diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopInterchange.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/LoopInterchange.cpp | 1599 | 
1 files changed, 1599 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopInterchange.cpp b/llvm/lib/Transforms/Scalar/LoopInterchange.cpp new file mode 100644 index 0000000000000..1af4b21b432e2 --- /dev/null +++ b/llvm/lib/Transforms/Scalar/LoopInterchange.cpp @@ -0,0 +1,1599 @@ +//===- LoopInterchange.cpp - Loop interchange pass-------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This Pass handles loop interchange transform. +// This pass interchanges loops to provide a more cache-friendly memory access +// patterns. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/DependenceAnalysis.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include <cassert> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "loop-interchange" + +STATISTIC(LoopsInterchanged, "Number of loops interchanged"); + +static cl::opt<int> LoopInterchangeCostThreshold( +    "loop-interchange-threshold", cl::init(0), cl::Hidden, +    cl::desc("Interchange if you gain more than this number")); + +namespace { + +using LoopVector = SmallVector<Loop *, 8>; + +// TODO: Check if we can use a sparse matrix here. +using CharMatrix = std::vector<std::vector<char>>; + +} // end anonymous namespace + +// Maximum number of dependencies that can be handled in the dependency matrix. +static const unsigned MaxMemInstrCount = 100; + +// Maximum loop depth supported. +static const unsigned MaxLoopNestDepth = 10; + +#ifdef DUMP_DEP_MATRICIES +static void printDepMatrix(CharMatrix &DepMatrix) { +  for (auto &Row : DepMatrix) { +    for (auto D : Row) +      LLVM_DEBUG(dbgs() << D << " "); +    LLVM_DEBUG(dbgs() << "\n"); +  } +} +#endif + +static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level, +                                     Loop *L, DependenceInfo *DI) { +  using ValueVector = SmallVector<Value *, 16>; + +  ValueVector MemInstr; + +  // For each block. +  for (BasicBlock *BB : L->blocks()) { +    // Scan the BB and collect legal loads and stores. +    for (Instruction &I : *BB) { +      if (!isa<Instruction>(I)) +        return false; +      if (auto *Ld = dyn_cast<LoadInst>(&I)) { +        if (!Ld->isSimple()) +          return false; +        MemInstr.push_back(&I); +      } else if (auto *St = dyn_cast<StoreInst>(&I)) { +        if (!St->isSimple()) +          return false; +        MemInstr.push_back(&I); +      } +    } +  } + +  LLVM_DEBUG(dbgs() << "Found " << MemInstr.size() +                    << " Loads and Stores to analyze\n"); + +  ValueVector::iterator I, IE, J, JE; + +  for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) { +    for (J = I, JE = MemInstr.end(); J != JE; ++J) { +      std::vector<char> Dep; +      Instruction *Src = cast<Instruction>(*I); +      Instruction *Dst = cast<Instruction>(*J); +      if (Src == Dst) +        continue; +      // Ignore Input dependencies. +      if (isa<LoadInst>(Src) && isa<LoadInst>(Dst)) +        continue; +      // Track Output, Flow, and Anti dependencies. +      if (auto D = DI->depends(Src, Dst, true)) { +        assert(D->isOrdered() && "Expected an output, flow or anti dep."); +        LLVM_DEBUG(StringRef DepType = +                       D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output"; +                   dbgs() << "Found " << DepType +                          << " dependency between Src and Dst\n" +                          << " Src:" << *Src << "\n Dst:" << *Dst << '\n'); +        unsigned Levels = D->getLevels(); +        char Direction; +        for (unsigned II = 1; II <= Levels; ++II) { +          const SCEV *Distance = D->getDistance(II); +          const SCEVConstant *SCEVConst = +              dyn_cast_or_null<SCEVConstant>(Distance); +          if (SCEVConst) { +            const ConstantInt *CI = SCEVConst->getValue(); +            if (CI->isNegative()) +              Direction = '<'; +            else if (CI->isZero()) +              Direction = '='; +            else +              Direction = '>'; +            Dep.push_back(Direction); +          } else if (D->isScalar(II)) { +            Direction = 'S'; +            Dep.push_back(Direction); +          } else { +            unsigned Dir = D->getDirection(II); +            if (Dir == Dependence::DVEntry::LT || +                Dir == Dependence::DVEntry::LE) +              Direction = '<'; +            else if (Dir == Dependence::DVEntry::GT || +                     Dir == Dependence::DVEntry::GE) +              Direction = '>'; +            else if (Dir == Dependence::DVEntry::EQ) +              Direction = '='; +            else +              Direction = '*'; +            Dep.push_back(Direction); +          } +        } +        while (Dep.size() != Level) { +          Dep.push_back('I'); +        } + +        DepMatrix.push_back(Dep); +        if (DepMatrix.size() > MaxMemInstrCount) { +          LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount +                            << " dependencies inside loop\n"); +          return false; +        } +      } +    } +  } + +  return true; +} + +// A loop is moved from index 'from' to an index 'to'. Update the Dependence +// matrix by exchanging the two columns. +static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx, +                                    unsigned ToIndx) { +  unsigned numRows = DepMatrix.size(); +  for (unsigned i = 0; i < numRows; ++i) { +    char TmpVal = DepMatrix[i][ToIndx]; +    DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx]; +    DepMatrix[i][FromIndx] = TmpVal; +  } +} + +// Checks if outermost non '=','S'or'I' dependence in the dependence matrix is +// '>' +static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row, +                                   unsigned Column) { +  for (unsigned i = 0; i <= Column; ++i) { +    if (DepMatrix[Row][i] == '<') +      return false; +    if (DepMatrix[Row][i] == '>') +      return true; +  } +  // All dependencies were '=','S' or 'I' +  return false; +} + +// Checks if no dependence exist in the dependency matrix in Row before Column. +static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row, +                                 unsigned Column) { +  for (unsigned i = 0; i < Column; ++i) { +    if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' && +        DepMatrix[Row][i] != 'I') +      return false; +  } +  return true; +} + +static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row, +                                unsigned OuterLoopId, char InnerDep, +                                char OuterDep) { +  if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId)) +    return false; + +  if (InnerDep == OuterDep) +    return true; + +  // It is legal to interchange if and only if after interchange no row has a +  // '>' direction as the leftmost non-'='. + +  if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I') +    return true; + +  if (InnerDep == '<') +    return true; + +  if (InnerDep == '>') { +    // If OuterLoopId represents outermost loop then interchanging will make the +    // 1st dependency as '>' +    if (OuterLoopId == 0) +      return false; + +    // If all dependencies before OuterloopId are '=','S'or 'I'. Then +    // interchanging will result in this row having an outermost non '=' +    // dependency of '>' +    if (!containsNoDependence(DepMatrix, Row, OuterLoopId)) +      return true; +  } + +  return false; +} + +// Checks if it is legal to interchange 2 loops. +// [Theorem] A permutation of the loops in a perfect nest is legal if and only +// if the direction matrix, after the same permutation is applied to its +// columns, has no ">" direction as the leftmost non-"=" direction in any row. +static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix, +                                      unsigned InnerLoopId, +                                      unsigned OuterLoopId) { +  unsigned NumRows = DepMatrix.size(); +  // For each row check if it is valid to interchange. +  for (unsigned Row = 0; Row < NumRows; ++Row) { +    char InnerDep = DepMatrix[Row][InnerLoopId]; +    char OuterDep = DepMatrix[Row][OuterLoopId]; +    if (InnerDep == '*' || OuterDep == '*') +      return false; +    if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep)) +      return false; +  } +  return true; +} + +static LoopVector populateWorklist(Loop &L) { +  LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: " +                    << L.getHeader()->getParent()->getName() << " Loop: %" +                    << L.getHeader()->getName() << '\n'); +  LoopVector LoopList; +  Loop *CurrentLoop = &L; +  const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops(); +  while (!Vec->empty()) { +    // The current loop has multiple subloops in it hence it is not tightly +    // nested. +    // Discard all loops above it added into Worklist. +    if (Vec->size() != 1) +      return {}; + +    LoopList.push_back(CurrentLoop); +    CurrentLoop = Vec->front(); +    Vec = &CurrentLoop->getSubLoops(); +  } +  LoopList.push_back(CurrentLoop); +  return LoopList; +} + +static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) { +  PHINode *InnerIndexVar = L->getCanonicalInductionVariable(); +  if (InnerIndexVar) +    return InnerIndexVar; +  if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr) +    return nullptr; +  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { +    PHINode *PhiVar = cast<PHINode>(I); +    Type *PhiTy = PhiVar->getType(); +    if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && +        !PhiTy->isPointerTy()) +      return nullptr; +    const SCEVAddRecExpr *AddRec = +        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar)); +    if (!AddRec || !AddRec->isAffine()) +      continue; +    const SCEV *Step = AddRec->getStepRecurrence(*SE); +    if (!isa<SCEVConstant>(Step)) +      continue; +    // Found the induction variable. +    // FIXME: Handle loops with more than one induction variable. Note that, +    // currently, legality makes sure we have only one induction variable. +    return PhiVar; +  } +  return nullptr; +} + +namespace { + +/// LoopInterchangeLegality checks if it is legal to interchange the loop. +class LoopInterchangeLegality { +public: +  LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE, +                          OptimizationRemarkEmitter *ORE) +      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} + +  /// Check if the loops can be interchanged. +  bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId, +                           CharMatrix &DepMatrix); + +  /// Check if the loop structure is understood. We do not handle triangular +  /// loops for now. +  bool isLoopStructureUnderstood(PHINode *InnerInductionVar); + +  bool currentLimitations(); + +  const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const { +    return OuterInnerReductions; +  } + +private: +  bool tightlyNested(Loop *Outer, Loop *Inner); +  bool containsUnsafeInstructions(BasicBlock *BB); + +  /// Discover induction and reduction PHIs in the header of \p L. Induction +  /// PHIs are added to \p Inductions, reductions are added to +  /// OuterInnerReductions. When the outer loop is passed, the inner loop needs +  /// to be passed as \p InnerLoop. +  bool findInductionAndReductions(Loop *L, +                                  SmallVector<PHINode *, 8> &Inductions, +                                  Loop *InnerLoop); + +  Loop *OuterLoop; +  Loop *InnerLoop; + +  ScalarEvolution *SE; + +  /// Interface to emit optimization remarks. +  OptimizationRemarkEmitter *ORE; + +  /// Set of reduction PHIs taking part of a reduction across the inner and +  /// outer loop. +  SmallPtrSet<PHINode *, 4> OuterInnerReductions; +}; + +/// LoopInterchangeProfitability checks if it is profitable to interchange the +/// loop. +class LoopInterchangeProfitability { +public: +  LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE, +                               OptimizationRemarkEmitter *ORE) +      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {} + +  /// Check if the loop interchange is profitable. +  bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId, +                    CharMatrix &DepMatrix); + +private: +  int getInstrOrderCost(); + +  Loop *OuterLoop; +  Loop *InnerLoop; + +  /// Scev analysis. +  ScalarEvolution *SE; + +  /// Interface to emit optimization remarks. +  OptimizationRemarkEmitter *ORE; +}; + +/// LoopInterchangeTransform interchanges the loop. +class LoopInterchangeTransform { +public: +  LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE, +                           LoopInfo *LI, DominatorTree *DT, +                           BasicBlock *LoopNestExit, +                           const LoopInterchangeLegality &LIL) +      : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT), +        LoopExit(LoopNestExit), LIL(LIL) {} + +  /// Interchange OuterLoop and InnerLoop. +  bool transform(); +  void restructureLoops(Loop *NewInner, Loop *NewOuter, +                        BasicBlock *OrigInnerPreHeader, +                        BasicBlock *OrigOuterPreHeader); +  void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop); + +private: +  bool adjustLoopLinks(); +  void adjustLoopPreheaders(); +  bool adjustLoopBranches(); + +  Loop *OuterLoop; +  Loop *InnerLoop; + +  /// Scev analysis. +  ScalarEvolution *SE; + +  LoopInfo *LI; +  DominatorTree *DT; +  BasicBlock *LoopExit; + +  const LoopInterchangeLegality &LIL; +}; + +// Main LoopInterchange Pass. +struct LoopInterchange : public LoopPass { +  static char ID; +  ScalarEvolution *SE = nullptr; +  LoopInfo *LI = nullptr; +  DependenceInfo *DI = nullptr; +  DominatorTree *DT = nullptr; + +  /// Interface to emit optimization remarks. +  OptimizationRemarkEmitter *ORE; + +  LoopInterchange() : LoopPass(ID) { +    initializeLoopInterchangePass(*PassRegistry::getPassRegistry()); +  } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<DependenceAnalysisWrapperPass>(); +    AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); + +    getLoopAnalysisUsage(AU); +  } + +  bool runOnLoop(Loop *L, LPPassManager &LPM) override { +    if (skipLoop(L) || L->getParentLoop()) +      return false; + +    SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); +    LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); +    DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI(); +    DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); +    ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); + +    return processLoopList(populateWorklist(*L)); +  } + +  bool isComputableLoopNest(LoopVector LoopList) { +    for (Loop *L : LoopList) { +      const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L); +      if (ExitCountOuter == SE->getCouldNotCompute()) { +        LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n"); +        return false; +      } +      if (L->getNumBackEdges() != 1) { +        LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n"); +        return false; +      } +      if (!L->getExitingBlock()) { +        LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n"); +        return false; +      } +    } +    return true; +  } + +  unsigned selectLoopForInterchange(const LoopVector &LoopList) { +    // TODO: Add a better heuristic to select the loop to be interchanged based +    // on the dependence matrix. Currently we select the innermost loop. +    return LoopList.size() - 1; +  } + +  bool processLoopList(LoopVector LoopList) { +    bool Changed = false; +    unsigned LoopNestDepth = LoopList.size(); +    if (LoopNestDepth < 2) { +      LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n"); +      return false; +    } +    if (LoopNestDepth > MaxLoopNestDepth) { +      LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than " +                        << MaxLoopNestDepth << "\n"); +      return false; +    } +    if (!isComputableLoopNest(LoopList)) { +      LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n"); +      return false; +    } + +    LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth +                      << "\n"); + +    CharMatrix DependencyMatrix; +    Loop *OuterMostLoop = *(LoopList.begin()); +    if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth, +                                  OuterMostLoop, DI)) { +      LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n"); +      return false; +    } +#ifdef DUMP_DEP_MATRICIES +    LLVM_DEBUG(dbgs() << "Dependence before interchange\n"); +    printDepMatrix(DependencyMatrix); +#endif + +    // Get the Outermost loop exit. +    BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock(); +    if (!LoopNestExit) { +      LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block"); +      return false; +    } + +    unsigned SelecLoopId = selectLoopForInterchange(LoopList); +    // Move the selected loop outwards to the best possible position. +    for (unsigned i = SelecLoopId; i > 0; i--) { +      bool Interchanged = +          processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix); +      if (!Interchanged) +        return Changed; +      // Loops interchanged reflect the same in LoopList +      std::swap(LoopList[i - 1], LoopList[i]); + +      // Update the DependencyMatrix +      interChangeDependencies(DependencyMatrix, i, i - 1); +#ifdef DUMP_DEP_MATRICIES +      LLVM_DEBUG(dbgs() << "Dependence after interchange\n"); +      printDepMatrix(DependencyMatrix); +#endif +      Changed |= Interchanged; +    } +    return Changed; +  } + +  bool processLoop(LoopVector LoopList, unsigned InnerLoopId, +                   unsigned OuterLoopId, BasicBlock *LoopNestExit, +                   std::vector<std::vector<char>> &DependencyMatrix) { +    LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId +                      << " and OuterLoopId = " << OuterLoopId << "\n"); +    Loop *InnerLoop = LoopList[InnerLoopId]; +    Loop *OuterLoop = LoopList[OuterLoopId]; + +    LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE); +    if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) { +      LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n"); +      return false; +    } +    LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n"); +    LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE); +    if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) { +      LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n"); +      return false; +    } + +    ORE->emit([&]() { +      return OptimizationRemark(DEBUG_TYPE, "Interchanged", +                                InnerLoop->getStartLoc(), +                                InnerLoop->getHeader()) +             << "Loop interchanged with enclosing loop."; +    }); + +    LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit, +                                 LIL); +    LIT.transform(); +    LLVM_DEBUG(dbgs() << "Loops interchanged.\n"); +    LoopsInterchanged++; +    return true; +  } +}; + +} // end anonymous namespace + +bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) { +  return any_of(*BB, [](const Instruction &I) { +    return I.mayHaveSideEffects() || I.mayReadFromMemory(); +  }); +} + +bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) { +  BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); +  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); +  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); + +  LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n"); + +  // A perfectly nested loop will not have any branch in between the outer and +  // inner block i.e. outer header will branch to either inner preheader and +  // outerloop latch. +  BranchInst *OuterLoopHeaderBI = +      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); +  if (!OuterLoopHeaderBI) +    return false; + +  for (BasicBlock *Succ : successors(OuterLoopHeaderBI)) +    if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() && +        Succ != OuterLoopLatch) +      return false; + +  LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n"); +  // We do not have any basic block in between now make sure the outer header +  // and outer loop latch doesn't contain any unsafe instructions. +  if (containsUnsafeInstructions(OuterLoopHeader) || +      containsUnsafeInstructions(OuterLoopLatch)) +    return false; + +  LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n"); +  // We have a perfect loop nest. +  return true; +} + +bool LoopInterchangeLegality::isLoopStructureUnderstood( +    PHINode *InnerInduction) { +  unsigned Num = InnerInduction->getNumOperands(); +  BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader(); +  for (unsigned i = 0; i < Num; ++i) { +    Value *Val = InnerInduction->getOperand(i); +    if (isa<Constant>(Val)) +      continue; +    Instruction *I = dyn_cast<Instruction>(Val); +    if (!I) +      return false; +    // TODO: Handle triangular loops. +    // e.g. for(int i=0;i<N;i++) +    //        for(int j=i;j<N;j++) +    unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i); +    if (InnerInduction->getIncomingBlock(IncomBlockIndx) == +            InnerLoopPreheader && +        !OuterLoop->isLoopInvariant(I)) { +      return false; +    } +  } +  return true; +} + +// If SV is a LCSSA PHI node with a single incoming value, return the incoming +// value. +static Value *followLCSSA(Value *SV) { +  PHINode *PHI = dyn_cast<PHINode>(SV); +  if (!PHI) +    return SV; + +  if (PHI->getNumIncomingValues() != 1) +    return SV; +  return followLCSSA(PHI->getIncomingValue(0)); +} + +// Check V's users to see if it is involved in a reduction in L. +static PHINode *findInnerReductionPhi(Loop *L, Value *V) { +  for (Value *User : V->users()) { +    if (PHINode *PHI = dyn_cast<PHINode>(User)) { +      if (PHI->getNumIncomingValues() == 1) +        continue; +      RecurrenceDescriptor RD; +      if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD)) +        return PHI; +      return nullptr; +    } +  } + +  return nullptr; +} + +bool LoopInterchangeLegality::findInductionAndReductions( +    Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) { +  if (!L->getLoopLatch() || !L->getLoopPredecessor()) +    return false; +  for (PHINode &PHI : L->getHeader()->phis()) { +    RecurrenceDescriptor RD; +    InductionDescriptor ID; +    if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID)) +      Inductions.push_back(&PHI); +    else { +      // PHIs in inner loops need to be part of a reduction in the outer loop, +      // discovered when checking the PHIs of the outer loop earlier. +      if (!InnerLoop) { +        if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end()) { +          LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions " +                               "across the outer loop.\n"); +          return false; +        } +      } else { +        assert(PHI.getNumIncomingValues() == 2 && +               "Phis in loop header should have exactly 2 incoming values"); +        // Check if we have a PHI node in the outer loop that has a reduction +        // result from the inner loop as an incoming value. +        Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch())); +        PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V); +        if (!InnerRedPhi || +            !llvm::any_of(InnerRedPhi->incoming_values(), +                          [&PHI](Value *V) { return V == &PHI; })) { +          LLVM_DEBUG( +              dbgs() +              << "Failed to recognize PHI as an induction or reduction.\n"); +          return false; +        } +        OuterInnerReductions.insert(&PHI); +        OuterInnerReductions.insert(InnerRedPhi); +      } +    } +  } +  return true; +} + +static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) { +  for (PHINode &PHI : Block->phis()) { +    // Reduction lcssa phi will have only 1 incoming block that from loop latch. +    if (PHI.getNumIncomingValues() > 1) +      return false; +    Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0)); +    if (!Ins) +      return false; +    // Incoming value for lcssa phi's in outer loop exit can only be inner loop +    // exits lcssa phi else it would not be tightly nested. +    if (!isa<PHINode>(Ins) && isOuterLoopExitBlock) +      return false; +  } +  return true; +} + +// This function indicates the current limitations in the transform as a result +// of which we do not proceed. +bool LoopInterchangeLegality::currentLimitations() { +  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); +  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); + +  // transform currently expects the loop latches to also be the exiting +  // blocks. +  if (InnerLoop->getExitingBlock() != InnerLoopLatch || +      OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() || +      !isa<BranchInst>(InnerLoopLatch->getTerminator()) || +      !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) { +    LLVM_DEBUG( +        dbgs() << "Loops where the latch is not the exiting block are not" +               << " supported currently.\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch", +                                      OuterLoop->getStartLoc(), +                                      OuterLoop->getHeader()) +             << "Loops where the latch is not the exiting block cannot be" +                " interchange currently."; +    }); +    return true; +  } + +  PHINode *InnerInductionVar; +  SmallVector<PHINode *, 8> Inductions; +  if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) { +    LLVM_DEBUG( +        dbgs() << "Only outer loops with induction or reduction PHI nodes " +               << "are supported currently.\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter", +                                      OuterLoop->getStartLoc(), +                                      OuterLoop->getHeader()) +             << "Only outer loops with induction or reduction PHI nodes can be" +                " interchanged currently."; +    }); +    return true; +  } + +  // TODO: Currently we handle only loops with 1 induction variable. +  if (Inductions.size() != 1) { +    LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not " +                      << "supported currently.\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter", +                                      OuterLoop->getStartLoc(), +                                      OuterLoop->getHeader()) +             << "Only outer loops with 1 induction variable can be " +                "interchanged currently."; +    }); +    return true; +  } + +  Inductions.clear(); +  if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) { +    LLVM_DEBUG( +        dbgs() << "Only inner loops with induction or reduction PHI nodes " +               << "are supported currently.\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner", +                                      InnerLoop->getStartLoc(), +                                      InnerLoop->getHeader()) +             << "Only inner loops with induction or reduction PHI nodes can be" +                " interchange currently."; +    }); +    return true; +  } + +  // TODO: Currently we handle only loops with 1 induction variable. +  if (Inductions.size() != 1) { +    LLVM_DEBUG( +        dbgs() << "We currently only support loops with 1 induction variable." +               << "Failed to interchange due to current limitation\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner", +                                      InnerLoop->getStartLoc(), +                                      InnerLoop->getHeader()) +             << "Only inner loops with 1 induction variable can be " +                "interchanged currently."; +    }); +    return true; +  } +  InnerInductionVar = Inductions.pop_back_val(); + +  // TODO: Triangular loops are not handled for now. +  if (!isLoopStructureUnderstood(InnerInductionVar)) { +    LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner", +                                      InnerLoop->getStartLoc(), +                                      InnerLoop->getHeader()) +             << "Inner loop structure not understood currently."; +    }); +    return true; +  } + +  // TODO: We only handle LCSSA PHI's corresponding to reduction for now. +  BasicBlock *InnerExit = InnerLoop->getExitBlock(); +  if (!containsSafePHI(InnerExit, false)) { +    LLVM_DEBUG( +        dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner", +                                      InnerLoop->getStartLoc(), +                                      InnerLoop->getHeader()) +             << "Only inner loops with LCSSA PHIs can be interchange " +                "currently."; +    }); +    return true; +  } + +  // TODO: Current limitation: Since we split the inner loop latch at the point +  // were induction variable is incremented (induction.next); We cannot have +  // more than 1 user of induction.next since it would result in broken code +  // after split. +  // e.g. +  // for(i=0;i<N;i++) { +  //    for(j = 0;j<M;j++) { +  //      A[j+1][i+2] = A[j][i]+k; +  //  } +  // } +  Instruction *InnerIndexVarInc = nullptr; +  if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader) +    InnerIndexVarInc = +        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1)); +  else +    InnerIndexVarInc = +        dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0)); + +  if (!InnerIndexVarInc) { +    LLVM_DEBUG( +        dbgs() << "Did not find an instruction to increment the induction " +               << "variable.\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner", +                                      InnerLoop->getStartLoc(), +                                      InnerLoop->getHeader()) +             << "The inner loop does not increment the induction variable."; +    }); +    return true; +  } + +  // Since we split the inner loop latch on this induction variable. Make sure +  // we do not have any instruction between the induction variable and branch +  // instruction. + +  bool FoundInduction = false; +  for (const Instruction &I : +       llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) { +    if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) || +        isa<ZExtInst>(I)) +      continue; + +    // We found an instruction. If this is not induction variable then it is not +    // safe to split this loop latch. +    if (!I.isIdenticalTo(InnerIndexVarInc)) { +      LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction " +                        << "variable increment and branch.\n"); +      ORE->emit([&]() { +        return OptimizationRemarkMissed( +                   DEBUG_TYPE, "UnsupportedInsBetweenInduction", +                   InnerLoop->getStartLoc(), InnerLoop->getHeader()) +               << "Found unsupported instruction between induction variable " +                  "increment and branch."; +      }); +      return true; +    } + +    FoundInduction = true; +    break; +  } +  // The loop latch ended and we didn't find the induction variable return as +  // current limitation. +  if (!FoundInduction) { +    LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable", +                                      InnerLoop->getStartLoc(), +                                      InnerLoop->getHeader()) +             << "Did not find the induction variable."; +    }); +    return true; +  } +  return false; +} + +// We currently support LCSSA PHI nodes in the outer loop exit, if their +// incoming values do not come from the outer loop latch or if the +// outer loop latch has a single predecessor. In that case, the value will +// be available if both the inner and outer loop conditions are true, which +// will still be true after interchanging. If we have multiple predecessor, +// that may not be the case, e.g. because the outer loop latch may be executed +// if the inner loop is not executed. +static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) { +  BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock(); +  for (PHINode &PHI : LoopNestExit->phis()) { +    //  FIXME: We currently are not able to detect floating point reductions +    //         and have to use floating point PHIs as a proxy to prevent +    //         interchanging in the presence of floating point reductions. +    if (PHI.getType()->isFloatingPointTy()) +      return false; +    for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) { +     Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i)); +     if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch()) +       continue; + +     // The incoming value is defined in the outer loop latch. Currently we +     // only support that in case the outer loop latch has a single predecessor. +     // This guarantees that the outer loop latch is executed if and only if +     // the inner loop is executed (because tightlyNested() guarantees that the +     // outer loop header only branches to the inner loop or the outer loop +     // latch). +     // FIXME: We could weaken this logic and allow multiple predecessors, +     //        if the values are produced outside the loop latch. We would need +     //        additional logic to update the PHI nodes in the exit block as +     //        well. +     if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr) +       return false; +    } +  } +  return true; +} + +bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId, +                                                  unsigned OuterLoopId, +                                                  CharMatrix &DepMatrix) { +  if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) { +    LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId +                      << " and OuterLoopId = " << OuterLoopId +                      << " due to dependence\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence", +                                      InnerLoop->getStartLoc(), +                                      InnerLoop->getHeader()) +             << "Cannot interchange loops due to dependences."; +    }); +    return false; +  } +  // Check if outer and inner loop contain legal instructions only. +  for (auto *BB : OuterLoop->blocks()) +    for (Instruction &I : BB->instructionsWithoutDebug()) +      if (CallInst *CI = dyn_cast<CallInst>(&I)) { +        // readnone functions do not prevent interchanging. +        if (CI->doesNotReadMemory()) +          continue; +        LLVM_DEBUG( +            dbgs() << "Loops with call instructions cannot be interchanged " +                   << "safely."); +        ORE->emit([&]() { +          return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst", +                                          CI->getDebugLoc(), +                                          CI->getParent()) +                 << "Cannot interchange loops due to call instruction."; +        }); + +        return false; +      } + +  // TODO: The loops could not be interchanged due to current limitations in the +  // transform module. +  if (currentLimitations()) { +    LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n"); +    return false; +  } + +  // Check if the loops are tightly nested. +  if (!tightlyNested(OuterLoop, InnerLoop)) { +    LLVM_DEBUG(dbgs() << "Loops not tightly nested\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested", +                                      InnerLoop->getStartLoc(), +                                      InnerLoop->getHeader()) +             << "Cannot interchange loops because they are not tightly " +                "nested."; +    }); +    return false; +  } + +  if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) { +    LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n"); +    ORE->emit([&]() { +      return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI", +                                      OuterLoop->getStartLoc(), +                                      OuterLoop->getHeader()) +             << "Found unsupported PHI node in loop exit."; +    }); +    return false; +  } + +  return true; +} + +int LoopInterchangeProfitability::getInstrOrderCost() { +  unsigned GoodOrder, BadOrder; +  BadOrder = GoodOrder = 0; +  for (BasicBlock *BB : InnerLoop->blocks()) { +    for (Instruction &Ins : *BB) { +      if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) { +        unsigned NumOp = GEP->getNumOperands(); +        bool FoundInnerInduction = false; +        bool FoundOuterInduction = false; +        for (unsigned i = 0; i < NumOp; ++i) { +          const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i)); +          const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal); +          if (!AR) +            continue; + +          // If we find the inner induction after an outer induction e.g. +          // for(int i=0;i<N;i++) +          //   for(int j=0;j<N;j++) +          //     A[i][j] = A[i-1][j-1]+k; +          // then it is a good order. +          if (AR->getLoop() == InnerLoop) { +            // We found an InnerLoop induction after OuterLoop induction. It is +            // a good order. +            FoundInnerInduction = true; +            if (FoundOuterInduction) { +              GoodOrder++; +              break; +            } +          } +          // If we find the outer induction after an inner induction e.g. +          // for(int i=0;i<N;i++) +          //   for(int j=0;j<N;j++) +          //     A[j][i] = A[j-1][i-1]+k; +          // then it is a bad order. +          if (AR->getLoop() == OuterLoop) { +            // We found an OuterLoop induction after InnerLoop induction. It is +            // a bad order. +            FoundOuterInduction = true; +            if (FoundInnerInduction) { +              BadOrder++; +              break; +            } +          } +        } +      } +    } +  } +  return GoodOrder - BadOrder; +} + +static bool isProfitableForVectorization(unsigned InnerLoopId, +                                         unsigned OuterLoopId, +                                         CharMatrix &DepMatrix) { +  // TODO: Improve this heuristic to catch more cases. +  // If the inner loop is loop independent or doesn't carry any dependency it is +  // profitable to move this to outer position. +  for (auto &Row : DepMatrix) { +    if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I') +      return false; +    // TODO: We need to improve this heuristic. +    if (Row[OuterLoopId] != '=') +      return false; +  } +  // If outer loop has dependence and inner loop is loop independent then it is +  // profitable to interchange to enable parallelism. +  // If there are no dependences, interchanging will not improve anything. +  return !DepMatrix.empty(); +} + +bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId, +                                                unsigned OuterLoopId, +                                                CharMatrix &DepMatrix) { +  // TODO: Add better profitability checks. +  // e.g +  // 1) Construct dependency matrix and move the one with no loop carried dep +  //    inside to enable vectorization. + +  // This is rough cost estimation algorithm. It counts the good and bad order +  // of induction variables in the instruction and allows reordering if number +  // of bad orders is more than good. +  int Cost = getInstrOrderCost(); +  LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n"); +  if (Cost < -LoopInterchangeCostThreshold) +    return true; + +  // It is not profitable as per current cache profitability model. But check if +  // we can move this loop outside to improve parallelism. +  if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix)) +    return true; + +  ORE->emit([&]() { +    return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable", +                                    InnerLoop->getStartLoc(), +                                    InnerLoop->getHeader()) +           << "Interchanging loops is too costly (cost=" +           << ore::NV("Cost", Cost) << ", threshold=" +           << ore::NV("Threshold", LoopInterchangeCostThreshold) +           << ") and it does not improve parallelism."; +  }); +  return false; +} + +void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop, +                                               Loop *InnerLoop) { +  for (Loop *L : *OuterLoop) +    if (L == InnerLoop) { +      OuterLoop->removeChildLoop(L); +      return; +    } +  llvm_unreachable("Couldn't find loop"); +} + +/// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the +/// new inner and outer loop after interchanging: NewInner is the original +/// outer loop and NewOuter is the original inner loop. +/// +/// Before interchanging, we have the following structure +/// Outer preheader +//  Outer header +//    Inner preheader +//    Inner header +//      Inner body +//      Inner latch +//   outer bbs +//   Outer latch +// +// After interchanging: +// Inner preheader +// Inner header +//   Outer preheader +//   Outer header +//     Inner body +//     outer bbs +//     Outer latch +//   Inner latch +void LoopInterchangeTransform::restructureLoops( +    Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader, +    BasicBlock *OrigOuterPreHeader) { +  Loop *OuterLoopParent = OuterLoop->getParentLoop(); +  // The original inner loop preheader moves from the new inner loop to +  // the parent loop, if there is one. +  NewInner->removeBlockFromLoop(OrigInnerPreHeader); +  LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent); + +  // Switch the loop levels. +  if (OuterLoopParent) { +    // Remove the loop from its parent loop. +    removeChildLoop(OuterLoopParent, NewInner); +    removeChildLoop(NewInner, NewOuter); +    OuterLoopParent->addChildLoop(NewOuter); +  } else { +    removeChildLoop(NewInner, NewOuter); +    LI->changeTopLevelLoop(NewInner, NewOuter); +  } +  while (!NewOuter->empty()) +    NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin())); +  NewOuter->addChildLoop(NewInner); + +  // BBs from the original inner loop. +  SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks()); + +  // Add BBs from the original outer loop to the original inner loop (excluding +  // BBs already in inner loop) +  for (BasicBlock *BB : NewInner->blocks()) +    if (LI->getLoopFor(BB) == NewInner) +      NewOuter->addBlockEntry(BB); + +  // Now remove inner loop header and latch from the new inner loop and move +  // other BBs (the loop body) to the new inner loop. +  BasicBlock *OuterHeader = NewOuter->getHeader(); +  BasicBlock *OuterLatch = NewOuter->getLoopLatch(); +  for (BasicBlock *BB : OrigInnerBBs) { +    // Nothing will change for BBs in child loops. +    if (LI->getLoopFor(BB) != NewOuter) +      continue; +    // Remove the new outer loop header and latch from the new inner loop. +    if (BB == OuterHeader || BB == OuterLatch) +      NewInner->removeBlockFromLoop(BB); +    else +      LI->changeLoopFor(BB, NewInner); +  } + +  // The preheader of the original outer loop becomes part of the new +  // outer loop. +  NewOuter->addBlockEntry(OrigOuterPreHeader); +  LI->changeLoopFor(OrigOuterPreHeader, NewOuter); + +  // Tell SE that we move the loops around. +  SE->forgetLoop(NewOuter); +  SE->forgetLoop(NewInner); +} + +bool LoopInterchangeTransform::transform() { +  bool Transformed = false; +  Instruction *InnerIndexVar; + +  if (InnerLoop->getSubLoops().empty()) { +    BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); +    LLVM_DEBUG(dbgs() << "Splitting the inner loop latch\n"); +    PHINode *InductionPHI = getInductionVariable(InnerLoop, SE); +    if (!InductionPHI) { +      LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n"); +      return false; +    } + +    if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader) +      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1)); +    else +      InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0)); + +    // Ensure that InductionPHI is the first Phi node. +    if (&InductionPHI->getParent()->front() != InductionPHI) +      InductionPHI->moveBefore(&InductionPHI->getParent()->front()); + +    // Create a new latch block for the inner loop. We split at the +    // current latch's terminator and then move the condition and all +    // operands that are not either loop-invariant or the induction PHI into the +    // new latch block. +    BasicBlock *NewLatch = +        SplitBlock(InnerLoop->getLoopLatch(), +                   InnerLoop->getLoopLatch()->getTerminator(), DT, LI); + +    SmallSetVector<Instruction *, 4> WorkList; +    unsigned i = 0; +    auto MoveInstructions = [&i, &WorkList, this, InductionPHI, NewLatch]() { +      for (; i < WorkList.size(); i++) { +        // Duplicate instruction and move it the new latch. Update uses that +        // have been moved. +        Instruction *NewI = WorkList[i]->clone(); +        NewI->insertBefore(NewLatch->getFirstNonPHI()); +        assert(!NewI->mayHaveSideEffects() && +               "Moving instructions with side-effects may change behavior of " +               "the loop nest!"); +        for (auto UI = WorkList[i]->use_begin(), UE = WorkList[i]->use_end(); +             UI != UE;) { +          Use &U = *UI++; +          Instruction *UserI = cast<Instruction>(U.getUser()); +          if (!InnerLoop->contains(UserI->getParent()) || +              UserI->getParent() == NewLatch || UserI == InductionPHI) +            U.set(NewI); +        } +        // Add operands of moved instruction to the worklist, except if they are +        // outside the inner loop or are the induction PHI. +        for (Value *Op : WorkList[i]->operands()) { +          Instruction *OpI = dyn_cast<Instruction>(Op); +          if (!OpI || +              this->LI->getLoopFor(OpI->getParent()) != this->InnerLoop || +              OpI == InductionPHI) +            continue; +          WorkList.insert(OpI); +        } +      } +    }; + +    // FIXME: Should we interchange when we have a constant condition? +    Instruction *CondI = dyn_cast<Instruction>( +        cast<BranchInst>(InnerLoop->getLoopLatch()->getTerminator()) +            ->getCondition()); +    if (CondI) +      WorkList.insert(CondI); +    MoveInstructions(); +    WorkList.insert(cast<Instruction>(InnerIndexVar)); +    MoveInstructions(); + +    // Splits the inner loops phi nodes out into a separate basic block. +    BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); +    SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI); +    LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n"); +  } + +  Transformed |= adjustLoopLinks(); +  if (!Transformed) { +    LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n"); +    return false; +  } + +  return true; +} + +/// \brief Move all instructions except the terminator from FromBB right before +/// InsertBefore +static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) { +  auto &ToList = InsertBefore->getParent()->getInstList(); +  auto &FromList = FromBB->getInstList(); + +  ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(), +                FromBB->getTerminator()->getIterator()); +} + +/// Update BI to jump to NewBB instead of OldBB. Records updates to +/// the dominator tree in DTUpdates, if DT should be preserved. +static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB, +                            BasicBlock *NewBB, +                            std::vector<DominatorTree::UpdateType> &DTUpdates) { +  assert(llvm::count_if(successors(BI), +                        [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 && +         "BI must jump to OldBB at most once."); +  for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) { +    if (BI->getSuccessor(i) == OldBB) { +      BI->setSuccessor(i, NewBB); + +      DTUpdates.push_back( +          {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB}); +      DTUpdates.push_back( +          {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB}); +      break; +    } +  } +} + +// Move Lcssa PHIs to the right place. +static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader, +                          BasicBlock *InnerLatch, BasicBlock *OuterHeader, +                          BasicBlock *OuterLatch, BasicBlock *OuterExit) { + +  // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are +  // defined either in the header or latch. Those blocks will become header and +  // latch of the new outer loop, and the only possible users can PHI nodes +  // in the exit block of the loop nest or the outer loop header (reduction +  // PHIs, in that case, the incoming value must be defined in the inner loop +  // header). We can just substitute the user with the incoming value and remove +  // the PHI. +  for (PHINode &P : make_early_inc_range(InnerExit->phis())) { +    assert(P.getNumIncomingValues() == 1 && +           "Only loops with a single exit are supported!"); + +    // Incoming values are guaranteed be instructions currently. +    auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch)); +    // Skip phis with incoming values from the inner loop body, excluding the +    // header and latch. +    if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader) +      continue; + +    assert(all_of(P.users(), +                  [OuterHeader, OuterExit, IncI, InnerHeader](User *U) { +                    return (cast<PHINode>(U)->getParent() == OuterHeader && +                            IncI->getParent() == InnerHeader) || +                           cast<PHINode>(U)->getParent() == OuterExit; +                  }) && +           "Can only replace phis iff the uses are in the loop nest exit or " +           "the incoming value is defined in the inner header (it will " +           "dominate all loop blocks after interchanging)"); +    P.replaceAllUsesWith(IncI); +    P.eraseFromParent(); +  } + +  SmallVector<PHINode *, 8> LcssaInnerExit; +  for (PHINode &P : InnerExit->phis()) +    LcssaInnerExit.push_back(&P); + +  SmallVector<PHINode *, 8> LcssaInnerLatch; +  for (PHINode &P : InnerLatch->phis()) +    LcssaInnerLatch.push_back(&P); + +  // Lcssa PHIs for values used outside the inner loop are in InnerExit. +  // If a PHI node has users outside of InnerExit, it has a use outside the +  // interchanged loop and we have to preserve it. We move these to +  // InnerLatch, which will become the new exit block for the innermost +  // loop after interchanging. +  for (PHINode *P : LcssaInnerExit) +    P->moveBefore(InnerLatch->getFirstNonPHI()); + +  // If the inner loop latch contains LCSSA PHIs, those come from a child loop +  // and we have to move them to the new inner latch. +  for (PHINode *P : LcssaInnerLatch) +    P->moveBefore(InnerExit->getFirstNonPHI()); + +  // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have +  // incoming values from the outer latch or header, we have to add a new PHI +  // in the inner loop latch, which became the exit block of the outer loop, +  // after interchanging. +  if (OuterExit) { +    for (PHINode &P : OuterExit->phis()) { +      if (P.getNumIncomingValues() != 1) +        continue; +      // Skip Phis with incoming values not defined in the outer loop's header +      // and latch. Also skip incoming phis defined in the latch. Those should +      // already have been updated. +      auto I = dyn_cast<Instruction>(P.getIncomingValue(0)); +      if (!I || ((I->getParent() != OuterLatch || isa<PHINode>(I)) && +                 I->getParent() != OuterHeader)) +        continue; + +      PHINode *NewPhi = dyn_cast<PHINode>(P.clone()); +      NewPhi->setIncomingValue(0, P.getIncomingValue(0)); +      NewPhi->setIncomingBlock(0, OuterLatch); +      NewPhi->insertBefore(InnerLatch->getFirstNonPHI()); +      P.setIncomingValue(0, NewPhi); +    } +  } + +  // Now adjust the incoming blocks for the LCSSA PHIs. +  // For PHIs moved from Inner's exit block, we need to replace Inner's latch +  // with the new latch. +  InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch); +} + +bool LoopInterchangeTransform::adjustLoopBranches() { +  LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n"); +  std::vector<DominatorTree::UpdateType> DTUpdates; + +  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); +  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); + +  assert(OuterLoopPreHeader != OuterLoop->getHeader() && +         InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader && +         InnerLoopPreHeader && "Guaranteed by loop-simplify form"); +  // Ensure that both preheaders do not contain PHI nodes and have single +  // predecessors. This allows us to move them easily. We use +  // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing +  // preheaders do not satisfy those conditions. +  if (isa<PHINode>(OuterLoopPreHeader->begin()) || +      !OuterLoopPreHeader->getUniquePredecessor()) +    OuterLoopPreHeader = +        InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true); +  if (InnerLoopPreHeader == OuterLoop->getHeader()) +    InnerLoopPreHeader = +        InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true); + +  // Adjust the loop preheader +  BasicBlock *InnerLoopHeader = InnerLoop->getHeader(); +  BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); +  BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); +  BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch(); +  BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor(); +  BasicBlock *InnerLoopLatchPredecessor = +      InnerLoopLatch->getUniquePredecessor(); +  BasicBlock *InnerLoopLatchSuccessor; +  BasicBlock *OuterLoopLatchSuccessor; + +  BranchInst *OuterLoopLatchBI = +      dyn_cast<BranchInst>(OuterLoopLatch->getTerminator()); +  BranchInst *InnerLoopLatchBI = +      dyn_cast<BranchInst>(InnerLoopLatch->getTerminator()); +  BranchInst *OuterLoopHeaderBI = +      dyn_cast<BranchInst>(OuterLoopHeader->getTerminator()); +  BranchInst *InnerLoopHeaderBI = +      dyn_cast<BranchInst>(InnerLoopHeader->getTerminator()); + +  if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor || +      !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI || +      !InnerLoopHeaderBI) +    return false; + +  BranchInst *InnerLoopLatchPredecessorBI = +      dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator()); +  BranchInst *OuterLoopPredecessorBI = +      dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator()); + +  if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI) +    return false; +  BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor(); +  if (!InnerLoopHeaderSuccessor) +    return false; + +  // Adjust Loop Preheader and headers +  updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader, +                  InnerLoopPreHeader, DTUpdates); +  updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates); +  updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader, +                  InnerLoopHeaderSuccessor, DTUpdates); + +  // Adjust reduction PHI's now that the incoming block has changed. +  InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader, +                                               OuterLoopHeader); + +  updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor, +                  OuterLoopPreHeader, DTUpdates); + +  // -------------Adjust loop latches----------- +  if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader) +    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1); +  else +    InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0); + +  updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch, +                  InnerLoopLatchSuccessor, DTUpdates); + + +  if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader) +    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1); +  else +    OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0); + +  updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor, +                  OuterLoopLatchSuccessor, DTUpdates); +  updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch, +                  DTUpdates); + +  DT->applyUpdates(DTUpdates); +  restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader, +                   OuterLoopPreHeader); + +  moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch, +                OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock()); +  // For PHIs in the exit block of the outer loop, outer's latch has been +  // replaced by Inners'. +  OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); + +  // Now update the reduction PHIs in the inner and outer loop headers. +  SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs; +  for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1)) +    InnerLoopPHIs.push_back(cast<PHINode>(&PHI)); +  for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1)) +    OuterLoopPHIs.push_back(cast<PHINode>(&PHI)); + +  auto &OuterInnerReductions = LIL.getOuterInnerReductions(); +  (void)OuterInnerReductions; + +  // Now move the remaining reduction PHIs from outer to inner loop header and +  // vice versa. The PHI nodes must be part of a reduction across the inner and +  // outer loop and all the remains to do is and updating the incoming blocks. +  for (PHINode *PHI : OuterLoopPHIs) { +    PHI->moveBefore(InnerLoopHeader->getFirstNonPHI()); +    assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() && +           "Expected a reduction PHI node"); +  } +  for (PHINode *PHI : InnerLoopPHIs) { +    PHI->moveBefore(OuterLoopHeader->getFirstNonPHI()); +    assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() && +           "Expected a reduction PHI node"); +  } + +  // Update the incoming blocks for moved PHI nodes. +  OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader); +  OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch); +  InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader); +  InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch); + +  return true; +} + +void LoopInterchangeTransform::adjustLoopPreheaders() { +  // We have interchanged the preheaders so we need to interchange the data in +  // the preheader as well. +  // This is because the content of inner preheader was previously executed +  // inside the outer loop. +  BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader(); +  BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader(); +  BasicBlock *OuterLoopHeader = OuterLoop->getHeader(); +  BranchInst *InnerTermBI = +      cast<BranchInst>(InnerLoopPreHeader->getTerminator()); + +  // These instructions should now be executed inside the loop. +  // Move instruction into a new block after outer header. +  moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator()); +  // These instructions were not executed previously in the loop so move them to +  // the older inner loop preheader. +  moveBBContents(OuterLoopPreHeader, InnerTermBI); +} + +bool LoopInterchangeTransform::adjustLoopLinks() { +  // Adjust all branches in the inner and outer loop. +  bool Changed = adjustLoopBranches(); +  if (Changed) +    adjustLoopPreheaders(); +  return Changed; +} + +char LoopInterchange::ID = 0; + +INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange", +                      "Interchanges loops for cache reuse", false, false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass) +INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) + +INITIALIZE_PASS_END(LoopInterchange, "loop-interchange", +                    "Interchanges loops for cache reuse", false, false) + +Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }  | 
