diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/ConstantHoisting.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/ConstantHoisting.cpp | 979 | 
1 files changed, 979 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp b/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp new file mode 100644 index 0000000000000..9f340afbf7c28 --- /dev/null +++ b/llvm/lib/Transforms/Scalar/ConstantHoisting.cpp @@ -0,0 +1,979 @@ +//===- ConstantHoisting.cpp - Prepare code for expensive constants --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass identifies expensive constants to hoist and coalesces them to +// better prepare it for SelectionDAG-based code generation. This works around +// the limitations of the basic-block-at-a-time approach. +// +// First it scans all instructions for integer constants and calculates its +// cost. If the constant can be folded into the instruction (the cost is +// TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't +// consider it expensive and leave it alone. This is the default behavior and +// the default implementation of getIntImmCost will always return TCC_Free. +// +// If the cost is more than TCC_BASIC, then the integer constant can't be folded +// into the instruction and it might be beneficial to hoist the constant. +// Similar constants are coalesced to reduce register pressure and +// materialization code. +// +// When a constant is hoisted, it is also hidden behind a bitcast to force it to +// be live-out of the basic block. Otherwise the constant would be just +// duplicated and each basic block would have its own copy in the SelectionDAG. +// The SelectionDAG recognizes such constants as opaque and doesn't perform +// certain transformations on them, which would create a new expensive constant. +// +// This optimization is only applied to integer constants in instructions and +// simple (this means not nested) constant cast expressions. For example: +// %0 = load i64* inttoptr (i64 big_constant to i64*) +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/ConstantHoisting.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/BlockFrequency.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/SizeOpts.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <iterator> +#include <tuple> +#include <utility> + +using namespace llvm; +using namespace consthoist; + +#define DEBUG_TYPE "consthoist" + +STATISTIC(NumConstantsHoisted, "Number of constants hoisted"); +STATISTIC(NumConstantsRebased, "Number of constants rebased"); + +static cl::opt<bool> ConstHoistWithBlockFrequency( +    "consthoist-with-block-frequency", cl::init(true), cl::Hidden, +    cl::desc("Enable the use of the block frequency analysis to reduce the " +             "chance to execute const materialization more frequently than " +             "without hoisting.")); + +static cl::opt<bool> ConstHoistGEP( +    "consthoist-gep", cl::init(false), cl::Hidden, +    cl::desc("Try hoisting constant gep expressions")); + +static cl::opt<unsigned> +MinNumOfDependentToRebase("consthoist-min-num-to-rebase", +    cl::desc("Do not rebase if number of dependent constants of a Base is less " +             "than this number."), +    cl::init(0), cl::Hidden); + +namespace { + +/// The constant hoisting pass. +class ConstantHoistingLegacyPass : public FunctionPass { +public: +  static char ID; // Pass identification, replacement for typeid + +  ConstantHoistingLegacyPass() : FunctionPass(ID) { +    initializeConstantHoistingLegacyPassPass(*PassRegistry::getPassRegistry()); +  } + +  bool runOnFunction(Function &Fn) override; + +  StringRef getPassName() const override { return "Constant Hoisting"; } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.setPreservesCFG(); +    if (ConstHoistWithBlockFrequency) +      AU.addRequired<BlockFrequencyInfoWrapperPass>(); +    AU.addRequired<DominatorTreeWrapperPass>(); +    AU.addRequired<ProfileSummaryInfoWrapperPass>(); +    AU.addRequired<TargetTransformInfoWrapperPass>(); +  } + +private: +  ConstantHoistingPass Impl; +}; + +} // end anonymous namespace + +char ConstantHoistingLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(ConstantHoistingLegacyPass, "consthoist", +                      "Constant Hoisting", false, false) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_END(ConstantHoistingLegacyPass, "consthoist", +                    "Constant Hoisting", false, false) + +FunctionPass *llvm::createConstantHoistingPass() { +  return new ConstantHoistingLegacyPass(); +} + +/// Perform the constant hoisting optimization for the given function. +bool ConstantHoistingLegacyPass::runOnFunction(Function &Fn) { +  if (skipFunction(Fn)) +    return false; + +  LLVM_DEBUG(dbgs() << "********** Begin Constant Hoisting **********\n"); +  LLVM_DEBUG(dbgs() << "********** Function: " << Fn.getName() << '\n'); + +  bool MadeChange = +      Impl.runImpl(Fn, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(Fn), +                   getAnalysis<DominatorTreeWrapperPass>().getDomTree(), +                   ConstHoistWithBlockFrequency +                       ? &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI() +                       : nullptr, +                   Fn.getEntryBlock(), +                   &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI()); + +  if (MadeChange) { +    LLVM_DEBUG(dbgs() << "********** Function after Constant Hoisting: " +                      << Fn.getName() << '\n'); +    LLVM_DEBUG(dbgs() << Fn); +  } +  LLVM_DEBUG(dbgs() << "********** End Constant Hoisting **********\n"); + +  return MadeChange; +} + +/// Find the constant materialization insertion point. +Instruction *ConstantHoistingPass::findMatInsertPt(Instruction *Inst, +                                                   unsigned Idx) const { +  // If the operand is a cast instruction, then we have to materialize the +  // constant before the cast instruction. +  if (Idx != ~0U) { +    Value *Opnd = Inst->getOperand(Idx); +    if (auto CastInst = dyn_cast<Instruction>(Opnd)) +      if (CastInst->isCast()) +        return CastInst; +  } + +  // The simple and common case. This also includes constant expressions. +  if (!isa<PHINode>(Inst) && !Inst->isEHPad()) +    return Inst; + +  // We can't insert directly before a phi node or an eh pad. Insert before +  // the terminator of the incoming or dominating block. +  assert(Entry != Inst->getParent() && "PHI or landing pad in entry block!"); +  if (Idx != ~0U && isa<PHINode>(Inst)) +    return cast<PHINode>(Inst)->getIncomingBlock(Idx)->getTerminator(); + +  // This must be an EH pad. Iterate over immediate dominators until we find a +  // non-EH pad. We need to skip over catchswitch blocks, which are both EH pads +  // and terminators. +  auto IDom = DT->getNode(Inst->getParent())->getIDom(); +  while (IDom->getBlock()->isEHPad()) { +    assert(Entry != IDom->getBlock() && "eh pad in entry block"); +    IDom = IDom->getIDom(); +  } + +  return IDom->getBlock()->getTerminator(); +} + +/// Given \p BBs as input, find another set of BBs which collectively +/// dominates \p BBs and have the minimal sum of frequencies. Return the BB +/// set found in \p BBs. +static void findBestInsertionSet(DominatorTree &DT, BlockFrequencyInfo &BFI, +                                 BasicBlock *Entry, +                                 SetVector<BasicBlock *> &BBs) { +  assert(!BBs.count(Entry) && "Assume Entry is not in BBs"); +  // Nodes on the current path to the root. +  SmallPtrSet<BasicBlock *, 8> Path; +  // Candidates includes any block 'BB' in set 'BBs' that is not strictly +  // dominated by any other blocks in set 'BBs', and all nodes in the path +  // in the dominator tree from Entry to 'BB'. +  SmallPtrSet<BasicBlock *, 16> Candidates; +  for (auto BB : BBs) { +    // Ignore unreachable basic blocks. +    if (!DT.isReachableFromEntry(BB)) +      continue; +    Path.clear(); +    // Walk up the dominator tree until Entry or another BB in BBs +    // is reached. Insert the nodes on the way to the Path. +    BasicBlock *Node = BB; +    // The "Path" is a candidate path to be added into Candidates set. +    bool isCandidate = false; +    do { +      Path.insert(Node); +      if (Node == Entry || Candidates.count(Node)) { +        isCandidate = true; +        break; +      } +      assert(DT.getNode(Node)->getIDom() && +             "Entry doens't dominate current Node"); +      Node = DT.getNode(Node)->getIDom()->getBlock(); +    } while (!BBs.count(Node)); + +    // If isCandidate is false, Node is another Block in BBs dominating +    // current 'BB'. Drop the nodes on the Path. +    if (!isCandidate) +      continue; + +    // Add nodes on the Path into Candidates. +    Candidates.insert(Path.begin(), Path.end()); +  } + +  // Sort the nodes in Candidates in top-down order and save the nodes +  // in Orders. +  unsigned Idx = 0; +  SmallVector<BasicBlock *, 16> Orders; +  Orders.push_back(Entry); +  while (Idx != Orders.size()) { +    BasicBlock *Node = Orders[Idx++]; +    for (auto ChildDomNode : DT.getNode(Node)->getChildren()) { +      if (Candidates.count(ChildDomNode->getBlock())) +        Orders.push_back(ChildDomNode->getBlock()); +    } +  } + +  // Visit Orders in bottom-up order. +  using InsertPtsCostPair = +      std::pair<SetVector<BasicBlock *>, BlockFrequency>; + +  // InsertPtsMap is a map from a BB to the best insertion points for the +  // subtree of BB (subtree not including the BB itself). +  DenseMap<BasicBlock *, InsertPtsCostPair> InsertPtsMap; +  InsertPtsMap.reserve(Orders.size() + 1); +  for (auto RIt = Orders.rbegin(); RIt != Orders.rend(); RIt++) { +    BasicBlock *Node = *RIt; +    bool NodeInBBs = BBs.count(Node); +    auto &InsertPts = InsertPtsMap[Node].first; +    BlockFrequency &InsertPtsFreq = InsertPtsMap[Node].second; + +    // Return the optimal insert points in BBs. +    if (Node == Entry) { +      BBs.clear(); +      if (InsertPtsFreq > BFI.getBlockFreq(Node) || +          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)) +        BBs.insert(Entry); +      else +        BBs.insert(InsertPts.begin(), InsertPts.end()); +      break; +    } + +    BasicBlock *Parent = DT.getNode(Node)->getIDom()->getBlock(); +    // Initially, ParentInsertPts is empty and ParentPtsFreq is 0. Every child +    // will update its parent's ParentInsertPts and ParentPtsFreq. +    auto &ParentInsertPts = InsertPtsMap[Parent].first; +    BlockFrequency &ParentPtsFreq = InsertPtsMap[Parent].second; +    // Choose to insert in Node or in subtree of Node. +    // Don't hoist to EHPad because we may not find a proper place to insert +    // in EHPad. +    // If the total frequency of InsertPts is the same as the frequency of the +    // target Node, and InsertPts contains more than one nodes, choose hoisting +    // to reduce code size. +    if (NodeInBBs || +        (!Node->isEHPad() && +         (InsertPtsFreq > BFI.getBlockFreq(Node) || +          (InsertPtsFreq == BFI.getBlockFreq(Node) && InsertPts.size() > 1)))) { +      ParentInsertPts.insert(Node); +      ParentPtsFreq += BFI.getBlockFreq(Node); +    } else { +      ParentInsertPts.insert(InsertPts.begin(), InsertPts.end()); +      ParentPtsFreq += InsertPtsFreq; +    } +  } +} + +/// Find an insertion point that dominates all uses. +SetVector<Instruction *> ConstantHoistingPass::findConstantInsertionPoint( +    const ConstantInfo &ConstInfo) const { +  assert(!ConstInfo.RebasedConstants.empty() && "Invalid constant info entry."); +  // Collect all basic blocks. +  SetVector<BasicBlock *> BBs; +  SetVector<Instruction *> InsertPts; +  for (auto const &RCI : ConstInfo.RebasedConstants) +    for (auto const &U : RCI.Uses) +      BBs.insert(findMatInsertPt(U.Inst, U.OpndIdx)->getParent()); + +  if (BBs.count(Entry)) { +    InsertPts.insert(&Entry->front()); +    return InsertPts; +  } + +  if (BFI) { +    findBestInsertionSet(*DT, *BFI, Entry, BBs); +    for (auto BB : BBs) { +      BasicBlock::iterator InsertPt = BB->begin(); +      for (; isa<PHINode>(InsertPt) || InsertPt->isEHPad(); ++InsertPt) +        ; +      InsertPts.insert(&*InsertPt); +    } +    return InsertPts; +  } + +  while (BBs.size() >= 2) { +    BasicBlock *BB, *BB1, *BB2; +    BB1 = BBs.pop_back_val(); +    BB2 = BBs.pop_back_val(); +    BB = DT->findNearestCommonDominator(BB1, BB2); +    if (BB == Entry) { +      InsertPts.insert(&Entry->front()); +      return InsertPts; +    } +    BBs.insert(BB); +  } +  assert((BBs.size() == 1) && "Expected only one element."); +  Instruction &FirstInst = (*BBs.begin())->front(); +  InsertPts.insert(findMatInsertPt(&FirstInst)); +  return InsertPts; +} + +/// Record constant integer ConstInt for instruction Inst at operand +/// index Idx. +/// +/// The operand at index Idx is not necessarily the constant integer itself. It +/// could also be a cast instruction or a constant expression that uses the +/// constant integer. +void ConstantHoistingPass::collectConstantCandidates( +    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, +    ConstantInt *ConstInt) { +  unsigned Cost; +  // Ask the target about the cost of materializing the constant for the given +  // instruction and operand index. +  if (auto IntrInst = dyn_cast<IntrinsicInst>(Inst)) +    Cost = TTI->getIntImmCost(IntrInst->getIntrinsicID(), Idx, +                              ConstInt->getValue(), ConstInt->getType()); +  else +    Cost = TTI->getIntImmCost(Inst->getOpcode(), Idx, ConstInt->getValue(), +                              ConstInt->getType()); + +  // Ignore cheap integer constants. +  if (Cost > TargetTransformInfo::TCC_Basic) { +    ConstCandMapType::iterator Itr; +    bool Inserted; +    ConstPtrUnionType Cand = ConstInt; +    std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); +    if (Inserted) { +      ConstIntCandVec.push_back(ConstantCandidate(ConstInt)); +      Itr->second = ConstIntCandVec.size() - 1; +    } +    ConstIntCandVec[Itr->second].addUser(Inst, Idx, Cost); +    LLVM_DEBUG(if (isa<ConstantInt>(Inst->getOperand(Idx))) dbgs() +                   << "Collect constant " << *ConstInt << " from " << *Inst +                   << " with cost " << Cost << '\n'; +               else dbgs() << "Collect constant " << *ConstInt +                           << " indirectly from " << *Inst << " via " +                           << *Inst->getOperand(Idx) << " with cost " << Cost +                           << '\n';); +  } +} + +/// Record constant GEP expression for instruction Inst at operand index Idx. +void ConstantHoistingPass::collectConstantCandidates( +    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx, +    ConstantExpr *ConstExpr) { +  // TODO: Handle vector GEPs +  if (ConstExpr->getType()->isVectorTy()) +    return; + +  GlobalVariable *BaseGV = dyn_cast<GlobalVariable>(ConstExpr->getOperand(0)); +  if (!BaseGV) +    return; + +  // Get offset from the base GV. +  PointerType *GVPtrTy = cast<PointerType>(BaseGV->getType()); +  IntegerType *PtrIntTy = DL->getIntPtrType(*Ctx, GVPtrTy->getAddressSpace()); +  APInt Offset(DL->getTypeSizeInBits(PtrIntTy), /*val*/0, /*isSigned*/true); +  auto *GEPO = cast<GEPOperator>(ConstExpr); +  if (!GEPO->accumulateConstantOffset(*DL, Offset)) +    return; + +  if (!Offset.isIntN(32)) +    return; + +  // A constant GEP expression that has a GlobalVariable as base pointer is +  // usually lowered to a load from constant pool. Such operation is unlikely +  // to be cheaper than compute it by <Base + Offset>, which can be lowered to +  // an ADD instruction or folded into Load/Store instruction. +  int Cost = TTI->getIntImmCost(Instruction::Add, 1, Offset, PtrIntTy); +  ConstCandVecType &ExprCandVec = ConstGEPCandMap[BaseGV]; +  ConstCandMapType::iterator Itr; +  bool Inserted; +  ConstPtrUnionType Cand = ConstExpr; +  std::tie(Itr, Inserted) = ConstCandMap.insert(std::make_pair(Cand, 0)); +  if (Inserted) { +    ExprCandVec.push_back(ConstantCandidate( +        ConstantInt::get(Type::getInt32Ty(*Ctx), Offset.getLimitedValue()), +        ConstExpr)); +    Itr->second = ExprCandVec.size() - 1; +  } +  ExprCandVec[Itr->second].addUser(Inst, Idx, Cost); +} + +/// Check the operand for instruction Inst at index Idx. +void ConstantHoistingPass::collectConstantCandidates( +    ConstCandMapType &ConstCandMap, Instruction *Inst, unsigned Idx) { +  Value *Opnd = Inst->getOperand(Idx); + +  // Visit constant integers. +  if (auto ConstInt = dyn_cast<ConstantInt>(Opnd)) { +    collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); +    return; +  } + +  // Visit cast instructions that have constant integers. +  if (auto CastInst = dyn_cast<Instruction>(Opnd)) { +    // Only visit cast instructions, which have been skipped. All other +    // instructions should have already been visited. +    if (!CastInst->isCast()) +      return; + +    if (auto *ConstInt = dyn_cast<ConstantInt>(CastInst->getOperand(0))) { +      // Pretend the constant is directly used by the instruction and ignore +      // the cast instruction. +      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); +      return; +    } +  } + +  // Visit constant expressions that have constant integers. +  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { +    // Handle constant gep expressions. +    if (ConstHoistGEP && ConstExpr->isGEPWithNoNotionalOverIndexing()) +      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstExpr); + +    // Only visit constant cast expressions. +    if (!ConstExpr->isCast()) +      return; + +    if (auto ConstInt = dyn_cast<ConstantInt>(ConstExpr->getOperand(0))) { +      // Pretend the constant is directly used by the instruction and ignore +      // the constant expression. +      collectConstantCandidates(ConstCandMap, Inst, Idx, ConstInt); +      return; +    } +  } +} + +/// Scan the instruction for expensive integer constants and record them +/// in the constant candidate vector. +void ConstantHoistingPass::collectConstantCandidates( +    ConstCandMapType &ConstCandMap, Instruction *Inst) { +  // Skip all cast instructions. They are visited indirectly later on. +  if (Inst->isCast()) +    return; + +  // Scan all operands. +  for (unsigned Idx = 0, E = Inst->getNumOperands(); Idx != E; ++Idx) { +    // The cost of materializing the constants (defined in +    // `TargetTransformInfo::getIntImmCost`) for instructions which only take +    // constant variables is lower than `TargetTransformInfo::TCC_Basic`. So +    // it's safe for us to collect constant candidates from all IntrinsicInsts. +    if (canReplaceOperandWithVariable(Inst, Idx) || isa<IntrinsicInst>(Inst)) { +      collectConstantCandidates(ConstCandMap, Inst, Idx); +    } +  } // end of for all operands +} + +/// Collect all integer constants in the function that cannot be folded +/// into an instruction itself. +void ConstantHoistingPass::collectConstantCandidates(Function &Fn) { +  ConstCandMapType ConstCandMap; +  for (BasicBlock &BB : Fn) +    for (Instruction &Inst : BB) +      collectConstantCandidates(ConstCandMap, &Inst); +} + +// This helper function is necessary to deal with values that have different +// bit widths (APInt Operator- does not like that). If the value cannot be +// represented in uint64 we return an "empty" APInt. This is then interpreted +// as the value is not in range. +static Optional<APInt> calculateOffsetDiff(const APInt &V1, const APInt &V2) { +  Optional<APInt> Res = None; +  unsigned BW = V1.getBitWidth() > V2.getBitWidth() ? +                V1.getBitWidth() : V2.getBitWidth(); +  uint64_t LimVal1 = V1.getLimitedValue(); +  uint64_t LimVal2 = V2.getLimitedValue(); + +  if (LimVal1 == ~0ULL || LimVal2 == ~0ULL) +    return Res; + +  uint64_t Diff = LimVal1 - LimVal2; +  return APInt(BW, Diff, true); +} + +// From a list of constants, one needs to picked as the base and the other +// constants will be transformed into an offset from that base constant. The +// question is which we can pick best? For example, consider these constants +// and their number of uses: +// +//  Constants| 2 | 4 | 12 | 42 | +//  NumUses  | 3 | 2 |  8 |  7 | +// +// Selecting constant 12 because it has the most uses will generate negative +// offsets for constants 2 and 4 (i.e. -10 and -8 respectively). If negative +// offsets lead to less optimal code generation, then there might be better +// solutions. Suppose immediates in the range of 0..35 are most optimally +// supported by the architecture, then selecting constant 2 is most optimal +// because this will generate offsets: 0, 2, 10, 40. Offsets 0, 2 and 10 are in +// range 0..35, and thus 3 + 2 + 8 = 13 uses are in range. Selecting 12 would +// have only 8 uses in range, so choosing 2 as a base is more optimal. Thus, in +// selecting the base constant the range of the offsets is a very important +// factor too that we take into account here. This algorithm calculates a total +// costs for selecting a constant as the base and substract the costs if +// immediates are out of range. It has quadratic complexity, so we call this +// function only when we're optimising for size and there are less than 100 +// constants, we fall back to the straightforward algorithm otherwise +// which does not do all the offset calculations. +unsigned +ConstantHoistingPass::maximizeConstantsInRange(ConstCandVecType::iterator S, +                                           ConstCandVecType::iterator E, +                                           ConstCandVecType::iterator &MaxCostItr) { +  unsigned NumUses = 0; + +  bool OptForSize = Entry->getParent()->hasOptSize() || +                    llvm::shouldOptimizeForSize(Entry->getParent(), PSI, BFI); +  if (!OptForSize || std::distance(S,E) > 100) { +    for (auto ConstCand = S; ConstCand != E; ++ConstCand) { +      NumUses += ConstCand->Uses.size(); +      if (ConstCand->CumulativeCost > MaxCostItr->CumulativeCost) +        MaxCostItr = ConstCand; +    } +    return NumUses; +  } + +  LLVM_DEBUG(dbgs() << "== Maximize constants in range ==\n"); +  int MaxCost = -1; +  for (auto ConstCand = S; ConstCand != E; ++ConstCand) { +    auto Value = ConstCand->ConstInt->getValue(); +    Type *Ty = ConstCand->ConstInt->getType(); +    int Cost = 0; +    NumUses += ConstCand->Uses.size(); +    LLVM_DEBUG(dbgs() << "= Constant: " << ConstCand->ConstInt->getValue() +                      << "\n"); + +    for (auto User : ConstCand->Uses) { +      unsigned Opcode = User.Inst->getOpcode(); +      unsigned OpndIdx = User.OpndIdx; +      Cost += TTI->getIntImmCost(Opcode, OpndIdx, Value, Ty); +      LLVM_DEBUG(dbgs() << "Cost: " << Cost << "\n"); + +      for (auto C2 = S; C2 != E; ++C2) { +        Optional<APInt> Diff = calculateOffsetDiff( +                                   C2->ConstInt->getValue(), +                                   ConstCand->ConstInt->getValue()); +        if (Diff) { +          const int ImmCosts = +            TTI->getIntImmCodeSizeCost(Opcode, OpndIdx, Diff.getValue(), Ty); +          Cost -= ImmCosts; +          LLVM_DEBUG(dbgs() << "Offset " << Diff.getValue() << " " +                            << "has penalty: " << ImmCosts << "\n" +                            << "Adjusted cost: " << Cost << "\n"); +        } +      } +    } +    LLVM_DEBUG(dbgs() << "Cumulative cost: " << Cost << "\n"); +    if (Cost > MaxCost) { +      MaxCost = Cost; +      MaxCostItr = ConstCand; +      LLVM_DEBUG(dbgs() << "New candidate: " << MaxCostItr->ConstInt->getValue() +                        << "\n"); +    } +  } +  return NumUses; +} + +/// Find the base constant within the given range and rebase all other +/// constants with respect to the base constant. +void ConstantHoistingPass::findAndMakeBaseConstant( +    ConstCandVecType::iterator S, ConstCandVecType::iterator E, +    SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec) { +  auto MaxCostItr = S; +  unsigned NumUses = maximizeConstantsInRange(S, E, MaxCostItr); + +  // Don't hoist constants that have only one use. +  if (NumUses <= 1) +    return; + +  ConstantInt *ConstInt = MaxCostItr->ConstInt; +  ConstantExpr *ConstExpr = MaxCostItr->ConstExpr; +  ConstantInfo ConstInfo; +  ConstInfo.BaseInt = ConstInt; +  ConstInfo.BaseExpr = ConstExpr; +  Type *Ty = ConstInt->getType(); + +  // Rebase the constants with respect to the base constant. +  for (auto ConstCand = S; ConstCand != E; ++ConstCand) { +    APInt Diff = ConstCand->ConstInt->getValue() - ConstInt->getValue(); +    Constant *Offset = Diff == 0 ? nullptr : ConstantInt::get(Ty, Diff); +    Type *ConstTy = +        ConstCand->ConstExpr ? ConstCand->ConstExpr->getType() : nullptr; +    ConstInfo.RebasedConstants.push_back( +      RebasedConstantInfo(std::move(ConstCand->Uses), Offset, ConstTy)); +  } +  ConstInfoVec.push_back(std::move(ConstInfo)); +} + +/// Finds and combines constant candidates that can be easily +/// rematerialized with an add from a common base constant. +void ConstantHoistingPass::findBaseConstants(GlobalVariable *BaseGV) { +  // If BaseGV is nullptr, find base among candidate constant integers; +  // Otherwise find base among constant GEPs that share the same BaseGV. +  ConstCandVecType &ConstCandVec = BaseGV ? +      ConstGEPCandMap[BaseGV] : ConstIntCandVec; +  ConstInfoVecType &ConstInfoVec = BaseGV ? +      ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; + +  // Sort the constants by value and type. This invalidates the mapping! +  llvm::stable_sort(ConstCandVec, [](const ConstantCandidate &LHS, +                                     const ConstantCandidate &RHS) { +    if (LHS.ConstInt->getType() != RHS.ConstInt->getType()) +      return LHS.ConstInt->getType()->getBitWidth() < +             RHS.ConstInt->getType()->getBitWidth(); +    return LHS.ConstInt->getValue().ult(RHS.ConstInt->getValue()); +  }); + +  // Simple linear scan through the sorted constant candidate vector for viable +  // merge candidates. +  auto MinValItr = ConstCandVec.begin(); +  for (auto CC = std::next(ConstCandVec.begin()), E = ConstCandVec.end(); +       CC != E; ++CC) { +    if (MinValItr->ConstInt->getType() == CC->ConstInt->getType()) { +      Type *MemUseValTy = nullptr; +      for (auto &U : CC->Uses) { +        auto *UI = U.Inst; +        if (LoadInst *LI = dyn_cast<LoadInst>(UI)) { +          MemUseValTy = LI->getType(); +          break; +        } else if (StoreInst *SI = dyn_cast<StoreInst>(UI)) { +          // Make sure the constant is used as pointer operand of the StoreInst. +          if (SI->getPointerOperand() == SI->getOperand(U.OpndIdx)) { +            MemUseValTy = SI->getValueOperand()->getType(); +            break; +          } +        } +      } + +      // Check if the constant is in range of an add with immediate. +      APInt Diff = CC->ConstInt->getValue() - MinValItr->ConstInt->getValue(); +      if ((Diff.getBitWidth() <= 64) && +          TTI->isLegalAddImmediate(Diff.getSExtValue()) && +          // Check if Diff can be used as offset in addressing mode of the user +          // memory instruction. +          (!MemUseValTy || TTI->isLegalAddressingMode(MemUseValTy, +           /*BaseGV*/nullptr, /*BaseOffset*/Diff.getSExtValue(), +           /*HasBaseReg*/true, /*Scale*/0))) +        continue; +    } +    // We either have now a different constant type or the constant is not in +    // range of an add with immediate anymore. +    findAndMakeBaseConstant(MinValItr, CC, ConstInfoVec); +    // Start a new base constant search. +    MinValItr = CC; +  } +  // Finalize the last base constant search. +  findAndMakeBaseConstant(MinValItr, ConstCandVec.end(), ConstInfoVec); +} + +/// Updates the operand at Idx in instruction Inst with the result of +///        instruction Mat. If the instruction is a PHI node then special +///        handling for duplicate values form the same incoming basic block is +///        required. +/// \return The update will always succeed, but the return value indicated if +///         Mat was used for the update or not. +static bool updateOperand(Instruction *Inst, unsigned Idx, Instruction *Mat) { +  if (auto PHI = dyn_cast<PHINode>(Inst)) { +    // Check if any previous operand of the PHI node has the same incoming basic +    // block. This is a very odd case that happens when the incoming basic block +    // has a switch statement. In this case use the same value as the previous +    // operand(s), otherwise we will fail verification due to different values. +    // The values are actually the same, but the variable names are different +    // and the verifier doesn't like that. +    BasicBlock *IncomingBB = PHI->getIncomingBlock(Idx); +    for (unsigned i = 0; i < Idx; ++i) { +      if (PHI->getIncomingBlock(i) == IncomingBB) { +        Value *IncomingVal = PHI->getIncomingValue(i); +        Inst->setOperand(Idx, IncomingVal); +        return false; +      } +    } +  } + +  Inst->setOperand(Idx, Mat); +  return true; +} + +/// Emit materialization code for all rebased constants and update their +/// users. +void ConstantHoistingPass::emitBaseConstants(Instruction *Base, +                                             Constant *Offset, +                                             Type *Ty, +                                             const ConstantUser &ConstUser) { +  Instruction *Mat = Base; + +  // The same offset can be dereferenced to different types in nested struct. +  if (!Offset && Ty && Ty != Base->getType()) +    Offset = ConstantInt::get(Type::getInt32Ty(*Ctx), 0); + +  if (Offset) { +    Instruction *InsertionPt = findMatInsertPt(ConstUser.Inst, +                                               ConstUser.OpndIdx); +    if (Ty) { +      // Constant being rebased is a ConstantExpr. +      PointerType *Int8PtrTy = Type::getInt8PtrTy(*Ctx, +          cast<PointerType>(Ty)->getAddressSpace()); +      Base = new BitCastInst(Base, Int8PtrTy, "base_bitcast", InsertionPt); +      Mat = GetElementPtrInst::Create(Int8PtrTy->getElementType(), Base, +          Offset, "mat_gep", InsertionPt); +      Mat = new BitCastInst(Mat, Ty, "mat_bitcast", InsertionPt); +    } else +      // Constant being rebased is a ConstantInt. +      Mat = BinaryOperator::Create(Instruction::Add, Base, Offset, +                                 "const_mat", InsertionPt); + +    LLVM_DEBUG(dbgs() << "Materialize constant (" << *Base->getOperand(0) +                      << " + " << *Offset << ") in BB " +                      << Mat->getParent()->getName() << '\n' +                      << *Mat << '\n'); +    Mat->setDebugLoc(ConstUser.Inst->getDebugLoc()); +  } +  Value *Opnd = ConstUser.Inst->getOperand(ConstUser.OpndIdx); + +  // Visit constant integer. +  if (isa<ConstantInt>(Opnd)) { +    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); +    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat) && Offset) +      Mat->eraseFromParent(); +    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n'); +    return; +  } + +  // Visit cast instruction. +  if (auto CastInst = dyn_cast<Instruction>(Opnd)) { +    assert(CastInst->isCast() && "Expected an cast instruction!"); +    // Check if we already have visited this cast instruction before to avoid +    // unnecessary cloning. +    Instruction *&ClonedCastInst = ClonedCastMap[CastInst]; +    if (!ClonedCastInst) { +      ClonedCastInst = CastInst->clone(); +      ClonedCastInst->setOperand(0, Mat); +      ClonedCastInst->insertAfter(CastInst); +      // Use the same debug location as the original cast instruction. +      ClonedCastInst->setDebugLoc(CastInst->getDebugLoc()); +      LLVM_DEBUG(dbgs() << "Clone instruction: " << *CastInst << '\n' +                        << "To               : " << *ClonedCastInst << '\n'); +    } + +    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); +    updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ClonedCastInst); +    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n'); +    return; +  } + +  // Visit constant expression. +  if (auto ConstExpr = dyn_cast<ConstantExpr>(Opnd)) { +    if (ConstExpr->isGEPWithNoNotionalOverIndexing()) { +      // Operand is a ConstantGEP, replace it. +      updateOperand(ConstUser.Inst, ConstUser.OpndIdx, Mat); +      return; +    } + +    // Aside from constant GEPs, only constant cast expressions are collected. +    assert(ConstExpr->isCast() && "ConstExpr should be a cast"); +    Instruction *ConstExprInst = ConstExpr->getAsInstruction(); +    ConstExprInst->setOperand(0, Mat); +    ConstExprInst->insertBefore(findMatInsertPt(ConstUser.Inst, +                                                ConstUser.OpndIdx)); + +    // Use the same debug location as the instruction we are about to update. +    ConstExprInst->setDebugLoc(ConstUser.Inst->getDebugLoc()); + +    LLVM_DEBUG(dbgs() << "Create instruction: " << *ConstExprInst << '\n' +                      << "From              : " << *ConstExpr << '\n'); +    LLVM_DEBUG(dbgs() << "Update: " << *ConstUser.Inst << '\n'); +    if (!updateOperand(ConstUser.Inst, ConstUser.OpndIdx, ConstExprInst)) { +      ConstExprInst->eraseFromParent(); +      if (Offset) +        Mat->eraseFromParent(); +    } +    LLVM_DEBUG(dbgs() << "To    : " << *ConstUser.Inst << '\n'); +    return; +  } +} + +/// Hoist and hide the base constant behind a bitcast and emit +/// materialization code for derived constants. +bool ConstantHoistingPass::emitBaseConstants(GlobalVariable *BaseGV) { +  bool MadeChange = false; +  SmallVectorImpl<consthoist::ConstantInfo> &ConstInfoVec = +      BaseGV ? ConstGEPInfoMap[BaseGV] : ConstIntInfoVec; +  for (auto const &ConstInfo : ConstInfoVec) { +    SetVector<Instruction *> IPSet = findConstantInsertionPoint(ConstInfo); +    // We can have an empty set if the function contains unreachable blocks. +    if (IPSet.empty()) +      continue; + +    unsigned UsesNum = 0; +    unsigned ReBasesNum = 0; +    unsigned NotRebasedNum = 0; +    for (Instruction *IP : IPSet) { +      // First, collect constants depending on this IP of the base. +      unsigned Uses = 0; +      using RebasedUse = std::tuple<Constant *, Type *, ConstantUser>; +      SmallVector<RebasedUse, 4> ToBeRebased; +      for (auto const &RCI : ConstInfo.RebasedConstants) { +        for (auto const &U : RCI.Uses) { +          Uses++; +          BasicBlock *OrigMatInsertBB = +              findMatInsertPt(U.Inst, U.OpndIdx)->getParent(); +          // If Base constant is to be inserted in multiple places, +          // generate rebase for U using the Base dominating U. +          if (IPSet.size() == 1 || +              DT->dominates(IP->getParent(), OrigMatInsertBB)) +            ToBeRebased.push_back(RebasedUse(RCI.Offset, RCI.Ty, U)); +        } +      } +      UsesNum = Uses; + +      // If only few constants depend on this IP of base, skip rebasing, +      // assuming the base and the rebased have the same materialization cost. +      if (ToBeRebased.size() < MinNumOfDependentToRebase) { +        NotRebasedNum += ToBeRebased.size(); +        continue; +      } + +      // Emit an instance of the base at this IP. +      Instruction *Base = nullptr; +      // Hoist and hide the base constant behind a bitcast. +      if (ConstInfo.BaseExpr) { +        assert(BaseGV && "A base constant expression must have an base GV"); +        Type *Ty = ConstInfo.BaseExpr->getType(); +        Base = new BitCastInst(ConstInfo.BaseExpr, Ty, "const", IP); +      } else { +        IntegerType *Ty = ConstInfo.BaseInt->getType(); +        Base = new BitCastInst(ConstInfo.BaseInt, Ty, "const", IP); +      } + +      Base->setDebugLoc(IP->getDebugLoc()); + +      LLVM_DEBUG(dbgs() << "Hoist constant (" << *ConstInfo.BaseInt +                        << ") to BB " << IP->getParent()->getName() << '\n' +                        << *Base << '\n'); + +      // Emit materialization code for rebased constants depending on this IP. +      for (auto const &R : ToBeRebased) { +        Constant *Off = std::get<0>(R); +        Type *Ty = std::get<1>(R); +        ConstantUser U = std::get<2>(R); +        emitBaseConstants(Base, Off, Ty, U); +        ReBasesNum++; +        // Use the same debug location as the last user of the constant. +        Base->setDebugLoc(DILocation::getMergedLocation( +            Base->getDebugLoc(), U.Inst->getDebugLoc())); +      } +      assert(!Base->use_empty() && "The use list is empty!?"); +      assert(isa<Instruction>(Base->user_back()) && +             "All uses should be instructions."); +    } +    (void)UsesNum; +    (void)ReBasesNum; +    (void)NotRebasedNum; +    // Expect all uses are rebased after rebase is done. +    assert(UsesNum == (ReBasesNum + NotRebasedNum) && +           "Not all uses are rebased"); + +    NumConstantsHoisted++; + +    // Base constant is also included in ConstInfo.RebasedConstants, so +    // deduct 1 from ConstInfo.RebasedConstants.size(). +    NumConstantsRebased += ConstInfo.RebasedConstants.size() - 1; + +    MadeChange = true; +  } +  return MadeChange; +} + +/// Check all cast instructions we made a copy of and remove them if they +/// have no more users. +void ConstantHoistingPass::deleteDeadCastInst() const { +  for (auto const &I : ClonedCastMap) +    if (I.first->use_empty()) +      I.first->eraseFromParent(); +} + +/// Optimize expensive integer constants in the given function. +bool ConstantHoistingPass::runImpl(Function &Fn, TargetTransformInfo &TTI, +                                   DominatorTree &DT, BlockFrequencyInfo *BFI, +                                   BasicBlock &Entry, ProfileSummaryInfo *PSI) { +  this->TTI = &TTI; +  this->DT = &DT; +  this->BFI = BFI; +  this->DL = &Fn.getParent()->getDataLayout(); +  this->Ctx = &Fn.getContext(); +  this->Entry = &Entry; +  this->PSI = PSI; +  // Collect all constant candidates. +  collectConstantCandidates(Fn); + +  // Combine constants that can be easily materialized with an add from a common +  // base constant. +  if (!ConstIntCandVec.empty()) +    findBaseConstants(nullptr); +  for (auto &MapEntry : ConstGEPCandMap) +    if (!MapEntry.second.empty()) +      findBaseConstants(MapEntry.first); + +  // Finally hoist the base constant and emit materialization code for dependent +  // constants. +  bool MadeChange = false; +  if (!ConstIntInfoVec.empty()) +    MadeChange = emitBaseConstants(nullptr); +  for (auto MapEntry : ConstGEPInfoMap) +    if (!MapEntry.second.empty()) +      MadeChange |= emitBaseConstants(MapEntry.first); + + +  // Cleanup dead instructions. +  deleteDeadCastInst(); + +  cleanup(); + +  return MadeChange; +} + +PreservedAnalyses ConstantHoistingPass::run(Function &F, +                                            FunctionAnalysisManager &AM) { +  auto &DT = AM.getResult<DominatorTreeAnalysis>(F); +  auto &TTI = AM.getResult<TargetIRAnalysis>(F); +  auto BFI = ConstHoistWithBlockFrequency +                 ? &AM.getResult<BlockFrequencyAnalysis>(F) +                 : nullptr; +  auto &MAM = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager(); +  auto *PSI = MAM.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); +  if (!runImpl(F, TTI, DT, BFI, F.getEntryBlock(), PSI)) +    return PreservedAnalyses::all(); + +  PreservedAnalyses PA; +  PA.preserveSet<CFGAnalyses>(); +  return PA; +}  | 
