summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LoopUnswitch.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/LoopUnswitch.cpp1674
1 files changed, 1674 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp b/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
new file mode 100644
index 0000000000000..b410df0c5f68c
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/LoopUnswitch.cpp
@@ -0,0 +1,1674 @@
+//===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass transforms loops that contain branches on loop-invariant conditions
+// to multiple loops. For example, it turns the left into the right code:
+//
+// for (...) if (lic)
+// A for (...)
+// if (lic) A; B; C
+// B else
+// C for (...)
+// A; C
+//
+// This can increase the size of the code exponentially (doubling it every time
+// a loop is unswitched) so we only unswitch if the resultant code will be
+// smaller than a threshold.
+//
+// This pass expects LICM to be run before it to hoist invariant conditions out
+// of the loop, to make the unswitching opportunity obvious.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/CodeMetrics.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/LoopPassManager.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <algorithm>
+#include <cassert>
+#include <map>
+#include <set>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unswitch"
+
+STATISTIC(NumBranches, "Number of branches unswitched");
+STATISTIC(NumSwitches, "Number of switches unswitched");
+STATISTIC(NumGuards, "Number of guards unswitched");
+STATISTIC(NumSelects , "Number of selects unswitched");
+STATISTIC(NumTrivial , "Number of unswitches that are trivial");
+STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
+STATISTIC(TotalInsts, "Total number of instructions analyzed");
+
+// The specific value of 100 here was chosen based only on intuition and a
+// few specific examples.
+static cl::opt<unsigned>
+Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
+ cl::init(100), cl::Hidden);
+
+namespace {
+
+ class LUAnalysisCache {
+ using UnswitchedValsMap =
+ DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
+ using UnswitchedValsIt = UnswitchedValsMap::iterator;
+
+ struct LoopProperties {
+ unsigned CanBeUnswitchedCount;
+ unsigned WasUnswitchedCount;
+ unsigned SizeEstimation;
+ UnswitchedValsMap UnswitchedVals;
+ };
+
+ // Here we use std::map instead of DenseMap, since we need to keep valid
+ // LoopProperties pointer for current loop for better performance.
+ using LoopPropsMap = std::map<const Loop *, LoopProperties>;
+ using LoopPropsMapIt = LoopPropsMap::iterator;
+
+ LoopPropsMap LoopsProperties;
+ UnswitchedValsMap *CurLoopInstructions = nullptr;
+ LoopProperties *CurrentLoopProperties = nullptr;
+
+ // A loop unswitching with an estimated cost above this threshold
+ // is not performed. MaxSize is turned into unswitching quota for
+ // the current loop, and reduced correspondingly, though note that
+ // the quota is returned by releaseMemory() when the loop has been
+ // processed, so that MaxSize will return to its previous
+ // value. So in most cases MaxSize will equal the Threshold flag
+ // when a new loop is processed. An exception to that is that
+ // MaxSize will have a smaller value while processing nested loops
+ // that were introduced due to loop unswitching of an outer loop.
+ //
+ // FIXME: The way that MaxSize works is subtle and depends on the
+ // pass manager processing loops and calling releaseMemory() in a
+ // specific order. It would be good to find a more straightforward
+ // way of doing what MaxSize does.
+ unsigned MaxSize;
+
+ public:
+ LUAnalysisCache() : MaxSize(Threshold) {}
+
+ // Analyze loop. Check its size, calculate is it possible to unswitch
+ // it. Returns true if we can unswitch this loop.
+ bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
+ AssumptionCache *AC);
+
+ // Clean all data related to given loop.
+ void forgetLoop(const Loop *L);
+
+ // Mark case value as unswitched.
+ // Since SI instruction can be partly unswitched, in order to avoid
+ // extra unswitching in cloned loops keep track all unswitched values.
+ void setUnswitched(const SwitchInst *SI, const Value *V);
+
+ // Check was this case value unswitched before or not.
+ bool isUnswitched(const SwitchInst *SI, const Value *V);
+
+ // Returns true if another unswitching could be done within the cost
+ // threshold.
+ bool CostAllowsUnswitching();
+
+ // Clone all loop-unswitch related loop properties.
+ // Redistribute unswitching quotas.
+ // Note, that new loop data is stored inside the VMap.
+ void cloneData(const Loop *NewLoop, const Loop *OldLoop,
+ const ValueToValueMapTy &VMap);
+ };
+
+ class LoopUnswitch : public LoopPass {
+ LoopInfo *LI; // Loop information
+ LPPassManager *LPM;
+ AssumptionCache *AC;
+
+ // Used to check if second loop needs processing after
+ // RewriteLoopBodyWithConditionConstant rewrites first loop.
+ std::vector<Loop*> LoopProcessWorklist;
+
+ LUAnalysisCache BranchesInfo;
+
+ bool OptimizeForSize;
+ bool redoLoop = false;
+
+ Loop *currentLoop = nullptr;
+ DominatorTree *DT = nullptr;
+ MemorySSA *MSSA = nullptr;
+ std::unique_ptr<MemorySSAUpdater> MSSAU;
+ BasicBlock *loopHeader = nullptr;
+ BasicBlock *loopPreheader = nullptr;
+
+ bool SanitizeMemory;
+ SimpleLoopSafetyInfo SafetyInfo;
+
+ // LoopBlocks contains all of the basic blocks of the loop, including the
+ // preheader of the loop, the body of the loop, and the exit blocks of the
+ // loop, in that order.
+ std::vector<BasicBlock*> LoopBlocks;
+ // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
+ std::vector<BasicBlock*> NewBlocks;
+
+ bool hasBranchDivergence;
+
+ public:
+ static char ID; // Pass ID, replacement for typeid
+
+ explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
+ : LoopPass(ID), OptimizeForSize(Os),
+ hasBranchDivergence(hasBranchDivergence) {
+ initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override;
+ bool processCurrentLoop();
+ bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG.
+ ///
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ if (EnableMSSALoopDependency) {
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addPreserved<MemorySSAWrapperPass>();
+ }
+ if (hasBranchDivergence)
+ AU.addRequired<LegacyDivergenceAnalysis>();
+ getLoopAnalysisUsage(AU);
+ }
+
+ private:
+ void releaseMemory() override {
+ BranchesInfo.forgetLoop(currentLoop);
+ }
+
+ void initLoopData() {
+ loopHeader = currentLoop->getHeader();
+ loopPreheader = currentLoop->getLoopPreheader();
+ }
+
+ /// Split all of the edges from inside the loop to their exit blocks.
+ /// Update the appropriate Phi nodes as we do so.
+ void SplitExitEdges(Loop *L,
+ const SmallVectorImpl<BasicBlock *> &ExitBlocks);
+
+ bool TryTrivialLoopUnswitch(bool &Changed);
+
+ bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
+ Instruction *TI = nullptr);
+ void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
+ BasicBlock *ExitBlock, Instruction *TI);
+ void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
+ Instruction *TI);
+
+ void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
+ Constant *Val, bool isEqual);
+
+ void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
+ BasicBlock *TrueDest,
+ BasicBlock *FalseDest,
+ BranchInst *OldBranch, Instruction *TI);
+
+ void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
+
+ /// Given that the Invariant is not equal to Val. Simplify instructions
+ /// in the loop.
+ Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
+ Constant *Val);
+ };
+
+} // end anonymous namespace
+
+// Analyze loop. Check its size, calculate is it possible to unswitch
+// it. Returns true if we can unswitch this loop.
+bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
+ AssumptionCache *AC) {
+ LoopPropsMapIt PropsIt;
+ bool Inserted;
+ std::tie(PropsIt, Inserted) =
+ LoopsProperties.insert(std::make_pair(L, LoopProperties()));
+
+ LoopProperties &Props = PropsIt->second;
+
+ if (Inserted) {
+ // New loop.
+
+ // Limit the number of instructions to avoid causing significant code
+ // expansion, and the number of basic blocks, to avoid loops with
+ // large numbers of branches which cause loop unswitching to go crazy.
+ // This is a very ad-hoc heuristic.
+
+ SmallPtrSet<const Value *, 32> EphValues;
+ CodeMetrics::collectEphemeralValues(L, AC, EphValues);
+
+ // FIXME: This is overly conservative because it does not take into
+ // consideration code simplification opportunities and code that can
+ // be shared by the resultant unswitched loops.
+ CodeMetrics Metrics;
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
+ ++I)
+ Metrics.analyzeBasicBlock(*I, TTI, EphValues);
+
+ Props.SizeEstimation = Metrics.NumInsts;
+ Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
+ Props.WasUnswitchedCount = 0;
+ MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
+
+ if (Metrics.notDuplicatable) {
+ LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
+ << ", contents cannot be "
+ << "duplicated!\n");
+ return false;
+ }
+ }
+
+ // Be careful. This links are good only before new loop addition.
+ CurrentLoopProperties = &Props;
+ CurLoopInstructions = &Props.UnswitchedVals;
+
+ return true;
+}
+
+// Clean all data related to given loop.
+void LUAnalysisCache::forgetLoop(const Loop *L) {
+ LoopPropsMapIt LIt = LoopsProperties.find(L);
+
+ if (LIt != LoopsProperties.end()) {
+ LoopProperties &Props = LIt->second;
+ MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
+ Props.SizeEstimation;
+ LoopsProperties.erase(LIt);
+ }
+
+ CurrentLoopProperties = nullptr;
+ CurLoopInstructions = nullptr;
+}
+
+// Mark case value as unswitched.
+// Since SI instruction can be partly unswitched, in order to avoid
+// extra unswitching in cloned loops keep track all unswitched values.
+void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
+ (*CurLoopInstructions)[SI].insert(V);
+}
+
+// Check was this case value unswitched before or not.
+bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
+ return (*CurLoopInstructions)[SI].count(V);
+}
+
+bool LUAnalysisCache::CostAllowsUnswitching() {
+ return CurrentLoopProperties->CanBeUnswitchedCount > 0;
+}
+
+// Clone all loop-unswitch related loop properties.
+// Redistribute unswitching quotas.
+// Note, that new loop data is stored inside the VMap.
+void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
+ const ValueToValueMapTy &VMap) {
+ LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
+ LoopProperties &OldLoopProps = *CurrentLoopProperties;
+ UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
+
+ // Reallocate "can-be-unswitched quota"
+
+ --OldLoopProps.CanBeUnswitchedCount;
+ ++OldLoopProps.WasUnswitchedCount;
+ NewLoopProps.WasUnswitchedCount = 0;
+ unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
+ NewLoopProps.CanBeUnswitchedCount = Quota / 2;
+ OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
+
+ NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
+
+ // Clone unswitched values info:
+ // for new loop switches we clone info about values that was
+ // already unswitched and has redundant successors.
+ for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
+ const SwitchInst *OldInst = I->first;
+ Value *NewI = VMap.lookup(OldInst);
+ const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
+ assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
+
+ NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
+ }
+}
+
+char LoopUnswitch::ID = 0;
+
+INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
+ false, false)
+
+Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
+ return new LoopUnswitch(Os, hasBranchDivergence);
+}
+
+/// Operator chain lattice.
+enum OperatorChain {
+ OC_OpChainNone, ///< There is no operator.
+ OC_OpChainOr, ///< There are only ORs.
+ OC_OpChainAnd, ///< There are only ANDs.
+ OC_OpChainMixed ///< There are ANDs and ORs.
+};
+
+/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
+/// an invariant piece, return the invariant. Otherwise, return null.
+//
+/// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
+/// mixed operator chain, as we can not reliably find a value which will simplify
+/// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
+/// to simplify the chain.
+///
+/// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
+/// simplify the condition itself to a loop variant condition, but at the
+/// cost of creating an entirely new loop.
+static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
+ OperatorChain &ParentChain,
+ DenseMap<Value *, Value *> &Cache,
+ MemorySSAUpdater *MSSAU) {
+ auto CacheIt = Cache.find(Cond);
+ if (CacheIt != Cache.end())
+ return CacheIt->second;
+
+ // We started analyze new instruction, increment scanned instructions counter.
+ ++TotalInsts;
+
+ // We can never unswitch on vector conditions.
+ if (Cond->getType()->isVectorTy())
+ return nullptr;
+
+ // Constants should be folded, not unswitched on!
+ if (isa<Constant>(Cond)) return nullptr;
+
+ // TODO: Handle: br (VARIANT|INVARIANT).
+
+ // Hoist simple values out.
+ if (L->makeLoopInvariant(Cond, Changed, nullptr, MSSAU)) {
+ Cache[Cond] = Cond;
+ return Cond;
+ }
+
+ // Walk up the operator chain to find partial invariant conditions.
+ if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
+ if (BO->getOpcode() == Instruction::And ||
+ BO->getOpcode() == Instruction::Or) {
+ // Given the previous operator, compute the current operator chain status.
+ OperatorChain NewChain;
+ switch (ParentChain) {
+ case OC_OpChainNone:
+ NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
+ OC_OpChainOr;
+ break;
+ case OC_OpChainOr:
+ NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
+ OC_OpChainMixed;
+ break;
+ case OC_OpChainAnd:
+ NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
+ OC_OpChainMixed;
+ break;
+ case OC_OpChainMixed:
+ NewChain = OC_OpChainMixed;
+ break;
+ }
+
+ // If we reach a Mixed state, we do not want to keep walking up as we can not
+ // reliably find a value that will simplify the chain. With this check, we
+ // will return null on the first sight of mixed chain and the caller will
+ // either backtrack to find partial LIV in other operand or return null.
+ if (NewChain != OC_OpChainMixed) {
+ // Update the current operator chain type before we search up the chain.
+ ParentChain = NewChain;
+ // If either the left or right side is invariant, we can unswitch on this,
+ // which will cause the branch to go away in one loop and the condition to
+ // simplify in the other one.
+ if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
+ ParentChain, Cache, MSSAU)) {
+ Cache[Cond] = LHS;
+ return LHS;
+ }
+ // We did not manage to find a partial LIV in operand(0). Backtrack and try
+ // operand(1).
+ ParentChain = NewChain;
+ if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
+ ParentChain, Cache, MSSAU)) {
+ Cache[Cond] = RHS;
+ return RHS;
+ }
+ }
+ }
+
+ Cache[Cond] = nullptr;
+ return nullptr;
+}
+
+/// Cond is a condition that occurs in L. If it is invariant in the loop, or has
+/// an invariant piece, return the invariant along with the operator chain type.
+/// Otherwise, return null.
+static std::pair<Value *, OperatorChain>
+FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
+ MemorySSAUpdater *MSSAU) {
+ DenseMap<Value *, Value *> Cache;
+ OperatorChain OpChain = OC_OpChainNone;
+ Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache, MSSAU);
+
+ // In case we do find a LIV, it can not be obtained by walking up a mixed
+ // operator chain.
+ assert((!FCond || OpChain != OC_OpChainMixed) &&
+ "Do not expect a partial LIV with mixed operator chain");
+ return {FCond, OpChain};
+}
+
+bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
+ if (skipLoop(L))
+ return false;
+
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
+ *L->getHeader()->getParent());
+ LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ LPM = &LPM_Ref;
+ DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ if (EnableMSSALoopDependency) {
+ MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
+ MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
+ assert(DT && "Cannot update MemorySSA without a valid DomTree.");
+ }
+ currentLoop = L;
+ Function *F = currentLoop->getHeader()->getParent();
+
+ SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
+ if (SanitizeMemory)
+ SafetyInfo.computeLoopSafetyInfo(L);
+
+ if (MSSA && VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+
+ bool Changed = false;
+ do {
+ assert(currentLoop->isLCSSAForm(*DT));
+ if (MSSA && VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+ redoLoop = false;
+ Changed |= processCurrentLoop();
+ } while(redoLoop);
+
+ if (MSSA && VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+
+ return Changed;
+}
+
+// Return true if the BasicBlock BB is unreachable from the loop header.
+// Return false, otherwise.
+bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
+ auto *Node = DT->getNode(BB)->getIDom();
+ BasicBlock *DomBB = Node->getBlock();
+ while (currentLoop->contains(DomBB)) {
+ BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
+
+ Node = DT->getNode(DomBB)->getIDom();
+ DomBB = Node->getBlock();
+
+ if (!BInst || !BInst->isConditional())
+ continue;
+
+ Value *Cond = BInst->getCondition();
+ if (!isa<ConstantInt>(Cond))
+ continue;
+
+ BasicBlock *UnreachableSucc =
+ Cond == ConstantInt::getTrue(Cond->getContext())
+ ? BInst->getSuccessor(1)
+ : BInst->getSuccessor(0);
+
+ if (DT->dominates(UnreachableSucc, BB))
+ return true;
+ }
+ return false;
+}
+
+/// FIXME: Remove this workaround when freeze related patches are done.
+/// LoopUnswitch and Equality propagation in GVN have discrepancy about
+/// whether branch on undef/poison has undefine behavior. Here it is to
+/// rule out some common cases that we found such discrepancy already
+/// causing problems. Detail could be found in PR31652. Note if the
+/// func returns true, it is unsafe. But if it is false, it doesn't mean
+/// it is necessarily safe.
+static bool EqualityPropUnSafe(Value &LoopCond) {
+ ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
+ if (!CI || !CI->isEquality())
+ return false;
+
+ Value *LHS = CI->getOperand(0);
+ Value *RHS = CI->getOperand(1);
+ if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
+ return true;
+
+ auto hasUndefInPHI = [](PHINode &PN) {
+ for (Value *Opd : PN.incoming_values()) {
+ if (isa<UndefValue>(Opd))
+ return true;
+ }
+ return false;
+ };
+ PHINode *LPHI = dyn_cast<PHINode>(LHS);
+ PHINode *RPHI = dyn_cast<PHINode>(RHS);
+ if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
+ return true;
+
+ auto hasUndefInSelect = [](SelectInst &SI) {
+ if (isa<UndefValue>(SI.getTrueValue()) ||
+ isa<UndefValue>(SI.getFalseValue()))
+ return true;
+ return false;
+ };
+ SelectInst *LSI = dyn_cast<SelectInst>(LHS);
+ SelectInst *RSI = dyn_cast<SelectInst>(RHS);
+ if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
+ return true;
+ return false;
+}
+
+/// Do actual work and unswitch loop if possible and profitable.
+bool LoopUnswitch::processCurrentLoop() {
+ bool Changed = false;
+
+ initLoopData();
+
+ // If LoopSimplify was unable to form a preheader, don't do any unswitching.
+ if (!loopPreheader)
+ return false;
+
+ // Loops with indirectbr cannot be cloned.
+ if (!currentLoop->isSafeToClone())
+ return false;
+
+ // Without dedicated exits, splitting the exit edge may fail.
+ if (!currentLoop->hasDedicatedExits())
+ return false;
+
+ LLVMContext &Context = loopHeader->getContext();
+
+ // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
+ if (!BranchesInfo.countLoop(
+ currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
+ *currentLoop->getHeader()->getParent()),
+ AC))
+ return false;
+
+ // Try trivial unswitch first before loop over other basic blocks in the loop.
+ if (TryTrivialLoopUnswitch(Changed)) {
+ return true;
+ }
+
+ // Do not do non-trivial unswitch while optimizing for size.
+ // FIXME: Use Function::hasOptSize().
+ if (OptimizeForSize ||
+ loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
+ return false;
+
+ // Run through the instructions in the loop, keeping track of three things:
+ //
+ // - That we do not unswitch loops containing convergent operations, as we
+ // might be making them control dependent on the unswitch value when they
+ // were not before.
+ // FIXME: This could be refined to only bail if the convergent operation is
+ // not already control-dependent on the unswitch value.
+ //
+ // - That basic blocks in the loop contain invokes whose predecessor edges we
+ // cannot split.
+ //
+ // - The set of guard intrinsics encountered (these are non terminator
+ // instructions that are also profitable to be unswitched).
+
+ SmallVector<IntrinsicInst *, 4> Guards;
+
+ for (const auto BB : currentLoop->blocks()) {
+ for (auto &I : *BB) {
+ auto CS = CallSite(&I);
+ if (!CS) continue;
+ if (CS.hasFnAttr(Attribute::Convergent))
+ return false;
+ if (auto *II = dyn_cast<InvokeInst>(&I))
+ if (!II->getUnwindDest()->canSplitPredecessors())
+ return false;
+ if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ if (II->getIntrinsicID() == Intrinsic::experimental_guard)
+ Guards.push_back(II);
+ }
+ }
+
+ for (IntrinsicInst *Guard : Guards) {
+ Value *LoopCond = FindLIVLoopCondition(Guard->getOperand(0), currentLoop,
+ Changed, MSSAU.get())
+ .first;
+ if (LoopCond &&
+ UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
+ // NB! Unswitching (if successful) could have erased some of the
+ // instructions in Guards leaving dangling pointers there. This is fine
+ // because we're returning now, and won't look at Guards again.
+ ++NumGuards;
+ return true;
+ }
+ }
+
+ // Loop over all of the basic blocks in the loop. If we find an interior
+ // block that is branching on a loop-invariant condition, we can unswitch this
+ // loop.
+ for (Loop::block_iterator I = currentLoop->block_begin(),
+ E = currentLoop->block_end(); I != E; ++I) {
+ Instruction *TI = (*I)->getTerminator();
+
+ // Unswitching on a potentially uninitialized predicate is not
+ // MSan-friendly. Limit this to the cases when the original predicate is
+ // guaranteed to execute, to avoid creating a use-of-uninitialized-value
+ // in the code that did not have one.
+ // This is a workaround for the discrepancy between LLVM IR and MSan
+ // semantics. See PR28054 for more details.
+ if (SanitizeMemory &&
+ !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop))
+ continue;
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
+ // Some branches may be rendered unreachable because of previous
+ // unswitching.
+ // Unswitch only those branches that are reachable.
+ if (isUnreachableDueToPreviousUnswitching(*I))
+ continue;
+
+ // If this isn't branching on an invariant condition, we can't unswitch
+ // it.
+ if (BI->isConditional()) {
+ // See if this, or some part of it, is loop invariant. If so, we can
+ // unswitch on it if we desire.
+ Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), currentLoop,
+ Changed, MSSAU.get())
+ .first;
+ if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
+ UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
+ ++NumBranches;
+ return true;
+ }
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
+ Value *SC = SI->getCondition();
+ Value *LoopCond;
+ OperatorChain OpChain;
+ std::tie(LoopCond, OpChain) =
+ FindLIVLoopCondition(SC, currentLoop, Changed, MSSAU.get());
+
+ unsigned NumCases = SI->getNumCases();
+ if (LoopCond && NumCases) {
+ // Find a value to unswitch on:
+ // FIXME: this should chose the most expensive case!
+ // FIXME: scan for a case with a non-critical edge?
+ Constant *UnswitchVal = nullptr;
+ // Find a case value such that at least one case value is unswitched
+ // out.
+ if (OpChain == OC_OpChainAnd) {
+ // If the chain only has ANDs and the switch has a case value of 0.
+ // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
+ auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
+ if (BranchesInfo.isUnswitched(SI, AllZero))
+ continue;
+ // We are unswitching 0 out.
+ UnswitchVal = AllZero;
+ } else if (OpChain == OC_OpChainOr) {
+ // If the chain only has ORs and the switch has a case value of ~0.
+ // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
+ auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
+ if (BranchesInfo.isUnswitched(SI, AllOne))
+ continue;
+ // We are unswitching ~0 out.
+ UnswitchVal = AllOne;
+ } else {
+ assert(OpChain == OC_OpChainNone &&
+ "Expect to unswitch on trivial chain");
+ // Do not process same value again and again.
+ // At this point we have some cases already unswitched and
+ // some not yet unswitched. Let's find the first not yet unswitched one.
+ for (auto Case : SI->cases()) {
+ Constant *UnswitchValCandidate = Case.getCaseValue();
+ if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
+ UnswitchVal = UnswitchValCandidate;
+ break;
+ }
+ }
+ }
+
+ if (!UnswitchVal)
+ continue;
+
+ if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
+ ++NumSwitches;
+ // In case of a full LIV, UnswitchVal is the value we unswitched out.
+ // In case of a partial LIV, we only unswitch when its an AND-chain
+ // or OR-chain. In both cases switch input value simplifies to
+ // UnswitchVal.
+ BranchesInfo.setUnswitched(SI, UnswitchVal);
+ return true;
+ }
+ }
+ }
+
+ // Scan the instructions to check for unswitchable values.
+ for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
+ BBI != E; ++BBI)
+ if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
+ Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop,
+ Changed, MSSAU.get())
+ .first;
+ if (LoopCond && UnswitchIfProfitable(LoopCond,
+ ConstantInt::getTrue(Context))) {
+ ++NumSelects;
+ return true;
+ }
+ }
+ }
+ return Changed;
+}
+
+/// Check to see if all paths from BB exit the loop with no side effects
+/// (including infinite loops).
+///
+/// If true, we return true and set ExitBB to the block we
+/// exit through.
+///
+static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
+ BasicBlock *&ExitBB,
+ std::set<BasicBlock*> &Visited) {
+ if (!Visited.insert(BB).second) {
+ // Already visited. Without more analysis, this could indicate an infinite
+ // loop.
+ return false;
+ }
+ if (!L->contains(BB)) {
+ // Otherwise, this is a loop exit, this is fine so long as this is the
+ // first exit.
+ if (ExitBB) return false;
+ ExitBB = BB;
+ return true;
+ }
+
+ // Otherwise, this is an unvisited intra-loop node. Check all successors.
+ for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
+ // Check to see if the successor is a trivial loop exit.
+ if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
+ return false;
+ }
+
+ // Okay, everything after this looks good, check to make sure that this block
+ // doesn't include any side effects.
+ for (Instruction &I : *BB)
+ if (I.mayHaveSideEffects())
+ return false;
+
+ return true;
+}
+
+/// Return true if the specified block unconditionally leads to an exit from
+/// the specified loop, and has no side-effects in the process. If so, return
+/// the block that is exited to, otherwise return null.
+static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
+ std::set<BasicBlock*> Visited;
+ Visited.insert(L->getHeader()); // Branches to header make infinite loops.
+ BasicBlock *ExitBB = nullptr;
+ if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
+ return ExitBB;
+ return nullptr;
+}
+
+/// We have found that we can unswitch currentLoop when LoopCond == Val to
+/// simplify the loop. If we decide that this is profitable,
+/// unswitch the loop, reprocess the pieces, then return true.
+bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
+ Instruction *TI) {
+ // Check to see if it would be profitable to unswitch current loop.
+ if (!BranchesInfo.CostAllowsUnswitching()) {
+ LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
+ << currentLoop->getHeader()->getName()
+ << " at non-trivial condition '" << *Val
+ << "' == " << *LoopCond << "\n"
+ << ". Cost too high.\n");
+ return false;
+ }
+ if (hasBranchDivergence &&
+ getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
+ LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
+ << currentLoop->getHeader()->getName()
+ << " at non-trivial condition '" << *Val
+ << "' == " << *LoopCond << "\n"
+ << ". Condition is divergent.\n");
+ return false;
+ }
+
+ UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
+ return true;
+}
+
+/// Recursively clone the specified loop and all of its children,
+/// mapping the blocks with the specified map.
+static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
+ LoopInfo *LI, LPPassManager *LPM) {
+ Loop &New = *LI->AllocateLoop();
+ if (PL)
+ PL->addChildLoop(&New);
+ else
+ LI->addTopLevelLoop(&New);
+ LPM->addLoop(New);
+
+ // Add all of the blocks in L to the new loop.
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I)
+ if (LI->getLoopFor(*I) == L)
+ New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
+
+ // Add all of the subloops to the new loop.
+ for (Loop *I : *L)
+ CloneLoop(I, &New, VM, LI, LPM);
+
+ return &New;
+}
+
+/// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
+/// otherwise branch to FalseDest. Insert the code immediately before OldBranch
+/// and remove (but not erase!) it from the function.
+void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
+ BasicBlock *TrueDest,
+ BasicBlock *FalseDest,
+ BranchInst *OldBranch,
+ Instruction *TI) {
+ assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
+ assert(TrueDest != FalseDest && "Branch targets should be different");
+ // Insert a conditional branch on LIC to the two preheaders. The original
+ // code is the true version and the new code is the false version.
+ Value *BranchVal = LIC;
+ bool Swapped = false;
+ if (!isa<ConstantInt>(Val) ||
+ Val->getType() != Type::getInt1Ty(LIC->getContext()))
+ BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
+ else if (Val != ConstantInt::getTrue(Val->getContext())) {
+ // We want to enter the new loop when the condition is true.
+ std::swap(TrueDest, FalseDest);
+ Swapped = true;
+ }
+
+ // Old branch will be removed, so save its parent and successor to update the
+ // DomTree.
+ auto *OldBranchSucc = OldBranch->getSuccessor(0);
+ auto *OldBranchParent = OldBranch->getParent();
+
+ // Insert the new branch.
+ BranchInst *BI =
+ IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
+ if (Swapped)
+ BI->swapProfMetadata();
+
+ // Remove the old branch so there is only one branch at the end. This is
+ // needed to perform DomTree's internal DFS walk on the function's CFG.
+ OldBranch->removeFromParent();
+
+ // Inform the DT about the new branch.
+ if (DT) {
+ // First, add both successors.
+ SmallVector<DominatorTree::UpdateType, 3> Updates;
+ if (TrueDest != OldBranchSucc)
+ Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
+ if (FalseDest != OldBranchSucc)
+ Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
+ // If both of the new successors are different from the old one, inform the
+ // DT that the edge was deleted.
+ if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
+ Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
+ }
+ DT->applyUpdates(Updates);
+
+ if (MSSAU)
+ MSSAU->applyUpdates(Updates, *DT);
+ }
+
+ // If either edge is critical, split it. This helps preserve LoopSimplify
+ // form for enclosing loops.
+ auto Options =
+ CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
+ SplitCriticalEdge(BI, 0, Options);
+ SplitCriticalEdge(BI, 1, Options);
+}
+
+/// Given a loop that has a trivial unswitchable condition in it (a cond branch
+/// from its header block to its latch block, where the path through the loop
+/// that doesn't execute its body has no side-effects), unswitch it. This
+/// doesn't involve any code duplication, just moving the conditional branch
+/// outside of the loop and updating loop info.
+void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
+ BasicBlock *ExitBlock,
+ Instruction *TI) {
+ LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
+ << loopHeader->getName() << " [" << L->getBlocks().size()
+ << " blocks] in Function "
+ << L->getHeader()->getParent()->getName()
+ << " on cond: " << *Val << " == " << *Cond << "\n");
+ // We are going to make essential changes to CFG. This may invalidate cached
+ // information for L or one of its parent loops in SCEV.
+ if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
+ SEWP->getSE().forgetTopmostLoop(L);
+
+ // First step, split the preheader, so that we know that there is a safe place
+ // to insert the conditional branch. We will change loopPreheader to have a
+ // conditional branch on Cond.
+ BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
+
+ // Now that we have a place to insert the conditional branch, create a place
+ // to branch to: this is the exit block out of the loop that we should
+ // short-circuit to.
+
+ // Split this block now, so that the loop maintains its exit block, and so
+ // that the jump from the preheader can execute the contents of the exit block
+ // without actually branching to it (the exit block should be dominated by the
+ // loop header, not the preheader).
+ assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
+ BasicBlock *NewExit =
+ SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());
+
+ // Okay, now we have a position to branch from and a position to branch to,
+ // insert the new conditional branch.
+ auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
+ assert(OldBranch && "Failed to split the preheader");
+ EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
+ LPM->deleteSimpleAnalysisValue(OldBranch, L);
+
+ // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
+ // Delete it, as it is no longer needed.
+ delete OldBranch;
+
+ // We need to reprocess this loop, it could be unswitched again.
+ redoLoop = true;
+
+ // Now that we know that the loop is never entered when this condition is a
+ // particular value, rewrite the loop with this info. We know that this will
+ // at least eliminate the old branch.
+ RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
+
+ ++NumTrivial;
+}
+
+/// Check if the first non-constant condition starting from the loop header is
+/// a trivial unswitch condition: that is, a condition controls whether or not
+/// the loop does anything at all. If it is a trivial condition, unswitching
+/// produces no code duplications (equivalently, it produces a simpler loop and
+/// a new empty loop, which gets deleted). Therefore always unswitch trivial
+/// condition.
+bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
+ BasicBlock *CurrentBB = currentLoop->getHeader();
+ Instruction *CurrentTerm = CurrentBB->getTerminator();
+ LLVMContext &Context = CurrentBB->getContext();
+
+ // If loop header has only one reachable successor (currently via an
+ // unconditional branch or constant foldable conditional branch, but
+ // should also consider adding constant foldable switch instruction in
+ // future), we should keep looking for trivial condition candidates in
+ // the successor as well. An alternative is to constant fold conditions
+ // and merge successors into loop header (then we only need to check header's
+ // terminator). The reason for not doing this in LoopUnswitch pass is that
+ // it could potentially break LoopPassManager's invariants. Folding dead
+ // branches could either eliminate the current loop or make other loops
+ // unreachable. LCSSA form might also not be preserved after deleting
+ // branches. The following code keeps traversing loop header's successors
+ // until it finds the trivial condition candidate (condition that is not a
+ // constant). Since unswitching generates branches with constant conditions,
+ // this scenario could be very common in practice.
+ SmallPtrSet<BasicBlock*, 8> Visited;
+
+ while (true) {
+ // If we exit loop or reach a previous visited block, then
+ // we can not reach any trivial condition candidates (unfoldable
+ // branch instructions or switch instructions) and no unswitch
+ // can happen. Exit and return false.
+ if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
+ return false;
+
+ // Check if this loop will execute any side-effecting instructions (e.g.
+ // stores, calls, volatile loads) in the part of the loop that the code
+ // *would* execute. Check the header first.
+ for (Instruction &I : *CurrentBB)
+ if (I.mayHaveSideEffects())
+ return false;
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
+ if (BI->isUnconditional()) {
+ CurrentBB = BI->getSuccessor(0);
+ } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
+ CurrentBB = BI->getSuccessor(0);
+ } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
+ CurrentBB = BI->getSuccessor(1);
+ } else {
+ // Found a trivial condition candidate: non-foldable conditional branch.
+ break;
+ }
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
+ // At this point, any constant-foldable instructions should have probably
+ // been folded.
+ ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
+ if (!Cond)
+ break;
+ // Find the target block we are definitely going to.
+ CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
+ } else {
+ // We do not understand these terminator instructions.
+ break;
+ }
+
+ CurrentTerm = CurrentBB->getTerminator();
+ }
+
+ // CondVal is the condition that controls the trivial condition.
+ // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
+ Constant *CondVal = nullptr;
+ BasicBlock *LoopExitBB = nullptr;
+
+ if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
+ // If this isn't branching on an invariant condition, we can't unswitch it.
+ if (!BI->isConditional())
+ return false;
+
+ Value *LoopCond = FindLIVLoopCondition(BI->getCondition(), currentLoop,
+ Changed, MSSAU.get())
+ .first;
+
+ // Unswitch only if the trivial condition itself is an LIV (not
+ // partial LIV which could occur in and/or)
+ if (!LoopCond || LoopCond != BI->getCondition())
+ return false;
+
+ // Check to see if a successor of the branch is guaranteed to
+ // exit through a unique exit block without having any
+ // side-effects. If so, determine the value of Cond that causes
+ // it to do this.
+ if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
+ BI->getSuccessor(0)))) {
+ CondVal = ConstantInt::getTrue(Context);
+ } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
+ BI->getSuccessor(1)))) {
+ CondVal = ConstantInt::getFalse(Context);
+ }
+
+ // If we didn't find a single unique LoopExit block, or if the loop exit
+ // block contains phi nodes, this isn't trivial.
+ if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
+ return false; // Can't handle this.
+
+ if (EqualityPropUnSafe(*LoopCond))
+ return false;
+
+ UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
+ CurrentTerm);
+ ++NumBranches;
+ return true;
+ } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
+ // If this isn't switching on an invariant condition, we can't unswitch it.
+ Value *LoopCond = FindLIVLoopCondition(SI->getCondition(), currentLoop,
+ Changed, MSSAU.get())
+ .first;
+
+ // Unswitch only if the trivial condition itself is an LIV (not
+ // partial LIV which could occur in and/or)
+ if (!LoopCond || LoopCond != SI->getCondition())
+ return false;
+
+ // Check to see if a successor of the switch is guaranteed to go to the
+ // latch block or exit through a one exit block without having any
+ // side-effects. If so, determine the value of Cond that causes it to do
+ // this.
+ // Note that we can't trivially unswitch on the default case or
+ // on already unswitched cases.
+ for (auto Case : SI->cases()) {
+ BasicBlock *LoopExitCandidate;
+ if ((LoopExitCandidate =
+ isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
+ // Okay, we found a trivial case, remember the value that is trivial.
+ ConstantInt *CaseVal = Case.getCaseValue();
+
+ // Check that it was not unswitched before, since already unswitched
+ // trivial vals are looks trivial too.
+ if (BranchesInfo.isUnswitched(SI, CaseVal))
+ continue;
+ LoopExitBB = LoopExitCandidate;
+ CondVal = CaseVal;
+ break;
+ }
+ }
+
+ // If we didn't find a single unique LoopExit block, or if the loop exit
+ // block contains phi nodes, this isn't trivial.
+ if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
+ return false; // Can't handle this.
+
+ UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
+ nullptr);
+
+ // We are only unswitching full LIV.
+ BranchesInfo.setUnswitched(SI, CondVal);
+ ++NumSwitches;
+ return true;
+ }
+ return false;
+}
+
+/// Split all of the edges from inside the loop to their exit blocks.
+/// Update the appropriate Phi nodes as we do so.
+void LoopUnswitch::SplitExitEdges(Loop *L,
+ const SmallVectorImpl<BasicBlock *> &ExitBlocks){
+
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBlock = ExitBlocks[i];
+ SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
+ pred_end(ExitBlock));
+
+ // Although SplitBlockPredecessors doesn't preserve loop-simplify in
+ // general, if we call it on all predecessors of all exits then it does.
+ SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
+ /*PreserveLCSSA*/ true);
+ }
+}
+
+/// We determined that the loop is profitable to unswitch when LIC equal Val.
+/// Split it into loop versions and test the condition outside of either loop.
+/// Return the loops created as Out1/Out2.
+void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
+ Loop *L, Instruction *TI) {
+ Function *F = loopHeader->getParent();
+ LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
+ << loopHeader->getName() << " [" << L->getBlocks().size()
+ << " blocks] in Function " << F->getName() << " when '"
+ << *Val << "' == " << *LIC << "\n");
+
+ // We are going to make essential changes to CFG. This may invalidate cached
+ // information for L or one of its parent loops in SCEV.
+ if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
+ SEWP->getSE().forgetTopmostLoop(L);
+
+ LoopBlocks.clear();
+ NewBlocks.clear();
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+
+ // First step, split the preheader and exit blocks, and add these blocks to
+ // the LoopBlocks list.
+ BasicBlock *NewPreheader =
+ SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
+ LoopBlocks.push_back(NewPreheader);
+
+ // We want the loop to come after the preheader, but before the exit blocks.
+ LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
+
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ // Split all of the edges from inside the loop to their exit blocks. Update
+ // the appropriate Phi nodes as we do so.
+ SplitExitEdges(L, ExitBlocks);
+
+ // The exit blocks may have been changed due to edge splitting, recompute.
+ ExitBlocks.clear();
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ // Add exit blocks to the loop blocks.
+ LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
+
+ // Next step, clone all of the basic blocks that make up the loop (including
+ // the loop preheader and exit blocks), keeping track of the mapping between
+ // the instructions and blocks.
+ NewBlocks.reserve(LoopBlocks.size());
+ ValueToValueMapTy VMap;
+ for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
+ BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
+
+ NewBlocks.push_back(NewBB);
+ VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
+ LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
+ }
+
+ // Splice the newly inserted blocks into the function right before the
+ // original preheader.
+ F->getBasicBlockList().splice(NewPreheader->getIterator(),
+ F->getBasicBlockList(),
+ NewBlocks[0]->getIterator(), F->end());
+
+ // Now we create the new Loop object for the versioned loop.
+ Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
+
+ // Recalculate unswitching quota, inherit simplified switches info for NewBB,
+ // Probably clone more loop-unswitch related loop properties.
+ BranchesInfo.cloneData(NewLoop, L, VMap);
+
+ Loop *ParentLoop = L->getParentLoop();
+ if (ParentLoop) {
+ // Make sure to add the cloned preheader and exit blocks to the parent loop
+ // as well.
+ ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
+ }
+
+ for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
+ BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
+ // The new exit block should be in the same loop as the old one.
+ if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
+ ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
+
+ assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
+ "Exit block should have been split to have one successor!");
+ BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
+
+ // If the successor of the exit block had PHI nodes, add an entry for
+ // NewExit.
+ for (PHINode &PN : ExitSucc->phis()) {
+ Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
+ ValueToValueMapTy::iterator It = VMap.find(V);
+ if (It != VMap.end()) V = It->second;
+ PN.addIncoming(V, NewExit);
+ }
+
+ if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
+ PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
+ &*ExitSucc->getFirstInsertionPt());
+
+ for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+ LandingPadInst *LPI = BB->getLandingPadInst();
+ LPI->replaceAllUsesWith(PN);
+ PN->addIncoming(LPI, BB);
+ }
+ }
+ }
+
+ // Rewrite the code to refer to itself.
+ for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
+ for (Instruction &I : *NewBlocks[i]) {
+ RemapInstruction(&I, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
+ if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ if (II->getIntrinsicID() == Intrinsic::assume)
+ AC->registerAssumption(II);
+ }
+ }
+
+ // Rewrite the original preheader to select between versions of the loop.
+ BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
+ assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
+ "Preheader splitting did not work correctly!");
+
+ if (MSSAU) {
+ // Update MemorySSA after cloning, and before splitting to unreachables,
+ // since that invalidates the 1:1 mapping of clones in VMap.
+ LoopBlocksRPO LBRPO(L);
+ LBRPO.perform(LI);
+ MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
+ }
+
+ // Emit the new branch that selects between the two versions of this loop.
+ EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
+ TI);
+ LPM->deleteSimpleAnalysisValue(OldBR, L);
+ if (MSSAU) {
+ // Update MemoryPhis in Exit blocks.
+ MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
+ if (VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+ }
+
+ // The OldBr was replaced by a new one and removed (but not erased) by
+ // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
+ delete OldBR;
+
+ LoopProcessWorklist.push_back(NewLoop);
+ redoLoop = true;
+
+ // Keep a WeakTrackingVH holding onto LIC. If the first call to
+ // RewriteLoopBody
+ // deletes the instruction (for example by simplifying a PHI that feeds into
+ // the condition that we're unswitching on), we don't rewrite the second
+ // iteration.
+ WeakTrackingVH LICHandle(LIC);
+
+ // Now we rewrite the original code to know that the condition is true and the
+ // new code to know that the condition is false.
+ RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
+
+ // It's possible that simplifying one loop could cause the other to be
+ // changed to another value or a constant. If its a constant, don't simplify
+ // it.
+ if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
+ LICHandle && !isa<Constant>(LICHandle))
+ RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
+
+ if (MSSA && VerifyMemorySSA)
+ MSSA->verifyMemorySSA();
+}
+
+/// Remove all instances of I from the worklist vector specified.
+static void RemoveFromWorklist(Instruction *I,
+ std::vector<Instruction*> &Worklist) {
+
+ Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
+ Worklist.end());
+}
+
+/// When we find that I really equals V, remove I from the
+/// program, replacing all uses with V and update the worklist.
+static void ReplaceUsesOfWith(Instruction *I, Value *V,
+ std::vector<Instruction *> &Worklist, Loop *L,
+ LPPassManager *LPM, MemorySSAUpdater *MSSAU) {
+ LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
+
+ // Add uses to the worklist, which may be dead now.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
+ Worklist.push_back(Use);
+
+ // Add users to the worklist which may be simplified now.
+ for (User *U : I->users())
+ Worklist.push_back(cast<Instruction>(U));
+ LPM->deleteSimpleAnalysisValue(I, L);
+ RemoveFromWorklist(I, Worklist);
+ I->replaceAllUsesWith(V);
+ if (!I->mayHaveSideEffects()) {
+ if (MSSAU)
+ MSSAU->removeMemoryAccess(I);
+ I->eraseFromParent();
+ }
+ ++NumSimplify;
+}
+
+/// We know either that the value LIC has the value specified by Val in the
+/// specified loop, or we know it does NOT have that value.
+/// Rewrite any uses of LIC or of properties correlated to it.
+void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
+ Constant *Val,
+ bool IsEqual) {
+ assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
+
+ // FIXME: Support correlated properties, like:
+ // for (...)
+ // if (li1 < li2)
+ // ...
+ // if (li1 > li2)
+ // ...
+
+ // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
+ // selects, switches.
+ std::vector<Instruction*> Worklist;
+ LLVMContext &Context = Val->getContext();
+
+ // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
+ // in the loop with the appropriate one directly.
+ if (IsEqual || (isa<ConstantInt>(Val) &&
+ Val->getType()->isIntegerTy(1))) {
+ Value *Replacement;
+ if (IsEqual)
+ Replacement = Val;
+ else
+ Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
+ !cast<ConstantInt>(Val)->getZExtValue());
+
+ for (User *U : LIC->users()) {
+ Instruction *UI = dyn_cast<Instruction>(U);
+ if (!UI || !L->contains(UI))
+ continue;
+ Worklist.push_back(UI);
+ }
+
+ for (Instruction *UI : Worklist)
+ UI->replaceUsesOfWith(LIC, Replacement);
+
+ SimplifyCode(Worklist, L);
+ return;
+ }
+
+ // Otherwise, we don't know the precise value of LIC, but we do know that it
+ // is certainly NOT "Val". As such, simplify any uses in the loop that we
+ // can. This case occurs when we unswitch switch statements.
+ for (User *U : LIC->users()) {
+ Instruction *UI = dyn_cast<Instruction>(U);
+ if (!UI || !L->contains(UI))
+ continue;
+
+ // At this point, we know LIC is definitely not Val. Try to use some simple
+ // logic to simplify the user w.r.t. to the context.
+ if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
+ if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
+ // This in-loop instruction has been simplified w.r.t. its context,
+ // i.e. LIC != Val, make sure we propagate its replacement value to
+ // all its users.
+ //
+ // We can not yet delete UI, the LIC user, yet, because that would invalidate
+ // the LIC->users() iterator !. However, we can make this instruction
+ // dead by replacing all its users and push it onto the worklist so that
+ // it can be properly deleted and its operands simplified.
+ UI->replaceAllUsesWith(Replacement);
+ }
+ }
+
+ // This is a LIC user, push it into the worklist so that SimplifyCode can
+ // attempt to simplify it.
+ Worklist.push_back(UI);
+
+ // If we know that LIC is not Val, use this info to simplify code.
+ SwitchInst *SI = dyn_cast<SwitchInst>(UI);
+ if (!SI || !isa<ConstantInt>(Val)) continue;
+
+ // NOTE: if a case value for the switch is unswitched out, we record it
+ // after the unswitch finishes. We can not record it here as the switch
+ // is not a direct user of the partial LIV.
+ SwitchInst::CaseHandle DeadCase =
+ *SI->findCaseValue(cast<ConstantInt>(Val));
+ // Default case is live for multiple values.
+ if (DeadCase == *SI->case_default())
+ continue;
+
+ // Found a dead case value. Don't remove PHI nodes in the
+ // successor if they become single-entry, those PHI nodes may
+ // be in the Users list.
+
+ BasicBlock *Switch = SI->getParent();
+ BasicBlock *SISucc = DeadCase.getCaseSuccessor();
+ BasicBlock *Latch = L->getLoopLatch();
+
+ if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
+ // If the DeadCase successor dominates the loop latch, then the
+ // transformation isn't safe since it will delete the sole predecessor edge
+ // to the latch.
+ if (Latch && DT->dominates(SISucc, Latch))
+ continue;
+
+ // FIXME: This is a hack. We need to keep the successor around
+ // and hooked up so as to preserve the loop structure, because
+ // trying to update it is complicated. So instead we preserve the
+ // loop structure and put the block on a dead code path.
+ SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
+ // Compute the successors instead of relying on the return value
+ // of SplitEdge, since it may have split the switch successor
+ // after PHI nodes.
+ BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
+ BasicBlock *OldSISucc = *succ_begin(NewSISucc);
+ // Create an "unreachable" destination.
+ BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
+ Switch->getParent(),
+ OldSISucc);
+ new UnreachableInst(Context, Abort);
+ // Force the new case destination to branch to the "unreachable"
+ // block while maintaining a (dead) CFG edge to the old block.
+ NewSISucc->getTerminator()->eraseFromParent();
+ BranchInst::Create(Abort, OldSISucc,
+ ConstantInt::getTrue(Context), NewSISucc);
+ // Release the PHI operands for this edge.
+ for (PHINode &PN : NewSISucc->phis())
+ PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType()));
+ // Tell the domtree about the new block. We don't fully update the
+ // domtree here -- instead we force it to do a full recomputation
+ // after the pass is complete -- but we do need to inform it of
+ // new blocks.
+ DT->addNewBlock(Abort, NewSISucc);
+ }
+
+ SimplifyCode(Worklist, L);
+}
+
+/// Now that we have simplified some instructions in the loop, walk over it and
+/// constant prop, dce, and fold control flow where possible. Note that this is
+/// effectively a very simple loop-structure-aware optimizer. During processing
+/// of this loop, L could very well be deleted, so it must not be used.
+///
+/// FIXME: When the loop optimizer is more mature, separate this out to a new
+/// pass.
+///
+void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.back();
+ Worklist.pop_back();
+
+ // Simple DCE.
+ if (isInstructionTriviallyDead(I)) {
+ LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
+
+ // Add uses to the worklist, which may be dead now.
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
+ Worklist.push_back(Use);
+ LPM->deleteSimpleAnalysisValue(I, L);
+ RemoveFromWorklist(I, Worklist);
+ if (MSSAU)
+ MSSAU->removeMemoryAccess(I);
+ I->eraseFromParent();
+ ++NumSimplify;
+ continue;
+ }
+
+ // See if instruction simplification can hack this up. This is common for
+ // things like "select false, X, Y" after unswitching made the condition be
+ // 'false'. TODO: update the domtree properly so we can pass it here.
+ if (Value *V = SimplifyInstruction(I, DL))
+ if (LI->replacementPreservesLCSSAForm(I, V)) {
+ ReplaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get());
+ continue;
+ }
+
+ // Special case hacks that appear commonly in unswitched code.
+ if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
+ if (BI->isUnconditional()) {
+ // If BI's parent is the only pred of the successor, fold the two blocks
+ // together.
+ BasicBlock *Pred = BI->getParent();
+ (void)Pred;
+ BasicBlock *Succ = BI->getSuccessor(0);
+ BasicBlock *SinglePred = Succ->getSinglePredecessor();
+ if (!SinglePred) continue; // Nothing to do.
+ assert(SinglePred == Pred && "CFG broken");
+
+ // Make the LPM and Worklist updates specific to LoopUnswitch.
+ LPM->deleteSimpleAnalysisValue(BI, L);
+ RemoveFromWorklist(BI, Worklist);
+ LPM->deleteSimpleAnalysisValue(Succ, L);
+ auto SuccIt = Succ->begin();
+ while (PHINode *PN = dyn_cast<PHINode>(SuccIt++)) {
+ for (unsigned It = 0, E = PN->getNumOperands(); It != E; ++It)
+ if (Instruction *Use = dyn_cast<Instruction>(PN->getOperand(It)))
+ Worklist.push_back(Use);
+ for (User *U : PN->users())
+ Worklist.push_back(cast<Instruction>(U));
+ LPM->deleteSimpleAnalysisValue(PN, L);
+ RemoveFromWorklist(PN, Worklist);
+ ++NumSimplify;
+ }
+ // Merge the block and make the remaining analyses updates.
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
+ MergeBlockIntoPredecessor(Succ, &DTU, LI, MSSAU.get());
+ ++NumSimplify;
+ continue;
+ }
+
+ continue;
+ }
+ }
+}
+
+/// Simple simplifications we can do given the information that Cond is
+/// definitely not equal to Val.
+Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
+ Value *Invariant,
+ Constant *Val) {
+ // icmp eq cond, val -> false
+ ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
+ if (CI && CI->isEquality()) {
+ Value *Op0 = CI->getOperand(0);
+ Value *Op1 = CI->getOperand(1);
+ if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
+ LLVMContext &Ctx = Inst->getContext();
+ if (CI->getPredicate() == CmpInst::ICMP_EQ)
+ return ConstantInt::getFalse(Ctx);
+ else
+ return ConstantInt::getTrue(Ctx);
+ }
+ }
+
+ // FIXME: there may be other opportunities, e.g. comparison with floating
+ // point, or Invariant - Val != 0, etc.
+ return nullptr;
+}