZrmb : X86::VPTESTMDZrmb; - case MVT::v8i64: - return IsTestN ? X86::VPTESTNMQZrmb : X86::VPTESTMQZrmb; + VPTESTM_BROADCAST_CASES(rmb) } } switch (TestVT.SimpleTy) { - default: llvm_unreachable("Unexpected VT!"); - case MVT::v16i8: - return IsTestN ? X86::VPTESTNMBZ128rr : X86::VPTESTMBZ128rr; - case MVT::v8i16: - return IsTestN ? X86::VPTESTNMWZ128rr : X86::VPTESTMWZ128rr; - case MVT::v4i32: - return IsTestN ? X86::VPTESTNMDZ128rr : X86::VPTESTMDZ128rr; - case MVT::v2i64: - return IsTestN ? X86::VPTESTNMQZ128rr : X86::VPTESTMQZ128rr; - case MVT::v32i8: - return IsTestN ? X86::VPTESTNMBZ256rr : X86::VPTESTMBZ256rr; - case MVT::v16i16: - return IsTestN ? X86::VPTESTNMWZ256rr : X86::VPTESTMWZ256rr; - case MVT::v8i32: - return IsTestN ? X86::VPTESTNMDZ256rr : X86::VPTESTMDZ256rr; - case MVT::v4i64: - return IsTestN ? X86::VPTESTNMQZ256rr : X86::VPTESTMQZ256rr; - case MVT::v64i8: - return IsTestN ? X86::VPTESTNMBZrr : X86::VPTESTMBZrr; - case MVT::v32i16: - return IsTestN ? X86::VPTESTNMWZrr : X86::VPTESTMWZrr; - case MVT::v16i32: - return IsTestN ? X86::VPTESTNMDZrr : X86::VPTESTMDZrr; - case MVT::v8i64: - return IsTestN ? X86::VPTESTNMQZrr : X86::VPTESTMQZrr; + VPTESTM_FULL_CASES(rr) } + +#undef VPTESTM_FULL_CASES +#undef VPTESTM_BROADCAST_CASES +#undef VPTESTM_CASE } // Try to create VPTESTM instruction. If InMask is not null, it will be used @@ -4477,8 +4430,39 @@ void X86DAGToDAGISel::Select(SDNode *Node) { break; } + case Intrinsic::x86_tileloadd64: + case Intrinsic::x86_tileloaddt164: + case Intrinsic::x86_tilestored64: { + if (!Subtarget->hasAMXTILE()) + break; + unsigned Opc; + switch (IntNo) { + default: llvm_unreachable("Unexpected intrinsic!"); + case Intrinsic::x86_tileloadd64: Opc = X86::PTILELOADD; break; + case Intrinsic::x86_tileloaddt164: Opc = X86::PTILELOADDT1; break; + case Intrinsic::x86_tilestored64: Opc = X86::PTILESTORED; break; + } + // FIXME: Match displacement and scale. + unsigned TIndex = Node->getConstantOperandVal(2); + SDValue TReg = getI8Imm(TIndex, dl); + SDValue Base = Node->getOperand(3); + SDValue Scale = getI8Imm(1, dl); + SDValue Index = Node->getOperand(4); + SDValue Disp = CurDAG->getTargetConstant(0, dl, MVT::i32); + SDValue Segment = CurDAG->getRegister(0, MVT::i16); + SDValue Chain = Node->getOperand(0); + MachineSDNode *CNode; + if (Opc == X86::PTILESTORED) { + SDValue Ops[] = { Base, Scale, Index, Disp, Segment, TReg, Chain }; + CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); + } else { + SDValue Ops[] = { TReg, Base, Scale, Index, Disp, Segment, Chain }; + CNode = CurDAG->getMachineNode(Opc, dl, MVT::Other, Ops); + } + ReplaceNode(Node, CNode); + return; + } } - break; } case ISD::BRIND: { @@ -4490,9 +4474,9 @@ void X86DAGToDAGISel::Select(SDNode *Node) { // Converts a 32-bit register to a 64-bit, zero-extended version of // it. This is needed because x86-64 can do many things, but jmp %r32 // ain't one of them. - const SDValue &Target = Node->getOperand(1); - assert(Target.getSimpleValueType() == llvm::MVT::i32); - SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, EVT(MVT::i64)); + SDValue Target = Node->getOperand(1); + assert(Target.getValueType() == MVT::i32 && "Unexpected VT!"); + SDValue ZextTarget = CurDAG->getZExtOrTrunc(Target, dl, MVT::i64); SDValue Brind = CurDAG->getNode(ISD::BRIND, dl, MVT::Other, Node->getOperand(0), ZextTarget); ReplaceNode(Node, Brind.getNode()); @@ -4516,21 +4500,6 @@ void X86DAGToDAGISel::Select(SDNode *Node) { } break; - case ISD::VSELECT: { - // Replace VSELECT with non-mask conditions with with BLENDV. - if (Node->getOperand(0).getValueType().getVectorElementType() == MVT::i1) - break; - - assert(Subtarget->hasSSE41() && "Expected SSE4.1 support!"); - SDValue Blendv = CurDAG->getNode( - X86ISD::BLENDV, SDLoc(Node), Node->getValueType(0), Node->getOperand(0), - Node->getOperand(1), Node->getOperand(2)); - ReplaceNode(Node, Blendv.getNode()); - SelectCode(Blendv.getNode()); - // We already called ReplaceUses. - return; - } - case ISD::SRL: if (matchBitExtract(Node)) return; @@ -4569,24 +4538,21 @@ void X86DAGToDAGISel::Select(SDNode *Node) { case ISD::XOR: if (tryShrinkShlLogicImm(Node)) return; - if (Opcode == ISD::OR && tryMatchBitSelect(Node)) return; + if (tryVPTERNLOG(Node)) + return; LLVM_FALLTHROUGH; case ISD::ADD: case ISD::SUB: { - if ((Opcode == ISD::ADD || Opcode == ISD::SUB) && NVT.isVector() && - combineIncDecVector(Node)) - return; - // Try to avoid folding immediates with multiple uses for optsize. // This code tries to select to register form directly to avoid going // through the isel table which might fold the immediate. We can't change // the patterns on the add/sub/and/or/xor with immediate paterns in the // tablegen files to check immediate use count without making the patterns // unavailable to the fast-isel table. - if (!OptForSize) + if (!CurDAG->shouldOptForSize()) break; // Only handle i8/i16/i32/i64. @@ -4720,7 +4686,7 @@ void X86DAGToDAGISel::Select(SDNode *Node) { SDValue Tmp0, Tmp1, Tmp2, Tmp3, Tmp4; bool FoldedLoad = tryFoldLoad(Node, N1, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); - // Multiply is commmutative. + // Multiply is commutative. if (!FoldedLoad) { FoldedLoad = tryFoldLoad(Node, N0, Tmp0, Tmp1, Tmp2, Tmp3, Tmp4); if (FoldedLoad) @@ -4772,31 +4738,31 @@ void X86DAGToDAGISel::Select(SDNode *Node) { SDValue N1 = Node->getOperand(1); unsigned Opc, MOpc; - bool isSigned = Opcode == ISD::SMUL_LOHI; - if (!isSigned) { - switch (NVT.SimpleTy) { - default: llvm_unreachable("Unsupported VT!"); - case MVT::i32: Opc = X86::MUL32r; MOpc = X86::MUL32m; break; - case MVT::i64: Opc = X86::MUL64r; MOpc = X86::MUL64m; break; - } - } else { - switch (NVT.SimpleTy) { - default: llvm_unreachable("Unsupported VT!"); - case MVT::i32: Opc = X86::IMUL32r; MOpc = X86::IMUL32m; break; - case MVT::i64: Opc = X86::IMUL64r; MOpc = X86::IMUL64m; break; - } - } - - unsigned SrcReg, LoReg, HiReg; - switch (Opc) { - default: llvm_unreachable("Unknown MUL opcode!"); - case X86::IMUL32r: - case X86::MUL32r: - SrcReg = LoReg = X86::EAX; HiReg = X86::EDX; + unsigned LoReg, HiReg; + bool IsSigned = Opcode == ISD::SMUL_LOHI; + bool UseMULX = !IsSigned && Subtarget->hasBMI2(); + bool UseMULXHi = UseMULX && SDValue(Node, 0).use_empty(); + switch (NVT.SimpleTy) { + default: llvm_unreachable("Unsupported VT!"); + case MVT::i32: + Opc = UseMULXHi ? X86::MULX32Hrr : + UseMULX ? X86::MULX32rr : + IsSigned ? X86::IMUL32r : X86::MUL32r; + MOpc = UseMULXHi ? X86::MULX32Hrm : + UseMULX ? X86::MULX32rm : + IsSigned ? X86::IMUL32m : X86::MUL32m; + LoReg = UseMULX ? X86::EDX : X86::EAX; + HiReg = X86::EDX; break; - case X86::IMUL64r: - case X86::MUL64r: - SrcReg = LoReg = X86::RAX; HiReg = X86::RDX; + case MVT::i64: + Opc = UseMULXHi ? X86::MULX64Hrr : + UseMULX ? X86::MULX64rr : + IsSigned ? X86::IMUL64r : X86::MUL64r; + MOpc = UseMULXHi ? X86::MULX64Hrm : + UseMULX ? X86::MULX64rm : + IsSigned ? X86::IMUL64m : X86::MUL64m; + LoReg = UseMULX ? X86::RDX : X86::RAX; + HiReg = X86::RDX; break; } @@ -4809,17 +4775,31 @@ void X86DAGToDAGISel::Select(SDNode *Node) { std::swap(N0, N1); } - SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, SrcReg, + SDValue InFlag = CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, LoReg, N0, SDValue()).getValue(1); + SDValue ResHi, ResLo; if (foldedLoad) { SDValue Chain; MachineSDNode *CNode = nullptr; SDValue Ops[] = { Tmp0, Tmp1, Tmp2, Tmp3, Tmp4, N1.getOperand(0), InFlag }; - SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); - CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); - Chain = SDValue(CNode, 0); - InFlag = SDValue(CNode, 1); + if (UseMULXHi) { + SDVTList VTs = CurDAG->getVTList(NVT, MVT::Other); + CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); + ResHi = SDValue(CNode, 0); + Chain = SDValue(CNode, 1); + } else if (UseMULX) { + SDVTList VTs = CurDAG->getVTList(NVT, NVT, MVT::Other); + CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); + ResHi = SDValue(CNode, 0); + ResLo = SDValue(CNode, 1); + Chain = SDValue(CNode, 2); + } else { + SDVTList VTs = CurDAG->getVTList(MVT::Other, MVT::Glue); + CNode = CurDAG->getMachineNode(MOpc, dl, VTs, Ops); + Chain = SDValue(CNode, 0); + InFlag = SDValue(CNode, 1); + } // Update the chain. ReplaceUses(N1.getValue(1), Chain); @@ -4827,27 +4807,42 @@ void X86DAGToDAGISel::Select(SDNode *Node) { CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); } else { SDValue Ops[] = { N1, InFlag }; - SDVTList VTs = CurDAG->getVTList(MVT::Glue); - SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); - InFlag = SDValue(CNode, 0); + if (UseMULXHi) { + SDVTList VTs = CurDAG->getVTList(NVT); + SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); + ResHi = SDValue(CNode, 0); + } else if (UseMULX) { + SDVTList VTs = CurDAG->getVTList(NVT, NVT); + SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); + ResHi = SDValue(CNode, 0); + ResLo = SDValue(CNode, 1); + } else { + SDVTList VTs = CurDAG->getVTList(MVT::Glue); + SDNode *CNode = CurDAG->getMachineNode(Opc, dl, VTs, Ops); + InFlag = SDValue(CNode, 0); + } } // Copy the low half of the result, if it is needed. if (!SDValue(Node, 0).use_empty()) { - assert(LoReg && "Register for low half is not defined!"); - SDValue ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, - NVT, InFlag); - InFlag = ResLo.getValue(2); + if (!ResLo) { + assert(LoReg && "Register for low half is not defined!"); + ResLo = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, LoReg, + NVT, InFlag); + InFlag = ResLo.getValue(2); + } ReplaceUses(SDValue(Node, 0), ResLo); LLVM_DEBUG(dbgs() << "=> "; ResLo.getNode()->dump(CurDAG); dbgs() << '\n'); } // Copy the high half of the result, if it is needed. if (!SDValue(Node, 1).use_empty()) { - assert(HiReg && "Register for high half is not defined!"); - SDValue ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, - NVT, InFlag); - InFlag = ResHi.getValue(2); + if (!ResHi) { + assert(HiReg && "Register for high half is not defined!"); + ResHi = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), dl, HiReg, + NVT, InFlag); + InFlag = ResHi.getValue(2); + } ReplaceUses(SDValue(Node, 1), ResHi); LLVM_DEBUG(dbgs() << "=> "; ResHi.getNode()->dump(CurDAG); dbgs() << '\n'); @@ -4862,23 +4857,23 @@ void X86DAGToDAGISel::Select(SDNode *Node) { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); - unsigned Opc, MOpc; + unsigned ROpc, MOpc; bool isSigned = Opcode == ISD::SDIVREM; if (!isSigned) { switch (NVT.SimpleTy) { default: llvm_unreachable("Unsupported VT!"); - case MVT::i8: Opc = X86::DIV8r; MOpc = X86::DIV8m; break; - case MVT::i16: Opc = X86::DIV16r; MOpc = X86::DIV16m; break; - case MVT::i32: Opc = X86::DIV32r; MOpc = X86::DIV32m; break; - case MVT::i64: Opc = X86::DIV64r; MOpc = X86::DIV64m; break; + case MVT::i8: ROpc = X86::DIV8r; MOpc = X86::DIV8m; break; + case MVT::i16: ROpc = X86::DIV16r; MOpc = X86::DIV16m; break; + case MVT::i32: ROpc = X86::DIV32r; MOpc = X86::DIV32m; break; + case MVT::i64: ROpc = X86::DIV64r; MOpc = X86::DIV64m; break; } } else { switch (NVT.SimpleTy) { default: llvm_unreachable("Unsupported VT!"); - case MVT::i8: Opc = X86::IDIV8r; MOpc = X86::IDIV8m; break; - case MVT::i16: Opc = X86::IDIV16r; MOpc = X86::IDIV16m; break; - case MVT::i32: Opc = X86::IDIV32r; MOpc = X86::IDIV32m; break; - case MVT::i64: Opc = X86::IDIV64r; MOpc = X86::IDIV64m; break; + case MVT::i8: ROpc = X86::IDIV8r; MOpc = X86::IDIV8m; break; + case MVT::i16: ROpc = X86::IDIV16r; MOpc = X86::IDIV16m; break; + case MVT::i32: ROpc = X86::IDIV32r; MOpc = X86::IDIV32m; break; + case MVT::i64: ROpc = X86::IDIV64r; MOpc = X86::IDIV64m; break; } } @@ -4943,7 +4938,9 @@ void X86DAGToDAGISel::Select(SDNode *Node) { SDValue(CurDAG->getMachineNode(SExtOpcode, dl, MVT::Glue, InFlag),0); } else { // Zero out the high part, effectively zero extending the input. - SDValue ClrNode = SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, NVT), 0); + SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32); + SDValue ClrNode = + SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0); switch (NVT.SimpleTy) { case MVT::i16: ClrNode = @@ -4985,7 +4982,7 @@ void X86DAGToDAGISel::Select(SDNode *Node) { CurDAG->setNodeMemRefs(CNode, {cast<LoadSDNode>(N1)->getMemOperand()}); } else { InFlag = - SDValue(CurDAG->getMachineNode(Opc, dl, MVT::Glue, N1, InFlag), 0); + SDValue(CurDAG->getMachineNode(ROpc, dl, MVT::Glue, N1, InFlag), 0); } // Prevent use of AH in a REX instruction by explicitly copying it to @@ -5034,6 +5031,77 @@ void X86DAGToDAGISel::Select(SDNode *Node) { return; } + case X86ISD::FCMP: + case X86ISD::STRICT_FCMP: + case X86ISD::STRICT_FCMPS: { + bool IsStrictCmp = Node->getOpcode() == X86ISD::STRICT_FCMP || + Node->getOpcode() == X86ISD::STRICT_FCMPS; + SDValue N0 = Node->getOperand(IsStrictCmp ? 1 : 0); + SDValue N1 = Node->getOperand(IsStrictCmp ? 2 : 1); + + // Save the original VT of the compare. + MVT CmpVT = N0.getSimpleValueType(); + + // Floating point needs special handling if we don't have FCOMI. + if (Subtarget->hasCMov()) + break; + + bool IsSignaling = Node->getOpcode() == X86ISD::STRICT_FCMPS; + + unsigned Opc; + switch (CmpVT.SimpleTy) { + default: llvm_unreachable("Unexpected type!"); + case MVT::f32: + Opc = IsSignaling ? X86::COM_Fpr32 : X86::UCOM_Fpr32; + break; + case MVT::f64: + Opc = IsSignaling ? X86::COM_Fpr64 : X86::UCOM_Fpr64; + break; + case MVT::f80: + Opc = IsSignaling ? X86::COM_Fpr80 : X86::UCOM_Fpr80; + break; + } + + SDValue Cmp; + SDValue Chain = + IsStrictCmp ? Node->getOperand(0) : CurDAG->getEntryNode(); + if (IsStrictCmp) { + SDVTList VTs = CurDAG->getVTList(MVT::i16, MVT::Other); + Cmp = SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {N0, N1, Chain}), 0); + Chain = Cmp.getValue(1); + } else { + Cmp = SDValue(CurDAG->getMachineNode(Opc, dl, MVT::i16, N0, N1), 0); + } + + // Move FPSW to AX. + SDValue FPSW = CurDAG->getCopyToReg(Chain, dl, X86::FPSW, Cmp, SDValue()); + Chain = FPSW; + SDValue FNSTSW = + SDValue(CurDAG->getMachineNode(X86::FNSTSW16r, dl, MVT::i16, FPSW, + FPSW.getValue(1)), + 0); + + // Extract upper 8-bits of AX. + SDValue Extract = + CurDAG->getTargetExtractSubreg(X86::sub_8bit_hi, dl, MVT::i8, FNSTSW); + + // Move AH into flags. + // Some 64-bit targets lack SAHF support, but they do support FCOMI. + assert(Subtarget->hasLAHFSAHF() && + "Target doesn't support SAHF or FCOMI?"); + SDValue AH = CurDAG->getCopyToReg(Chain, dl, X86::AH, Extract, SDValue()); + Chain = AH; + SDValue SAHF = SDValue( + CurDAG->getMachineNode(X86::SAHF, dl, MVT::i32, AH.getValue(1)), 0); + + if (IsStrictCmp) + ReplaceUses(SDValue(Node, 1), Chain); + + ReplaceUses(SDValue(Node, 0), SAHF); + CurDAG->RemoveDeadNode(Node); + return; + } + case X86ISD::CMP: { SDValue N0 = Node->getOperand(0); SDValue N1 = Node->getOperand(1); @@ -5267,6 +5335,279 @@ void X86DAGToDAGISel::Select(SDNode *Node) { if (foldLoadStoreIntoMemOperand(Node)) return; break; + + case X86ISD::SETCC_CARRY: { + // We have to do this manually because tblgen will put the eflags copy in + // the wrong place if we use an extract_subreg in the pattern. + MVT VT = Node->getSimpleValueType(0); + + // Copy flags to the EFLAGS register and glue it to next node. + SDValue EFLAGS = + CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS, + Node->getOperand(1), SDValue()); + + // Create a 64-bit instruction if the result is 64-bits otherwise use the + // 32-bit version. + unsigned Opc = VT == MVT::i64 ? X86::SETB_C64r : X86::SETB_C32r; + MVT SetVT = VT == MVT::i64 ? MVT::i64 : MVT::i32; + SDValue Result = SDValue( + CurDAG->getMachineNode(Opc, dl, SetVT, EFLAGS, EFLAGS.getValue(1)), 0); + + // For less than 32-bits we need to extract from the 32-bit node. + if (VT == MVT::i8 || VT == MVT::i16) { + int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit; + Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result); + } + + ReplaceUses(SDValue(Node, 0), Result); + CurDAG->RemoveDeadNode(Node); + return; + } + case X86ISD::SBB: { + if (isNullConstant(Node->getOperand(0)) && + isNullConstant(Node->getOperand(1))) { + MVT VT = Node->getSimpleValueType(0); + + // Create zero. + SDVTList VTs = CurDAG->getVTList(MVT::i32, MVT::i32); + SDValue Zero = + SDValue(CurDAG->getMachineNode(X86::MOV32r0, dl, VTs, None), 0); + if (VT == MVT::i64) { + Zero = SDValue( + CurDAG->getMachineNode( + TargetOpcode::SUBREG_TO_REG, dl, MVT::i64, + CurDAG->getTargetConstant(0, dl, MVT::i64), Zero, + CurDAG->getTargetConstant(X86::sub_32bit, dl, MVT::i32)), + 0); + } + + // Copy flags to the EFLAGS register and glue it to next node. + SDValue EFLAGS = + CurDAG->getCopyToReg(CurDAG->getEntryNode(), dl, X86::EFLAGS, + Node->getOperand(2), SDValue()); + + // Create a 64-bit instruction if the result is 64-bits otherwise use the + // 32-bit version. + unsigned Opc = VT == MVT::i64 ? X86::SBB64rr : X86::SBB32rr; + MVT SBBVT = VT == MVT::i64 ? MVT::i64 : MVT::i32; + VTs = CurDAG->getVTList(SBBVT, MVT::i32); + SDValue Result = + SDValue(CurDAG->getMachineNode(Opc, dl, VTs, {Zero, Zero, EFLAGS, + EFLAGS.getValue(1)}), + 0); + + // Replace the flag use. + ReplaceUses(SDValue(Node, 1), Result.getValue(1)); + + // Replace the result use. + if (!SDValue(Node, 0).use_empty()) { + // For less than 32-bits we need to extract from the 32-bit node. + if (VT == MVT::i8 || VT == MVT::i16) { + int SubIndex = VT == MVT::i16 ? X86::sub_16bit : X86::sub_8bit; + Result = CurDAG->getTargetExtractSubreg(SubIndex, dl, VT, Result); + } + ReplaceUses(SDValue(Node, 0), Result); + } + + CurDAG->RemoveDeadNode(Node); + return; + } + break; + } + case X86ISD::MGATHER: { + auto *Mgt = cast<X86MaskedGatherSDNode>(Node); + SDValue IndexOp = Mgt->getIndex(); + SDValue Mask = Mgt->getMask(); + MVT IndexVT = IndexOp.getSimpleValueType(); + MVT ValueVT = Node->getSimpleValueType(0); + MVT MaskVT = Mask.getSimpleValueType(); + + // This is just to prevent crashes if the nodes are malformed somehow. We're + // otherwise only doing loose type checking in here based on type what + // a type constraint would say just like table based isel. + if (!ValueVT.isVector() || !MaskVT.isVector()) + break; + + unsigned NumElts = ValueVT.getVectorNumElements(); + MVT ValueSVT = ValueVT.getVectorElementType(); + + bool IsFP = ValueSVT.isFloatingPoint(); + unsigned EltSize = ValueSVT.getSizeInBits(); + + unsigned Opc = 0; + bool AVX512Gather = MaskVT.getVectorElementType() == MVT::i1; + if (AVX512Gather) { + if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32) + Opc = IsFP ? X86::VGATHERDPSZ128rm : X86::VPGATHERDDZ128rm; + else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32) + Opc = IsFP ? X86::VGATHERDPSZ256rm : X86::VPGATHERDDZ256rm; + else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32) + Opc = IsFP ? X86::VGATHERDPSZrm : X86::VPGATHERDDZrm; + else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64) + Opc = IsFP ? X86::VGATHERDPDZ128rm : X86::VPGATHERDQZ128rm; + else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64) + Opc = IsFP ? X86::VGATHERDPDZ256rm : X86::VPGATHERDQZ256rm; + else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64) + Opc = IsFP ? X86::VGATHERDPDZrm : X86::VPGATHERDQZrm; + else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32) + Opc = IsFP ? X86::VGATHERQPSZ128rm : X86::VPGATHERQDZ128rm; + else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32) + Opc = IsFP ? X86::VGATHERQPSZ256rm : X86::VPGATHERQDZ256rm; + else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32) + Opc = IsFP ? X86::VGATHERQPSZrm : X86::VPGATHERQDZrm; + else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64) + Opc = IsFP ? X86::VGATHERQPDZ128rm : X86::VPGATHERQQZ128rm; + else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64) + Opc = IsFP ? X86::VGATHERQPDZ256rm : X86::VPGATHERQQZ256rm; + else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64) + Opc = IsFP ? X86::VGATHERQPDZrm : X86::VPGATHERQQZrm; + } else { + assert(EVT(MaskVT) == EVT(ValueVT).changeVectorElementTypeToInteger() && + "Unexpected mask VT!"); + if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32) + Opc = IsFP ? X86::VGATHERDPSrm : X86::VPGATHERDDrm; + else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32) + Opc = IsFP ? X86::VGATHERDPSYrm : X86::VPGATHERDDYrm; + else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64) + Opc = IsFP ? X86::VGATHERDPDrm : X86::VPGATHERDQrm; + else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64) + Opc = IsFP ? X86::VGATHERDPDYrm : X86::VPGATHERDQYrm; + else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32) + Opc = IsFP ? X86::VGATHERQPSrm : X86::VPGATHERQDrm; + else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32) + Opc = IsFP ? X86::VGATHERQPSYrm : X86::VPGATHERQDYrm; + else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64) + Opc = IsFP ? X86::VGATHERQPDrm : X86::VPGATHERQQrm; + else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64) + Opc = IsFP ? X86::VGATHERQPDYrm : X86::VPGATHERQQYrm; + } + + if (!Opc) + break; + + SDValue Base, Scale, Index, Disp, Segment; + if (!selectVectorAddr(Mgt, Mgt->getBasePtr(), IndexOp, Mgt->getScale(), + Base, Scale, Index, Disp, Segment)) + break; + + SDValue PassThru = Mgt->getPassThru(); + SDValue Chain = Mgt->getChain(); + // Gather instructions have a mask output not in the ISD node. + SDVTList VTs = CurDAG->getVTList(ValueVT, MaskVT, MVT::Other); + + MachineSDNode *NewNode; + if (AVX512Gather) { + SDValue Ops[] = {PassThru, Mask, Base, Scale, + Index, Disp, Segment, Chain}; + NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops); + } else { + SDValue Ops[] = {PassThru, Base, Scale, Index, + Disp, Segment, Mask, Chain}; + NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops); + } + CurDAG->setNodeMemRefs(NewNode, {Mgt->getMemOperand()}); + ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 0)); + ReplaceUses(SDValue(Node, 1), SDValue(NewNode, 2)); + CurDAG->RemoveDeadNode(Node); + return; + } + case X86ISD::MSCATTER: { + auto *Sc = cast<X86MaskedScatterSDNode>(Node); + SDValue Value = Sc->getValue(); + SDValue IndexOp = Sc->getIndex(); + MVT IndexVT = IndexOp.getSimpleValueType(); + MVT ValueVT = Value.getSimpleValueType(); + + // This is just to prevent crashes if the nodes are malformed somehow. We're + // otherwise only doing loose type checking in here based on type what + // a type constraint would say just like table based isel. + if (!ValueVT.isVector()) + break; + + unsigned NumElts = ValueVT.getVectorNumElements(); + MVT ValueSVT = ValueVT.getVectorElementType(); + + bool IsFP = ValueSVT.isFloatingPoint(); + unsigned EltSize = ValueSVT.getSizeInBits(); + + unsigned Opc; + if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 32) + Opc = IsFP ? X86::VSCATTERDPSZ128mr : X86::VPSCATTERDDZ128mr; + else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 32) + Opc = IsFP ? X86::VSCATTERDPSZ256mr : X86::VPSCATTERDDZ256mr; + else if (IndexVT == MVT::v16i32 && NumElts == 16 && EltSize == 32) + Opc = IsFP ? X86::VSCATTERDPSZmr : X86::VPSCATTERDDZmr; + else if (IndexVT == MVT::v4i32 && NumElts == 2 && EltSize == 64) + Opc = IsFP ? X86::VSCATTERDPDZ128mr : X86::VPSCATTERDQZ128mr; + else if (IndexVT == MVT::v4i32 && NumElts == 4 && EltSize == 64) + Opc = IsFP ? X86::VSCATTERDPDZ256mr : X86::VPSCATTERDQZ256mr; + else if (IndexVT == MVT::v8i32 && NumElts == 8 && EltSize == 64) + Opc = IsFP ? X86::VSCATTERDPDZmr : X86::VPSCATTERDQZmr; + else if (IndexVT == MVT::v2i64 && NumElts == 4 && EltSize == 32) + Opc = IsFP ? X86::VSCATTERQPSZ128mr : X86::VPSCATTERQDZ128mr; + else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 32) + Opc = IsFP ? X86::VSCATTERQPSZ256mr : X86::VPSCATTERQDZ256mr; + else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 32) + Opc = IsFP ? X86::VSCATTERQPSZmr : X86::VPSCATTERQDZmr; + else if (IndexVT == MVT::v2i64 && NumElts == 2 && EltSize == 64) + Opc = IsFP ? X86::VSCATTERQPDZ128mr : X86::VPSCATTERQQZ128mr; + else if (IndexVT == MVT::v4i64 && NumElts == 4 && EltSize == 64) + Opc = IsFP ? X86::VSCATTERQPDZ256mr : X86::VPSCATTERQQZ256mr; + else if (IndexVT == MVT::v8i64 && NumElts == 8 && EltSize == 64) + Opc = IsFP ? X86::VSCATTERQPDZmr : X86::VPSCATTERQQZmr; + else + break; + + SDValue Base, Scale, Index, Disp, Segment; + if (!selectVectorAddr(Sc, Sc->getBasePtr(), IndexOp, Sc->getScale(), + Base, Scale, Index, Disp, Segment)) + break; + + SDValue Mask = Sc->getMask(); + SDValue Chain = Sc->getChain(); + // Scatter instructions have a mask output not in the ISD node. + SDVTList VTs = CurDAG->getVTList(Mask.getValueType(), MVT::Other); + SDValue Ops[] = {Base, Scale, Index, Disp, Segment, Mask, Value, Chain}; + + MachineSDNode *NewNode = CurDAG->getMachineNode(Opc, SDLoc(dl), VTs, Ops); + CurDAG->setNodeMemRefs(NewNode, {Sc->getMemOperand()}); + ReplaceUses(SDValue(Node, 0), SDValue(NewNode, 1)); + CurDAG->RemoveDeadNode(Node); + return; + } + case ISD::PREALLOCATED_SETUP: { + auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>(); + auto CallId = MFI->getPreallocatedIdForCallSite( + cast<SrcValueSDNode>(Node->getOperand(1))->getValue()); + SDValue Chain = Node->getOperand(0); + SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32); + MachineSDNode *New = CurDAG->getMachineNode( + TargetOpcode::PREALLOCATED_SETUP, dl, MVT::Other, CallIdValue, Chain); + ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Chain + CurDAG->RemoveDeadNode(Node); + return; + } + case ISD::PREALLOCATED_ARG: { + auto *MFI = CurDAG->getMachineFunction().getInfo<X86MachineFunctionInfo>(); + auto CallId = MFI->getPreallocatedIdForCallSite( + cast<SrcValueSDNode>(Node->getOperand(1))->getValue()); + SDValue Chain = Node->getOperand(0); + SDValue CallIdValue = CurDAG->getTargetConstant(CallId, dl, MVT::i32); + SDValue ArgIndex = Node->getOperand(2); + SDValue Ops[3]; + Ops[0] = CallIdValue; + Ops[1] = ArgIndex; + Ops[2] = Chain; + MachineSDNode *New = CurDAG->getMachineNode( + TargetOpcode::PREALLOCATED_ARG, dl, + CurDAG->getVTList(TLI->getPointerTy(CurDAG->getDataLayout()), + MVT::Other), + Ops); + ReplaceUses(SDValue(Node, 0), SDValue(New, 0)); // Arg pointer + ReplaceUses(SDValue(Node, 1), SDValue(New, 1)); // Chain + CurDAG->RemoveDeadNode(Node); + return; + } } SelectCode(Node); |