summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp')
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp474
1 files changed, 474 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp b/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp
new file mode 100644
index 0000000000000..3fe615ac54391
--- /dev/null
+++ b/llvm/lib/Transforms/InstCombine/InstCombineNegator.cpp
@@ -0,0 +1,474 @@
+//===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements sinking of negation into expression trees,
+// as long as that can be done without increasing instruction count.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/TargetFolder.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/DebugCounter.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <functional>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+namespace llvm {
+class AssumptionCache;
+class DataLayout;
+class DominatorTree;
+class LLVMContext;
+} // namespace llvm
+
+using namespace llvm;
+
+#define DEBUG_TYPE "instcombine"
+
+STATISTIC(NegatorTotalNegationsAttempted,
+ "Negator: Number of negations attempted to be sinked");
+STATISTIC(NegatorNumTreesNegated,
+ "Negator: Number of negations successfully sinked");
+STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
+ "reached while attempting to sink negation");
+STATISTIC(NegatorTimesDepthLimitReached,
+ "Negator: How many times did the traversal depth limit was reached "
+ "during sinking");
+STATISTIC(
+ NegatorNumValuesVisited,
+ "Negator: Total number of values visited during attempts to sink negation");
+STATISTIC(NegatorNumNegationsFoundInCache,
+ "Negator: How many negations did we retrieve/reuse from cache");
+STATISTIC(NegatorMaxTotalValuesVisited,
+ "Negator: Maximal number of values ever visited while attempting to "
+ "sink negation");
+STATISTIC(NegatorNumInstructionsCreatedTotal,
+ "Negator: Number of new negated instructions created, total");
+STATISTIC(NegatorMaxInstructionsCreated,
+ "Negator: Maximal number of new instructions created during negation "
+ "attempt");
+STATISTIC(NegatorNumInstructionsNegatedSuccess,
+ "Negator: Number of new negated instructions created in successful "
+ "negation sinking attempts");
+
+DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
+ "Controls Negator transformations in InstCombine pass");
+
+static cl::opt<bool>
+ NegatorEnabled("instcombine-negator-enabled", cl::init(true),
+ cl::desc("Should we attempt to sink negations?"));
+
+static cl::opt<unsigned>
+ NegatorMaxDepth("instcombine-negator-max-depth",
+ cl::init(NegatorDefaultMaxDepth),
+ cl::desc("What is the maximal lookup depth when trying to "
+ "check for viability of negation sinking."));
+
+Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
+ const DominatorTree &DT_, bool IsTrulyNegation_)
+ : Builder(C, TargetFolder(DL_),
+ IRBuilderCallbackInserter([&](Instruction *I) {
+ ++NegatorNumInstructionsCreatedTotal;
+ NewInstructions.push_back(I);
+ })),
+ DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
+
+#if LLVM_ENABLE_STATS
+Negator::~Negator() {
+ NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
+}
+#endif
+
+// FIXME: can this be reworked into a worklist-based algorithm while preserving
+// the depth-first, early bailout traversal?
+LLVM_NODISCARD Value *Negator::visitImpl(Value *V, unsigned Depth) {
+ // -(undef) -> undef.
+ if (match(V, m_Undef()))
+ return V;
+
+ // In i1, negation can simply be ignored.
+ if (V->getType()->isIntOrIntVectorTy(1))
+ return V;
+
+ Value *X;
+
+ // -(-(X)) -> X.
+ if (match(V, m_Neg(m_Value(X))))
+ return X;
+
+ // Integral constants can be freely negated.
+ if (match(V, m_AnyIntegralConstant()))
+ return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
+ /*HasNSW=*/false);
+
+ // If we have a non-instruction, then give up.
+ if (!isa<Instruction>(V))
+ return nullptr;
+
+ // If we have started with a true negation (i.e. `sub 0, %y`), then if we've
+ // got instruction that does not require recursive reasoning, we can still
+ // negate it even if it has other uses, without increasing instruction count.
+ if (!V->hasOneUse() && !IsTrulyNegation)
+ return nullptr;
+
+ auto *I = cast<Instruction>(V);
+ unsigned BitWidth = I->getType()->getScalarSizeInBits();
+
+ // We must preserve the insertion point and debug info that is set in the
+ // builder at the time this function is called.
+ InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
+ // And since we are trying to negate instruction I, that tells us about the
+ // insertion point and the debug info that we need to keep.
+ Builder.SetInsertPoint(I);
+
+ // In some cases we can give the answer without further recursion.
+ switch (I->getOpcode()) {
+ case Instruction::Add:
+ // `inc` is always negatible.
+ if (match(I->getOperand(1), m_One()))
+ return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg");
+ break;
+ case Instruction::Xor:
+ // `not` is always negatible.
+ if (match(I, m_Not(m_Value(X))))
+ return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
+ I->getName() + ".neg");
+ break;
+ case Instruction::AShr:
+ case Instruction::LShr: {
+ // Right-shift sign bit smear is negatible.
+ const APInt *Op1Val;
+ if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
+ Value *BO = I->getOpcode() == Instruction::AShr
+ ? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
+ : Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
+ if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
+ NewInstr->copyIRFlags(I);
+ NewInstr->setName(I->getName() + ".neg");
+ }
+ return BO;
+ }
+ break;
+ }
+ case Instruction::SExt:
+ case Instruction::ZExt:
+ // `*ext` of i1 is always negatible
+ if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
+ return I->getOpcode() == Instruction::SExt
+ ? Builder.CreateZExt(I->getOperand(0), I->getType(),
+ I->getName() + ".neg")
+ : Builder.CreateSExt(I->getOperand(0), I->getType(),
+ I->getName() + ".neg");
+ break;
+ default:
+ break; // Other instructions require recursive reasoning.
+ }
+
+ // Some other cases, while still don't require recursion,
+ // are restricted to the one-use case.
+ if (!V->hasOneUse())
+ return nullptr;
+
+ switch (I->getOpcode()) {
+ case Instruction::Sub:
+ // `sub` is always negatible.
+ // But if the old `sub` sticks around, even thought we don't increase
+ // instruction count, this is a likely regression since we increased
+ // live-range of *both* of the operands, which might lead to more spilling.
+ return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
+ I->getName() + ".neg");
+ case Instruction::SDiv:
+ // `sdiv` is negatible if divisor is not undef/INT_MIN/1.
+ // While this is normally not behind a use-check,
+ // let's consider division to be special since it's costly.
+ if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
+ if (!Op1C->containsUndefElement() && Op1C->isNotMinSignedValue() &&
+ Op1C->isNotOneValue()) {
+ Value *BO =
+ Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
+ I->getName() + ".neg");
+ if (auto *NewInstr = dyn_cast<Instruction>(BO))
+ NewInstr->setIsExact(I->isExact());
+ return BO;
+ }
+ }
+ break;
+ }
+
+ // Rest of the logic is recursive, so if it's time to give up then it's time.
+ if (Depth > NegatorMaxDepth) {
+ LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
+ << *V << ". Giving up.\n");
+ ++NegatorTimesDepthLimitReached;
+ return nullptr;
+ }
+
+ switch (I->getOpcode()) {
+ case Instruction::PHI: {
+ // `phi` is negatible if all the incoming values are negatible.
+ auto *PHI = cast<PHINode>(I);
+ SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
+ for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
+ if (!(std::get<1>(I) =
+ negate(std::get<0>(I), Depth + 1))) // Early return.
+ return nullptr;
+ }
+ // All incoming values are indeed negatible. Create negated PHI node.
+ PHINode *NegatedPHI = Builder.CreatePHI(
+ PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
+ for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
+ NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
+ return NegatedPHI;
+ }
+ case Instruction::Select: {
+ {
+ // `abs`/`nabs` is always negatible.
+ Value *LHS, *RHS;
+ SelectPatternFlavor SPF =
+ matchSelectPattern(I, LHS, RHS, /*CastOp=*/nullptr, Depth).Flavor;
+ if (SPF == SPF_ABS || SPF == SPF_NABS) {
+ auto *NewSelect = cast<SelectInst>(I->clone());
+ // Just swap the operands of the select.
+ NewSelect->swapValues();
+ // Don't swap prof metadata, we didn't change the branch behavior.
+ NewSelect->setName(I->getName() + ".neg");
+ Builder.Insert(NewSelect);
+ return NewSelect;
+ }
+ }
+ // `select` is negatible if both hands of `select` are negatible.
+ Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
+ if (!NegOp1) // Early return.
+ return nullptr;
+ Value *NegOp2 = negate(I->getOperand(2), Depth + 1);
+ if (!NegOp2)
+ return nullptr;
+ // Do preserve the metadata!
+ return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
+ I->getName() + ".neg", /*MDFrom=*/I);
+ }
+ case Instruction::ShuffleVector: {
+ // `shufflevector` is negatible if both operands are negatible.
+ auto *Shuf = cast<ShuffleVectorInst>(I);
+ Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
+ if (!NegOp0) // Early return.
+ return nullptr;
+ Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
+ if (!NegOp1)
+ return nullptr;
+ return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
+ I->getName() + ".neg");
+ }
+ case Instruction::ExtractElement: {
+ // `extractelement` is negatible if source operand is negatible.
+ auto *EEI = cast<ExtractElementInst>(I);
+ Value *NegVector = negate(EEI->getVectorOperand(), Depth + 1);
+ if (!NegVector) // Early return.
+ return nullptr;
+ return Builder.CreateExtractElement(NegVector, EEI->getIndexOperand(),
+ I->getName() + ".neg");
+ }
+ case Instruction::InsertElement: {
+ // `insertelement` is negatible if both the source vector and
+ // element-to-be-inserted are negatible.
+ auto *IEI = cast<InsertElementInst>(I);
+ Value *NegVector = negate(IEI->getOperand(0), Depth + 1);
+ if (!NegVector) // Early return.
+ return nullptr;
+ Value *NegNewElt = negate(IEI->getOperand(1), Depth + 1);
+ if (!NegNewElt) // Early return.
+ return nullptr;
+ return Builder.CreateInsertElement(NegVector, NegNewElt, IEI->getOperand(2),
+ I->getName() + ".neg");
+ }
+ case Instruction::Trunc: {
+ // `trunc` is negatible if its operand is negatible.
+ Value *NegOp = negate(I->getOperand(0), Depth + 1);
+ if (!NegOp) // Early return.
+ return nullptr;
+ return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
+ }
+ case Instruction::Shl: {
+ // `shl` is negatible if the first operand is negatible.
+ Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
+ if (!NegOp0) // Early return.
+ return nullptr;
+ return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
+ }
+ case Instruction::Or:
+ if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
+ &DT))
+ return nullptr; // Don't know how to handle `or` in general.
+ // `or`/`add` are interchangeable when operands have no common bits set.
+ // `inc` is always negatible.
+ if (match(I->getOperand(1), m_One()))
+ return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg");
+ // Else, just defer to Instruction::Add handling.
+ LLVM_FALLTHROUGH;
+ case Instruction::Add: {
+ // `add` is negatible if both of its operands are negatible.
+ Value *NegOp0 = negate(I->getOperand(0), Depth + 1);
+ if (!NegOp0) // Early return.
+ return nullptr;
+ Value *NegOp1 = negate(I->getOperand(1), Depth + 1);
+ if (!NegOp1)
+ return nullptr;
+ return Builder.CreateAdd(NegOp0, NegOp1, I->getName() + ".neg");
+ }
+ case Instruction::Xor:
+ // `xor` is negatible if one of its operands is invertible.
+ // FIXME: InstCombineInverter? But how to connect Inverter and Negator?
+ if (auto *C = dyn_cast<Constant>(I->getOperand(1))) {
+ Value *Xor = Builder.CreateXor(I->getOperand(0), ConstantExpr::getNot(C));
+ return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
+ I->getName() + ".neg");
+ }
+ return nullptr;
+ case Instruction::Mul: {
+ // `mul` is negatible if one of its operands is negatible.
+ Value *NegatedOp, *OtherOp;
+ // First try the second operand, in case it's a constant it will be best to
+ // just invert it instead of sinking the `neg` deeper.
+ if (Value *NegOp1 = negate(I->getOperand(1), Depth + 1)) {
+ NegatedOp = NegOp1;
+ OtherOp = I->getOperand(0);
+ } else if (Value *NegOp0 = negate(I->getOperand(0), Depth + 1)) {
+ NegatedOp = NegOp0;
+ OtherOp = I->getOperand(1);
+ } else
+ // Can't negate either of them.
+ return nullptr;
+ return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
+ }
+ default:
+ return nullptr; // Don't know, likely not negatible for free.
+ }
+
+ llvm_unreachable("Can't get here. We always return from switch.");
+}
+
+LLVM_NODISCARD Value *Negator::negate(Value *V, unsigned Depth) {
+ NegatorMaxDepthVisited.updateMax(Depth);
+ ++NegatorNumValuesVisited;
+
+#if LLVM_ENABLE_STATS
+ ++NumValuesVisitedInThisNegator;
+#endif
+
+#ifndef NDEBUG
+ // We can't ever have a Value with such an address.
+ Value *Placeholder = reinterpret_cast<Value *>(static_cast<uintptr_t>(-1));
+#endif
+
+ // Did we already try to negate this value?
+ auto NegationsCacheIterator = NegationsCache.find(V);
+ if (NegationsCacheIterator != NegationsCache.end()) {
+ ++NegatorNumNegationsFoundInCache;
+ Value *NegatedV = NegationsCacheIterator->second;
+ assert(NegatedV != Placeholder && "Encountered a cycle during negation.");
+ return NegatedV;
+ }
+
+#ifndef NDEBUG
+ // We did not find a cached result for negation of V. While there,
+ // let's temporairly cache a placeholder value, with the idea that if later
+ // during negation we fetch it from cache, we'll know we're in a cycle.
+ NegationsCache[V] = Placeholder;
+#endif
+
+ // No luck. Try negating it for real.
+ Value *NegatedV = visitImpl(V, Depth);
+ // And cache the (real) result for the future.
+ NegationsCache[V] = NegatedV;
+
+ return NegatedV;
+}
+
+LLVM_NODISCARD Optional<Negator::Result> Negator::run(Value *Root) {
+ Value *Negated = negate(Root, /*Depth=*/0);
+ if (!Negated) {
+ // We must cleanup newly-inserted instructions, to avoid any potential
+ // endless combine looping.
+ llvm::for_each(llvm::reverse(NewInstructions),
+ [&](Instruction *I) { I->eraseFromParent(); });
+ return llvm::None;
+ }
+ return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
+}
+
+LLVM_NODISCARD Value *Negator::Negate(bool LHSIsZero, Value *Root,
+ InstCombiner &IC) {
+ ++NegatorTotalNegationsAttempted;
+ LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
+ << "\n");
+
+ if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
+ return nullptr;
+
+ Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
+ IC.getDominatorTree(), LHSIsZero);
+ Optional<Result> Res = N.run(Root);
+ if (!Res) { // Negation failed.
+ LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
+ << "\n");
+ return nullptr;
+ }
+
+ LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
+ << "\n NEW: " << *Res->second << "\n");
+ ++NegatorNumTreesNegated;
+
+ // We must temporarily unset the 'current' insertion point and DebugLoc of the
+ // InstCombine's IRBuilder so that it won't interfere with the ones we have
+ // already specified when producing negated instructions.
+ InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
+ IC.Builder.ClearInsertionPoint();
+ IC.Builder.SetCurrentDebugLocation(DebugLoc());
+
+ // And finally, we must add newly-created instructions into the InstCombine's
+ // worklist (in a proper order!) so it can attempt to combine them.
+ LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
+ << " instrs to InstCombine\n");
+ NegatorMaxInstructionsCreated.updateMax(Res->first.size());
+ NegatorNumInstructionsNegatedSuccess += Res->first.size();
+
+ // They are in def-use order, so nothing fancy, just insert them in order.
+ llvm::for_each(Res->first,
+ [&](Instruction *I) { IC.Builder.Insert(I, I->getName()); });
+
+ // And return the new root.
+ return Res->second;
+}