summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp')
-rw-r--r--llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp1733
1 files changed, 1733 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp b/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
new file mode 100644
index 0000000000000..d30ab8001897f
--- /dev/null
+++ b/llvm/lib/Transforms/InstCombine/InstCombineSimplifyDemanded.cpp
@@ -0,0 +1,1733 @@
+//===- InstCombineSimplifyDemanded.cpp ------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains logic for simplifying instructions based on information
+// about how they are used.
+//
+//===----------------------------------------------------------------------===//
+
+#include "InstCombineInternal.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Support/KnownBits.h"
+
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+#define DEBUG_TYPE "instcombine"
+
+namespace {
+
+struct AMDGPUImageDMaskIntrinsic {
+ unsigned Intr;
+};
+
+#define GET_AMDGPUImageDMaskIntrinsicTable_IMPL
+#include "InstCombineTables.inc"
+
+} // end anonymous namespace
+
+/// Check to see if the specified operand of the specified instruction is a
+/// constant integer. If so, check to see if there are any bits set in the
+/// constant that are not demanded. If so, shrink the constant and return true.
+static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
+ const APInt &Demanded) {
+ assert(I && "No instruction?");
+ assert(OpNo < I->getNumOperands() && "Operand index too large");
+
+ // The operand must be a constant integer or splat integer.
+ Value *Op = I->getOperand(OpNo);
+ const APInt *C;
+ if (!match(Op, m_APInt(C)))
+ return false;
+
+ // If there are no bits set that aren't demanded, nothing to do.
+ if (C->isSubsetOf(Demanded))
+ return false;
+
+ // This instruction is producing bits that are not demanded. Shrink the RHS.
+ I->setOperand(OpNo, ConstantInt::get(Op->getType(), *C & Demanded));
+
+ return true;
+}
+
+
+
+/// Inst is an integer instruction that SimplifyDemandedBits knows about. See if
+/// the instruction has any properties that allow us to simplify its operands.
+bool InstCombiner::SimplifyDemandedInstructionBits(Instruction &Inst) {
+ unsigned BitWidth = Inst.getType()->getScalarSizeInBits();
+ KnownBits Known(BitWidth);
+ APInt DemandedMask(APInt::getAllOnesValue(BitWidth));
+
+ Value *V = SimplifyDemandedUseBits(&Inst, DemandedMask, Known,
+ 0, &Inst);
+ if (!V) return false;
+ if (V == &Inst) return true;
+ replaceInstUsesWith(Inst, V);
+ return true;
+}
+
+/// This form of SimplifyDemandedBits simplifies the specified instruction
+/// operand if possible, updating it in place. It returns true if it made any
+/// change and false otherwise.
+bool InstCombiner::SimplifyDemandedBits(Instruction *I, unsigned OpNo,
+ const APInt &DemandedMask,
+ KnownBits &Known,
+ unsigned Depth) {
+ Use &U = I->getOperandUse(OpNo);
+ Value *NewVal = SimplifyDemandedUseBits(U.get(), DemandedMask, Known,
+ Depth, I);
+ if (!NewVal) return false;
+ U = NewVal;
+ return true;
+}
+
+
+/// This function attempts to replace V with a simpler value based on the
+/// demanded bits. When this function is called, it is known that only the bits
+/// set in DemandedMask of the result of V are ever used downstream.
+/// Consequently, depending on the mask and V, it may be possible to replace V
+/// with a constant or one of its operands. In such cases, this function does
+/// the replacement and returns true. In all other cases, it returns false after
+/// analyzing the expression and setting KnownOne and known to be one in the
+/// expression. Known.Zero contains all the bits that are known to be zero in
+/// the expression. These are provided to potentially allow the caller (which
+/// might recursively be SimplifyDemandedBits itself) to simplify the
+/// expression.
+/// Known.One and Known.Zero always follow the invariant that:
+/// Known.One & Known.Zero == 0.
+/// That is, a bit can't be both 1 and 0. Note that the bits in Known.One and
+/// Known.Zero may only be accurate for those bits set in DemandedMask. Note
+/// also that the bitwidth of V, DemandedMask, Known.Zero and Known.One must all
+/// be the same.
+///
+/// This returns null if it did not change anything and it permits no
+/// simplification. This returns V itself if it did some simplification of V's
+/// operands based on the information about what bits are demanded. This returns
+/// some other non-null value if it found out that V is equal to another value
+/// in the context where the specified bits are demanded, but not for all users.
+Value *InstCombiner::SimplifyDemandedUseBits(Value *V, APInt DemandedMask,
+ KnownBits &Known, unsigned Depth,
+ Instruction *CxtI) {
+ assert(V != nullptr && "Null pointer of Value???");
+ assert(Depth <= 6 && "Limit Search Depth");
+ uint32_t BitWidth = DemandedMask.getBitWidth();
+ Type *VTy = V->getType();
+ assert(
+ (!VTy->isIntOrIntVectorTy() || VTy->getScalarSizeInBits() == BitWidth) &&
+ Known.getBitWidth() == BitWidth &&
+ "Value *V, DemandedMask and Known must have same BitWidth");
+
+ if (isa<Constant>(V)) {
+ computeKnownBits(V, Known, Depth, CxtI);
+ return nullptr;
+ }
+
+ Known.resetAll();
+ if (DemandedMask.isNullValue()) // Not demanding any bits from V.
+ return UndefValue::get(VTy);
+
+ if (Depth == 6) // Limit search depth.
+ return nullptr;
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) {
+ computeKnownBits(V, Known, Depth, CxtI);
+ return nullptr; // Only analyze instructions.
+ }
+
+ // If there are multiple uses of this value and we aren't at the root, then
+ // we can't do any simplifications of the operands, because DemandedMask
+ // only reflects the bits demanded by *one* of the users.
+ if (Depth != 0 && !I->hasOneUse())
+ return SimplifyMultipleUseDemandedBits(I, DemandedMask, Known, Depth, CxtI);
+
+ KnownBits LHSKnown(BitWidth), RHSKnown(BitWidth);
+
+ // If this is the root being simplified, allow it to have multiple uses,
+ // just set the DemandedMask to all bits so that we can try to simplify the
+ // operands. This allows visitTruncInst (for example) to simplify the
+ // operand of a trunc without duplicating all the logic below.
+ if (Depth == 0 && !V->hasOneUse())
+ DemandedMask.setAllBits();
+
+ switch (I->getOpcode()) {
+ default:
+ computeKnownBits(I, Known, Depth, CxtI);
+ break;
+ case Instruction::And: {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
+ SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.Zero, LHSKnown,
+ Depth + 1))
+ return I;
+ assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
+ assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
+
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ APInt IKnownOne = RHSKnown.One & LHSKnown.One;
+
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
+ return Constant::getIntegerValue(VTy, IKnownOne);
+
+ // If all of the demanded bits are known 1 on one side, return the other.
+ // These bits cannot contribute to the result of the 'and'.
+ if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
+ return I->getOperand(0);
+ if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
+ return I->getOperand(1);
+
+ // If the RHS is a constant, see if we can simplify it.
+ if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnown.Zero))
+ return I;
+
+ Known.Zero = std::move(IKnownZero);
+ Known.One = std::move(IKnownOne);
+ break;
+ }
+ case Instruction::Or: {
+ // If either the LHS or the RHS are One, the result is One.
+ if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
+ SimplifyDemandedBits(I, 0, DemandedMask & ~RHSKnown.One, LHSKnown,
+ Depth + 1))
+ return I;
+ assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
+ assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
+ // Output known-1 are known. to be set if s.et in either the LHS | RHS.
+ APInt IKnownOne = RHSKnown.One | LHSKnown.One;
+
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
+ return Constant::getIntegerValue(VTy, IKnownOne);
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'or'.
+ if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
+ return I->getOperand(0);
+ if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
+ return I->getOperand(1);
+
+ // If the RHS is a constant, see if we can simplify it.
+ if (ShrinkDemandedConstant(I, 1, DemandedMask))
+ return I;
+
+ Known.Zero = std::move(IKnownZero);
+ Known.One = std::move(IKnownOne);
+ break;
+ }
+ case Instruction::Xor: {
+ if (SimplifyDemandedBits(I, 1, DemandedMask, RHSKnown, Depth + 1) ||
+ SimplifyDemandedBits(I, 0, DemandedMask, LHSKnown, Depth + 1))
+ return I;
+ assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
+ assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
+ (RHSKnown.One & LHSKnown.One);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
+ (RHSKnown.One & LHSKnown.Zero);
+
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
+ return Constant::getIntegerValue(VTy, IKnownOne);
+
+ // If all of the demanded bits are known zero on one side, return the other.
+ // These bits cannot contribute to the result of the 'xor'.
+ if (DemandedMask.isSubsetOf(RHSKnown.Zero))
+ return I->getOperand(0);
+ if (DemandedMask.isSubsetOf(LHSKnown.Zero))
+ return I->getOperand(1);
+
+ // If all of the demanded bits are known to be zero on one side or the
+ // other, turn this into an *inclusive* or.
+ // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
+ if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.Zero)) {
+ Instruction *Or =
+ BinaryOperator::CreateOr(I->getOperand(0), I->getOperand(1),
+ I->getName());
+ return InsertNewInstWith(Or, *I);
+ }
+
+ // If all of the demanded bits on one side are known, and all of the set
+ // bits on that side are also known to be set on the other side, turn this
+ // into an AND, as we know the bits will be cleared.
+ // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
+ if (DemandedMask.isSubsetOf(RHSKnown.Zero|RHSKnown.One) &&
+ RHSKnown.One.isSubsetOf(LHSKnown.One)) {
+ Constant *AndC = Constant::getIntegerValue(VTy,
+ ~RHSKnown.One & DemandedMask);
+ Instruction *And = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
+ return InsertNewInstWith(And, *I);
+ }
+
+ // If the RHS is a constant, see if we can simplify it.
+ // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
+ if (ShrinkDemandedConstant(I, 1, DemandedMask))
+ return I;
+
+ // If our LHS is an 'and' and if it has one use, and if any of the bits we
+ // are flipping are known to be set, then the xor is just resetting those
+ // bits to zero. We can just knock out bits from the 'and' and the 'xor',
+ // simplifying both of them.
+ if (Instruction *LHSInst = dyn_cast<Instruction>(I->getOperand(0)))
+ if (LHSInst->getOpcode() == Instruction::And && LHSInst->hasOneUse() &&
+ isa<ConstantInt>(I->getOperand(1)) &&
+ isa<ConstantInt>(LHSInst->getOperand(1)) &&
+ (LHSKnown.One & RHSKnown.One & DemandedMask) != 0) {
+ ConstantInt *AndRHS = cast<ConstantInt>(LHSInst->getOperand(1));
+ ConstantInt *XorRHS = cast<ConstantInt>(I->getOperand(1));
+ APInt NewMask = ~(LHSKnown.One & RHSKnown.One & DemandedMask);
+
+ Constant *AndC =
+ ConstantInt::get(I->getType(), NewMask & AndRHS->getValue());
+ Instruction *NewAnd = BinaryOperator::CreateAnd(I->getOperand(0), AndC);
+ InsertNewInstWith(NewAnd, *I);
+
+ Constant *XorC =
+ ConstantInt::get(I->getType(), NewMask & XorRHS->getValue());
+ Instruction *NewXor = BinaryOperator::CreateXor(NewAnd, XorC);
+ return InsertNewInstWith(NewXor, *I);
+ }
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ Known.Zero = std::move(IKnownZero);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ Known.One = std::move(IKnownOne);
+ break;
+ }
+ case Instruction::Select: {
+ Value *LHS, *RHS;
+ SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
+ if (SPF == SPF_UMAX) {
+ // UMax(A, C) == A if ...
+ // The lowest non-zero bit of DemandMask is higher than the highest
+ // non-zero bit of C.
+ const APInt *C;
+ unsigned CTZ = DemandedMask.countTrailingZeros();
+ if (match(RHS, m_APInt(C)) && CTZ >= C->getActiveBits())
+ return LHS;
+ } else if (SPF == SPF_UMIN) {
+ // UMin(A, C) == A if ...
+ // The lowest non-zero bit of DemandMask is higher than the highest
+ // non-one bit of C.
+ // This comes from using DeMorgans on the above umax example.
+ const APInt *C;
+ unsigned CTZ = DemandedMask.countTrailingZeros();
+ if (match(RHS, m_APInt(C)) &&
+ CTZ >= C->getBitWidth() - C->countLeadingOnes())
+ return LHS;
+ }
+
+ // If this is a select as part of any other min/max pattern, don't simplify
+ // any further in case we break the structure.
+ if (SPF != SPF_UNKNOWN)
+ return nullptr;
+
+ if (SimplifyDemandedBits(I, 2, DemandedMask, RHSKnown, Depth + 1) ||
+ SimplifyDemandedBits(I, 1, DemandedMask, LHSKnown, Depth + 1))
+ return I;
+ assert(!RHSKnown.hasConflict() && "Bits known to be one AND zero?");
+ assert(!LHSKnown.hasConflict() && "Bits known to be one AND zero?");
+
+ // If the operands are constants, see if we can simplify them.
+ if (ShrinkDemandedConstant(I, 1, DemandedMask) ||
+ ShrinkDemandedConstant(I, 2, DemandedMask))
+ return I;
+
+ // Only known if known in both the LHS and RHS.
+ Known.One = RHSKnown.One & LHSKnown.One;
+ Known.Zero = RHSKnown.Zero & LHSKnown.Zero;
+ break;
+ }
+ case Instruction::ZExt:
+ case Instruction::Trunc: {
+ unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
+
+ APInt InputDemandedMask = DemandedMask.zextOrTrunc(SrcBitWidth);
+ KnownBits InputKnown(SrcBitWidth);
+ if (SimplifyDemandedBits(I, 0, InputDemandedMask, InputKnown, Depth + 1))
+ return I;
+ assert(InputKnown.getBitWidth() == SrcBitWidth && "Src width changed?");
+ Known = InputKnown.zextOrTrunc(BitWidth,
+ true /* ExtendedBitsAreKnownZero */);
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ break;
+ }
+ case Instruction::BitCast:
+ if (!I->getOperand(0)->getType()->isIntOrIntVectorTy())
+ return nullptr; // vector->int or fp->int?
+
+ if (VectorType *DstVTy = dyn_cast<VectorType>(I->getType())) {
+ if (VectorType *SrcVTy =
+ dyn_cast<VectorType>(I->getOperand(0)->getType())) {
+ if (DstVTy->getNumElements() != SrcVTy->getNumElements())
+ // Don't touch a bitcast between vectors of different element counts.
+ return nullptr;
+ } else
+ // Don't touch a scalar-to-vector bitcast.
+ return nullptr;
+ } else if (I->getOperand(0)->getType()->isVectorTy())
+ // Don't touch a vector-to-scalar bitcast.
+ return nullptr;
+
+ if (SimplifyDemandedBits(I, 0, DemandedMask, Known, Depth + 1))
+ return I;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ break;
+ case Instruction::SExt: {
+ // Compute the bits in the result that are not present in the input.
+ unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
+
+ APInt InputDemandedBits = DemandedMask.trunc(SrcBitWidth);
+
+ // If any of the sign extended bits are demanded, we know that the sign
+ // bit is demanded.
+ if (DemandedMask.getActiveBits() > SrcBitWidth)
+ InputDemandedBits.setBit(SrcBitWidth-1);
+
+ KnownBits InputKnown(SrcBitWidth);
+ if (SimplifyDemandedBits(I, 0, InputDemandedBits, InputKnown, Depth + 1))
+ return I;
+
+ // If the input sign bit is known zero, or if the NewBits are not demanded
+ // convert this into a zero extension.
+ if (InputKnown.isNonNegative() ||
+ DemandedMask.getActiveBits() <= SrcBitWidth) {
+ // Convert to ZExt cast.
+ CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName());
+ return InsertNewInstWith(NewCast, *I);
+ }
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+ Known = InputKnown.sext(BitWidth);
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ break;
+ }
+ case Instruction::Add:
+ case Instruction::Sub: {
+ /// If the high-bits of an ADD/SUB are not demanded, then we do not care
+ /// about the high bits of the operands.
+ unsigned NLZ = DemandedMask.countLeadingZeros();
+ // Right fill the mask of bits for this ADD/SUB to demand the most
+ // significant bit and all those below it.
+ APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
+ if (ShrinkDemandedConstant(I, 0, DemandedFromOps) ||
+ SimplifyDemandedBits(I, 0, DemandedFromOps, LHSKnown, Depth + 1) ||
+ ShrinkDemandedConstant(I, 1, DemandedFromOps) ||
+ SimplifyDemandedBits(I, 1, DemandedFromOps, RHSKnown, Depth + 1)) {
+ if (NLZ > 0) {
+ // Disable the nsw and nuw flags here: We can no longer guarantee that
+ // we won't wrap after simplification. Removing the nsw/nuw flags is
+ // legal here because the top bit is not demanded.
+ BinaryOperator &BinOP = *cast<BinaryOperator>(I);
+ BinOP.setHasNoSignedWrap(false);
+ BinOP.setHasNoUnsignedWrap(false);
+ }
+ return I;
+ }
+
+ // If we are known to be adding/subtracting zeros to every bit below
+ // the highest demanded bit, we just return the other side.
+ if (DemandedFromOps.isSubsetOf(RHSKnown.Zero))
+ return I->getOperand(0);
+ // We can't do this with the LHS for subtraction, unless we are only
+ // demanding the LSB.
+ if ((I->getOpcode() == Instruction::Add ||
+ DemandedFromOps.isOneValue()) &&
+ DemandedFromOps.isSubsetOf(LHSKnown.Zero))
+ return I->getOperand(1);
+
+ // Otherwise just compute the known bits of the result.
+ bool NSW = cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap();
+ Known = KnownBits::computeForAddSub(I->getOpcode() == Instruction::Add,
+ NSW, LHSKnown, RHSKnown);
+ break;
+ }
+ case Instruction::Shl: {
+ const APInt *SA;
+ if (match(I->getOperand(1), m_APInt(SA))) {
+ const APInt *ShrAmt;
+ if (match(I->getOperand(0), m_Shr(m_Value(), m_APInt(ShrAmt))))
+ if (Instruction *Shr = dyn_cast<Instruction>(I->getOperand(0)))
+ if (Value *R = simplifyShrShlDemandedBits(Shr, *ShrAmt, I, *SA,
+ DemandedMask, Known))
+ return R;
+
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
+ APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
+
+ // If the shift is NUW/NSW, then it does demand the high bits.
+ ShlOperator *IOp = cast<ShlOperator>(I);
+ if (IOp->hasNoSignedWrap())
+ DemandedMaskIn.setHighBits(ShiftAmt+1);
+ else if (IOp->hasNoUnsignedWrap())
+ DemandedMaskIn.setHighBits(ShiftAmt);
+
+ if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
+ return I;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ Known.Zero <<= ShiftAmt;
+ Known.One <<= ShiftAmt;
+ // low bits known zero.
+ if (ShiftAmt)
+ Known.Zero.setLowBits(ShiftAmt);
+ }
+ break;
+ }
+ case Instruction::LShr: {
+ const APInt *SA;
+ if (match(I->getOperand(1), m_APInt(SA))) {
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
+
+ // Unsigned shift right.
+ APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
+
+ // If the shift is exact, then it does demand the low bits (and knows that
+ // they are zero).
+ if (cast<LShrOperator>(I)->isExact())
+ DemandedMaskIn.setLowBits(ShiftAmt);
+
+ if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
+ return I;
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ Known.Zero.lshrInPlace(ShiftAmt);
+ Known.One.lshrInPlace(ShiftAmt);
+ if (ShiftAmt)
+ Known.Zero.setHighBits(ShiftAmt); // high bits known zero.
+ }
+ break;
+ }
+ case Instruction::AShr: {
+ // If this is an arithmetic shift right and only the low-bit is set, we can
+ // always convert this into a logical shr, even if the shift amount is
+ // variable. The low bit of the shift cannot be an input sign bit unless
+ // the shift amount is >= the size of the datatype, which is undefined.
+ if (DemandedMask.isOneValue()) {
+ // Perform the logical shift right.
+ Instruction *NewVal = BinaryOperator::CreateLShr(
+ I->getOperand(0), I->getOperand(1), I->getName());
+ return InsertNewInstWith(NewVal, *I);
+ }
+
+ // If the sign bit is the only bit demanded by this ashr, then there is no
+ // need to do it, the shift doesn't change the high bit.
+ if (DemandedMask.isSignMask())
+ return I->getOperand(0);
+
+ const APInt *SA;
+ if (match(I->getOperand(1), m_APInt(SA))) {
+ uint32_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
+
+ // Signed shift right.
+ APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
+ // If any of the high bits are demanded, we should set the sign bit as
+ // demanded.
+ if (DemandedMask.countLeadingZeros() <= ShiftAmt)
+ DemandedMaskIn.setSignBit();
+
+ // If the shift is exact, then it does demand the low bits (and knows that
+ // they are zero).
+ if (cast<AShrOperator>(I)->isExact())
+ DemandedMaskIn.setLowBits(ShiftAmt);
+
+ if (SimplifyDemandedBits(I, 0, DemandedMaskIn, Known, Depth + 1))
+ return I;
+
+ unsigned SignBits = ComputeNumSignBits(I->getOperand(0), Depth + 1, CxtI);
+
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ // Compute the new bits that are at the top now plus sign bits.
+ APInt HighBits(APInt::getHighBitsSet(
+ BitWidth, std::min(SignBits + ShiftAmt - 1, BitWidth)));
+ Known.Zero.lshrInPlace(ShiftAmt);
+ Known.One.lshrInPlace(ShiftAmt);
+
+ // If the input sign bit is known to be zero, or if none of the top bits
+ // are demanded, turn this into an unsigned shift right.
+ assert(BitWidth > ShiftAmt && "Shift amount not saturated?");
+ if (Known.Zero[BitWidth-ShiftAmt-1] ||
+ !DemandedMask.intersects(HighBits)) {
+ BinaryOperator *LShr = BinaryOperator::CreateLShr(I->getOperand(0),
+ I->getOperand(1));
+ LShr->setIsExact(cast<BinaryOperator>(I)->isExact());
+ return InsertNewInstWith(LShr, *I);
+ } else if (Known.One[BitWidth-ShiftAmt-1]) { // New bits are known one.
+ Known.One |= HighBits;
+ }
+ }
+ break;
+ }
+ case Instruction::UDiv: {
+ // UDiv doesn't demand low bits that are zero in the divisor.
+ const APInt *SA;
+ if (match(I->getOperand(1), m_APInt(SA))) {
+ // If the shift is exact, then it does demand the low bits.
+ if (cast<UDivOperator>(I)->isExact())
+ break;
+
+ // FIXME: Take the demanded mask of the result into account.
+ unsigned RHSTrailingZeros = SA->countTrailingZeros();
+ APInt DemandedMaskIn =
+ APInt::getHighBitsSet(BitWidth, BitWidth - RHSTrailingZeros);
+ if (SimplifyDemandedBits(I, 0, DemandedMaskIn, LHSKnown, Depth + 1))
+ return I;
+
+ // Propagate zero bits from the input.
+ Known.Zero.setHighBits(std::min(
+ BitWidth, LHSKnown.Zero.countLeadingOnes() + RHSTrailingZeros));
+ }
+ break;
+ }
+ case Instruction::SRem:
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // X % -1 demands all the bits because we don't want to introduce
+ // INT_MIN % -1 (== undef) by accident.
+ if (Rem->isMinusOne())
+ break;
+ APInt RA = Rem->getValue().abs();
+ if (RA.isPowerOf2()) {
+ if (DemandedMask.ult(RA)) // srem won't affect demanded bits
+ return I->getOperand(0);
+
+ APInt LowBits = RA - 1;
+ APInt Mask2 = LowBits | APInt::getSignMask(BitWidth);
+ if (SimplifyDemandedBits(I, 0, Mask2, LHSKnown, Depth + 1))
+ return I;
+
+ // The low bits of LHS are unchanged by the srem.
+ Known.Zero = LHSKnown.Zero & LowBits;
+ Known.One = LHSKnown.One & LowBits;
+
+ // If LHS is non-negative or has all low bits zero, then the upper bits
+ // are all zero.
+ if (LHSKnown.isNonNegative() || LowBits.isSubsetOf(LHSKnown.Zero))
+ Known.Zero |= ~LowBits;
+
+ // If LHS is negative and not all low bits are zero, then the upper bits
+ // are all one.
+ if (LHSKnown.isNegative() && LowBits.intersects(LHSKnown.One))
+ Known.One |= ~LowBits;
+
+ assert(!Known.hasConflict() && "Bits known to be one AND zero?");
+ break;
+ }
+ }
+
+ // The sign bit is the LHS's sign bit, except when the result of the
+ // remainder is zero.
+ if (DemandedMask.isSignBitSet()) {
+ computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1, CxtI);
+ // If it's known zero, our sign bit is also zero.
+ if (LHSKnown.isNonNegative())
+ Known.makeNonNegative();
+ }
+ break;
+ case Instruction::URem: {
+ KnownBits Known2(BitWidth);
+ APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+ if (SimplifyDemandedBits(I, 0, AllOnes, Known2, Depth + 1) ||
+ SimplifyDemandedBits(I, 1, AllOnes, Known2, Depth + 1))
+ return I;
+
+ unsigned Leaders = Known2.countMinLeadingZeros();
+ Known.Zero = APInt::getHighBitsSet(BitWidth, Leaders) & DemandedMask;
+ break;
+ }
+ case Instruction::Call:
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::bswap: {
+ // If the only bits demanded come from one byte of the bswap result,
+ // just shift the input byte into position to eliminate the bswap.
+ unsigned NLZ = DemandedMask.countLeadingZeros();
+ unsigned NTZ = DemandedMask.countTrailingZeros();
+
+ // Round NTZ down to the next byte. If we have 11 trailing zeros, then
+ // we need all the bits down to bit 8. Likewise, round NLZ. If we
+ // have 14 leading zeros, round to 8.
+ NLZ &= ~7;
+ NTZ &= ~7;
+ // If we need exactly one byte, we can do this transformation.
+ if (BitWidth-NLZ-NTZ == 8) {
+ unsigned ResultBit = NTZ;
+ unsigned InputBit = BitWidth-NTZ-8;
+
+ // Replace this with either a left or right shift to get the byte into
+ // the right place.
+ Instruction *NewVal;
+ if (InputBit > ResultBit)
+ NewVal = BinaryOperator::CreateLShr(II->getArgOperand(0),
+ ConstantInt::get(I->getType(), InputBit-ResultBit));
+ else
+ NewVal = BinaryOperator::CreateShl(II->getArgOperand(0),
+ ConstantInt::get(I->getType(), ResultBit-InputBit));
+ NewVal->takeName(I);
+ return InsertNewInstWith(NewVal, *I);
+ }
+
+ // TODO: Could compute known zero/one bits based on the input.
+ break;
+ }
+ case Intrinsic::fshr:
+ case Intrinsic::fshl: {
+ const APInt *SA;
+ if (!match(I->getOperand(2), m_APInt(SA)))
+ break;
+
+ // Normalize to funnel shift left. APInt shifts of BitWidth are well-
+ // defined, so no need to special-case zero shifts here.
+ uint64_t ShiftAmt = SA->urem(BitWidth);
+ if (II->getIntrinsicID() == Intrinsic::fshr)
+ ShiftAmt = BitWidth - ShiftAmt;
+
+ APInt DemandedMaskLHS(DemandedMask.lshr(ShiftAmt));
+ APInt DemandedMaskRHS(DemandedMask.shl(BitWidth - ShiftAmt));
+ if (SimplifyDemandedBits(I, 0, DemandedMaskLHS, LHSKnown, Depth + 1) ||
+ SimplifyDemandedBits(I, 1, DemandedMaskRHS, RHSKnown, Depth + 1))
+ return I;
+
+ Known.Zero = LHSKnown.Zero.shl(ShiftAmt) |
+ RHSKnown.Zero.lshr(BitWidth - ShiftAmt);
+ Known.One = LHSKnown.One.shl(ShiftAmt) |
+ RHSKnown.One.lshr(BitWidth - ShiftAmt);
+ break;
+ }
+ case Intrinsic::x86_mmx_pmovmskb:
+ case Intrinsic::x86_sse_movmsk_ps:
+ case Intrinsic::x86_sse2_movmsk_pd:
+ case Intrinsic::x86_sse2_pmovmskb_128:
+ case Intrinsic::x86_avx_movmsk_ps_256:
+ case Intrinsic::x86_avx_movmsk_pd_256:
+ case Intrinsic::x86_avx2_pmovmskb: {
+ // MOVMSK copies the vector elements' sign bits to the low bits
+ // and zeros the high bits.
+ unsigned ArgWidth;
+ if (II->getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
+ ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
+ } else {
+ auto Arg = II->getArgOperand(0);
+ auto ArgType = cast<VectorType>(Arg->getType());
+ ArgWidth = ArgType->getNumElements();
+ }
+
+ // If we don't need any of low bits then return zero,
+ // we know that DemandedMask is non-zero already.
+ APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
+ if (DemandedElts.isNullValue())
+ return ConstantInt::getNullValue(VTy);
+
+ // We know that the upper bits are set to zero.
+ Known.Zero.setBitsFrom(ArgWidth);
+ return nullptr;
+ }
+ case Intrinsic::x86_sse42_crc32_64_64:
+ Known.Zero.setBitsFrom(32);
+ return nullptr;
+ }
+ }
+ computeKnownBits(V, Known, Depth, CxtI);
+ break;
+ }
+
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
+ return Constant::getIntegerValue(VTy, Known.One);
+ return nullptr;
+}
+
+/// Helper routine of SimplifyDemandedUseBits. It computes Known
+/// bits. It also tries to handle simplifications that can be done based on
+/// DemandedMask, but without modifying the Instruction.
+Value *InstCombiner::SimplifyMultipleUseDemandedBits(Instruction *I,
+ const APInt &DemandedMask,
+ KnownBits &Known,
+ unsigned Depth,
+ Instruction *CxtI) {
+ unsigned BitWidth = DemandedMask.getBitWidth();
+ Type *ITy = I->getType();
+
+ KnownBits LHSKnown(BitWidth);
+ KnownBits RHSKnown(BitWidth);
+
+ // Despite the fact that we can't simplify this instruction in all User's
+ // context, we can at least compute the known bits, and we can
+ // do simplifications that apply to *just* the one user if we know that
+ // this instruction has a simpler value in that context.
+ switch (I->getOpcode()) {
+ case Instruction::And: {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
+ computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
+ CxtI);
+
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ APInt IKnownZero = RHSKnown.Zero | LHSKnown.Zero;
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ APInt IKnownOne = RHSKnown.One & LHSKnown.One;
+
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
+ return Constant::getIntegerValue(ITy, IKnownOne);
+
+ // If all of the demanded bits are known 1 on one side, return the other.
+ // These bits cannot contribute to the result of the 'and' in this
+ // context.
+ if (DemandedMask.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
+ return I->getOperand(0);
+ if (DemandedMask.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
+ return I->getOperand(1);
+
+ Known.Zero = std::move(IKnownZero);
+ Known.One = std::move(IKnownOne);
+ break;
+ }
+ case Instruction::Or: {
+ // We can simplify (X|Y) -> X or Y in the user's context if we know that
+ // only bits from X or Y are demanded.
+
+ // If either the LHS or the RHS are One, the result is One.
+ computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
+ computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
+ CxtI);
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ APInt IKnownZero = RHSKnown.Zero & LHSKnown.Zero;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ APInt IKnownOne = RHSKnown.One | LHSKnown.One;
+
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
+ return Constant::getIntegerValue(ITy, IKnownOne);
+
+ // If all of the demanded bits are known zero on one side, return the
+ // other. These bits cannot contribute to the result of the 'or' in this
+ // context.
+ if (DemandedMask.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
+ return I->getOperand(0);
+ if (DemandedMask.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
+ return I->getOperand(1);
+
+ Known.Zero = std::move(IKnownZero);
+ Known.One = std::move(IKnownOne);
+ break;
+ }
+ case Instruction::Xor: {
+ // We can simplify (X^Y) -> X or Y in the user's context if we know that
+ // only bits from X or Y are demanded.
+
+ computeKnownBits(I->getOperand(1), RHSKnown, Depth + 1, CxtI);
+ computeKnownBits(I->getOperand(0), LHSKnown, Depth + 1,
+ CxtI);
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt IKnownZero = (RHSKnown.Zero & LHSKnown.Zero) |
+ (RHSKnown.One & LHSKnown.One);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ APInt IKnownOne = (RHSKnown.Zero & LHSKnown.One) |
+ (RHSKnown.One & LHSKnown.Zero);
+
+ // If the client is only demanding bits that we know, return the known
+ // constant.
+ if (DemandedMask.isSubsetOf(IKnownZero|IKnownOne))
+ return Constant::getIntegerValue(ITy, IKnownOne);
+
+ // If all of the demanded bits are known zero on one side, return the
+ // other.
+ if (DemandedMask.isSubsetOf(RHSKnown.Zero))
+ return I->getOperand(0);
+ if (DemandedMask.isSubsetOf(LHSKnown.Zero))
+ return I->getOperand(1);
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ Known.Zero = std::move(IKnownZero);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ Known.One = std::move(IKnownOne);
+ break;
+ }
+ default:
+ // Compute the Known bits to simplify things downstream.
+ computeKnownBits(I, Known, Depth, CxtI);
+
+ // If this user is only demanding bits that we know, return the known
+ // constant.
+ if (DemandedMask.isSubsetOf(Known.Zero|Known.One))
+ return Constant::getIntegerValue(ITy, Known.One);
+
+ break;
+ }
+
+ return nullptr;
+}
+
+
+/// Helper routine of SimplifyDemandedUseBits. It tries to simplify
+/// "E1 = (X lsr C1) << C2", where the C1 and C2 are constant, into
+/// "E2 = X << (C2 - C1)" or "E2 = X >> (C1 - C2)", depending on the sign
+/// of "C2-C1".
+///
+/// Suppose E1 and E2 are generally different in bits S={bm, bm+1,
+/// ..., bn}, without considering the specific value X is holding.
+/// This transformation is legal iff one of following conditions is hold:
+/// 1) All the bit in S are 0, in this case E1 == E2.
+/// 2) We don't care those bits in S, per the input DemandedMask.
+/// 3) Combination of 1) and 2). Some bits in S are 0, and we don't care the
+/// rest bits.
+///
+/// Currently we only test condition 2).
+///
+/// As with SimplifyDemandedUseBits, it returns NULL if the simplification was
+/// not successful.
+Value *
+InstCombiner::simplifyShrShlDemandedBits(Instruction *Shr, const APInt &ShrOp1,
+ Instruction *Shl, const APInt &ShlOp1,
+ const APInt &DemandedMask,
+ KnownBits &Known) {
+ if (!ShlOp1 || !ShrOp1)
+ return nullptr; // No-op.
+
+ Value *VarX = Shr->getOperand(0);
+ Type *Ty = VarX->getType();
+ unsigned BitWidth = Ty->getScalarSizeInBits();
+ if (ShlOp1.uge(BitWidth) || ShrOp1.uge(BitWidth))
+ return nullptr; // Undef.
+
+ unsigned ShlAmt = ShlOp1.getZExtValue();
+ unsigned ShrAmt = ShrOp1.getZExtValue();
+
+ Known.One.clearAllBits();
+ Known.Zero.setLowBits(ShlAmt - 1);
+ Known.Zero &= DemandedMask;
+
+ APInt BitMask1(APInt::getAllOnesValue(BitWidth));
+ APInt BitMask2(APInt::getAllOnesValue(BitWidth));
+
+ bool isLshr = (Shr->getOpcode() == Instruction::LShr);
+ BitMask1 = isLshr ? (BitMask1.lshr(ShrAmt) << ShlAmt) :
+ (BitMask1.ashr(ShrAmt) << ShlAmt);
+
+ if (ShrAmt <= ShlAmt) {
+ BitMask2 <<= (ShlAmt - ShrAmt);
+ } else {
+ BitMask2 = isLshr ? BitMask2.lshr(ShrAmt - ShlAmt):
+ BitMask2.ashr(ShrAmt - ShlAmt);
+ }
+
+ // Check if condition-2 (see the comment to this function) is satified.
+ if ((BitMask1 & DemandedMask) == (BitMask2 & DemandedMask)) {
+ if (ShrAmt == ShlAmt)
+ return VarX;
+
+ if (!Shr->hasOneUse())
+ return nullptr;
+
+ BinaryOperator *New;
+ if (ShrAmt < ShlAmt) {
+ Constant *Amt = ConstantInt::get(VarX->getType(), ShlAmt - ShrAmt);
+ New = BinaryOperator::CreateShl(VarX, Amt);
+ BinaryOperator *Orig = cast<BinaryOperator>(Shl);
+ New->setHasNoSignedWrap(Orig->hasNoSignedWrap());
+ New->setHasNoUnsignedWrap(Orig->hasNoUnsignedWrap());
+ } else {
+ Constant *Amt = ConstantInt::get(VarX->getType(), ShrAmt - ShlAmt);
+ New = isLshr ? BinaryOperator::CreateLShr(VarX, Amt) :
+ BinaryOperator::CreateAShr(VarX, Amt);
+ if (cast<BinaryOperator>(Shr)->isExact())
+ New->setIsExact(true);
+ }
+
+ return InsertNewInstWith(New, *Shl);
+ }
+
+ return nullptr;
+}
+
+/// Implement SimplifyDemandedVectorElts for amdgcn buffer and image intrinsics.
+///
+/// Note: This only supports non-TFE/LWE image intrinsic calls; those have
+/// struct returns.
+Value *InstCombiner::simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
+ APInt DemandedElts,
+ int DMaskIdx) {
+
+ // FIXME: Allow v3i16/v3f16 in buffer intrinsics when the types are fully supported.
+ if (DMaskIdx < 0 &&
+ II->getType()->getScalarSizeInBits() != 32 &&
+ DemandedElts.getActiveBits() == 3)
+ return nullptr;
+
+ unsigned VWidth = II->getType()->getVectorNumElements();
+ if (VWidth == 1)
+ return nullptr;
+
+ ConstantInt *NewDMask = nullptr;
+
+ if (DMaskIdx < 0) {
+ // Pretend that a prefix of elements is demanded to simplify the code
+ // below.
+ DemandedElts = (1 << DemandedElts.getActiveBits()) - 1;
+ } else {
+ ConstantInt *DMask = cast<ConstantInt>(II->getArgOperand(DMaskIdx));
+ unsigned DMaskVal = DMask->getZExtValue() & 0xf;
+
+ // Mask off values that are undefined because the dmask doesn't cover them
+ DemandedElts &= (1 << countPopulation(DMaskVal)) - 1;
+
+ unsigned NewDMaskVal = 0;
+ unsigned OrigLoadIdx = 0;
+ for (unsigned SrcIdx = 0; SrcIdx < 4; ++SrcIdx) {
+ const unsigned Bit = 1 << SrcIdx;
+ if (!!(DMaskVal & Bit)) {
+ if (!!DemandedElts[OrigLoadIdx])
+ NewDMaskVal |= Bit;
+ OrigLoadIdx++;
+ }
+ }
+
+ if (DMaskVal != NewDMaskVal)
+ NewDMask = ConstantInt::get(DMask->getType(), NewDMaskVal);
+ }
+
+ unsigned NewNumElts = DemandedElts.countPopulation();
+ if (!NewNumElts)
+ return UndefValue::get(II->getType());
+
+ if (NewNumElts >= VWidth && DemandedElts.isMask()) {
+ if (NewDMask)
+ II->setArgOperand(DMaskIdx, NewDMask);
+ return nullptr;
+ }
+
+ // Determine the overload types of the original intrinsic.
+ auto IID = II->getIntrinsicID();
+ SmallVector<Intrinsic::IITDescriptor, 16> Table;
+ getIntrinsicInfoTableEntries(IID, Table);
+ ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
+
+ // Validate function argument and return types, extracting overloaded types
+ // along the way.
+ FunctionType *FTy = II->getCalledFunction()->getFunctionType();
+ SmallVector<Type *, 6> OverloadTys;
+ Intrinsic::matchIntrinsicSignature(FTy, TableRef, OverloadTys);
+
+ Module *M = II->getParent()->getParent()->getParent();
+ Type *EltTy = II->getType()->getVectorElementType();
+ Type *NewTy = (NewNumElts == 1) ? EltTy : VectorType::get(EltTy, NewNumElts);
+
+ OverloadTys[0] = NewTy;
+ Function *NewIntrin = Intrinsic::getDeclaration(M, IID, OverloadTys);
+
+ SmallVector<Value *, 16> Args;
+ for (unsigned I = 0, E = II->getNumArgOperands(); I != E; ++I)
+ Args.push_back(II->getArgOperand(I));
+
+ if (NewDMask)
+ Args[DMaskIdx] = NewDMask;
+
+ IRBuilderBase::InsertPointGuard Guard(Builder);
+ Builder.SetInsertPoint(II);
+
+ CallInst *NewCall = Builder.CreateCall(NewIntrin, Args);
+ NewCall->takeName(II);
+ NewCall->copyMetadata(*II);
+
+ if (NewNumElts == 1) {
+ return Builder.CreateInsertElement(UndefValue::get(II->getType()), NewCall,
+ DemandedElts.countTrailingZeros());
+ }
+
+ SmallVector<uint32_t, 8> EltMask;
+ unsigned NewLoadIdx = 0;
+ for (unsigned OrigLoadIdx = 0; OrigLoadIdx < VWidth; ++OrigLoadIdx) {
+ if (!!DemandedElts[OrigLoadIdx])
+ EltMask.push_back(NewLoadIdx++);
+ else
+ EltMask.push_back(NewNumElts);
+ }
+
+ Value *Shuffle =
+ Builder.CreateShuffleVector(NewCall, UndefValue::get(NewTy), EltMask);
+
+ return Shuffle;
+}
+
+/// The specified value produces a vector with any number of elements.
+/// This method analyzes which elements of the operand are undef and returns
+/// that information in UndefElts.
+///
+/// DemandedElts contains the set of elements that are actually used by the
+/// caller, and by default (AllowMultipleUsers equals false) the value is
+/// simplified only if it has a single caller. If AllowMultipleUsers is set
+/// to true, DemandedElts refers to the union of sets of elements that are
+/// used by all callers.
+///
+/// If the information about demanded elements can be used to simplify the
+/// operation, the operation is simplified, then the resultant value is
+/// returned. This returns null if no change was made.
+Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
+ APInt &UndefElts,
+ unsigned Depth,
+ bool AllowMultipleUsers) {
+ unsigned VWidth = V->getType()->getVectorNumElements();
+ APInt EltMask(APInt::getAllOnesValue(VWidth));
+ assert((DemandedElts & ~EltMask) == 0 && "Invalid DemandedElts!");
+
+ if (isa<UndefValue>(V)) {
+ // If the entire vector is undefined, just return this info.
+ UndefElts = EltMask;
+ return nullptr;
+ }
+
+ if (DemandedElts.isNullValue()) { // If nothing is demanded, provide undef.
+ UndefElts = EltMask;
+ return UndefValue::get(V->getType());
+ }
+
+ UndefElts = 0;
+
+ if (auto *C = dyn_cast<Constant>(V)) {
+ // Check if this is identity. If so, return 0 since we are not simplifying
+ // anything.
+ if (DemandedElts.isAllOnesValue())
+ return nullptr;
+
+ Type *EltTy = cast<VectorType>(V->getType())->getElementType();
+ Constant *Undef = UndefValue::get(EltTy);
+ SmallVector<Constant*, 16> Elts;
+ for (unsigned i = 0; i != VWidth; ++i) {
+ if (!DemandedElts[i]) { // If not demanded, set to undef.
+ Elts.push_back(Undef);
+ UndefElts.setBit(i);
+ continue;
+ }
+
+ Constant *Elt = C->getAggregateElement(i);
+ if (!Elt) return nullptr;
+
+ if (isa<UndefValue>(Elt)) { // Already undef.
+ Elts.push_back(Undef);
+ UndefElts.setBit(i);
+ } else { // Otherwise, defined.
+ Elts.push_back(Elt);
+ }
+ }
+
+ // If we changed the constant, return it.
+ Constant *NewCV = ConstantVector::get(Elts);
+ return NewCV != C ? NewCV : nullptr;
+ }
+
+ // Limit search depth.
+ if (Depth == 10)
+ return nullptr;
+
+ if (!AllowMultipleUsers) {
+ // If multiple users are using the root value, proceed with
+ // simplification conservatively assuming that all elements
+ // are needed.
+ if (!V->hasOneUse()) {
+ // Quit if we find multiple users of a non-root value though.
+ // They'll be handled when it's their turn to be visited by
+ // the main instcombine process.
+ if (Depth != 0)
+ // TODO: Just compute the UndefElts information recursively.
+ return nullptr;
+
+ // Conservatively assume that all elements are needed.
+ DemandedElts = EltMask;
+ }
+ }
+
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I) return nullptr; // Only analyze instructions.
+
+ bool MadeChange = false;
+ auto simplifyAndSetOp = [&](Instruction *Inst, unsigned OpNum,
+ APInt Demanded, APInt &Undef) {
+ auto *II = dyn_cast<IntrinsicInst>(Inst);
+ Value *Op = II ? II->getArgOperand(OpNum) : Inst->getOperand(OpNum);
+ if (Value *V = SimplifyDemandedVectorElts(Op, Demanded, Undef, Depth + 1)) {
+ if (II)
+ II->setArgOperand(OpNum, V);
+ else
+ Inst->setOperand(OpNum, V);
+ MadeChange = true;
+ }
+ };
+
+ APInt UndefElts2(VWidth, 0);
+ APInt UndefElts3(VWidth, 0);
+ switch (I->getOpcode()) {
+ default: break;
+
+ case Instruction::GetElementPtr: {
+ // The LangRef requires that struct geps have all constant indices. As
+ // such, we can't convert any operand to partial undef.
+ auto mayIndexStructType = [](GetElementPtrInst &GEP) {
+ for (auto I = gep_type_begin(GEP), E = gep_type_end(GEP);
+ I != E; I++)
+ if (I.isStruct())
+ return true;;
+ return false;
+ };
+ if (mayIndexStructType(cast<GetElementPtrInst>(*I)))
+ break;
+
+ // Conservatively track the demanded elements back through any vector
+ // operands we may have. We know there must be at least one, or we
+ // wouldn't have a vector result to get here. Note that we intentionally
+ // merge the undef bits here since gepping with either an undef base or
+ // index results in undef.
+ for (unsigned i = 0; i < I->getNumOperands(); i++) {
+ if (isa<UndefValue>(I->getOperand(i))) {
+ // If the entire vector is undefined, just return this info.
+ UndefElts = EltMask;
+ return nullptr;
+ }
+ if (I->getOperand(i)->getType()->isVectorTy()) {
+ APInt UndefEltsOp(VWidth, 0);
+ simplifyAndSetOp(I, i, DemandedElts, UndefEltsOp);
+ UndefElts |= UndefEltsOp;
+ }
+ }
+
+ break;
+ }
+ case Instruction::InsertElement: {
+ // If this is a variable index, we don't know which element it overwrites.
+ // demand exactly the same input as we produce.
+ ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
+ if (!Idx) {
+ // Note that we can't propagate undef elt info, because we don't know
+ // which elt is getting updated.
+ simplifyAndSetOp(I, 0, DemandedElts, UndefElts2);
+ break;
+ }
+
+ // The element inserted overwrites whatever was there, so the input demanded
+ // set is simpler than the output set.
+ unsigned IdxNo = Idx->getZExtValue();
+ APInt PreInsertDemandedElts = DemandedElts;
+ if (IdxNo < VWidth)
+ PreInsertDemandedElts.clearBit(IdxNo);
+
+ simplifyAndSetOp(I, 0, PreInsertDemandedElts, UndefElts);
+
+ // If this is inserting an element that isn't demanded, remove this
+ // insertelement.
+ if (IdxNo >= VWidth || !DemandedElts[IdxNo]) {
+ Worklist.Add(I);
+ return I->getOperand(0);
+ }
+
+ // The inserted element is defined.
+ UndefElts.clearBit(IdxNo);
+ break;
+ }
+ case Instruction::ShuffleVector: {
+ ShuffleVectorInst *Shuffle = cast<ShuffleVectorInst>(I);
+ unsigned LHSVWidth =
+ Shuffle->getOperand(0)->getType()->getVectorNumElements();
+ APInt LeftDemanded(LHSVWidth, 0), RightDemanded(LHSVWidth, 0);
+ for (unsigned i = 0; i < VWidth; i++) {
+ if (DemandedElts[i]) {
+ unsigned MaskVal = Shuffle->getMaskValue(i);
+ if (MaskVal != -1u) {
+ assert(MaskVal < LHSVWidth * 2 &&
+ "shufflevector mask index out of range!");
+ if (MaskVal < LHSVWidth)
+ LeftDemanded.setBit(MaskVal);
+ else
+ RightDemanded.setBit(MaskVal - LHSVWidth);
+ }
+ }
+ }
+
+ APInt LHSUndefElts(LHSVWidth, 0);
+ simplifyAndSetOp(I, 0, LeftDemanded, LHSUndefElts);
+
+ APInt RHSUndefElts(LHSVWidth, 0);
+ simplifyAndSetOp(I, 1, RightDemanded, RHSUndefElts);
+
+ bool NewUndefElts = false;
+ unsigned LHSIdx = -1u, LHSValIdx = -1u;
+ unsigned RHSIdx = -1u, RHSValIdx = -1u;
+ bool LHSUniform = true;
+ bool RHSUniform = true;
+ for (unsigned i = 0; i < VWidth; i++) {
+ unsigned MaskVal = Shuffle->getMaskValue(i);
+ if (MaskVal == -1u) {
+ UndefElts.setBit(i);
+ } else if (!DemandedElts[i]) {
+ NewUndefElts = true;
+ UndefElts.setBit(i);
+ } else if (MaskVal < LHSVWidth) {
+ if (LHSUndefElts[MaskVal]) {
+ NewUndefElts = true;
+ UndefElts.setBit(i);
+ } else {
+ LHSIdx = LHSIdx == -1u ? i : LHSVWidth;
+ LHSValIdx = LHSValIdx == -1u ? MaskVal : LHSVWidth;
+ LHSUniform = LHSUniform && (MaskVal == i);
+ }
+ } else {
+ if (RHSUndefElts[MaskVal - LHSVWidth]) {
+ NewUndefElts = true;
+ UndefElts.setBit(i);
+ } else {
+ RHSIdx = RHSIdx == -1u ? i : LHSVWidth;
+ RHSValIdx = RHSValIdx == -1u ? MaskVal - LHSVWidth : LHSVWidth;
+ RHSUniform = RHSUniform && (MaskVal - LHSVWidth == i);
+ }
+ }
+ }
+
+ // Try to transform shuffle with constant vector and single element from
+ // this constant vector to single insertelement instruction.
+ // shufflevector V, C, <v1, v2, .., ci, .., vm> ->
+ // insertelement V, C[ci], ci-n
+ if (LHSVWidth == Shuffle->getType()->getNumElements()) {
+ Value *Op = nullptr;
+ Constant *Value = nullptr;
+ unsigned Idx = -1u;
+
+ // Find constant vector with the single element in shuffle (LHS or RHS).
+ if (LHSIdx < LHSVWidth && RHSUniform) {
+ if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(0))) {
+ Op = Shuffle->getOperand(1);
+ Value = CV->getOperand(LHSValIdx);
+ Idx = LHSIdx;
+ }
+ }
+ if (RHSIdx < LHSVWidth && LHSUniform) {
+ if (auto *CV = dyn_cast<ConstantVector>(Shuffle->getOperand(1))) {
+ Op = Shuffle->getOperand(0);
+ Value = CV->getOperand(RHSValIdx);
+ Idx = RHSIdx;
+ }
+ }
+ // Found constant vector with single element - convert to insertelement.
+ if (Op && Value) {
+ Instruction *New = InsertElementInst::Create(
+ Op, Value, ConstantInt::get(Type::getInt32Ty(I->getContext()), Idx),
+ Shuffle->getName());
+ InsertNewInstWith(New, *Shuffle);
+ return New;
+ }
+ }
+ if (NewUndefElts) {
+ // Add additional discovered undefs.
+ SmallVector<Constant*, 16> Elts;
+ for (unsigned i = 0; i < VWidth; ++i) {
+ if (UndefElts[i])
+ Elts.push_back(UndefValue::get(Type::getInt32Ty(I->getContext())));
+ else
+ Elts.push_back(ConstantInt::get(Type::getInt32Ty(I->getContext()),
+ Shuffle->getMaskValue(i)));
+ }
+ I->setOperand(2, ConstantVector::get(Elts));
+ MadeChange = true;
+ }
+ break;
+ }
+ case Instruction::Select: {
+ // If this is a vector select, try to transform the select condition based
+ // on the current demanded elements.
+ SelectInst *Sel = cast<SelectInst>(I);
+ if (Sel->getCondition()->getType()->isVectorTy()) {
+ // TODO: We are not doing anything with UndefElts based on this call.
+ // It is overwritten below based on the other select operands. If an
+ // element of the select condition is known undef, then we are free to
+ // choose the output value from either arm of the select. If we know that
+ // one of those values is undef, then the output can be undef.
+ simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
+ }
+
+ // Next, see if we can transform the arms of the select.
+ APInt DemandedLHS(DemandedElts), DemandedRHS(DemandedElts);
+ if (auto *CV = dyn_cast<ConstantVector>(Sel->getCondition())) {
+ for (unsigned i = 0; i < VWidth; i++) {
+ // isNullValue() always returns false when called on a ConstantExpr.
+ // Skip constant expressions to avoid propagating incorrect information.
+ Constant *CElt = CV->getAggregateElement(i);
+ if (isa<ConstantExpr>(CElt))
+ continue;
+ // TODO: If a select condition element is undef, we can demand from
+ // either side. If one side is known undef, choosing that side would
+ // propagate undef.
+ if (CElt->isNullValue())
+ DemandedLHS.clearBit(i);
+ else
+ DemandedRHS.clearBit(i);
+ }
+ }
+
+ simplifyAndSetOp(I, 1, DemandedLHS, UndefElts2);
+ simplifyAndSetOp(I, 2, DemandedRHS, UndefElts3);
+
+ // Output elements are undefined if the element from each arm is undefined.
+ // TODO: This can be improved. See comment in select condition handling.
+ UndefElts = UndefElts2 & UndefElts3;
+ break;
+ }
+ case Instruction::BitCast: {
+ // Vector->vector casts only.
+ VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
+ if (!VTy) break;
+ unsigned InVWidth = VTy->getNumElements();
+ APInt InputDemandedElts(InVWidth, 0);
+ UndefElts2 = APInt(InVWidth, 0);
+ unsigned Ratio;
+
+ if (VWidth == InVWidth) {
+ // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
+ // elements as are demanded of us.
+ Ratio = 1;
+ InputDemandedElts = DemandedElts;
+ } else if ((VWidth % InVWidth) == 0) {
+ // If the number of elements in the output is a multiple of the number of
+ // elements in the input then an input element is live if any of the
+ // corresponding output elements are live.
+ Ratio = VWidth / InVWidth;
+ for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
+ if (DemandedElts[OutIdx])
+ InputDemandedElts.setBit(OutIdx / Ratio);
+ } else if ((InVWidth % VWidth) == 0) {
+ // If the number of elements in the input is a multiple of the number of
+ // elements in the output then an input element is live if the
+ // corresponding output element is live.
+ Ratio = InVWidth / VWidth;
+ for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
+ if (DemandedElts[InIdx / Ratio])
+ InputDemandedElts.setBit(InIdx);
+ } else {
+ // Unsupported so far.
+ break;
+ }
+
+ simplifyAndSetOp(I, 0, InputDemandedElts, UndefElts2);
+
+ if (VWidth == InVWidth) {
+ UndefElts = UndefElts2;
+ } else if ((VWidth % InVWidth) == 0) {
+ // If the number of elements in the output is a multiple of the number of
+ // elements in the input then an output element is undef if the
+ // corresponding input element is undef.
+ for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
+ if (UndefElts2[OutIdx / Ratio])
+ UndefElts.setBit(OutIdx);
+ } else if ((InVWidth % VWidth) == 0) {
+ // If the number of elements in the input is a multiple of the number of
+ // elements in the output then an output element is undef if all of the
+ // corresponding input elements are undef.
+ for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
+ APInt SubUndef = UndefElts2.lshr(OutIdx * Ratio).zextOrTrunc(Ratio);
+ if (SubUndef.countPopulation() == Ratio)
+ UndefElts.setBit(OutIdx);
+ }
+ } else {
+ llvm_unreachable("Unimp");
+ }
+ break;
+ }
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
+ break;
+
+ case Instruction::Call: {
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
+ if (!II) break;
+ switch (II->getIntrinsicID()) {
+ case Intrinsic::masked_gather: // fallthrough
+ case Intrinsic::masked_load: {
+ // Subtlety: If we load from a pointer, the pointer must be valid
+ // regardless of whether the element is demanded. Doing otherwise risks
+ // segfaults which didn't exist in the original program.
+ APInt DemandedPtrs(APInt::getAllOnesValue(VWidth)),
+ DemandedPassThrough(DemandedElts);
+ if (auto *CV = dyn_cast<ConstantVector>(II->getOperand(2)))
+ for (unsigned i = 0; i < VWidth; i++) {
+ Constant *CElt = CV->getAggregateElement(i);
+ if (CElt->isNullValue())
+ DemandedPtrs.clearBit(i);
+ else if (CElt->isAllOnesValue())
+ DemandedPassThrough.clearBit(i);
+ }
+ if (II->getIntrinsicID() == Intrinsic::masked_gather)
+ simplifyAndSetOp(II, 0, DemandedPtrs, UndefElts2);
+ simplifyAndSetOp(II, 3, DemandedPassThrough, UndefElts3);
+
+ // Output elements are undefined if the element from both sources are.
+ // TODO: can strengthen via mask as well.
+ UndefElts = UndefElts2 & UndefElts3;
+ break;
+ }
+ case Intrinsic::x86_xop_vfrcz_ss:
+ case Intrinsic::x86_xop_vfrcz_sd:
+ // The instructions for these intrinsics are speced to zero upper bits not
+ // pass them through like other scalar intrinsics. So we shouldn't just
+ // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
+ // Instead we should return a zero vector.
+ if (!DemandedElts[0]) {
+ Worklist.Add(II);
+ return ConstantAggregateZero::get(II->getType());
+ }
+
+ // Only the lower element is used.
+ DemandedElts = 1;
+ simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
+
+ // Only the lower element is undefined. The high elements are zero.
+ UndefElts = UndefElts[0];
+ break;
+
+ // Unary scalar-as-vector operations that work column-wise.
+ case Intrinsic::x86_sse_rcp_ss:
+ case Intrinsic::x86_sse_rsqrt_ss:
+ simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
+
+ // If lowest element of a scalar op isn't used then use Arg0.
+ if (!DemandedElts[0]) {
+ Worklist.Add(II);
+ return II->getArgOperand(0);
+ }
+ // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
+ // checks).
+ break;
+
+ // Binary scalar-as-vector operations that work column-wise. The high
+ // elements come from operand 0. The low element is a function of both
+ // operands.
+ case Intrinsic::x86_sse_min_ss:
+ case Intrinsic::x86_sse_max_ss:
+ case Intrinsic::x86_sse_cmp_ss:
+ case Intrinsic::x86_sse2_min_sd:
+ case Intrinsic::x86_sse2_max_sd:
+ case Intrinsic::x86_sse2_cmp_sd: {
+ simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
+
+ // If lowest element of a scalar op isn't used then use Arg0.
+ if (!DemandedElts[0]) {
+ Worklist.Add(II);
+ return II->getArgOperand(0);
+ }
+
+ // Only lower element is used for operand 1.
+ DemandedElts = 1;
+ simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
+
+ // Lower element is undefined if both lower elements are undefined.
+ // Consider things like undef&0. The result is known zero, not undef.
+ if (!UndefElts2[0])
+ UndefElts.clearBit(0);
+
+ break;
+ }
+
+ // Binary scalar-as-vector operations that work column-wise. The high
+ // elements come from operand 0 and the low element comes from operand 1.
+ case Intrinsic::x86_sse41_round_ss:
+ case Intrinsic::x86_sse41_round_sd: {
+ // Don't use the low element of operand 0.
+ APInt DemandedElts2 = DemandedElts;
+ DemandedElts2.clearBit(0);
+ simplifyAndSetOp(II, 0, DemandedElts2, UndefElts);
+
+ // If lowest element of a scalar op isn't used then use Arg0.
+ if (!DemandedElts[0]) {
+ Worklist.Add(II);
+ return II->getArgOperand(0);
+ }
+
+ // Only lower element is used for operand 1.
+ DemandedElts = 1;
+ simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
+
+ // Take the high undef elements from operand 0 and take the lower element
+ // from operand 1.
+ UndefElts.clearBit(0);
+ UndefElts |= UndefElts2[0];
+ break;
+ }
+
+ // Three input scalar-as-vector operations that work column-wise. The high
+ // elements come from operand 0 and the low element is a function of all
+ // three inputs.
+ case Intrinsic::x86_avx512_mask_add_ss_round:
+ case Intrinsic::x86_avx512_mask_div_ss_round:
+ case Intrinsic::x86_avx512_mask_mul_ss_round:
+ case Intrinsic::x86_avx512_mask_sub_ss_round:
+ case Intrinsic::x86_avx512_mask_max_ss_round:
+ case Intrinsic::x86_avx512_mask_min_ss_round:
+ case Intrinsic::x86_avx512_mask_add_sd_round:
+ case Intrinsic::x86_avx512_mask_div_sd_round:
+ case Intrinsic::x86_avx512_mask_mul_sd_round:
+ case Intrinsic::x86_avx512_mask_sub_sd_round:
+ case Intrinsic::x86_avx512_mask_max_sd_round:
+ case Intrinsic::x86_avx512_mask_min_sd_round:
+ simplifyAndSetOp(II, 0, DemandedElts, UndefElts);
+
+ // If lowest element of a scalar op isn't used then use Arg0.
+ if (!DemandedElts[0]) {
+ Worklist.Add(II);
+ return II->getArgOperand(0);
+ }
+
+ // Only lower element is used for operand 1 and 2.
+ DemandedElts = 1;
+ simplifyAndSetOp(II, 1, DemandedElts, UndefElts2);
+ simplifyAndSetOp(II, 2, DemandedElts, UndefElts3);
+
+ // Lower element is undefined if all three lower elements are undefined.
+ // Consider things like undef&0. The result is known zero, not undef.
+ if (!UndefElts2[0] || !UndefElts3[0])
+ UndefElts.clearBit(0);
+
+ break;
+
+ case Intrinsic::x86_sse2_packssdw_128:
+ case Intrinsic::x86_sse2_packsswb_128:
+ case Intrinsic::x86_sse2_packuswb_128:
+ case Intrinsic::x86_sse41_packusdw:
+ case Intrinsic::x86_avx2_packssdw:
+ case Intrinsic::x86_avx2_packsswb:
+ case Intrinsic::x86_avx2_packusdw:
+ case Intrinsic::x86_avx2_packuswb:
+ case Intrinsic::x86_avx512_packssdw_512:
+ case Intrinsic::x86_avx512_packsswb_512:
+ case Intrinsic::x86_avx512_packusdw_512:
+ case Intrinsic::x86_avx512_packuswb_512: {
+ auto *Ty0 = II->getArgOperand(0)->getType();
+ unsigned InnerVWidth = Ty0->getVectorNumElements();
+ assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
+
+ unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
+ unsigned VWidthPerLane = VWidth / NumLanes;
+ unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
+
+ // Per lane, pack the elements of the first input and then the second.
+ // e.g.
+ // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
+ // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
+ for (int OpNum = 0; OpNum != 2; ++OpNum) {
+ APInt OpDemandedElts(InnerVWidth, 0);
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ unsigned LaneIdx = Lane * VWidthPerLane;
+ for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
+ unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
+ if (DemandedElts[Idx])
+ OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
+ }
+ }
+
+ // Demand elements from the operand.
+ APInt OpUndefElts(InnerVWidth, 0);
+ simplifyAndSetOp(II, OpNum, OpDemandedElts, OpUndefElts);
+
+ // Pack the operand's UNDEF elements, one lane at a time.
+ OpUndefElts = OpUndefElts.zext(VWidth);
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
+ LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
+ LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
+ UndefElts |= LaneElts;
+ }
+ }
+ break;
+ }
+
+ // PSHUFB
+ case Intrinsic::x86_ssse3_pshuf_b_128:
+ case Intrinsic::x86_avx2_pshuf_b:
+ case Intrinsic::x86_avx512_pshuf_b_512:
+ // PERMILVAR
+ case Intrinsic::x86_avx_vpermilvar_ps:
+ case Intrinsic::x86_avx_vpermilvar_ps_256:
+ case Intrinsic::x86_avx512_vpermilvar_ps_512:
+ case Intrinsic::x86_avx_vpermilvar_pd:
+ case Intrinsic::x86_avx_vpermilvar_pd_256:
+ case Intrinsic::x86_avx512_vpermilvar_pd_512:
+ // PERMV
+ case Intrinsic::x86_avx2_permd:
+ case Intrinsic::x86_avx2_permps: {
+ simplifyAndSetOp(II, 1, DemandedElts, UndefElts);
+ break;
+ }
+
+ // SSE4A instructions leave the upper 64-bits of the 128-bit result
+ // in an undefined state.
+ case Intrinsic::x86_sse4a_extrq:
+ case Intrinsic::x86_sse4a_extrqi:
+ case Intrinsic::x86_sse4a_insertq:
+ case Intrinsic::x86_sse4a_insertqi:
+ UndefElts.setHighBits(VWidth / 2);
+ break;
+ case Intrinsic::amdgcn_buffer_load:
+ case Intrinsic::amdgcn_buffer_load_format:
+ case Intrinsic::amdgcn_raw_buffer_load:
+ case Intrinsic::amdgcn_raw_buffer_load_format:
+ case Intrinsic::amdgcn_raw_tbuffer_load:
+ case Intrinsic::amdgcn_struct_buffer_load:
+ case Intrinsic::amdgcn_struct_buffer_load_format:
+ case Intrinsic::amdgcn_struct_tbuffer_load:
+ case Intrinsic::amdgcn_tbuffer_load:
+ return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts);
+ default: {
+ if (getAMDGPUImageDMaskIntrinsic(II->getIntrinsicID()))
+ return simplifyAMDGCNMemoryIntrinsicDemanded(II, DemandedElts, 0);
+
+ break;
+ }
+ } // switch on IntrinsicID
+ break;
+ } // case Call
+ } // switch on Opcode
+
+ // TODO: We bail completely on integer div/rem and shifts because they have
+ // UB/poison potential, but that should be refined.
+ BinaryOperator *BO;
+ if (match(I, m_BinOp(BO)) && !BO->isIntDivRem() && !BO->isShift()) {
+ simplifyAndSetOp(I, 0, DemandedElts, UndefElts);
+ simplifyAndSetOp(I, 1, DemandedElts, UndefElts2);
+
+ // Any change to an instruction with potential poison must clear those flags
+ // because we can not guarantee those constraints now. Other analysis may
+ // determine that it is safe to re-apply the flags.
+ if (MadeChange)
+ BO->dropPoisonGeneratingFlags();
+
+ // Output elements are undefined if both are undefined. Consider things
+ // like undef & 0. The result is known zero, not undef.
+ UndefElts &= UndefElts2;
+ }
+
+ // If we've proven all of the lanes undef, return an undef value.
+ // TODO: Intersect w/demanded lanes
+ if (UndefElts.isAllOnesValue())
+ return UndefValue::get(I->getType());;
+
+ return MadeChange ? I : nullptr;
+}