summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp')
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp1482
1 files changed, 1482 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
new file mode 100644
index 0000000000000..0b9128a9f5a1c
--- /dev/null
+++ b/llvm/lib/Transforms/InstCombine/InstCombineMulDivRem.cpp
@@ -0,0 +1,1482 @@
+//===- InstCombineMulDivRem.cpp -------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
+// srem, urem, frem.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include <cassert>
+#include <cstddef>
+#include <cstdint>
+#include <utility>
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+/// The specific integer value is used in a context where it is known to be
+/// non-zero. If this allows us to simplify the computation, do so and return
+/// the new operand, otherwise return null.
+static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
+ Instruction &CxtI) {
+ // If V has multiple uses, then we would have to do more analysis to determine
+ // if this is safe. For example, the use could be in dynamically unreached
+ // code.
+ if (!V->hasOneUse()) return nullptr;
+
+ bool MadeChange = false;
+
+ // ((1 << A) >>u B) --> (1 << (A-B))
+ // Because V cannot be zero, we know that B is less than A.
+ Value *A = nullptr, *B = nullptr, *One = nullptr;
+ if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
+ match(One, m_One())) {
+ A = IC.Builder.CreateSub(A, B);
+ return IC.Builder.CreateShl(One, A);
+ }
+
+ // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
+ // inexact. Similarly for <<.
+ BinaryOperator *I = dyn_cast<BinaryOperator>(V);
+ if (I && I->isLogicalShift() &&
+ IC.isKnownToBeAPowerOfTwo(I->getOperand(0), false, 0, &CxtI)) {
+ // We know that this is an exact/nuw shift and that the input is a
+ // non-zero context as well.
+ if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
+ I->setOperand(0, V2);
+ MadeChange = true;
+ }
+
+ if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
+ I->setIsExact();
+ MadeChange = true;
+ }
+
+ if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
+ I->setHasNoUnsignedWrap();
+ MadeChange = true;
+ }
+ }
+
+ // TODO: Lots more we could do here:
+ // If V is a phi node, we can call this on each of its operands.
+ // "select cond, X, 0" can simplify to "X".
+
+ return MadeChange ? V : nullptr;
+}
+
+/// A helper routine of InstCombiner::visitMul().
+///
+/// If C is a scalar/vector of known powers of 2, then this function returns
+/// a new scalar/vector obtained from logBase2 of C.
+/// Return a null pointer otherwise.
+static Constant *getLogBase2(Type *Ty, Constant *C) {
+ const APInt *IVal;
+ if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
+ return ConstantInt::get(Ty, IVal->logBase2());
+
+ if (!Ty->isVectorTy())
+ return nullptr;
+
+ SmallVector<Constant *, 4> Elts;
+ for (unsigned I = 0, E = Ty->getVectorNumElements(); I != E; ++I) {
+ Constant *Elt = C->getAggregateElement(I);
+ if (!Elt)
+ return nullptr;
+ if (isa<UndefValue>(Elt)) {
+ Elts.push_back(UndefValue::get(Ty->getScalarType()));
+ continue;
+ }
+ if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
+ return nullptr;
+ Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
+ }
+
+ return ConstantVector::get(Elts);
+}
+
+// TODO: This is a specific form of a much more general pattern.
+// We could detect a select with any binop identity constant, or we
+// could use SimplifyBinOp to see if either arm of the select reduces.
+// But that needs to be done carefully and/or while removing potential
+// reverse canonicalizations as in InstCombiner::foldSelectIntoOp().
+static Value *foldMulSelectToNegate(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Cond, *OtherOp;
+
+ // mul (select Cond, 1, -1), OtherOp --> select Cond, OtherOp, -OtherOp
+ // mul OtherOp, (select Cond, 1, -1) --> select Cond, OtherOp, -OtherOp
+ if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_One(), m_AllOnes())),
+ m_Value(OtherOp))))
+ return Builder.CreateSelect(Cond, OtherOp, Builder.CreateNeg(OtherOp));
+
+ // mul (select Cond, -1, 1), OtherOp --> select Cond, -OtherOp, OtherOp
+ // mul OtherOp, (select Cond, -1, 1) --> select Cond, -OtherOp, OtherOp
+ if (match(&I, m_c_Mul(m_OneUse(m_Select(m_Value(Cond), m_AllOnes(), m_One())),
+ m_Value(OtherOp))))
+ return Builder.CreateSelect(Cond, Builder.CreateNeg(OtherOp), OtherOp);
+
+ // fmul (select Cond, 1.0, -1.0), OtherOp --> select Cond, OtherOp, -OtherOp
+ // fmul OtherOp, (select Cond, 1.0, -1.0) --> select Cond, OtherOp, -OtherOp
+ if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(1.0),
+ m_SpecificFP(-1.0))),
+ m_Value(OtherOp)))) {
+ IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
+ Builder.setFastMathFlags(I.getFastMathFlags());
+ return Builder.CreateSelect(Cond, OtherOp, Builder.CreateFNeg(OtherOp));
+ }
+
+ // fmul (select Cond, -1.0, 1.0), OtherOp --> select Cond, -OtherOp, OtherOp
+ // fmul OtherOp, (select Cond, -1.0, 1.0) --> select Cond, -OtherOp, OtherOp
+ if (match(&I, m_c_FMul(m_OneUse(m_Select(m_Value(Cond), m_SpecificFP(-1.0),
+ m_SpecificFP(1.0))),
+ m_Value(OtherOp)))) {
+ IRBuilder<>::FastMathFlagGuard FMFGuard(Builder);
+ Builder.setFastMathFlags(I.getFastMathFlags());
+ return Builder.CreateSelect(Cond, Builder.CreateFNeg(OtherOp), OtherOp);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitMul(BinaryOperator &I) {
+ if (Value *V = SimplifyMulInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (SimplifyAssociativeOrCommutative(I))
+ return &I;
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Value *V = SimplifyUsingDistributiveLaws(I))
+ return replaceInstUsesWith(I, V);
+
+ // X * -1 == 0 - X
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (match(Op1, m_AllOnes())) {
+ BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
+ if (I.hasNoSignedWrap())
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
+
+ // Also allow combining multiply instructions on vectors.
+ {
+ Value *NewOp;
+ Constant *C1, *C2;
+ const APInt *IVal;
+ if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
+ m_Constant(C1))) &&
+ match(C1, m_APInt(IVal))) {
+ // ((X << C2)*C1) == (X * (C1 << C2))
+ Constant *Shl = ConstantExpr::getShl(C1, C2);
+ BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
+ BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
+ if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
+ BO->setHasNoUnsignedWrap();
+ if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
+ Shl->isNotMinSignedValue())
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
+
+ if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
+ // Replace X*(2^C) with X << C, where C is either a scalar or a vector.
+ if (Constant *NewCst = getLogBase2(NewOp->getType(), C1)) {
+ BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
+
+ if (I.hasNoUnsignedWrap())
+ Shl->setHasNoUnsignedWrap();
+ if (I.hasNoSignedWrap()) {
+ const APInt *V;
+ if (match(NewCst, m_APInt(V)) && *V != V->getBitWidth() - 1)
+ Shl->setHasNoSignedWrap();
+ }
+
+ return Shl;
+ }
+ }
+ }
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+ // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
+ // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
+ // The "* (2**n)" thus becomes a potential shifting opportunity.
+ {
+ const APInt & Val = CI->getValue();
+ const APInt &PosVal = Val.abs();
+ if (Val.isNegative() && PosVal.isPowerOf2()) {
+ Value *X = nullptr, *Y = nullptr;
+ if (Op0->hasOneUse()) {
+ ConstantInt *C1;
+ Value *Sub = nullptr;
+ if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
+ Sub = Builder.CreateSub(X, Y, "suba");
+ else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
+ Sub = Builder.CreateSub(Builder.CreateNeg(C1), Y, "subc");
+ if (Sub)
+ return
+ BinaryOperator::CreateMul(Sub,
+ ConstantInt::get(Y->getType(), PosVal));
+ }
+ }
+ }
+ }
+
+ if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
+ return FoldedMul;
+
+ if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
+ return replaceInstUsesWith(I, FoldedMul);
+
+ // Simplify mul instructions with a constant RHS.
+ if (isa<Constant>(Op1)) {
+ // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
+ Value *X;
+ Constant *C1;
+ if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
+ Value *Mul = Builder.CreateMul(C1, Op1);
+ // Only go forward with the transform if C1*CI simplifies to a tidier
+ // constant.
+ if (!match(Mul, m_Mul(m_Value(), m_Value())))
+ return BinaryOperator::CreateAdd(Builder.CreateMul(X, Op1), Mul);
+ }
+ }
+
+ // -X * C --> X * -C
+ Value *X, *Y;
+ Constant *Op1C;
+ if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Constant(Op1C)))
+ return BinaryOperator::CreateMul(X, ConstantExpr::getNeg(Op1C));
+
+ // -X * -Y --> X * Y
+ if (match(Op0, m_Neg(m_Value(X))) && match(Op1, m_Neg(m_Value(Y)))) {
+ auto *NewMul = BinaryOperator::CreateMul(X, Y);
+ if (I.hasNoSignedWrap() &&
+ cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap() &&
+ cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap())
+ NewMul->setHasNoSignedWrap();
+ return NewMul;
+ }
+
+ // -X * Y --> -(X * Y)
+ // X * -Y --> -(X * Y)
+ if (match(&I, m_c_Mul(m_OneUse(m_Neg(m_Value(X))), m_Value(Y))))
+ return BinaryOperator::CreateNeg(Builder.CreateMul(X, Y));
+
+ // (X / Y) * Y = X - (X % Y)
+ // (X / Y) * -Y = (X % Y) - X
+ {
+ Value *Y = Op1;
+ BinaryOperator *Div = dyn_cast<BinaryOperator>(Op0);
+ if (!Div || (Div->getOpcode() != Instruction::UDiv &&
+ Div->getOpcode() != Instruction::SDiv)) {
+ Y = Op0;
+ Div = dyn_cast<BinaryOperator>(Op1);
+ }
+ Value *Neg = dyn_castNegVal(Y);
+ if (Div && Div->hasOneUse() &&
+ (Div->getOperand(1) == Y || Div->getOperand(1) == Neg) &&
+ (Div->getOpcode() == Instruction::UDiv ||
+ Div->getOpcode() == Instruction::SDiv)) {
+ Value *X = Div->getOperand(0), *DivOp1 = Div->getOperand(1);
+
+ // If the division is exact, X % Y is zero, so we end up with X or -X.
+ if (Div->isExact()) {
+ if (DivOp1 == Y)
+ return replaceInstUsesWith(I, X);
+ return BinaryOperator::CreateNeg(X);
+ }
+
+ auto RemOpc = Div->getOpcode() == Instruction::UDiv ? Instruction::URem
+ : Instruction::SRem;
+ Value *Rem = Builder.CreateBinOp(RemOpc, X, DivOp1);
+ if (DivOp1 == Y)
+ return BinaryOperator::CreateSub(X, Rem);
+ return BinaryOperator::CreateSub(Rem, X);
+ }
+ }
+
+ /// i1 mul -> i1 and.
+ if (I.getType()->isIntOrIntVectorTy(1))
+ return BinaryOperator::CreateAnd(Op0, Op1);
+
+ // X*(1 << Y) --> X << Y
+ // (1 << Y)*X --> X << Y
+ {
+ Value *Y;
+ BinaryOperator *BO = nullptr;
+ bool ShlNSW = false;
+ if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
+ BO = BinaryOperator::CreateShl(Op1, Y);
+ ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
+ } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
+ BO = BinaryOperator::CreateShl(Op0, Y);
+ ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
+ }
+ if (BO) {
+ if (I.hasNoUnsignedWrap())
+ BO->setHasNoUnsignedWrap();
+ if (I.hasNoSignedWrap() && ShlNSW)
+ BO->setHasNoSignedWrap();
+ return BO;
+ }
+ }
+
+ // (bool X) * Y --> X ? Y : 0
+ // Y * (bool X) --> X ? Y : 0
+ if (match(Op0, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(X, Op1, ConstantInt::get(I.getType(), 0));
+ if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
+ return SelectInst::Create(X, Op0, ConstantInt::get(I.getType(), 0));
+
+ // (lshr X, 31) * Y --> (ashr X, 31) & Y
+ // Y * (lshr X, 31) --> (ashr X, 31) & Y
+ // TODO: We are not checking one-use because the elimination of the multiply
+ // is better for analysis?
+ // TODO: Should we canonicalize to '(X < 0) ? Y : 0' instead? That would be
+ // more similar to what we're doing above.
+ const APInt *C;
+ if (match(Op0, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
+ return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op1);
+ if (match(Op1, m_LShr(m_Value(X), m_APInt(C))) && *C == C->getBitWidth() - 1)
+ return BinaryOperator::CreateAnd(Builder.CreateAShr(X, *C), Op0);
+
+ if (Instruction *Ext = narrowMathIfNoOverflow(I))
+ return Ext;
+
+ bool Changed = false;
+ if (!I.hasNoSignedWrap() && willNotOverflowSignedMul(Op0, Op1, I)) {
+ Changed = true;
+ I.setHasNoSignedWrap(true);
+ }
+
+ if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedMul(Op0, Op1, I)) {
+ Changed = true;
+ I.setHasNoUnsignedWrap(true);
+ }
+
+ return Changed ? &I : nullptr;
+}
+
+Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
+ if (Value *V = SimplifyFMulInst(I.getOperand(0), I.getOperand(1),
+ I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (SimplifyAssociativeOrCommutative(I))
+ return &I;
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *FoldedMul = foldBinOpIntoSelectOrPhi(I))
+ return FoldedMul;
+
+ if (Value *FoldedMul = foldMulSelectToNegate(I, Builder))
+ return replaceInstUsesWith(I, FoldedMul);
+
+ // X * -1.0 --> -X
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (match(Op1, m_SpecificFP(-1.0)))
+ return BinaryOperator::CreateFNegFMF(Op0, &I);
+
+ // -X * -Y --> X * Y
+ Value *X, *Y;
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
+ return BinaryOperator::CreateFMulFMF(X, Y, &I);
+
+ // -X * C --> X * -C
+ Constant *C;
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_Constant(C)))
+ return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
+
+ // fabs(X) * fabs(X) -> X * X
+ if (Op0 == Op1 && match(Op0, m_Intrinsic<Intrinsic::fabs>(m_Value(X))))
+ return BinaryOperator::CreateFMulFMF(X, X, &I);
+
+ // (select A, B, C) * (select A, D, E) --> select A, (B*D), (C*E)
+ if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
+ return replaceInstUsesWith(I, V);
+
+ if (I.hasAllowReassoc()) {
+ // Reassociate constant RHS with another constant to form constant
+ // expression.
+ if (match(Op1, m_Constant(C)) && C->isFiniteNonZeroFP()) {
+ Constant *C1;
+ if (match(Op0, m_OneUse(m_FDiv(m_Constant(C1), m_Value(X))))) {
+ // (C1 / X) * C --> (C * C1) / X
+ Constant *CC1 = ConstantExpr::getFMul(C, C1);
+ if (CC1->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(CC1, X, &I);
+ }
+ if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
+ // (X / C1) * C --> X * (C / C1)
+ Constant *CDivC1 = ConstantExpr::getFDiv(C, C1);
+ if (CDivC1->isNormalFP())
+ return BinaryOperator::CreateFMulFMF(X, CDivC1, &I);
+
+ // If the constant was a denormal, try reassociating differently.
+ // (X / C1) * C --> X / (C1 / C)
+ Constant *C1DivC = ConstantExpr::getFDiv(C1, C);
+ if (Op0->hasOneUse() && C1DivC->isNormalFP())
+ return BinaryOperator::CreateFDivFMF(X, C1DivC, &I);
+ }
+
+ // We do not need to match 'fadd C, X' and 'fsub X, C' because they are
+ // canonicalized to 'fadd X, C'. Distributing the multiply may allow
+ // further folds and (X * C) + C2 is 'fma'.
+ if (match(Op0, m_OneUse(m_FAdd(m_Value(X), m_Constant(C1))))) {
+ // (X + C1) * C --> (X * C) + (C * C1)
+ Constant *CC1 = ConstantExpr::getFMul(C, C1);
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFAddFMF(XC, CC1, &I);
+ }
+ if (match(Op0, m_OneUse(m_FSub(m_Constant(C1), m_Value(X))))) {
+ // (C1 - X) * C --> (C * C1) - (X * C)
+ Constant *CC1 = ConstantExpr::getFMul(C, C1);
+ Value *XC = Builder.CreateFMulFMF(X, C, &I);
+ return BinaryOperator::CreateFSubFMF(CC1, XC, &I);
+ }
+ }
+
+ Value *Z;
+ if (match(&I, m_c_FMul(m_OneUse(m_FDiv(m_Value(X), m_Value(Y))),
+ m_Value(Z)))) {
+ // Sink division: (X / Y) * Z --> (X * Z) / Y
+ Value *NewFMul = Builder.CreateFMulFMF(X, Z, &I);
+ return BinaryOperator::CreateFDivFMF(NewFMul, Y, &I);
+ }
+
+ // sqrt(X) * sqrt(Y) -> sqrt(X * Y)
+ // nnan disallows the possibility of returning a number if both operands are
+ // negative (in that case, we should return NaN).
+ if (I.hasNoNaNs() &&
+ match(Op0, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(X)))) &&
+ match(Op1, m_OneUse(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
+ Value *XY = Builder.CreateFMulFMF(X, Y, &I);
+ Value *Sqrt = Builder.CreateUnaryIntrinsic(Intrinsic::sqrt, XY, &I);
+ return replaceInstUsesWith(I, Sqrt);
+ }
+
+ // Like the similar transform in instsimplify, this requires 'nsz' because
+ // sqrt(-0.0) = -0.0, and -0.0 * -0.0 does not simplify to -0.0.
+ if (I.hasNoNaNs() && I.hasNoSignedZeros() && Op0 == Op1 &&
+ Op0->hasNUses(2)) {
+ // Peek through fdiv to find squaring of square root:
+ // (X / sqrt(Y)) * (X / sqrt(Y)) --> (X * X) / Y
+ if (match(Op0, m_FDiv(m_Value(X),
+ m_Intrinsic<Intrinsic::sqrt>(m_Value(Y))))) {
+ Value *XX = Builder.CreateFMulFMF(X, X, &I);
+ return BinaryOperator::CreateFDivFMF(XX, Y, &I);
+ }
+ // (sqrt(Y) / X) * (sqrt(Y) / X) --> Y / (X * X)
+ if (match(Op0, m_FDiv(m_Intrinsic<Intrinsic::sqrt>(m_Value(Y)),
+ m_Value(X)))) {
+ Value *XX = Builder.CreateFMulFMF(X, X, &I);
+ return BinaryOperator::CreateFDivFMF(Y, XX, &I);
+ }
+ }
+
+ // exp(X) * exp(Y) -> exp(X + Y)
+ // Match as long as at least one of exp has only one use.
+ if (match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::exp>(m_Value(Y))) &&
+ (Op0->hasOneUse() || Op1->hasOneUse())) {
+ Value *XY = Builder.CreateFAddFMF(X, Y, &I);
+ Value *Exp = Builder.CreateUnaryIntrinsic(Intrinsic::exp, XY, &I);
+ return replaceInstUsesWith(I, Exp);
+ }
+
+ // exp2(X) * exp2(Y) -> exp2(X + Y)
+ // Match as long as at least one of exp2 has only one use.
+ if (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::exp2>(m_Value(Y))) &&
+ (Op0->hasOneUse() || Op1->hasOneUse())) {
+ Value *XY = Builder.CreateFAddFMF(X, Y, &I);
+ Value *Exp2 = Builder.CreateUnaryIntrinsic(Intrinsic::exp2, XY, &I);
+ return replaceInstUsesWith(I, Exp2);
+ }
+
+ // (X*Y) * X => (X*X) * Y where Y != X
+ // The purpose is two-fold:
+ // 1) to form a power expression (of X).
+ // 2) potentially shorten the critical path: After transformation, the
+ // latency of the instruction Y is amortized by the expression of X*X,
+ // and therefore Y is in a "less critical" position compared to what it
+ // was before the transformation.
+ if (match(Op0, m_OneUse(m_c_FMul(m_Specific(Op1), m_Value(Y)))) &&
+ Op1 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op1, Op1, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
+ }
+ if (match(Op1, m_OneUse(m_c_FMul(m_Specific(Op0), m_Value(Y)))) &&
+ Op0 != Y) {
+ Value *XX = Builder.CreateFMulFMF(Op0, Op0, &I);
+ return BinaryOperator::CreateFMulFMF(XX, Y, &I);
+ }
+ }
+
+ // log2(X * 0.5) * Y = log2(X) * Y - Y
+ if (I.isFast()) {
+ IntrinsicInst *Log2 = nullptr;
+ if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::log2>(
+ m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
+ Log2 = cast<IntrinsicInst>(Op0);
+ Y = Op1;
+ }
+ if (match(Op1, m_OneUse(m_Intrinsic<Intrinsic::log2>(
+ m_OneUse(m_FMul(m_Value(X), m_SpecificFP(0.5))))))) {
+ Log2 = cast<IntrinsicInst>(Op1);
+ Y = Op0;
+ }
+ if (Log2) {
+ Log2->setArgOperand(0, X);
+ Log2->copyFastMathFlags(&I);
+ Value *LogXTimesY = Builder.CreateFMulFMF(Log2, Y, &I);
+ return BinaryOperator::CreateFSubFMF(LogXTimesY, Y, &I);
+ }
+ }
+
+ return nullptr;
+}
+
+/// Fold a divide or remainder with a select instruction divisor when one of the
+/// select operands is zero. In that case, we can use the other select operand
+/// because div/rem by zero is undefined.
+bool InstCombiner::simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I) {
+ SelectInst *SI = dyn_cast<SelectInst>(I.getOperand(1));
+ if (!SI)
+ return false;
+
+ int NonNullOperand;
+ if (match(SI->getTrueValue(), m_Zero()))
+ // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
+ NonNullOperand = 2;
+ else if (match(SI->getFalseValue(), m_Zero()))
+ // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
+ NonNullOperand = 1;
+ else
+ return false;
+
+ // Change the div/rem to use 'Y' instead of the select.
+ I.setOperand(1, SI->getOperand(NonNullOperand));
+
+ // Okay, we know we replace the operand of the div/rem with 'Y' with no
+ // problem. However, the select, or the condition of the select may have
+ // multiple uses. Based on our knowledge that the operand must be non-zero,
+ // propagate the known value for the select into other uses of it, and
+ // propagate a known value of the condition into its other users.
+
+ // If the select and condition only have a single use, don't bother with this,
+ // early exit.
+ Value *SelectCond = SI->getCondition();
+ if (SI->use_empty() && SelectCond->hasOneUse())
+ return true;
+
+ // Scan the current block backward, looking for other uses of SI.
+ BasicBlock::iterator BBI = I.getIterator(), BBFront = I.getParent()->begin();
+ Type *CondTy = SelectCond->getType();
+ while (BBI != BBFront) {
+ --BBI;
+ // If we found an instruction that we can't assume will return, so
+ // information from below it cannot be propagated above it.
+ if (!isGuaranteedToTransferExecutionToSuccessor(&*BBI))
+ break;
+
+ // Replace uses of the select or its condition with the known values.
+ for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
+ I != E; ++I) {
+ if (*I == SI) {
+ *I = SI->getOperand(NonNullOperand);
+ Worklist.Add(&*BBI);
+ } else if (*I == SelectCond) {
+ *I = NonNullOperand == 1 ? ConstantInt::getTrue(CondTy)
+ : ConstantInt::getFalse(CondTy);
+ Worklist.Add(&*BBI);
+ }
+ }
+
+ // If we past the instruction, quit looking for it.
+ if (&*BBI == SI)
+ SI = nullptr;
+ if (&*BBI == SelectCond)
+ SelectCond = nullptr;
+
+ // If we ran out of things to eliminate, break out of the loop.
+ if (!SelectCond && !SI)
+ break;
+
+ }
+ return true;
+}
+
+/// True if the multiply can not be expressed in an int this size.
+static bool multiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
+ bool IsSigned) {
+ bool Overflow;
+ Product = IsSigned ? C1.smul_ov(C2, Overflow) : C1.umul_ov(C2, Overflow);
+ return Overflow;
+}
+
+/// True if C1 is a multiple of C2. Quotient contains C1/C2.
+static bool isMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
+ bool IsSigned) {
+ assert(C1.getBitWidth() == C2.getBitWidth() && "Constant widths not equal");
+
+ // Bail if we will divide by zero.
+ if (C2.isNullValue())
+ return false;
+
+ // Bail if we would divide INT_MIN by -1.
+ if (IsSigned && C1.isMinSignedValue() && C2.isAllOnesValue())
+ return false;
+
+ APInt Remainder(C1.getBitWidth(), /*val=*/0ULL, IsSigned);
+ if (IsSigned)
+ APInt::sdivrem(C1, C2, Quotient, Remainder);
+ else
+ APInt::udivrem(C1, C2, Quotient, Remainder);
+
+ return Remainder.isMinValue();
+}
+
+/// This function implements the transforms common to both integer division
+/// instructions (udiv and sdiv). It is called by the visitors to those integer
+/// division instructions.
+/// Common integer divide transforms
+Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ bool IsSigned = I.getOpcode() == Instruction::SDiv;
+ Type *Ty = I.getType();
+
+ // The RHS is known non-zero.
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
+ I.setOperand(1, V);
+ return &I;
+ }
+
+ // Handle cases involving: [su]div X, (select Cond, Y, Z)
+ // This does not apply for fdiv.
+ if (simplifyDivRemOfSelectWithZeroOp(I))
+ return &I;
+
+ const APInt *C2;
+ if (match(Op1, m_APInt(C2))) {
+ Value *X;
+ const APInt *C1;
+
+ // (X / C1) / C2 -> X / (C1*C2)
+ if ((IsSigned && match(Op0, m_SDiv(m_Value(X), m_APInt(C1)))) ||
+ (!IsSigned && match(Op0, m_UDiv(m_Value(X), m_APInt(C1))))) {
+ APInt Product(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
+ if (!multiplyOverflows(*C1, *C2, Product, IsSigned))
+ return BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, Product));
+ }
+
+ if ((IsSigned && match(Op0, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
+ (!IsSigned && match(Op0, m_NUWMul(m_Value(X), m_APInt(C1))))) {
+ APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
+
+ // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
+ if (isMultiple(*C2, *C1, Quotient, IsSigned)) {
+ auto *NewDiv = BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, Quotient));
+ NewDiv->setIsExact(I.isExact());
+ return NewDiv;
+ }
+
+ // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
+ if (isMultiple(*C1, *C2, Quotient, IsSigned)) {
+ auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
+ ConstantInt::get(Ty, Quotient));
+ auto *OBO = cast<OverflowingBinaryOperator>(Op0);
+ Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
+ Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
+ return Mul;
+ }
+ }
+
+ if ((IsSigned && match(Op0, m_NSWShl(m_Value(X), m_APInt(C1))) &&
+ *C1 != C1->getBitWidth() - 1) ||
+ (!IsSigned && match(Op0, m_NUWShl(m_Value(X), m_APInt(C1))))) {
+ APInt Quotient(C1->getBitWidth(), /*val=*/0ULL, IsSigned);
+ APInt C1Shifted = APInt::getOneBitSet(
+ C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
+
+ // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of 1 << C1.
+ if (isMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
+ auto *BO = BinaryOperator::Create(I.getOpcode(), X,
+ ConstantInt::get(Ty, Quotient));
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
+
+ // (X << C1) / C2 -> X * ((1 << C1) / C2) if 1 << C1 is a multiple of C2.
+ if (isMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
+ auto *Mul = BinaryOperator::Create(Instruction::Mul, X,
+ ConstantInt::get(Ty, Quotient));
+ auto *OBO = cast<OverflowingBinaryOperator>(Op0);
+ Mul->setHasNoUnsignedWrap(!IsSigned && OBO->hasNoUnsignedWrap());
+ Mul->setHasNoSignedWrap(OBO->hasNoSignedWrap());
+ return Mul;
+ }
+ }
+
+ if (!C2->isNullValue()) // avoid X udiv 0
+ if (Instruction *FoldedDiv = foldBinOpIntoSelectOrPhi(I))
+ return FoldedDiv;
+ }
+
+ if (match(Op0, m_One())) {
+ assert(!Ty->isIntOrIntVectorTy(1) && "i1 divide not removed?");
+ if (IsSigned) {
+ // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
+ // result is one, if Op1 is -1 then the result is minus one, otherwise
+ // it's zero.
+ Value *Inc = Builder.CreateAdd(Op1, Op0);
+ Value *Cmp = Builder.CreateICmpULT(Inc, ConstantInt::get(Ty, 3));
+ return SelectInst::Create(Cmp, Op1, ConstantInt::get(Ty, 0));
+ } else {
+ // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
+ // result is one, otherwise it's zero.
+ return new ZExtInst(Builder.CreateICmpEQ(Op1, Op0), Ty);
+ }
+ }
+
+ // See if we can fold away this div instruction.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+
+ // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
+ Value *X, *Z;
+ if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) // (X - Z) / Y; Y = Op1
+ if ((IsSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
+ (!IsSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
+ return BinaryOperator::Create(I.getOpcode(), X, Op1);
+
+ // (X << Y) / X -> 1 << Y
+ Value *Y;
+ if (IsSigned && match(Op0, m_NSWShl(m_Specific(Op1), m_Value(Y))))
+ return BinaryOperator::CreateNSWShl(ConstantInt::get(Ty, 1), Y);
+ if (!IsSigned && match(Op0, m_NUWShl(m_Specific(Op1), m_Value(Y))))
+ return BinaryOperator::CreateNUWShl(ConstantInt::get(Ty, 1), Y);
+
+ // X / (X * Y) -> 1 / Y if the multiplication does not overflow.
+ if (match(Op1, m_c_Mul(m_Specific(Op0), m_Value(Y)))) {
+ bool HasNSW = cast<OverflowingBinaryOperator>(Op1)->hasNoSignedWrap();
+ bool HasNUW = cast<OverflowingBinaryOperator>(Op1)->hasNoUnsignedWrap();
+ if ((IsSigned && HasNSW) || (!IsSigned && HasNUW)) {
+ I.setOperand(0, ConstantInt::get(Ty, 1));
+ I.setOperand(1, Y);
+ return &I;
+ }
+ }
+
+ return nullptr;
+}
+
+static const unsigned MaxDepth = 6;
+
+namespace {
+
+using FoldUDivOperandCb = Instruction *(*)(Value *Op0, Value *Op1,
+ const BinaryOperator &I,
+ InstCombiner &IC);
+
+/// Used to maintain state for visitUDivOperand().
+struct UDivFoldAction {
+ /// Informs visitUDiv() how to fold this operand. This can be zero if this
+ /// action joins two actions together.
+ FoldUDivOperandCb FoldAction;
+
+ /// Which operand to fold.
+ Value *OperandToFold;
+
+ union {
+ /// The instruction returned when FoldAction is invoked.
+ Instruction *FoldResult;
+
+ /// Stores the LHS action index if this action joins two actions together.
+ size_t SelectLHSIdx;
+ };
+
+ UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
+ : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
+ UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
+ : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
+};
+
+} // end anonymous namespace
+
+// X udiv 2^C -> X >> C
+static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
+ const BinaryOperator &I, InstCombiner &IC) {
+ Constant *C1 = getLogBase2(Op0->getType(), cast<Constant>(Op1));
+ if (!C1)
+ llvm_unreachable("Failed to constant fold udiv -> logbase2");
+ BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, C1);
+ if (I.isExact())
+ LShr->setIsExact();
+ return LShr;
+}
+
+// X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
+// X udiv (zext (C1 << N)), where C1 is "1<<C2" --> X >> (N+C2)
+static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
+ InstCombiner &IC) {
+ Value *ShiftLeft;
+ if (!match(Op1, m_ZExt(m_Value(ShiftLeft))))
+ ShiftLeft = Op1;
+
+ Constant *CI;
+ Value *N;
+ if (!match(ShiftLeft, m_Shl(m_Constant(CI), m_Value(N))))
+ llvm_unreachable("match should never fail here!");
+ Constant *Log2Base = getLogBase2(N->getType(), CI);
+ if (!Log2Base)
+ llvm_unreachable("getLogBase2 should never fail here!");
+ N = IC.Builder.CreateAdd(N, Log2Base);
+ if (Op1 != ShiftLeft)
+ N = IC.Builder.CreateZExt(N, Op1->getType());
+ BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
+ if (I.isExact())
+ LShr->setIsExact();
+ return LShr;
+}
+
+// Recursively visits the possible right hand operands of a udiv
+// instruction, seeing through select instructions, to determine if we can
+// replace the udiv with something simpler. If we find that an operand is not
+// able to simplify the udiv, we abort the entire transformation.
+static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
+ SmallVectorImpl<UDivFoldAction> &Actions,
+ unsigned Depth = 0) {
+ // Check to see if this is an unsigned division with an exact power of 2,
+ // if so, convert to a right shift.
+ if (match(Op1, m_Power2())) {
+ Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
+ return Actions.size();
+ }
+
+ // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
+ if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
+ match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
+ Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
+ return Actions.size();
+ }
+
+ // The remaining tests are all recursive, so bail out if we hit the limit.
+ if (Depth++ == MaxDepth)
+ return 0;
+
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (size_t LHSIdx =
+ visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
+ if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
+ Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
+ return Actions.size();
+ }
+
+ return 0;
+}
+
+/// If we have zero-extended operands of an unsigned div or rem, we may be able
+/// to narrow the operation (sink the zext below the math).
+static Instruction *narrowUDivURem(BinaryOperator &I,
+ InstCombiner::BuilderTy &Builder) {
+ Instruction::BinaryOps Opcode = I.getOpcode();
+ Value *N = I.getOperand(0);
+ Value *D = I.getOperand(1);
+ Type *Ty = I.getType();
+ Value *X, *Y;
+ if (match(N, m_ZExt(m_Value(X))) && match(D, m_ZExt(m_Value(Y))) &&
+ X->getType() == Y->getType() && (N->hasOneUse() || D->hasOneUse())) {
+ // udiv (zext X), (zext Y) --> zext (udiv X, Y)
+ // urem (zext X), (zext Y) --> zext (urem X, Y)
+ Value *NarrowOp = Builder.CreateBinOp(Opcode, X, Y);
+ return new ZExtInst(NarrowOp, Ty);
+ }
+
+ Constant *C;
+ if ((match(N, m_OneUse(m_ZExt(m_Value(X)))) && match(D, m_Constant(C))) ||
+ (match(D, m_OneUse(m_ZExt(m_Value(X)))) && match(N, m_Constant(C)))) {
+ // If the constant is the same in the smaller type, use the narrow version.
+ Constant *TruncC = ConstantExpr::getTrunc(C, X->getType());
+ if (ConstantExpr::getZExt(TruncC, Ty) != C)
+ return nullptr;
+
+ // udiv (zext X), C --> zext (udiv X, C')
+ // urem (zext X), C --> zext (urem X, C')
+ // udiv C, (zext X) --> zext (udiv C', X)
+ // urem C, (zext X) --> zext (urem C', X)
+ Value *NarrowOp = isa<Constant>(D) ? Builder.CreateBinOp(Opcode, X, TruncC)
+ : Builder.CreateBinOp(Opcode, TruncC, X);
+ return new ZExtInst(NarrowOp, Ty);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
+ if (Value *V = SimplifyUDivInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Value *X;
+ const APInt *C1, *C2;
+ if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) && match(Op1, m_APInt(C2))) {
+ // (X lshr C1) udiv C2 --> X udiv (C2 << C1)
+ bool Overflow;
+ APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
+ if (!Overflow) {
+ bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
+ BinaryOperator *BO = BinaryOperator::CreateUDiv(
+ X, ConstantInt::get(X->getType(), C2ShlC1));
+ if (IsExact)
+ BO->setIsExact();
+ return BO;
+ }
+ }
+
+ // Op0 / C where C is large (negative) --> zext (Op0 >= C)
+ // TODO: Could use isKnownNegative() to handle non-constant values.
+ Type *Ty = I.getType();
+ if (match(Op1, m_Negative())) {
+ Value *Cmp = Builder.CreateICmpUGE(Op0, Op1);
+ return CastInst::CreateZExtOrBitCast(Cmp, Ty);
+ }
+ // Op0 / (sext i1 X) --> zext (Op0 == -1) (if X is 0, the div is undefined)
+ if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
+ Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
+ return CastInst::CreateZExtOrBitCast(Cmp, Ty);
+ }
+
+ if (Instruction *NarrowDiv = narrowUDivURem(I, Builder))
+ return NarrowDiv;
+
+ // If the udiv operands are non-overflowing multiplies with a common operand,
+ // then eliminate the common factor:
+ // (A * B) / (A * X) --> B / X (and commuted variants)
+ // TODO: The code would be reduced if we had m_c_NUWMul pattern matching.
+ // TODO: If -reassociation handled this generally, we could remove this.
+ Value *A, *B;
+ if (match(Op0, m_NUWMul(m_Value(A), m_Value(B)))) {
+ if (match(Op1, m_NUWMul(m_Specific(A), m_Value(X))) ||
+ match(Op1, m_NUWMul(m_Value(X), m_Specific(A))))
+ return BinaryOperator::CreateUDiv(B, X);
+ if (match(Op1, m_NUWMul(m_Specific(B), m_Value(X))) ||
+ match(Op1, m_NUWMul(m_Value(X), m_Specific(B))))
+ return BinaryOperator::CreateUDiv(A, X);
+ }
+
+ // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
+ SmallVector<UDivFoldAction, 6> UDivActions;
+ if (visitUDivOperand(Op0, Op1, I, UDivActions))
+ for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
+ FoldUDivOperandCb Action = UDivActions[i].FoldAction;
+ Value *ActionOp1 = UDivActions[i].OperandToFold;
+ Instruction *Inst;
+ if (Action)
+ Inst = Action(Op0, ActionOp1, I, *this);
+ else {
+ // This action joins two actions together. The RHS of this action is
+ // simply the last action we processed, we saved the LHS action index in
+ // the joining action.
+ size_t SelectRHSIdx = i - 1;
+ Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
+ size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
+ Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
+ Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
+ SelectLHS, SelectRHS);
+ }
+
+ // If this is the last action to process, return it to the InstCombiner.
+ // Otherwise, we insert it before the UDiv and record it so that we may
+ // use it as part of a joining action (i.e., a SelectInst).
+ if (e - i != 1) {
+ Inst->insertBefore(&I);
+ UDivActions[i].FoldResult = Inst;
+ } else
+ return Inst;
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
+ if (Value *V = SimplifySDivInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ // Handle the integer div common cases
+ if (Instruction *Common = commonIDivTransforms(I))
+ return Common;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Value *X;
+ // sdiv Op0, -1 --> -Op0
+ // sdiv Op0, (sext i1 X) --> -Op0 (because if X is 0, the op is undefined)
+ if (match(Op1, m_AllOnes()) ||
+ (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
+ return BinaryOperator::CreateNeg(Op0);
+
+ // X / INT_MIN --> X == INT_MIN
+ if (match(Op1, m_SignMask()))
+ return new ZExtInst(Builder.CreateICmpEQ(Op0, Op1), I.getType());
+
+ const APInt *Op1C;
+ if (match(Op1, m_APInt(Op1C))) {
+ // sdiv exact X, C --> ashr exact X, log2(C)
+ if (I.isExact() && Op1C->isNonNegative() && Op1C->isPowerOf2()) {
+ Value *ShAmt = ConstantInt::get(Op1->getType(), Op1C->exactLogBase2());
+ return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
+ }
+
+ // If the dividend is sign-extended and the constant divisor is small enough
+ // to fit in the source type, shrink the division to the narrower type:
+ // (sext X) sdiv C --> sext (X sdiv C)
+ Value *Op0Src;
+ if (match(Op0, m_OneUse(m_SExt(m_Value(Op0Src)))) &&
+ Op0Src->getType()->getScalarSizeInBits() >= Op1C->getMinSignedBits()) {
+
+ // In the general case, we need to make sure that the dividend is not the
+ // minimum signed value because dividing that by -1 is UB. But here, we
+ // know that the -1 divisor case is already handled above.
+
+ Constant *NarrowDivisor =
+ ConstantExpr::getTrunc(cast<Constant>(Op1), Op0Src->getType());
+ Value *NarrowOp = Builder.CreateSDiv(Op0Src, NarrowDivisor);
+ return new SExtInst(NarrowOp, Op0->getType());
+ }
+
+ // -X / C --> X / -C (if the negation doesn't overflow).
+ // TODO: This could be enhanced to handle arbitrary vector constants by
+ // checking if all elements are not the min-signed-val.
+ if (!Op1C->isMinSignedValue() &&
+ match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
+ Constant *NegC = ConstantInt::get(I.getType(), -(*Op1C));
+ Instruction *BO = BinaryOperator::CreateSDiv(X, NegC);
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
+ }
+
+ // -X / Y --> -(X / Y)
+ Value *Y;
+ if (match(&I, m_SDiv(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
+ return BinaryOperator::CreateNSWNeg(
+ Builder.CreateSDiv(X, Y, I.getName(), I.isExact()));
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a udiv.
+ APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
+ if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
+ if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
+ // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
+ auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
+
+ if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
+ // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
+ // Safe because the only negative value (1 << Y) can take on is
+ // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
+ // the sign bit set.
+ auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
+ BO->setIsExact(I.isExact());
+ return BO;
+ }
+ }
+
+ return nullptr;
+}
+
+/// Remove negation and try to convert division into multiplication.
+static Instruction *foldFDivConstantDivisor(BinaryOperator &I) {
+ Constant *C;
+ if (!match(I.getOperand(1), m_Constant(C)))
+ return nullptr;
+
+ // -X / C --> X / -C
+ Value *X;
+ if (match(I.getOperand(0), m_FNeg(m_Value(X))))
+ return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
+
+ // If the constant divisor has an exact inverse, this is always safe. If not,
+ // then we can still create a reciprocal if fast-math-flags allow it and the
+ // constant is a regular number (not zero, infinite, or denormal).
+ if (!(C->hasExactInverseFP() || (I.hasAllowReciprocal() && C->isNormalFP())))
+ return nullptr;
+
+ // Disallow denormal constants because we don't know what would happen
+ // on all targets.
+ // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
+ // denorms are flushed?
+ auto *RecipC = ConstantExpr::getFDiv(ConstantFP::get(I.getType(), 1.0), C);
+ if (!RecipC->isNormalFP())
+ return nullptr;
+
+ // X / C --> X * (1 / C)
+ return BinaryOperator::CreateFMulFMF(I.getOperand(0), RecipC, &I);
+}
+
+/// Remove negation and try to reassociate constant math.
+static Instruction *foldFDivConstantDividend(BinaryOperator &I) {
+ Constant *C;
+ if (!match(I.getOperand(0), m_Constant(C)))
+ return nullptr;
+
+ // C / -X --> -C / X
+ Value *X;
+ if (match(I.getOperand(1), m_FNeg(m_Value(X))))
+ return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
+
+ if (!I.hasAllowReassoc() || !I.hasAllowReciprocal())
+ return nullptr;
+
+ // Try to reassociate C / X expressions where X includes another constant.
+ Constant *C2, *NewC = nullptr;
+ if (match(I.getOperand(1), m_FMul(m_Value(X), m_Constant(C2)))) {
+ // C / (X * C2) --> (C / C2) / X
+ NewC = ConstantExpr::getFDiv(C, C2);
+ } else if (match(I.getOperand(1), m_FDiv(m_Value(X), m_Constant(C2)))) {
+ // C / (X / C2) --> (C * C2) / X
+ NewC = ConstantExpr::getFMul(C, C2);
+ }
+ // Disallow denormal constants because we don't know what would happen
+ // on all targets.
+ // TODO: Use Intrinsic::canonicalize or let function attributes tell us that
+ // denorms are flushed?
+ if (!NewC || !NewC->isNormalFP())
+ return nullptr;
+
+ return BinaryOperator::CreateFDivFMF(NewC, X, &I);
+}
+
+Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
+ if (Value *V = SimplifyFDivInst(I.getOperand(0), I.getOperand(1),
+ I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *R = foldFDivConstantDivisor(I))
+ return R;
+
+ if (Instruction *R = foldFDivConstantDividend(I))
+ return R;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ if (isa<Constant>(Op0))
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (isa<Constant>(Op1))
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+
+ if (I.hasAllowReassoc() && I.hasAllowReciprocal()) {
+ Value *X, *Y;
+ if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
+ (!isa<Constant>(Y) || !isa<Constant>(Op1))) {
+ // (X / Y) / Z => X / (Y * Z)
+ Value *YZ = Builder.CreateFMulFMF(Y, Op1, &I);
+ return BinaryOperator::CreateFDivFMF(X, YZ, &I);
+ }
+ if (match(Op1, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))) &&
+ (!isa<Constant>(Y) || !isa<Constant>(Op0))) {
+ // Z / (X / Y) => (Y * Z) / X
+ Value *YZ = Builder.CreateFMulFMF(Y, Op0, &I);
+ return BinaryOperator::CreateFDivFMF(YZ, X, &I);
+ }
+ }
+
+ if (I.hasAllowReassoc() && Op0->hasOneUse() && Op1->hasOneUse()) {
+ // sin(X) / cos(X) -> tan(X)
+ // cos(X) / sin(X) -> 1/tan(X) (cotangent)
+ Value *X;
+ bool IsTan = match(Op0, m_Intrinsic<Intrinsic::sin>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::cos>(m_Specific(X)));
+ bool IsCot =
+ !IsTan && match(Op0, m_Intrinsic<Intrinsic::cos>(m_Value(X))) &&
+ match(Op1, m_Intrinsic<Intrinsic::sin>(m_Specific(X)));
+
+ if ((IsTan || IsCot) &&
+ hasFloatFn(&TLI, I.getType(), LibFunc_tan, LibFunc_tanf, LibFunc_tanl)) {
+ IRBuilder<> B(&I);
+ IRBuilder<>::FastMathFlagGuard FMFGuard(B);
+ B.setFastMathFlags(I.getFastMathFlags());
+ AttributeList Attrs =
+ cast<CallBase>(Op0)->getCalledFunction()->getAttributes();
+ Value *Res = emitUnaryFloatFnCall(X, &TLI, LibFunc_tan, LibFunc_tanf,
+ LibFunc_tanl, B, Attrs);
+ if (IsCot)
+ Res = B.CreateFDiv(ConstantFP::get(I.getType(), 1.0), Res);
+ return replaceInstUsesWith(I, Res);
+ }
+ }
+
+ // -X / -Y -> X / Y
+ Value *X, *Y;
+ if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y)))) {
+ I.setOperand(0, X);
+ I.setOperand(1, Y);
+ return &I;
+ }
+
+ // X / (X * Y) --> 1.0 / Y
+ // Reassociate to (X / X -> 1.0) is legal when NaNs are not allowed.
+ // We can ignore the possibility that X is infinity because INF/INF is NaN.
+ if (I.hasNoNaNs() && I.hasAllowReassoc() &&
+ match(Op1, m_c_FMul(m_Specific(Op0), m_Value(Y)))) {
+ I.setOperand(0, ConstantFP::get(I.getType(), 1.0));
+ I.setOperand(1, Y);
+ return &I;
+ }
+
+ // X / fabs(X) -> copysign(1.0, X)
+ // fabs(X) / X -> copysign(1.0, X)
+ if (I.hasNoNaNs() && I.hasNoInfs() &&
+ (match(&I,
+ m_FDiv(m_Value(X), m_Intrinsic<Intrinsic::fabs>(m_Deferred(X)))) ||
+ match(&I, m_FDiv(m_Intrinsic<Intrinsic::fabs>(m_Value(X)),
+ m_Deferred(X))))) {
+ Value *V = Builder.CreateBinaryIntrinsic(
+ Intrinsic::copysign, ConstantFP::get(I.getType(), 1.0), X, &I);
+ return replaceInstUsesWith(I, V);
+ }
+ return nullptr;
+}
+
+/// This function implements the transforms common to both integer remainder
+/// instructions (urem and srem). It is called by the visitors to those integer
+/// remainder instructions.
+/// Common integer remainder transforms
+Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ // The RHS is known non-zero.
+ if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
+ I.setOperand(1, V);
+ return &I;
+ }
+
+ // Handle cases involving: rem X, (select Cond, Y, Z)
+ if (simplifyDivRemOfSelectWithZeroOp(I))
+ return &I;
+
+ if (isa<Constant>(Op1)) {
+ if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
+ if (Instruction *R = FoldOpIntoSelect(I, SI))
+ return R;
+ } else if (auto *PN = dyn_cast<PHINode>(Op0I)) {
+ const APInt *Op1Int;
+ if (match(Op1, m_APInt(Op1Int)) && !Op1Int->isMinValue() &&
+ (I.getOpcode() == Instruction::URem ||
+ !Op1Int->isMinSignedValue())) {
+ // foldOpIntoPhi will speculate instructions to the end of the PHI's
+ // predecessor blocks, so do this only if we know the srem or urem
+ // will not fault.
+ if (Instruction *NV = foldOpIntoPhi(I, PN))
+ return NV;
+ }
+ }
+
+ // See if we can fold away this rem instruction.
+ if (SimplifyDemandedInstructionBits(I))
+ return &I;
+ }
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitURem(BinaryOperator &I) {
+ if (Value *V = SimplifyURemInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ if (Instruction *common = commonIRemTransforms(I))
+ return common;
+
+ if (Instruction *NarrowRem = narrowUDivURem(I, Builder))
+ return NarrowRem;
+
+ // X urem Y -> X and Y-1, where Y is a power of 2,
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ Type *Ty = I.getType();
+ if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/ true, 0, &I)) {
+ // This may increase instruction count, we don't enforce that Y is a
+ // constant.
+ Constant *N1 = Constant::getAllOnesValue(Ty);
+ Value *Add = Builder.CreateAdd(Op1, N1);
+ return BinaryOperator::CreateAnd(Op0, Add);
+ }
+
+ // 1 urem X -> zext(X != 1)
+ if (match(Op0, m_One()))
+ return CastInst::CreateZExtOrBitCast(Builder.CreateICmpNE(Op1, Op0), Ty);
+
+ // X urem C -> X < C ? X : X - C, where C >= signbit.
+ if (match(Op1, m_Negative())) {
+ Value *Cmp = Builder.CreateICmpULT(Op0, Op1);
+ Value *Sub = Builder.CreateSub(Op0, Op1);
+ return SelectInst::Create(Cmp, Op0, Sub);
+ }
+
+ // If the divisor is a sext of a boolean, then the divisor must be max
+ // unsigned value (-1). Therefore, the remainder is Op0 unless Op0 is also
+ // max unsigned value. In that case, the remainder is 0:
+ // urem Op0, (sext i1 X) --> (Op0 == -1) ? 0 : Op0
+ Value *X;
+ if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
+ Value *Cmp = Builder.CreateICmpEQ(Op0, ConstantInt::getAllOnesValue(Ty));
+ return SelectInst::Create(Cmp, ConstantInt::getNullValue(Ty), Op0);
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
+ if (Value *V = SimplifySRemInst(I.getOperand(0), I.getOperand(1),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ // Handle the integer rem common cases
+ if (Instruction *Common = commonIRemTransforms(I))
+ return Common;
+
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+ {
+ const APInt *Y;
+ // X % -Y -> X % Y
+ if (match(Op1, m_Negative(Y)) && !Y->isMinSignedValue()) {
+ Worklist.AddValue(I.getOperand(1));
+ I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
+ return &I;
+ }
+ }
+
+ // -X srem Y --> -(X srem Y)
+ Value *X, *Y;
+ if (match(&I, m_SRem(m_OneUse(m_NSWSub(m_Zero(), m_Value(X))), m_Value(Y))))
+ return BinaryOperator::CreateNSWNeg(Builder.CreateSRem(X, Y));
+
+ // If the sign bits of both operands are zero (i.e. we can prove they are
+ // unsigned inputs), turn this into a urem.
+ APInt Mask(APInt::getSignMask(I.getType()->getScalarSizeInBits()));
+ if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
+ MaskedValueIsZero(Op0, Mask, 0, &I)) {
+ // X srem Y -> X urem Y, iff X and Y don't have sign bit set
+ return BinaryOperator::CreateURem(Op0, Op1, I.getName());
+ }
+
+ // If it's a constant vector, flip any negative values positive.
+ if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
+ Constant *C = cast<Constant>(Op1);
+ unsigned VWidth = C->getType()->getVectorNumElements();
+
+ bool hasNegative = false;
+ bool hasMissing = false;
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt) {
+ hasMissing = true;
+ break;
+ }
+
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
+ if (RHS->isNegative())
+ hasNegative = true;
+ }
+
+ if (hasNegative && !hasMissing) {
+ SmallVector<Constant *, 16> Elts(VWidth);
+ for (unsigned i = 0; i != VWidth; ++i) {
+ Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
+ if (RHS->isNegative())
+ Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
+ }
+ }
+
+ Constant *NewRHSV = ConstantVector::get(Elts);
+ if (NewRHSV != C) { // Don't loop on -MININT
+ Worklist.AddValue(I.getOperand(1));
+ I.setOperand(1, NewRHSV);
+ return &I;
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
+ if (Value *V = SimplifyFRemInst(I.getOperand(0), I.getOperand(1),
+ I.getFastMathFlags(),
+ SQ.getWithInstruction(&I)))
+ return replaceInstUsesWith(I, V);
+
+ if (Instruction *X = foldVectorBinop(I))
+ return X;
+
+ return nullptr;
+}