summaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86/X86LoadValueInjectionLoadHardening.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Target/X86/X86LoadValueInjectionLoadHardening.cpp')
-rw-r--r--llvm/lib/Target/X86/X86LoadValueInjectionLoadHardening.cpp824
1 files changed, 824 insertions, 0 deletions
diff --git a/llvm/lib/Target/X86/X86LoadValueInjectionLoadHardening.cpp b/llvm/lib/Target/X86/X86LoadValueInjectionLoadHardening.cpp
new file mode 100644
index 0000000000000..50f8b3477acce
--- /dev/null
+++ b/llvm/lib/Target/X86/X86LoadValueInjectionLoadHardening.cpp
@@ -0,0 +1,824 @@
+//==-- X86LoadValueInjectionLoadHardening.cpp - LVI load hardening for x86 --=//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// Description: This pass finds Load Value Injection (LVI) gadgets consisting
+/// of a load from memory (i.e., SOURCE), and any operation that may transmit
+/// the value loaded from memory over a covert channel, or use the value loaded
+/// from memory to determine a branch/call target (i.e., SINK). After finding
+/// all such gadgets in a given function, the pass minimally inserts LFENCE
+/// instructions in such a manner that the following property is satisfied: for
+/// all SOURCE+SINK pairs, all paths in the CFG from SOURCE to SINK contain at
+/// least one LFENCE instruction. The algorithm that implements this minimal
+/// insertion is influenced by an academic paper that minimally inserts memory
+/// fences for high-performance concurrent programs:
+/// http://www.cs.ucr.edu/~lesani/companion/oopsla15/OOPSLA15.pdf
+/// The algorithm implemented in this pass is as follows:
+/// 1. Build a condensed CFG (i.e., a GadgetGraph) consisting only of the
+/// following components:
+/// - SOURCE instructions (also includes function arguments)
+/// - SINK instructions
+/// - Basic block entry points
+/// - Basic block terminators
+/// - LFENCE instructions
+/// 2. Analyze the GadgetGraph to determine which SOURCE+SINK pairs (i.e.,
+/// gadgets) are already mitigated by existing LFENCEs. If all gadgets have been
+/// mitigated, go to step 6.
+/// 3. Use a heuristic or plugin to approximate minimal LFENCE insertion.
+/// 4. Insert one LFENCE along each CFG edge that was cut in step 3.
+/// 5. Go to step 2.
+/// 6. If any LFENCEs were inserted, return `true` from runOnMachineFunction()
+/// to tell LLVM that the function was modified.
+///
+//===----------------------------------------------------------------------===//
+
+#include "ImmutableGraph.h"
+#include "X86.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominanceFrontier.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/RDFGraph.h"
+#include "llvm/CodeGen/RDFLiveness.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/DOTGraphTraits.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/DynamicLibrary.h"
+#include "llvm/Support/GraphWriter.h"
+#include "llvm/Support/raw_ostream.h"
+
+using namespace llvm;
+
+#define PASS_KEY "x86-lvi-load"
+#define DEBUG_TYPE PASS_KEY
+
+STATISTIC(NumFences, "Number of LFENCEs inserted for LVI mitigation");
+STATISTIC(NumFunctionsConsidered, "Number of functions analyzed");
+STATISTIC(NumFunctionsMitigated, "Number of functions for which mitigations "
+ "were deployed");
+STATISTIC(NumGadgets, "Number of LVI gadgets detected during analysis");
+
+static cl::opt<std::string> OptimizePluginPath(
+ PASS_KEY "-opt-plugin",
+ cl::desc("Specify a plugin to optimize LFENCE insertion"), cl::Hidden);
+
+static cl::opt<bool> NoConditionalBranches(
+ PASS_KEY "-no-cbranch",
+ cl::desc("Don't treat conditional branches as disclosure gadgets. This "
+ "may improve performance, at the cost of security."),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool> EmitDot(
+ PASS_KEY "-dot",
+ cl::desc(
+ "For each function, emit a dot graph depicting potential LVI gadgets"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool> EmitDotOnly(
+ PASS_KEY "-dot-only",
+ cl::desc("For each function, emit a dot graph depicting potential LVI "
+ "gadgets, and do not insert any fences"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool> EmitDotVerify(
+ PASS_KEY "-dot-verify",
+ cl::desc("For each function, emit a dot graph to stdout depicting "
+ "potential LVI gadgets, used for testing purposes only"),
+ cl::init(false), cl::Hidden);
+
+static llvm::sys::DynamicLibrary OptimizeDL;
+typedef int (*OptimizeCutT)(unsigned int *nodes, unsigned int nodes_size,
+ unsigned int *edges, int *edge_values,
+ int *cut_edges /* out */, unsigned int edges_size);
+static OptimizeCutT OptimizeCut = nullptr;
+
+namespace {
+
+struct MachineGadgetGraph : ImmutableGraph<MachineInstr *, int> {
+ static constexpr int GadgetEdgeSentinel = -1;
+ static constexpr MachineInstr *const ArgNodeSentinel = nullptr;
+
+ using GraphT = ImmutableGraph<MachineInstr *, int>;
+ using Node = typename GraphT::Node;
+ using Edge = typename GraphT::Edge;
+ using size_type = typename GraphT::size_type;
+ MachineGadgetGraph(std::unique_ptr<Node[]> Nodes,
+ std::unique_ptr<Edge[]> Edges, size_type NodesSize,
+ size_type EdgesSize, int NumFences = 0, int NumGadgets = 0)
+ : GraphT(std::move(Nodes), std::move(Edges), NodesSize, EdgesSize),
+ NumFences(NumFences), NumGadgets(NumGadgets) {}
+ static inline bool isCFGEdge(const Edge &E) {
+ return E.getValue() != GadgetEdgeSentinel;
+ }
+ static inline bool isGadgetEdge(const Edge &E) {
+ return E.getValue() == GadgetEdgeSentinel;
+ }
+ int NumFences;
+ int NumGadgets;
+};
+
+class X86LoadValueInjectionLoadHardeningPass : public MachineFunctionPass {
+public:
+ X86LoadValueInjectionLoadHardeningPass() : MachineFunctionPass(ID) {}
+
+ StringRef getPassName() const override {
+ return "X86 Load Value Injection (LVI) Load Hardening";
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ static char ID;
+
+private:
+ using GraphBuilder = ImmutableGraphBuilder<MachineGadgetGraph>;
+ using EdgeSet = MachineGadgetGraph::EdgeSet;
+ using NodeSet = MachineGadgetGraph::NodeSet;
+ using Gadget = std::pair<MachineInstr *, MachineInstr *>;
+
+ const X86Subtarget *STI;
+ const TargetInstrInfo *TII;
+ const TargetRegisterInfo *TRI;
+
+ std::unique_ptr<MachineGadgetGraph>
+ getGadgetGraph(MachineFunction &MF, const MachineLoopInfo &MLI,
+ const MachineDominatorTree &MDT,
+ const MachineDominanceFrontier &MDF) const;
+ int hardenLoadsWithPlugin(MachineFunction &MF,
+ std::unique_ptr<MachineGadgetGraph> Graph) const;
+ int hardenLoadsWithGreedyHeuristic(
+ MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const;
+ int elimMitigatedEdgesAndNodes(MachineGadgetGraph &G,
+ EdgeSet &ElimEdges /* in, out */,
+ NodeSet &ElimNodes /* in, out */) const;
+ std::unique_ptr<MachineGadgetGraph>
+ trimMitigatedEdges(std::unique_ptr<MachineGadgetGraph> Graph) const;
+ void findAndCutEdges(MachineGadgetGraph &G,
+ EdgeSet &CutEdges /* out */) const;
+ int insertFences(MachineFunction &MF, MachineGadgetGraph &G,
+ EdgeSet &CutEdges /* in, out */) const;
+ bool instrUsesRegToAccessMemory(const MachineInstr &I, unsigned Reg) const;
+ bool instrUsesRegToBranch(const MachineInstr &I, unsigned Reg) const;
+ inline bool isFence(const MachineInstr *MI) const {
+ return MI && (MI->getOpcode() == X86::LFENCE ||
+ (STI->useLVIControlFlowIntegrity() && MI->isCall()));
+ }
+};
+
+} // end anonymous namespace
+
+namespace llvm {
+
+template <>
+struct GraphTraits<MachineGadgetGraph *>
+ : GraphTraits<ImmutableGraph<MachineInstr *, int> *> {};
+
+template <>
+struct DOTGraphTraits<MachineGadgetGraph *> : DefaultDOTGraphTraits {
+ using GraphType = MachineGadgetGraph;
+ using Traits = llvm::GraphTraits<GraphType *>;
+ using NodeRef = typename Traits::NodeRef;
+ using EdgeRef = typename Traits::EdgeRef;
+ using ChildIteratorType = typename Traits::ChildIteratorType;
+ using ChildEdgeIteratorType = typename Traits::ChildEdgeIteratorType;
+
+ DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
+
+ std::string getNodeLabel(NodeRef Node, GraphType *) {
+ if (Node->getValue() == MachineGadgetGraph::ArgNodeSentinel)
+ return "ARGS";
+
+ std::string Str;
+ raw_string_ostream OS(Str);
+ OS << *Node->getValue();
+ return OS.str();
+ }
+
+ static std::string getNodeAttributes(NodeRef Node, GraphType *) {
+ MachineInstr *MI = Node->getValue();
+ if (MI == MachineGadgetGraph::ArgNodeSentinel)
+ return "color = blue";
+ if (MI->getOpcode() == X86::LFENCE)
+ return "color = green";
+ return "";
+ }
+
+ static std::string getEdgeAttributes(NodeRef, ChildIteratorType E,
+ GraphType *) {
+ int EdgeVal = (*E.getCurrent()).getValue();
+ return EdgeVal >= 0 ? "label = " + std::to_string(EdgeVal)
+ : "color = red, style = \"dashed\"";
+ }
+};
+
+} // end namespace llvm
+
+constexpr MachineInstr *MachineGadgetGraph::ArgNodeSentinel;
+constexpr int MachineGadgetGraph::GadgetEdgeSentinel;
+
+char X86LoadValueInjectionLoadHardeningPass::ID = 0;
+
+void X86LoadValueInjectionLoadHardeningPass::getAnalysisUsage(
+ AnalysisUsage &AU) const {
+ MachineFunctionPass::getAnalysisUsage(AU);
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachineDominanceFrontier>();
+ AU.setPreservesCFG();
+}
+
+static void WriteGadgetGraph(raw_ostream &OS, MachineFunction &MF,
+ MachineGadgetGraph *G) {
+ WriteGraph(OS, G, /*ShortNames*/ false,
+ "Speculative gadgets for \"" + MF.getName() + "\" function");
+}
+
+bool X86LoadValueInjectionLoadHardeningPass::runOnMachineFunction(
+ MachineFunction &MF) {
+ LLVM_DEBUG(dbgs() << "***** " << getPassName() << " : " << MF.getName()
+ << " *****\n");
+ STI = &MF.getSubtarget<X86Subtarget>();
+ if (!STI->useLVILoadHardening())
+ return false;
+
+ // FIXME: support 32-bit
+ if (!STI->is64Bit())
+ report_fatal_error("LVI load hardening is only supported on 64-bit", false);
+
+ // Don't skip functions with the "optnone" attr but participate in opt-bisect.
+ const Function &F = MF.getFunction();
+ if (!F.hasOptNone() && skipFunction(F))
+ return false;
+
+ ++NumFunctionsConsidered;
+ TII = STI->getInstrInfo();
+ TRI = STI->getRegisterInfo();
+ LLVM_DEBUG(dbgs() << "Building gadget graph...\n");
+ const auto &MLI = getAnalysis<MachineLoopInfo>();
+ const auto &MDT = getAnalysis<MachineDominatorTree>();
+ const auto &MDF = getAnalysis<MachineDominanceFrontier>();
+ std::unique_ptr<MachineGadgetGraph> Graph = getGadgetGraph(MF, MLI, MDT, MDF);
+ LLVM_DEBUG(dbgs() << "Building gadget graph... Done\n");
+ if (Graph == nullptr)
+ return false; // didn't find any gadgets
+
+ if (EmitDotVerify) {
+ WriteGadgetGraph(outs(), MF, Graph.get());
+ return false;
+ }
+
+ if (EmitDot || EmitDotOnly) {
+ LLVM_DEBUG(dbgs() << "Emitting gadget graph...\n");
+ std::error_code FileError;
+ std::string FileName = "lvi.";
+ FileName += MF.getName();
+ FileName += ".dot";
+ raw_fd_ostream FileOut(FileName, FileError);
+ if (FileError)
+ errs() << FileError.message();
+ WriteGadgetGraph(FileOut, MF, Graph.get());
+ FileOut.close();
+ LLVM_DEBUG(dbgs() << "Emitting gadget graph... Done\n");
+ if (EmitDotOnly)
+ return false;
+ }
+
+ int FencesInserted;
+ if (!OptimizePluginPath.empty()) {
+ if (!OptimizeDL.isValid()) {
+ std::string ErrorMsg;
+ OptimizeDL = llvm::sys::DynamicLibrary::getPermanentLibrary(
+ OptimizePluginPath.c_str(), &ErrorMsg);
+ if (!ErrorMsg.empty())
+ report_fatal_error("Failed to load opt plugin: \"" + ErrorMsg + '\"');
+ OptimizeCut = (OptimizeCutT)OptimizeDL.getAddressOfSymbol("optimize_cut");
+ if (!OptimizeCut)
+ report_fatal_error("Invalid optimization plugin");
+ }
+ FencesInserted = hardenLoadsWithPlugin(MF, std::move(Graph));
+ } else { // Use the default greedy heuristic
+ FencesInserted = hardenLoadsWithGreedyHeuristic(MF, std::move(Graph));
+ }
+
+ if (FencesInserted > 0)
+ ++NumFunctionsMitigated;
+ NumFences += FencesInserted;
+ return (FencesInserted > 0);
+}
+
+std::unique_ptr<MachineGadgetGraph>
+X86LoadValueInjectionLoadHardeningPass::getGadgetGraph(
+ MachineFunction &MF, const MachineLoopInfo &MLI,
+ const MachineDominatorTree &MDT,
+ const MachineDominanceFrontier &MDF) const {
+ using namespace rdf;
+
+ // Build the Register Dataflow Graph using the RDF framework
+ TargetOperandInfo TOI{*TII};
+ DataFlowGraph DFG{MF, *TII, *TRI, MDT, MDF, TOI};
+ DFG.build();
+ Liveness L{MF.getRegInfo(), DFG};
+ L.computePhiInfo();
+
+ GraphBuilder Builder;
+ using GraphIter = typename GraphBuilder::BuilderNodeRef;
+ DenseMap<MachineInstr *, GraphIter> NodeMap;
+ int FenceCount = 0, GadgetCount = 0;
+ auto MaybeAddNode = [&NodeMap, &Builder](MachineInstr *MI) {
+ auto Ref = NodeMap.find(MI);
+ if (Ref == NodeMap.end()) {
+ auto I = Builder.addVertex(MI);
+ NodeMap[MI] = I;
+ return std::pair<GraphIter, bool>{I, true};
+ }
+ return std::pair<GraphIter, bool>{Ref->getSecond(), false};
+ };
+
+ // The `Transmitters` map memoizes transmitters found for each def. If a def
+ // has not yet been analyzed, then it will not appear in the map. If a def
+ // has been analyzed and was determined not to have any transmitters, then
+ // its list of transmitters will be empty.
+ DenseMap<NodeId, std::vector<NodeId>> Transmitters;
+
+ // Analyze all machine instructions to find gadgets and LFENCEs, adding
+ // each interesting value to `Nodes`
+ auto AnalyzeDef = [&](NodeAddr<DefNode *> SourceDef) {
+ SmallSet<NodeId, 8> UsesVisited, DefsVisited;
+ std::function<void(NodeAddr<DefNode *>)> AnalyzeDefUseChain =
+ [&](NodeAddr<DefNode *> Def) {
+ if (Transmitters.find(Def.Id) != Transmitters.end())
+ return; // Already analyzed `Def`
+
+ // Use RDF to find all the uses of `Def`
+ rdf::NodeSet Uses;
+ RegisterRef DefReg = DFG.getPRI().normalize(Def.Addr->getRegRef(DFG));
+ for (auto UseID : L.getAllReachedUses(DefReg, Def)) {
+ auto Use = DFG.addr<UseNode *>(UseID);
+ if (Use.Addr->getFlags() & NodeAttrs::PhiRef) { // phi node
+ NodeAddr<PhiNode *> Phi = Use.Addr->getOwner(DFG);
+ for (auto I : L.getRealUses(Phi.Id)) {
+ if (DFG.getPRI().alias(RegisterRef(I.first), DefReg)) {
+ for (auto UA : I.second)
+ Uses.emplace(UA.first);
+ }
+ }
+ } else { // not a phi node
+ Uses.emplace(UseID);
+ }
+ }
+
+ // For each use of `Def`, we want to know whether:
+ // (1) The use can leak the Def'ed value,
+ // (2) The use can further propagate the Def'ed value to more defs
+ for (auto UseID : Uses) {
+ if (!UsesVisited.insert(UseID).second)
+ continue; // Already visited this use of `Def`
+
+ auto Use = DFG.addr<UseNode *>(UseID);
+ assert(!(Use.Addr->getFlags() & NodeAttrs::PhiRef));
+ MachineOperand &UseMO = Use.Addr->getOp();
+ MachineInstr &UseMI = *UseMO.getParent();
+ assert(UseMO.isReg());
+
+ // We naively assume that an instruction propagates any loaded
+ // uses to all defs unless the instruction is a call, in which
+ // case all arguments will be treated as gadget sources during
+ // analysis of the callee function.
+ if (UseMI.isCall())
+ continue;
+
+ // Check whether this use can transmit (leak) its value.
+ if (instrUsesRegToAccessMemory(UseMI, UseMO.getReg()) ||
+ (!NoConditionalBranches &&
+ instrUsesRegToBranch(UseMI, UseMO.getReg()))) {
+ Transmitters[Def.Id].push_back(Use.Addr->getOwner(DFG).Id);
+ if (UseMI.mayLoad())
+ continue; // Found a transmitting load -- no need to continue
+ // traversing its defs (i.e., this load will become
+ // a new gadget source anyways).
+ }
+
+ // Check whether the use propagates to more defs.
+ NodeAddr<InstrNode *> Owner{Use.Addr->getOwner(DFG)};
+ rdf::NodeList AnalyzedChildDefs;
+ for (auto &ChildDef :
+ Owner.Addr->members_if(DataFlowGraph::IsDef, DFG)) {
+ if (!DefsVisited.insert(ChildDef.Id).second)
+ continue; // Already visited this def
+ if (Def.Addr->getAttrs() & NodeAttrs::Dead)
+ continue;
+ if (Def.Id == ChildDef.Id)
+ continue; // `Def` uses itself (e.g., increment loop counter)
+
+ AnalyzeDefUseChain(ChildDef);
+
+ // `Def` inherits all of its child defs' transmitters.
+ for (auto TransmitterId : Transmitters[ChildDef.Id])
+ Transmitters[Def.Id].push_back(TransmitterId);
+ }
+ }
+
+ // Note that this statement adds `Def.Id` to the map if no
+ // transmitters were found for `Def`.
+ auto &DefTransmitters = Transmitters[Def.Id];
+
+ // Remove duplicate transmitters
+ llvm::sort(DefTransmitters);
+ DefTransmitters.erase(
+ std::unique(DefTransmitters.begin(), DefTransmitters.end()),
+ DefTransmitters.end());
+ };
+
+ // Find all of the transmitters
+ AnalyzeDefUseChain(SourceDef);
+ auto &SourceDefTransmitters = Transmitters[SourceDef.Id];
+ if (SourceDefTransmitters.empty())
+ return; // No transmitters for `SourceDef`
+
+ MachineInstr *Source = SourceDef.Addr->getFlags() & NodeAttrs::PhiRef
+ ? MachineGadgetGraph::ArgNodeSentinel
+ : SourceDef.Addr->getOp().getParent();
+ auto GadgetSource = MaybeAddNode(Source);
+ // Each transmitter is a sink for `SourceDef`.
+ for (auto TransmitterId : SourceDefTransmitters) {
+ MachineInstr *Sink = DFG.addr<StmtNode *>(TransmitterId).Addr->getCode();
+ auto GadgetSink = MaybeAddNode(Sink);
+ // Add the gadget edge to the graph.
+ Builder.addEdge(MachineGadgetGraph::GadgetEdgeSentinel,
+ GadgetSource.first, GadgetSink.first);
+ ++GadgetCount;
+ }
+ };
+
+ LLVM_DEBUG(dbgs() << "Analyzing def-use chains to find gadgets\n");
+ // Analyze function arguments
+ NodeAddr<BlockNode *> EntryBlock = DFG.getFunc().Addr->getEntryBlock(DFG);
+ for (NodeAddr<PhiNode *> ArgPhi :
+ EntryBlock.Addr->members_if(DataFlowGraph::IsPhi, DFG)) {
+ NodeList Defs = ArgPhi.Addr->members_if(DataFlowGraph::IsDef, DFG);
+ llvm::for_each(Defs, AnalyzeDef);
+ }
+ // Analyze every instruction in MF
+ for (NodeAddr<BlockNode *> BA : DFG.getFunc().Addr->members(DFG)) {
+ for (NodeAddr<StmtNode *> SA :
+ BA.Addr->members_if(DataFlowGraph::IsCode<NodeAttrs::Stmt>, DFG)) {
+ MachineInstr *MI = SA.Addr->getCode();
+ if (isFence(MI)) {
+ MaybeAddNode(MI);
+ ++FenceCount;
+ } else if (MI->mayLoad()) {
+ NodeList Defs = SA.Addr->members_if(DataFlowGraph::IsDef, DFG);
+ llvm::for_each(Defs, AnalyzeDef);
+ }
+ }
+ }
+ LLVM_DEBUG(dbgs() << "Found " << FenceCount << " fences\n");
+ LLVM_DEBUG(dbgs() << "Found " << GadgetCount << " gadgets\n");
+ if (GadgetCount == 0)
+ return nullptr;
+ NumGadgets += GadgetCount;
+
+ // Traverse CFG to build the rest of the graph
+ SmallSet<MachineBasicBlock *, 8> BlocksVisited;
+ std::function<void(MachineBasicBlock *, GraphIter, unsigned)> TraverseCFG =
+ [&](MachineBasicBlock *MBB, GraphIter GI, unsigned ParentDepth) {
+ unsigned LoopDepth = MLI.getLoopDepth(MBB);
+ if (!MBB->empty()) {
+ // Always add the first instruction in each block
+ auto NI = MBB->begin();
+ auto BeginBB = MaybeAddNode(&*NI);
+ Builder.addEdge(ParentDepth, GI, BeginBB.first);
+ if (!BlocksVisited.insert(MBB).second)
+ return;
+
+ // Add any instructions within the block that are gadget components
+ GI = BeginBB.first;
+ while (++NI != MBB->end()) {
+ auto Ref = NodeMap.find(&*NI);
+ if (Ref != NodeMap.end()) {
+ Builder.addEdge(LoopDepth, GI, Ref->getSecond());
+ GI = Ref->getSecond();
+ }
+ }
+
+ // Always add the terminator instruction, if one exists
+ auto T = MBB->getFirstTerminator();
+ if (T != MBB->end()) {
+ auto EndBB = MaybeAddNode(&*T);
+ if (EndBB.second)
+ Builder.addEdge(LoopDepth, GI, EndBB.first);
+ GI = EndBB.first;
+ }
+ }
+ for (MachineBasicBlock *Succ : MBB->successors())
+ TraverseCFG(Succ, GI, LoopDepth);
+ };
+ // ArgNodeSentinel is a pseudo-instruction that represents MF args in the
+ // GadgetGraph
+ GraphIter ArgNode = MaybeAddNode(MachineGadgetGraph::ArgNodeSentinel).first;
+ TraverseCFG(&MF.front(), ArgNode, 0);
+ std::unique_ptr<MachineGadgetGraph> G{Builder.get(FenceCount, GadgetCount)};
+ LLVM_DEBUG(dbgs() << "Found " << G->nodes_size() << " nodes\n");
+ return G;
+}
+
+// Returns the number of remaining gadget edges that could not be eliminated
+int X86LoadValueInjectionLoadHardeningPass::elimMitigatedEdgesAndNodes(
+ MachineGadgetGraph &G, MachineGadgetGraph::EdgeSet &ElimEdges /* in, out */,
+ MachineGadgetGraph::NodeSet &ElimNodes /* in, out */) const {
+ if (G.NumFences > 0) {
+ // Eliminate fences and CFG edges that ingress and egress the fence, as
+ // they are trivially mitigated.
+ for (const auto &E : G.edges()) {
+ const MachineGadgetGraph::Node *Dest = E.getDest();
+ if (isFence(Dest->getValue())) {
+ ElimNodes.insert(*Dest);
+ ElimEdges.insert(E);
+ for (const auto &DE : Dest->edges())
+ ElimEdges.insert(DE);
+ }
+ }
+ }
+
+ // Find and eliminate gadget edges that have been mitigated.
+ int MitigatedGadgets = 0, RemainingGadgets = 0;
+ MachineGadgetGraph::NodeSet ReachableNodes{G};
+ for (const auto &RootN : G.nodes()) {
+ if (llvm::none_of(RootN.edges(), MachineGadgetGraph::isGadgetEdge))
+ continue; // skip this node if it isn't a gadget source
+
+ // Find all of the nodes that are CFG-reachable from RootN using DFS
+ ReachableNodes.clear();
+ std::function<void(const MachineGadgetGraph::Node *, bool)>
+ FindReachableNodes =
+ [&](const MachineGadgetGraph::Node *N, bool FirstNode) {
+ if (!FirstNode)
+ ReachableNodes.insert(*N);
+ for (const auto &E : N->edges()) {
+ const MachineGadgetGraph::Node *Dest = E.getDest();
+ if (MachineGadgetGraph::isCFGEdge(E) &&
+ !ElimEdges.contains(E) && !ReachableNodes.contains(*Dest))
+ FindReachableNodes(Dest, false);
+ }
+ };
+ FindReachableNodes(&RootN, true);
+
+ // Any gadget whose sink is unreachable has been mitigated
+ for (const auto &E : RootN.edges()) {
+ if (MachineGadgetGraph::isGadgetEdge(E)) {
+ if (ReachableNodes.contains(*E.getDest())) {
+ // This gadget's sink is reachable
+ ++RemainingGadgets;
+ } else { // This gadget's sink is unreachable, and therefore mitigated
+ ++MitigatedGadgets;
+ ElimEdges.insert(E);
+ }
+ }
+ }
+ }
+ return RemainingGadgets;
+}
+
+std::unique_ptr<MachineGadgetGraph>
+X86LoadValueInjectionLoadHardeningPass::trimMitigatedEdges(
+ std::unique_ptr<MachineGadgetGraph> Graph) const {
+ MachineGadgetGraph::NodeSet ElimNodes{*Graph};
+ MachineGadgetGraph::EdgeSet ElimEdges{*Graph};
+ int RemainingGadgets =
+ elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes);
+ if (ElimEdges.empty() && ElimNodes.empty()) {
+ Graph->NumFences = 0;
+ Graph->NumGadgets = RemainingGadgets;
+ } else {
+ Graph = GraphBuilder::trim(*Graph, ElimNodes, ElimEdges, 0 /* NumFences */,
+ RemainingGadgets);
+ }
+ return Graph;
+}
+
+int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithPlugin(
+ MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
+ int FencesInserted = 0;
+
+ do {
+ LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
+ Graph = trimMitigatedEdges(std::move(Graph));
+ LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
+ if (Graph->NumGadgets == 0)
+ break;
+
+ LLVM_DEBUG(dbgs() << "Cutting edges...\n");
+ EdgeSet CutEdges{*Graph};
+ auto Nodes = std::make_unique<unsigned int[]>(Graph->nodes_size() +
+ 1 /* terminator node */);
+ auto Edges = std::make_unique<unsigned int[]>(Graph->edges_size());
+ auto EdgeCuts = std::make_unique<int[]>(Graph->edges_size());
+ auto EdgeValues = std::make_unique<int[]>(Graph->edges_size());
+ for (const auto &N : Graph->nodes()) {
+ Nodes[Graph->getNodeIndex(N)] = Graph->getEdgeIndex(*N.edges_begin());
+ }
+ Nodes[Graph->nodes_size()] = Graph->edges_size(); // terminator node
+ for (const auto &E : Graph->edges()) {
+ Edges[Graph->getEdgeIndex(E)] = Graph->getNodeIndex(*E.getDest());
+ EdgeValues[Graph->getEdgeIndex(E)] = E.getValue();
+ }
+ OptimizeCut(Nodes.get(), Graph->nodes_size(), Edges.get(), EdgeValues.get(),
+ EdgeCuts.get(), Graph->edges_size());
+ for (int I = 0; I < Graph->edges_size(); ++I)
+ if (EdgeCuts[I])
+ CutEdges.set(I);
+ LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
+ LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
+
+ LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
+ FencesInserted += insertFences(MF, *Graph, CutEdges);
+ LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
+ LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
+
+ Graph = GraphBuilder::trim(*Graph, MachineGadgetGraph::NodeSet{*Graph},
+ CutEdges);
+ } while (true);
+
+ return FencesInserted;
+}
+
+int X86LoadValueInjectionLoadHardeningPass::hardenLoadsWithGreedyHeuristic(
+ MachineFunction &MF, std::unique_ptr<MachineGadgetGraph> Graph) const {
+ LLVM_DEBUG(dbgs() << "Eliminating mitigated paths...\n");
+ Graph = trimMitigatedEdges(std::move(Graph));
+ LLVM_DEBUG(dbgs() << "Eliminating mitigated paths... Done\n");
+ if (Graph->NumGadgets == 0)
+ return 0;
+
+ LLVM_DEBUG(dbgs() << "Cutting edges...\n");
+ MachineGadgetGraph::NodeSet ElimNodes{*Graph}, GadgetSinks{*Graph};
+ MachineGadgetGraph::EdgeSet ElimEdges{*Graph}, CutEdges{*Graph};
+ auto IsCFGEdge = [&ElimEdges, &CutEdges](const MachineGadgetGraph::Edge &E) {
+ return !ElimEdges.contains(E) && !CutEdges.contains(E) &&
+ MachineGadgetGraph::isCFGEdge(E);
+ };
+ auto IsGadgetEdge = [&ElimEdges,
+ &CutEdges](const MachineGadgetGraph::Edge &E) {
+ return !ElimEdges.contains(E) && !CutEdges.contains(E) &&
+ MachineGadgetGraph::isGadgetEdge(E);
+ };
+
+ // FIXME: this is O(E^2), we could probably do better.
+ do {
+ // Find the cheapest CFG edge that will eliminate a gadget (by being
+ // egress from a SOURCE node or ingress to a SINK node), and cut it.
+ const MachineGadgetGraph::Edge *CheapestSoFar = nullptr;
+
+ // First, collect all gadget source and sink nodes.
+ MachineGadgetGraph::NodeSet GadgetSources{*Graph}, GadgetSinks{*Graph};
+ for (const auto &N : Graph->nodes()) {
+ if (ElimNodes.contains(N))
+ continue;
+ for (const auto &E : N.edges()) {
+ if (IsGadgetEdge(E)) {
+ GadgetSources.insert(N);
+ GadgetSinks.insert(*E.getDest());
+ }
+ }
+ }
+
+ // Next, look for the cheapest CFG edge which, when cut, is guaranteed to
+ // mitigate at least one gadget by either:
+ // (a) being egress from a gadget source, or
+ // (b) being ingress to a gadget sink.
+ for (const auto &N : Graph->nodes()) {
+ if (ElimNodes.contains(N))
+ continue;
+ for (const auto &E : N.edges()) {
+ if (IsCFGEdge(E)) {
+ if (GadgetSources.contains(N) || GadgetSinks.contains(*E.getDest())) {
+ if (!CheapestSoFar || E.getValue() < CheapestSoFar->getValue())
+ CheapestSoFar = &E;
+ }
+ }
+ }
+ }
+
+ assert(CheapestSoFar && "Failed to cut an edge");
+ CutEdges.insert(*CheapestSoFar);
+ ElimEdges.insert(*CheapestSoFar);
+ } while (elimMitigatedEdgesAndNodes(*Graph, ElimEdges, ElimNodes));
+ LLVM_DEBUG(dbgs() << "Cutting edges... Done\n");
+ LLVM_DEBUG(dbgs() << "Cut " << CutEdges.count() << " edges\n");
+
+ LLVM_DEBUG(dbgs() << "Inserting LFENCEs...\n");
+ int FencesInserted = insertFences(MF, *Graph, CutEdges);
+ LLVM_DEBUG(dbgs() << "Inserting LFENCEs... Done\n");
+ LLVM_DEBUG(dbgs() << "Inserted " << FencesInserted << " fences\n");
+
+ return FencesInserted;
+}
+
+int X86LoadValueInjectionLoadHardeningPass::insertFences(
+ MachineFunction &MF, MachineGadgetGraph &G,
+ EdgeSet &CutEdges /* in, out */) const {
+ int FencesInserted = 0;
+ for (const auto &N : G.nodes()) {
+ for (const auto &E : N.edges()) {
+ if (CutEdges.contains(E)) {
+ MachineInstr *MI = N.getValue(), *Prev;
+ MachineBasicBlock *MBB; // Insert an LFENCE in this MBB
+ MachineBasicBlock::iterator InsertionPt; // ...at this point
+ if (MI == MachineGadgetGraph::ArgNodeSentinel) {
+ // insert LFENCE at beginning of entry block
+ MBB = &MF.front();
+ InsertionPt = MBB->begin();
+ Prev = nullptr;
+ } else if (MI->isBranch()) { // insert the LFENCE before the branch
+ MBB = MI->getParent();
+ InsertionPt = MI;
+ Prev = MI->getPrevNode();
+ // Remove all egress CFG edges from this branch because the inserted
+ // LFENCE prevents gadgets from crossing the branch.
+ for (const auto &E : N.edges()) {
+ if (MachineGadgetGraph::isCFGEdge(E))
+ CutEdges.insert(E);
+ }
+ } else { // insert the LFENCE after the instruction
+ MBB = MI->getParent();
+ InsertionPt = MI->getNextNode() ? MI->getNextNode() : MBB->end();
+ Prev = InsertionPt == MBB->end()
+ ? (MBB->empty() ? nullptr : &MBB->back())
+ : InsertionPt->getPrevNode();
+ }
+ // Ensure this insertion is not redundant (two LFENCEs in sequence).
+ if ((InsertionPt == MBB->end() || !isFence(&*InsertionPt)) &&
+ (!Prev || !isFence(Prev))) {
+ BuildMI(*MBB, InsertionPt, DebugLoc(), TII->get(X86::LFENCE));
+ ++FencesInserted;
+ }
+ }
+ }
+ }
+ return FencesInserted;
+}
+
+bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToAccessMemory(
+ const MachineInstr &MI, unsigned Reg) const {
+ if (!MI.mayLoadOrStore() || MI.getOpcode() == X86::MFENCE ||
+ MI.getOpcode() == X86::SFENCE || MI.getOpcode() == X86::LFENCE)
+ return false;
+
+ // FIXME: This does not handle pseudo loading instruction like TCRETURN*
+ const MCInstrDesc &Desc = MI.getDesc();
+ int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
+ if (MemRefBeginIdx < 0) {
+ LLVM_DEBUG(dbgs() << "Warning: unable to obtain memory operand for loading "
+ "instruction:\n";
+ MI.print(dbgs()); dbgs() << '\n';);
+ return false;
+ }
+ MemRefBeginIdx += X86II::getOperandBias(Desc);
+
+ const MachineOperand &BaseMO =
+ MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
+ const MachineOperand &IndexMO =
+ MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
+ return (BaseMO.isReg() && BaseMO.getReg() != X86::NoRegister &&
+ TRI->regsOverlap(BaseMO.getReg(), Reg)) ||
+ (IndexMO.isReg() && IndexMO.getReg() != X86::NoRegister &&
+ TRI->regsOverlap(IndexMO.getReg(), Reg));
+}
+
+bool X86LoadValueInjectionLoadHardeningPass::instrUsesRegToBranch(
+ const MachineInstr &MI, unsigned Reg) const {
+ if (!MI.isConditionalBranch())
+ return false;
+ for (const MachineOperand &Use : MI.uses())
+ if (Use.isReg() && Use.getReg() == Reg)
+ return true;
+ return false;
+}
+
+INITIALIZE_PASS_BEGIN(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
+ "X86 LVI load hardening", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineDominanceFrontier)
+INITIALIZE_PASS_END(X86LoadValueInjectionLoadHardeningPass, PASS_KEY,
+ "X86 LVI load hardening", false, false)
+
+FunctionPass *llvm::createX86LoadValueInjectionLoadHardeningPass() {
+ return new X86LoadValueInjectionLoadHardeningPass();
+}