diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp')
-rw-r--r-- | llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp | 1531 |
1 files changed, 1282 insertions, 249 deletions
diff --git a/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp b/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp index 0ff6ee8bcfcc2..90314b17b5e25 100644 --- a/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp +++ b/llvm/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp @@ -9,8 +9,11 @@ // Lower matrix intrinsics to vector operations. // // TODO: -// * Implement multiply & add fusion -// * Add remark, summarizing the available matrix optimization opportunities. +// * Improve fusion: +// * Support more cases, e.g. multiply-add, multiply-sub, operands/results +// transposed. +// * Improve cost-modeling, e.g. choose different number of rows/columns +// columns for tiles, consider cost of copies on alias. // //===----------------------------------------------------------------------===// @@ -18,10 +21,15 @@ #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" @@ -29,30 +37,69 @@ #include "llvm/IR/PatternMatch.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" +#include "llvm/Support/Alignment.h" +#include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" using namespace llvm; using namespace PatternMatch; #define DEBUG_TYPE "lower-matrix-intrinsics" -static cl::opt<bool> EnableShapePropagation("matrix-propagate-shape", - cl::init(true)); - +static cl::opt<bool> EnableShapePropagation( + "matrix-propagate-shape", cl::init(true), cl::Hidden, + cl::desc("Enable/disable shape propagation from matrix intrinsics to other " + "instructions.")); + +static cl::opt<bool> + FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden, + cl::desc("Enable/disable fusing matrix instructions.")); +// TODO: Allow and use non-square tiles. +static cl::opt<unsigned> TileSize( + "fuse-matrix-tile-size", cl::init(4), cl::Hidden, + cl::desc( + "Tile size for matrix instruction fusion using square-shaped tiles.")); +static cl::opt<bool> ForceFusion( + "force-fuse-matrix", cl::init(false), cl::Hidden, + cl::desc("Force matrix instruction fusion even if not profitable.")); static cl::opt<bool> AllowContractEnabled( "matrix-allow-contract", cl::init(false), cl::Hidden, cl::desc("Allow the use of FMAs if available and profitable. This may " "result in different results, due to less rounding error.")); +enum class MatrixLayoutTy { ColumnMajor, RowMajor }; + +static cl::opt<MatrixLayoutTy> MatrixLayout( + "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor), + cl::desc("Sets the default matrix layout"), + cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major", + "Use column-major layout"), + clEnumValN(MatrixLayoutTy::RowMajor, "row-major", + "Use row-major layout"))); + +/// Helper function to either return Scope, if it is a subprogram or the +/// attached subprogram for a local scope. +static DISubprogram *getSubprogram(DIScope *Scope) { + if (auto *Subprogram = dyn_cast<DISubprogram>(Scope)) + return Subprogram; + return cast<DILocalScope>(Scope)->getSubprogram(); +} + namespace { -// Given an element poitner \p BasePtr to the start of a (sub) matrix, compute -// the start address of column \p Col with type (\p EltType x \p NumRows) -// assuming \p Stride elements between start two consecutive columns. -// \p Stride must be >= \p NumRows. +// Given an element pointer \p BasePtr to the start of a (sub) matrix, compute +// the start address of vector \p VecIdx with type (\p EltType x \p NumElements) +// assuming \p Stride elements between start two consecutive vectors. +// \p Stride must be >= \p NumElements. +// For column-major matrixes, the function computes the address of a column +// vectors and \p NumElements must be set to the number of elements in a column +// (= number of rows of the matrix). For row-major matrixes, the function +// computes the address of a row vector and \p NumElements must be set to the +// number of elements in a column (= number of columns of the matrix). // -// Consider a 4x4 matrix like below +// Consider a 4x4 matrix in column-mjaor layout like below // // 0 1 2 3 // 0 v_0_0 v_0_1 v_0_2 v_0_3 @@ -62,14 +109,14 @@ namespace { // To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1, // we need a pointer to the first element of the submatrix as base pointer. -// Then we can use computeColumnAddr to compute the addresses for the columns +// Then we can use computeVectorAddr to compute the addresses for the columns // of the sub-matrix. // -// Column 0: computeColumnAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..) +// Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..) // -> just returns Base -// Column 1: computeColumnAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..) +// Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..) // -> returns Base + (1 * 4) -// Column 2: computeColumnAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..) +// Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..) // -> returns Base + (2 * 4) // // The graphic below illustrates the number of elements in a column (marked @@ -82,30 +129,30 @@ namespace { // v_2_0 |v_2_1 |v_2_2 |v_2_3 // v_3_0 {v_3_1 {v_3_2 v_3_3 // -Value *computeColumnAddr(Value *BasePtr, Value *Col, Value *Stride, - unsigned NumRows, Type *EltType, +Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride, + unsigned NumElements, Type *EltType, IRBuilder<> &Builder) { assert((!isa<ConstantInt>(Stride) || - cast<ConstantInt>(Stride)->getZExtValue() >= NumRows) && - "Stride must be >= the number of rows."); + cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && + "Stride must be >= the number of elements in the result vector."); unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); - // Compute the start of the column with index Col as Col * Stride. - Value *ColumnStart = Builder.CreateMul(Col, Stride, "col.start"); + // Compute the start of the vector with index VecIdx as VecIdx * Stride. + Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start"); - // Get pointer to the start of the selected column. Skip GEP creation, - // if we select column 0. - if (isa<ConstantInt>(ColumnStart) && cast<ConstantInt>(ColumnStart)->isZero()) - ColumnStart = BasePtr; + // Get pointer to the start of the selected vector. Skip GEP creation, + // if we select vector 0. + if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero()) + VecStart = BasePtr; else - ColumnStart = Builder.CreateGEP(EltType, BasePtr, ColumnStart, "col.gep"); + VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep"); - // Cast elementwise column start pointer to a pointer to a column - // (EltType x NumRows)*. - Type *ColumnType = VectorType::get(EltType, NumRows); - Type *ColumnPtrType = PointerType::get(ColumnType, AS); - return Builder.CreatePointerCast(ColumnStart, ColumnPtrType, "col.cast"); + // Cast elementwise vector start pointer to a pointer to a vector + // (EltType x NumElements)*. + auto *VecType = FixedVectorType::get(EltType, NumElements); + Type *VecPtrType = PointerType::get(VecType, AS); + return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast"); } /// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics. @@ -113,15 +160,16 @@ Value *computeColumnAddr(Value *BasePtr, Value *Col, Value *Stride, /// Currently, the lowering for each matrix intrinsic is done as follows: /// 1. Propagate the shape information from intrinsics to connected /// instructions. -/// 2. Lower instructions with shape information. +/// 2. Lower instructions with shape information (assuming column-major layout). +/// The lowering works similarly using row-major layout. /// 2.1. Get column vectors for each argument. If we already lowered the /// definition of an argument, use the produced column vectors directly. /// If not, split the operand vector containing an embedded matrix into /// a set of column vectors, -/// 2.2. Lower the instruction in terms of columnwise operations, which yields -/// a set of column vectors containing result matrix. Note that we lower -/// all instructions that have shape information. Besides the intrinsics, -/// this includes stores for example. +/// 2.2. Lower the instruction in terms of column major operations, which +/// yields a set of column vectors containing result matrix. Note that we +/// lower all instructions that have shape information. Besides the +/// intrinsics, this includes stores for example. /// 2.3. Update uses of the lowered instruction. If we have shape information /// for a user, there is nothing to do, as we will look up the result /// column matrix when lowering the user. For other uses, we embed the @@ -134,42 +182,157 @@ class LowerMatrixIntrinsics { Function &Func; const DataLayout &DL; const TargetTransformInfo &TTI; + AliasAnalysis &AA; + DominatorTree &DT; + LoopInfo &LI; + OptimizationRemarkEmitter &ORE; + + /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation. + struct OpInfoTy { + /// Number of stores emitted to generate this matrix. + unsigned NumStores = 0; + /// Number of loads emitted to generate this matrix. + unsigned NumLoads = 0; + /// Number of compute operations emitted to generate this matrix. + unsigned NumComputeOps = 0; + + OpInfoTy &operator+=(const OpInfoTy &RHS) { + NumStores += RHS.NumStores; + NumLoads += RHS.NumLoads; + NumComputeOps += RHS.NumComputeOps; + return *this; + } + }; + + /// Wrapper class representing a matrix as a set of vectors, either in row or + /// column major layout. All vectors must have the same vector type. + class MatrixTy { + SmallVector<Value *, 16> Vectors; + + OpInfoTy OpInfo; - /// Wrapper class representing a matrix as a set of column vectors. - /// All column vectors must have the same vector type. - class ColumnMatrixTy { - SmallVector<Value *, 16> Columns; + bool IsColumnMajor = true; public: - ColumnMatrixTy() : Columns() {} - ColumnMatrixTy(ArrayRef<Value *> Cols) - : Columns(Cols.begin(), Cols.end()) {} + MatrixTy() + : Vectors(), + IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} + MatrixTy(ArrayRef<Value *> Vectors) + : Vectors(Vectors.begin(), Vectors.end()), + IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} + MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy) + : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) { + + unsigned D = isColumnMajor() ? NumColumns : NumRows; + for (unsigned J = 0; J < D; ++J) + addVector(UndefValue::get(FixedVectorType::get( + EltTy, isColumnMajor() ? NumRows : NumColumns))); + } + + Value *getVector(unsigned i) const { return Vectors[i]; } + Value *getColumn(unsigned i) const { + assert(isColumnMajor() && "only supported for column-major matrixes"); + return Vectors[i]; + } + Value *getRow(unsigned i) const { + assert(!isColumnMajor() && "only supported for row-major matrixes"); + return Vectors[i]; + } - Value *getColumn(unsigned i) const { return Columns[i]; } + void setVector(unsigned i, Value *V) { Vectors[i] = V; } - void setColumn(unsigned i, Value *V) { Columns[i] = V; } + Type *getElementType() { return getVectorTy()->getElementType(); } - size_t getNumColumns() const { return Columns.size(); } - size_t getNumRows() const { - assert(Columns.size() > 0 && "Cannot call getNumRows without columns"); - return cast<VectorType>(Columns[0]->getType())->getNumElements(); + unsigned getNumVectors() const { + if (isColumnMajor()) + return getNumColumns(); + return getNumRows(); } - const SmallVectorImpl<Value *> &getColumnVectors() const { return Columns; } + unsigned getNumColumns() const { + if (isColumnMajor()) + return Vectors.size(); + else { + assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); + return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); + } + } + unsigned getNumRows() const { + if (isColumnMajor()) { + assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); + return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); + } else + return Vectors.size(); + } - SmallVectorImpl<Value *> &getColumnVectors() { return Columns; } + void addVector(Value *V) { Vectors.push_back(V); } + VectorType *getColumnTy() { + assert(isColumnMajor() && "only supported for column-major matrixes"); + return getVectorTy(); + } - void addColumn(Value *V) { Columns.push_back(V); } + VectorType *getVectorTy() { + return cast<VectorType>(Vectors[0]->getType()); + } iterator_range<SmallVector<Value *, 8>::iterator> columns() { - return make_range(Columns.begin(), Columns.end()); + assert(isColumnMajor() && + "columns() only supported for column-major matrixes"); + return make_range(Vectors.begin(), Vectors.end()); } - /// Embed the columns of the matrix into a flat vector by concatenating + iterator_range<SmallVector<Value *, 8>::iterator> vectors() { + return make_range(Vectors.begin(), Vectors.end()); + } + + /// Embed the vectors of the matrix into a flat vector by concatenating /// them. Value *embedInVector(IRBuilder<> &Builder) const { - return Columns.size() == 1 ? Columns[0] - : concatenateVectors(Builder, Columns); + return Vectors.size() == 1 ? Vectors[0] + : concatenateVectors(Builder, Vectors); + } + + MatrixTy &addNumLoads(unsigned N) { + OpInfo.NumLoads += N; + return *this; + } + + void setNumLoads(unsigned N) { OpInfo.NumLoads = N; } + + MatrixTy &addNumStores(unsigned N) { + OpInfo.NumStores += N; + return *this; + } + + MatrixTy &addNumComputeOps(unsigned N) { + OpInfo.NumComputeOps += N; + return *this; + } + + unsigned getNumStores() const { return OpInfo.NumStores; } + unsigned getNumLoads() const { return OpInfo.NumLoads; } + unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; } + + const OpInfoTy &getOpInfo() const { return OpInfo; } + + bool isColumnMajor() const { return IsColumnMajor; } + + unsigned getStride() const { + if (isColumnMajor()) + return getNumRows(); + return getNumColumns(); + } + + /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the + /// matrix is column-major, the result vector is extracted from a column + /// vector, otherwise from a row vector. + Value *extractVector(unsigned I, unsigned J, unsigned NumElts, + IRBuilder<> &Builder) const { + Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I); + Value *Undef = UndefValue::get(Vec->getType()); + return Builder.CreateShuffleVector( + Vec, Undef, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0), + "block"); } }; @@ -177,12 +340,15 @@ class LowerMatrixIntrinsics { unsigned NumRows; unsigned NumColumns; + bool IsColumnMajor; + ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0) - : NumRows(NumRows), NumColumns(NumColumns) {} + : NumRows(NumRows), NumColumns(NumColumns), + IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} ShapeInfo(Value *NumRows, Value *NumColumns) - : NumRows(cast<ConstantInt>(NumRows)->getZExtValue()), - NumColumns(cast<ConstantInt>(NumColumns)->getZExtValue()) {} + : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(), + cast<ConstantInt>(NumColumns)->getZExtValue()) {} bool operator==(const ShapeInfo &other) { return NumRows == other.NumRows && NumColumns == other.NumColumns; @@ -195,12 +361,24 @@ class LowerMatrixIntrinsics { assert(NumRows == 0 || NumColumns != 0); return NumRows != 0; } + + unsigned getStride() const { + if (IsColumnMajor) + return NumRows; + return NumColumns; + } + + unsigned getNumVectors() const { + if (IsColumnMajor) + return NumColumns; + return NumRows; + } }; /// Maps instructions to their shape information. The shape information /// describes the shape to be used while lowering. This matches the shape of /// the result value of the instruction, with the only exceptions being store - /// instructions and the matrix_columnwise_store intrinsics. For those, the + /// instructions and the matrix_column_major_store intrinsics. For those, the /// shape information indicates that those instructions should be lowered /// using shape information as well. DenseMap<Value *, ShapeInfo> ShapeMap; @@ -211,31 +389,49 @@ class LowerMatrixIntrinsics { SmallVector<Instruction *, 16> ToRemove; /// Map from instructions to their produced column matrix. - DenseMap<Value *, ColumnMatrixTy> Inst2ColumnMatrix; + MapVector<Value *, MatrixTy> Inst2ColumnMatrix; public: - LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI) - : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI) {} + LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI, + AliasAnalysis &AA, DominatorTree &DT, LoopInfo &LI, + OptimizationRemarkEmitter &ORE) + : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT), + LI(LI), ORE(ORE) {} + + unsigned getNumOps(Type *VT) { + assert(isa<VectorType>(VT) && "Expected vector type"); + return getNumOps(VT->getScalarType(), + cast<FixedVectorType>(VT)->getNumElements()); + } - /// Return the set of column vectors that a matrix value is lowered to. + // + /// Return the estimated number of vector ops required for an operation on + /// \p VT * N. + unsigned getNumOps(Type *ST, unsigned N) { + return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() / + double(TTI.getRegisterBitWidth(true))); + } + + /// Return the set of vectors that a matrix value is lowered to. /// - /// If we lowered \p MatrixVal, just return the cache result column matrix. - /// Otherwie split the flat vector \p MatrixVal containing a matrix with - /// shape \p SI into column vectors. - ColumnMatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI, - IRBuilder<> Builder) { + /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise + /// split the flat vector \p MatrixVal containing a matrix with shape \p SI + /// into vectors. + MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI, + IRBuilder<> &Builder) { VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType()); assert(VType && "MatrixVal must be a vector type"); - assert(VType->getNumElements() == SI.NumRows * SI.NumColumns && + assert(cast<FixedVectorType>(VType)->getNumElements() == + SI.NumRows * SI.NumColumns && "The vector size must match the number of matrix elements"); // Check if we lowered MatrixVal using shape information. In that case, - // return the existing column matrix, if it matches the requested shape + // return the existing matrix, if it matches the requested shape // information. If there is a mis-match, embed the result in a flat // vector and split it later. auto Found = Inst2ColumnMatrix.find(MatrixVal); if (Found != Inst2ColumnMatrix.end()) { - ColumnMatrixTy &M = Found->second; + MatrixTy &M = Found->second; // Return the found matrix, if its shape matches the requested shape // information if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns()) @@ -247,10 +443,12 @@ public: // Otherwise split MatrixVal. SmallVector<Value *, 16> SplitVecs; Value *Undef = UndefValue::get(VType); - for (unsigned MaskStart = 0; MaskStart < VType->getNumElements(); - MaskStart += SI.NumRows) { - Constant *Mask = createSequentialMask(Builder, MaskStart, SI.NumRows, 0); - Value *V = Builder.CreateShuffleVector(MatrixVal, Undef, Mask, "split"); + for (unsigned MaskStart = 0; + MaskStart < cast<FixedVectorType>(VType)->getNumElements(); + MaskStart += SI.getStride()) { + Value *V = Builder.CreateShuffleVector( + MatrixVal, Undef, createSequentialMask(MaskStart, SI.getStride(), 0), + "split"); SplitVecs.push_back(V); } @@ -308,8 +506,8 @@ public: switch (II->getIntrinsicID()) { case Intrinsic::matrix_multiply: case Intrinsic::matrix_transpose: - case Intrinsic::matrix_columnwise_load: - case Intrinsic::matrix_columnwise_store: + case Intrinsic::matrix_column_major_load: + case Intrinsic::matrix_column_major_store: return true; default: return false; @@ -348,13 +546,13 @@ public: m_Value(MatrixA), m_Value(M), m_Value(N)))) { // Flip dimensions. Propagate = setShapeInfo(Inst, {N, M}); - } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_columnwise_store>( + } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>( m_Value(MatrixA), m_Value(), m_Value(), - m_Value(M), m_Value(N)))) { + m_Value(), m_Value(M), m_Value(N)))) { Propagate = setShapeInfo(Inst, {N, M}); - } else if (match(Inst, - m_Intrinsic<Intrinsic::matrix_columnwise_load>( - m_Value(), m_Value(), m_Value(M), m_Value(N)))) { + } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>( + m_Value(), m_Value(), m_Value(), m_Value(M), + m_Value(N)))) { Propagate = setShapeInfo(Inst, {M, N}); } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) { auto OpShape = ShapeMap.find(MatrixA); @@ -426,14 +624,14 @@ public: // Flip dimensions. if (setShapeInfo(MatrixA, {M, N})) pushInstruction(MatrixA, WorkList); - } else if (match(V, m_Intrinsic<Intrinsic::matrix_columnwise_store>( - m_Value(MatrixA), m_Value(), m_Value(), + } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>( + m_Value(MatrixA), m_Value(), m_Value(), m_Value(), m_Value(M), m_Value(N)))) { if (setShapeInfo(MatrixA, {M, N})) { pushInstruction(MatrixA, WorkList); } } else if (isa<LoadInst>(V) || - match(V, m_Intrinsic<Intrinsic::matrix_columnwise_load>())) { + match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) { // Nothing to do, no matrix input. } else if (isa<StoreInst>(V)) { // Nothing to do. We forward-propagated to this so we would just @@ -472,8 +670,8 @@ public: switch (II->getIntrinsicID()) { case Intrinsic::matrix_multiply: case Intrinsic::matrix_transpose: - case Intrinsic::matrix_columnwise_load: - case Intrinsic::matrix_columnwise_store: + case Intrinsic::matrix_column_major_load: + case Intrinsic::matrix_column_major_store: WorkList.push_back(&Inst); break; default: @@ -487,45 +685,57 @@ public: } } - ReversePostOrderTraversal<Function *> RPOT(&Func); bool Changed = false; - for (auto *BB : RPOT) { - for (Instruction &Inst : make_early_inc_range(*BB)) { - IRBuilder<> Builder(&Inst); - - if (CallInst *CInst = dyn_cast<CallInst>(&Inst)) - Changed |= VisitCallInst(CInst); - - Value *Op1; - Value *Op2; - if (auto *BinOp = dyn_cast<BinaryOperator>(&Inst)) - Changed |= VisitBinaryOperator(BinOp); - if (match(&Inst, m_Load(m_Value(Op1)))) - Changed |= VisitLoad(&Inst, Op1, Builder); - else if (match(&Inst, m_Store(m_Value(Op1), m_Value(Op2)))) - Changed |= VisitStore(&Inst, Op1, Op2, Builder); + SmallVector<CallInst *, 16> MaybeFusableInsts; + SmallVector<Instruction *, 16> MatrixInsts; + + // First, collect all instructions with shape information and candidates for + // fusion (currently only matrix multiplies). + ReversePostOrderTraversal<Function *> RPOT(&Func); + for (auto *BB : RPOT) + for (Instruction &I : *BB) { + if (ShapeMap.find(&I) == ShapeMap.end()) + continue; + if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>())) + MaybeFusableInsts.push_back(cast<CallInst>(&I)); + MatrixInsts.push_back(&I); } + + // Second, try to fuse candidates. + SmallPtrSet<Instruction *, 16> FusedInsts; + for (CallInst *CI : MaybeFusableInsts) + LowerMatrixMultiplyFused(CI, FusedInsts); + Changed = !FusedInsts.empty(); + + // Third, lower remaining instructions with shape information. + for (Instruction *Inst : MatrixInsts) { + if (FusedInsts.count(Inst)) + continue; + + IRBuilder<> Builder(Inst); + + if (CallInst *CInst = dyn_cast<CallInst>(Inst)) + Changed |= VisitCallInst(CInst); + + Value *Op1; + Value *Op2; + if (auto *BinOp = dyn_cast<BinaryOperator>(Inst)) + Changed |= VisitBinaryOperator(BinOp); + if (match(Inst, m_Load(m_Value(Op1)))) + Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder); + else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2)))) + Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder); } + RemarkGenerator RemarkGen(Inst2ColumnMatrix, ORE, Func); + RemarkGen.emitRemarks(); + for (Instruction *Inst : reverse(ToRemove)) Inst->eraseFromParent(); return Changed; } - LoadInst *createColumnLoad(Value *ColumnPtr, Type *EltType, - IRBuilder<> Builder) { - unsigned Align = DL.getABITypeAlignment(EltType); - return Builder.CreateAlignedLoad(ColumnPtr, Align, "col.load"); - } - - StoreInst *createColumnStore(Value *ColumnValue, Value *ColumnPtr, - Type *EltType, IRBuilder<> Builder) { - unsigned Align = DL.getABITypeAlignment(EltType); - return Builder.CreateAlignedStore(ColumnValue, ColumnPtr, Align); - } - - /// Turns \p BasePtr into an elementwise pointer to \p EltType. Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) { unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); @@ -545,11 +755,11 @@ public: case Intrinsic::matrix_transpose: LowerTranspose(Inst); break; - case Intrinsic::matrix_columnwise_load: - LowerColumnwiseLoad(Inst); + case Intrinsic::matrix_column_major_load: + LowerColumnMajorLoad(Inst); break; - case Intrinsic::matrix_columnwise_store: - LowerColumnwiseStore(Inst); + case Intrinsic::matrix_column_major_store: + LowerColumnMajorStore(Inst); break; default: return false; @@ -557,108 +767,200 @@ public: return true; } - void LowerLoad(Instruction *Inst, Value *Ptr, Value *Stride, - ShapeInfo Shape) { - IRBuilder<> Builder(Inst); - auto VType = cast<VectorType>(Inst->getType()); + /// Compute the alignment for a column/row \p Idx with \p Stride between them. + /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a + /// ConstantInt, reduce the initial alignment based on the byte offset. For + /// non-ConstantInt strides, return the common alignment of the initial + /// alignment and the element size in bytes. + Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy, + MaybeAlign A) const { + Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy); + if (Idx == 0) + return InitialAlign; + + TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy); + if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) { + uint64_t StrideInBytes = + ConstStride->getZExtValue() * ElementSizeInBits / 8; + return commonAlignment(InitialAlign, Idx * StrideInBytes); + } + return commonAlignment(InitialAlign, ElementSizeInBits / 8); + } + + /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between + /// vectors. + MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride, + bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) { + auto VType = cast<VectorType>(Ty); Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder); - ColumnMatrixTy Result; - // Distance between start of one column and the start of the next - for (unsigned C = 0, E = Shape.NumColumns; C < E; ++C) { - Value *GEP = - computeColumnAddr(EltPtr, Builder.getInt32(C), Stride, Shape.NumRows, - VType->getElementType(), Builder); - Value *Column = createColumnLoad(GEP, VType->getElementType(), Builder); - Result.addColumn(Column); + MatrixTy Result; + for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) { + Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride, + Shape.getStride(), VType->getElementType(), + Builder); + Value *Vector = Builder.CreateAlignedLoad( + GEP, getAlignForIndex(I, Stride, VType->getElementType(), MAlign), + IsVolatile, "col.load"); + + Result.addVector(Vector); } + return Result.addNumLoads(getNumOps(Result.getVectorTy()) * + Result.getNumVectors()); + } - finalizeLowering(Inst, Result, Builder); + /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix, + /// starting at \p MatrixPtr[I][J]. + MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile, + ShapeInfo MatrixShape, Value *I, Value *J, + ShapeInfo ResultShape, Type *EltTy, + IRBuilder<> &Builder) { + + Value *Offset = Builder.CreateAdd( + Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); + + unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); + Value *EltPtr = + Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); + Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); + auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows * + ResultShape.NumColumns); + Type *TilePtrTy = PointerType::get(TileTy, AS); + Value *TilePtr = + Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); + + return loadMatrix(TileTy, TilePtr, Align, + Builder.getInt64(MatrixShape.getStride()), IsVolatile, + ResultShape, Builder); + } + + /// Lower a load instruction with shape information. + void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride, + bool IsVolatile, ShapeInfo Shape) { + IRBuilder<> Builder(Inst); + finalizeLowering(Inst, + loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile, + Shape, Builder), + Builder); } - /// Lowers llvm.matrix.columnwise.load. + /// Lowers llvm.matrix.column.major.load. /// /// The intrinsic loads a matrix from memory using a stride between columns. - void LowerColumnwiseLoad(CallInst *Inst) { + void LowerColumnMajorLoad(CallInst *Inst) { + assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && + "Intrinsic only supports column-major layout!"); Value *Ptr = Inst->getArgOperand(0); Value *Stride = Inst->getArgOperand(1); - LowerLoad(Inst, Ptr, Stride, - {Inst->getArgOperand(2), Inst->getArgOperand(3)}); + LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride, + cast<ConstantInt>(Inst->getArgOperand(2))->isOne(), + {Inst->getArgOperand(3), Inst->getArgOperand(4)}); } - void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, Value *Stride, - ShapeInfo Shape) { - IRBuilder<> Builder(Inst); - auto VType = cast<VectorType>(Matrix->getType()); + /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p + /// MatrixPtr[I][J]. + void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr, + MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape, + Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) { + Value *Offset = Builder.CreateAdd( + Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); + + unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); + Value *EltPtr = + Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); + Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); + auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() * + StoreVal.getNumColumns()); + Type *TilePtrTy = PointerType::get(TileTy, AS); + Value *TilePtr = + Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); + + storeMatrix(TileTy, StoreVal, TilePtr, MAlign, + Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder); + } + + /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between + /// vectors. + MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, + MaybeAlign MAlign, Value *Stride, bool IsVolatile, + IRBuilder<> &Builder) { + auto VType = cast<VectorType>(Ty); Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder); - auto LM = getMatrix(Matrix, Shape, Builder); - for (auto C : enumerate(LM.columns())) { - Value *GEP = - computeColumnAddr(EltPtr, Builder.getInt32(C.index()), Stride, - Shape.NumRows, VType->getElementType(), Builder); - createColumnStore(C.value(), GEP, VType->getElementType(), Builder); + for (auto Vec : enumerate(StoreVal.vectors())) { + Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()), + Stride, StoreVal.getStride(), + VType->getElementType(), Builder); + Builder.CreateAlignedStore(Vec.value(), GEP, + getAlignForIndex(Vec.index(), Stride, + VType->getElementType(), + MAlign), + IsVolatile); } + return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) * + StoreVal.getNumVectors()); + } - ToRemove.push_back(Inst); + /// Lower a store instruction with shape information. + void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A, + Value *Stride, bool IsVolatile, ShapeInfo Shape) { + IRBuilder<> Builder(Inst); + auto StoreVal = getMatrix(Matrix, Shape, Builder); + finalizeLowering(Inst, + storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride, + IsVolatile, Builder), + Builder); } - /// Lowers llvm.matrix.columnwise.store. + /// Lowers llvm.matrix.column.major.store. /// /// The intrinsic store a matrix back memory using a stride between columns. - void LowerColumnwiseStore(CallInst *Inst) { + void LowerColumnMajorStore(CallInst *Inst) { + assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && + "Intrinsic only supports column-major layout!"); Value *Matrix = Inst->getArgOperand(0); Value *Ptr = Inst->getArgOperand(1); Value *Stride = Inst->getArgOperand(2); - LowerStore(Inst, Matrix, Ptr, Stride, - {Inst->getArgOperand(3), Inst->getArgOperand(4)}); - } - - /// Extract a column vector of \p NumElts starting at index (\p I, \p J) from - /// the matrix \p LM represented as a vector of column vectors. - Value *extractVector(const ColumnMatrixTy &LM, unsigned I, unsigned J, - unsigned NumElts, IRBuilder<> Builder) { - Value *Col = LM.getColumn(J); - Value *Undef = UndefValue::get(Col->getType()); - Constant *Mask = createSequentialMask(Builder, I, NumElts, 0); - return Builder.CreateShuffleVector(Col, Undef, Mask, "block"); + LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride, + cast<ConstantInt>(Inst->getArgOperand(3))->isOne(), + {Inst->getArgOperand(4), Inst->getArgOperand(5)}); } // Set elements I..I+NumElts-1 to Block Value *insertVector(Value *Col, unsigned I, Value *Block, - IRBuilder<> Builder) { + IRBuilder<> &Builder) { // First, bring Block to the same size as Col unsigned BlockNumElts = - cast<VectorType>(Block->getType())->getNumElements(); - unsigned NumElts = cast<VectorType>(Col->getType())->getNumElements(); + cast<FixedVectorType>(Block->getType())->getNumElements(); + unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements(); assert(NumElts >= BlockNumElts && "Too few elements for current block"); - Value *ExtendMask = - createSequentialMask(Builder, 0, BlockNumElts, NumElts - BlockNumElts); Value *Undef = UndefValue::get(Block->getType()); - Block = Builder.CreateShuffleVector(Block, Undef, ExtendMask); + Block = Builder.CreateShuffleVector( + Block, Undef, + createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts)); // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7, // 8, 4, 5, 6 - SmallVector<Constant *, 16> Mask; + SmallVector<int, 16> Mask; unsigned i; for (i = 0; i < I; i++) - Mask.push_back(Builder.getInt32(i)); + Mask.push_back(i); - unsigned VecNumElts = cast<VectorType>(Col->getType())->getNumElements(); + unsigned VecNumElts = + cast<FixedVectorType>(Col->getType())->getNumElements(); for (; i < I + BlockNumElts; i++) - Mask.push_back(Builder.getInt32(i - I + VecNumElts)); + Mask.push_back(i - I + VecNumElts); for (; i < VecNumElts; i++) - Mask.push_back(Builder.getInt32(i)); - - Value *MaskVal = ConstantVector::get(Mask); + Mask.push_back(i); - return Builder.CreateShuffleVector(Col, Block, MaskVal); + return Builder.CreateShuffleVector(Col, Block, Mask); } Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp, - IRBuilder<> &Builder, bool AllowContraction) { - + IRBuilder<> &Builder, bool AllowContraction, + unsigned &NumComputeOps) { + NumComputeOps += getNumOps(A->getType()); if (!Sum) return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B); @@ -666,14 +968,16 @@ public: if (AllowContraction) { // Use fmuladd for floating point operations and let the backend decide // if that's profitable. - Value *FMulAdd = Intrinsic::getDeclaration( + Function *FMulAdd = Intrinsic::getDeclaration( Func.getParent(), Intrinsic::fmuladd, A->getType()); return Builder.CreateCall(FMulAdd, {A, B, Sum}); } + NumComputeOps += getNumOps(A->getType()); Value *Mul = Builder.CreateFMul(A, B); return Builder.CreateFAdd(Sum, Mul); } + NumComputeOps += getNumOps(A->getType()); Value *Mul = Builder.CreateMul(A, B); return Builder.CreateAdd(Sum, Mul); } @@ -683,7 +987,7 @@ public: /// cached value when they are lowered. For other users, \p Matrix is /// flattened and the uses are updated to use it. Also marks \p Inst for /// deletion. - void finalizeLowering(Instruction *Inst, ColumnMatrixTy Matrix, + void finalizeLowering(Instruction *Inst, MatrixTy Matrix, IRBuilder<> &Builder) { Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix)); @@ -699,6 +1003,294 @@ public: } } + /// Compute \p Result += \p A * \p B for input matrices with left-associating + /// addition. + void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A, + const MatrixTy &B, bool AllowContraction, + IRBuilder<> &Builder, bool isTiled) { + const unsigned VF = std::max<unsigned>( + TTI.getRegisterBitWidth(true) / + Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(), + 1U); + unsigned R = Result.getNumRows(); + unsigned C = Result.getNumColumns(); + unsigned M = A.getNumColumns(); + + bool IsFP = Result.getElementType()->isFloatingPointTy(); + assert(A.isColumnMajor() == B.isColumnMajor() && + Result.isColumnMajor() == A.isColumnMajor() && + "operands must agree on matrix layout"); + unsigned NumComputeOps = 0; + if (A.isColumnMajor()) { + // Multiply columns from the first operand with scalars from the second + // operand. Then move along the K axes and accumulate the columns. With + // this the adds can be vectorized without reassociation. + for (unsigned J = 0; J < C; ++J) { + unsigned BlockSize = VF; + // If Result is zero, we don't need to accumulate in the K==0 iteration. + bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J)); + + for (unsigned I = 0; I < R; I += BlockSize) { + // Gradually lower the vectorization factor to cover the remainder. + while (I + BlockSize > R) + BlockSize /= 2; + + Value *Sum = isTiled ? Result.extractVector(I, J, BlockSize, Builder) + : nullptr; + for (unsigned K = 0; K < M; ++K) { + Value *L = A.extractVector(I, K, BlockSize, Builder); + Value *RH = Builder.CreateExtractElement(B.getColumn(J), K); + Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat"); + Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat, + Result.getElementType()->isFloatingPointTy(), + Builder, AllowContraction, NumComputeOps); + } + Result.setVector(J, + insertVector(Result.getVector(J), I, Sum, Builder)); + } + } + } else { + // Multiply rows from the second operand with scalars from the first + // operand. Then move along the K axes and accumulate the rows. With this + // the adds can be vectorized without reassociation. + for (unsigned I = 0; I < R; ++I) { + unsigned BlockSize = VF; + bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I)); + for (unsigned J = 0; J < C; J += BlockSize) { + // Gradually lower the vectorization factor to cover the remainder. + while (J + BlockSize > C) + BlockSize /= 2; + + Value *Sum = nullptr; + for (unsigned K = 0; K < M; ++K) { + Value *R = B.extractVector(K, J, BlockSize, Builder); + Value *LH = Builder.CreateExtractElement(A.getVector(I), K); + Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat"); + Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R, + IsFP, Builder, AllowContraction, NumComputeOps); + } + Result.setVector(I, + insertVector(Result.getVector(I), J, Sum, Builder)); + } + } + } + Result.addNumComputeOps(NumComputeOps); + } + + /// Ensure that the memory in \p Load does not alias \p Store by potentially + /// copying it to a new location. This new or otherwise the original location + /// is returned. + Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store, + CallInst *MatMul) { + MemoryLocation StoreLoc = MemoryLocation::get(Store); + MemoryLocation LoadLoc = MemoryLocation::get(Load); + + AliasResult LdAliased = AA.alias(LoadLoc, StoreLoc); + + // If we can statically determine noalias we're good. + if (!LdAliased) + return Load->getPointerOperand(); + + // Create code to check if the memory locations of the Load and Store + // overlap and if they do, copy Load's operand to a new buffer. + + // First, create new blocks for 2n part of the check and the copy. + BasicBlock *Check0 = MatMul->getParent(); + // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a + // DT. Manually collect dominator tree updates, to avoid unnecessary work, + // as we adjust Check0 and Check1's branches. + SmallVector<DominatorTree::UpdateType, 4> DTUpdates; + for (BasicBlock *Succ : successors(Check0)) + DTUpdates.push_back({DT.Delete, Check0, Succ}); + + BasicBlock *Check1 = SplitBlock(MatMul->getParent(), MatMul, nullptr, &LI, + nullptr, "alias_cont"); + BasicBlock *Copy = + SplitBlock(MatMul->getParent(), MatMul, nullptr, &LI, nullptr, "copy"); + BasicBlock *Fusion = SplitBlock(MatMul->getParent(), MatMul, nullptr, &LI, + nullptr, "no_alias"); + + // Check if the loaded memory location begins before the end of the store + // location. If the condition holds, they might overlap, otherwise they are + // guaranteed to not overlap. + IRBuilder<> Builder(MatMul); + Check0->getTerminator()->eraseFromParent(); + Builder.SetInsertPoint(Check0); + Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout()); + Value *StoreBegin = Builder.CreatePtrToInt( + const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin"); + Value *StoreEnd = Builder.CreateAdd( + StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()), + "store.end", true, true); + Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr), + IntPtrTy, "load.begin"); + Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1, + Fusion); + + // Check if the store begins before the end of the load location. If the + // condition holds, they alias, otherwise they are guaranteed to not + // overlap. + Check1->getTerminator()->eraseFromParent(); + Builder.SetInsertPoint(Check1, Check1->begin()); + Value *LoadEnd = Builder.CreateAdd( + LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()), + "load.end", true, true); + Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy, + Fusion); + + // Copy load operand to new alloca. + Builder.SetInsertPoint(Copy, Copy->begin()); + AllocaInst *NewLd = + Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace()); + Builder.CreateMemCpy(NewLd, NewLd->getAlign(), + Load->getPointerOperand(), Load->getAlign(), + LoadLoc.Size.getValue()); + Builder.SetInsertPoint(Fusion, Fusion->begin()); + PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3); + PHI->addIncoming(Load->getPointerOperand(), Check0); + PHI->addIncoming(Load->getPointerOperand(), Check1); + PHI->addIncoming(NewLd, Copy); + + // Adjust DT. + DTUpdates.push_back({DT.Insert, Check0, Check1}); + DTUpdates.push_back({DT.Insert, Check0, Fusion}); + DTUpdates.push_back({DT.Insert, Check1, Copy}); + DTUpdates.push_back({DT.Insert, Check1, Fusion}); + DT.applyUpdates(DTUpdates); + return PHI; + } + + bool isFusionProfitable(CallInst *MatMul) { + if (ForceFusion) + return true; + + ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); + ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); + + const unsigned R = LShape.NumRows; + const unsigned C = RShape.NumColumns; + const unsigned M = LShape.NumColumns; + auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); + + const unsigned VF = + std::max<unsigned>(TTI.getRegisterBitWidth(true) / + EltType->getPrimitiveSizeInBits().getFixedSize(), + 1U); + + // Cost model for tiling + // + // For tiling to be beneficial, we need reuse either along the R or + // the C axis. We vectorize along the R axis so that means at least + // 3 elements. + // TODO: Also consider cost of copying if operands alias. + if (R <= VF && C == 1) + return false; + // Then we need enough elements to exceed the number of vector + // registers we have. Note that this is an oversimplification since + // fusing also takes some extra loads which may exceed the number of + // reloads necessary. + unsigned Op0Regs = (R + VF - 1) / VF * M; + unsigned Op1Regs = (M + VF - 1) / VF * C; + return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true); + } + + MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) { + MatrixTy Res; + auto *ColumType = FixedVectorType::get(EltType, R); + for (unsigned I = 0; I < C; ++I) + Res.addVector(ConstantAggregateZero::get(ColumType)); + return Res; + } + + void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1, + StoreInst *Store, + SmallPtrSetImpl<Instruction *> &FusedInsts) { + assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && + "Tiling only supported for column-major matrixes at the moment!"); + if (!isFusionProfitable(MatMul)) + return; + + ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); + ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); + + const unsigned R = LShape.NumRows; + const unsigned C = RShape.NumColumns; + const unsigned M = LShape.NumColumns; + auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); + + Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul); + Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul); + Value *CPtr = Store->getPointerOperand(); + + bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) && + MatMul->hasAllowContract()); + IRBuilder<> Builder(Store); + for (unsigned J = 0; J < C; J += TileSize) + for (unsigned I = 0; I < R; I += TileSize) { + const unsigned TileR = std::min(R - I, unsigned(TileSize)); + const unsigned TileC = std::min(C - J, unsigned(TileSize)); + MatrixTy Res = getZeroMatrix(EltType, TileR, TileC); + + for (unsigned K = 0; K < M; K += TileSize) { + const unsigned TileM = std::min(M - K, unsigned(TileSize)); + MatrixTy A = + loadMatrix(APtr, LoadOp0->getAlign(), LoadOp0->isVolatile(), + LShape, Builder.getInt64(I), Builder.getInt64(K), + {TileR, TileM}, EltType, Builder); + MatrixTy B = + loadMatrix(BPtr, LoadOp1->getAlign(), LoadOp1->isVolatile(), + RShape, Builder.getInt64(K), Builder.getInt64(J), + {TileM, TileC}, EltType, Builder); + emitMatrixMultiply(Res, A, B, AllowContract, Builder, true); + } + storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M}, + Builder.getInt64(I), Builder.getInt64(J), EltType, Builder); + } + + // Mark eliminated instructions as fused and remove them. + FusedInsts.insert(Store); + FusedInsts.insert(MatMul); + Store->eraseFromParent(); + MatMul->eraseFromParent(); + if (LoadOp0->hasNUses(0)) { + FusedInsts.insert(LoadOp0); + LoadOp0->eraseFromParent(); + } + if (LoadOp1->hasNUses(0)) { + FusedInsts.insert(LoadOp1); + LoadOp1->eraseFromParent(); + } + } + + /// Try to lower matrix multiply chains by fusing operations. + /// + /// Currently we only lower {ld, ld} -> matmul -> st chains. + // + /// No need to return a MatrixTy object for the result of the operation, since + /// the single store user will be lowered as part of this. Instructions that + /// are completely eliminated by fusion are added to \p FusedInsts. + void LowerMatrixMultiplyFused(CallInst *MatMul, + SmallPtrSetImpl<Instruction *> &FusedInsts) { + if (!FuseMatrix || !MatMul->hasOneUse() || + MatrixLayout != MatrixLayoutTy::ColumnMajor) + return; + + auto *LoadOp0 = dyn_cast<LoadInst>(MatMul->getOperand(0)); + auto *LoadOp1 = dyn_cast<LoadInst>(MatMul->getOperand(1)); + auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin()); + if (LoadOp0 && LoadOp1 && Store) { + // The store address must dominate the MatMul instruction, otherwise + // we create invalid IR. + // FIXME: See if we can hoist the store address computation. + auto *AddrI = dyn_cast<Instruction>(Store->getOperand(1)); + if (AddrI && (!DT.dominates(AddrI, MatMul))) + return; + + emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts); + return; + } + } + /// Lowers llvm.matrix.multiply. void LowerMultiply(CallInst *MatMul) { IRBuilder<> Builder(MatMul); @@ -706,97 +1298,80 @@ public: ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); - const ColumnMatrixTy &Lhs = - getMatrix(MatMul->getArgOperand(0), LShape, Builder); - const ColumnMatrixTy &Rhs = - getMatrix(MatMul->getArgOperand(1), RShape, Builder); + const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder); + const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder); const unsigned R = LShape.NumRows; - const unsigned M = LShape.NumColumns; const unsigned C = RShape.NumColumns; - assert(M == RShape.NumRows); + assert(LShape.NumColumns == RShape.NumRows); // Initialize the output - ColumnMatrixTy Result; - for (unsigned J = 0; J < C; ++J) - Result.addColumn(UndefValue::get(VectorType::get(EltType, R))); - - const unsigned VF = std::max(TTI.getRegisterBitWidth(true) / - EltType->getPrimitiveSizeInBits(), - uint64_t(1)); + MatrixTy Result(R, C, EltType); bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) && MatMul->hasAllowContract()); - // Multiply columns from the first operand with scalars from the second - // operand. Then move along the K axes and accumulate the columns. With - // this the adds can be vectorized without reassociation. - for (unsigned J = 0; J < C; ++J) { - unsigned BlockSize = VF; - for (unsigned I = 0; I < R; I += BlockSize) { - // Gradually lower the vectorization factor to cover the remainder. - while (I + BlockSize > R) - BlockSize /= 2; - - Value *Sum = nullptr; - for (unsigned K = 0; K < M; ++K) { - Value *L = extractVector(Lhs, I, K, BlockSize, Builder); - Value *RH = Builder.CreateExtractElement(Rhs.getColumn(J), K); - Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat"); - Sum = createMulAdd(Sum, L, Splat, EltType->isFloatingPointTy(), - Builder, AllowContract); - } - Result.setColumn(J, insertVector(Result.getColumn(J), I, Sum, Builder)); - } - } + emitMatrixMultiply(Result, Lhs, Rhs, AllowContract, Builder, false); finalizeLowering(MatMul, Result, Builder); } /// Lowers llvm.matrix.transpose. void LowerTranspose(CallInst *Inst) { - ColumnMatrixTy Result; + MatrixTy Result; IRBuilder<> Builder(Inst); Value *InputVal = Inst->getArgOperand(0); VectorType *VectorTy = cast<VectorType>(InputVal->getType()); ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2)); - ColumnMatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder); - - for (unsigned Row = 0; Row < ArgShape.NumRows; ++Row) { - // Build a single column vector for this row. First initialize it. - Value *ResultColumn = UndefValue::get( - VectorType::get(VectorTy->getElementType(), ArgShape.NumColumns)); - - // Go through the elements of this row and insert it into the resulting - // column vector. - for (auto C : enumerate(InputMatrix.columns())) { - Value *Elt = Builder.CreateExtractElement(C.value(), Row); - // We insert at index Column since that is the row index after the - // transpose. - ResultColumn = - Builder.CreateInsertElement(ResultColumn, Elt, C.index()); + MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder); + + const unsigned NewNumVecs = + InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns; + const unsigned NewNumElts = + InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows; + + for (unsigned I = 0; I < NewNumVecs; ++I) { + // Build a single result vector. First initialize it. + Value *ResultVector = UndefValue::get( + FixedVectorType::get(VectorTy->getElementType(), NewNumElts)); + // Go through the old elements and insert it into the resulting vector. + for (auto J : enumerate(InputMatrix.vectors())) { + Value *Elt = Builder.CreateExtractElement(J.value(), I); + // Row and column indices are transposed. + ResultVector = + Builder.CreateInsertElement(ResultVector, Elt, J.index()); } - Result.addColumn(ResultColumn); + Result.addVector(ResultVector); } - finalizeLowering(Inst, Result, Builder); + // TODO: Improve estimate of operations needed for transposes. Currently we + // just count the insertelement/extractelement instructions, but do not + // account for later simplifications/combines. + finalizeLowering( + Inst, + Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns), + Builder); } /// Lower load instructions, if shape information is available. - bool VisitLoad(Instruction *Inst, Value *Ptr, IRBuilder<> &Builder) { + bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) { auto I = ShapeMap.find(Inst); if (I == ShapeMap.end()) return false; - LowerLoad(Inst, Ptr, Builder.getInt32(I->second.NumRows), I->second); + LowerLoad(Inst, Ptr, Inst->getAlign(), + Builder.getInt64(I->second.getStride()), Inst->isVolatile(), + I->second); return true; } - bool VisitStore(Instruction *Inst, Value *StoredVal, Value *Ptr, + bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr, IRBuilder<> &Builder) { auto I = ShapeMap.find(StoredVal); if (I == ShapeMap.end()) return false; - LowerStore(Inst, StoredVal, Ptr, Builder.getInt32(I->second.NumRows), I->second); + LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(), + Builder.getInt64(I->second.getStride()), Inst->isVolatile(), + I->second); return true; } @@ -812,12 +1387,15 @@ public: IRBuilder<> Builder(Inst); ShapeInfo &Shape = I->second; - ColumnMatrixTy LoweredLhs = getMatrix(Lhs, Shape, Builder); - ColumnMatrixTy LoweredRhs = getMatrix(Rhs, Shape, Builder); + MatrixTy Result; + MatrixTy A = getMatrix(Lhs, Shape, Builder); + MatrixTy B = getMatrix(Rhs, Shape, Builder); + assert(A.isColumnMajor() == B.isColumnMajor() && + Result.isColumnMajor() == A.isColumnMajor() && + "operands must agree on matrix layout"); - // Add each column and store the result back into the opmapping - ColumnMatrixTy Result; - auto BuildColumnOp = [&Builder, Inst](Value *LHS, Value *RHS) { + // Helper to perform binary op on vectors. + auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) { switch (Inst->getOpcode()) { case Instruction::Add: return Builder.CreateAdd(LHS, RHS); @@ -835,20 +1413,462 @@ public: llvm_unreachable("Unsupported binary operator for matrix"); } }; - for (unsigned C = 0; C < Shape.NumColumns; ++C) - Result.addColumn( - BuildColumnOp(LoweredLhs.getColumn(C), LoweredRhs.getColumn(C))); - finalizeLowering(Inst, Result, Builder); + for (unsigned I = 0; I < Shape.getNumVectors(); ++I) + Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I))); + + finalizeLowering(Inst, + Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * + Result.getNumVectors()), + Builder); return true; } + + /// Helper to linearize a matrix expression tree into a string. Currently + /// matrix expressions are linarized by starting at an expression leaf and + /// linearizing bottom up. + struct ExprLinearizer { + unsigned LengthToBreak = 100; + std::string Str; + raw_string_ostream Stream; + unsigned LineLength = 0; + const DataLayout &DL; + + /// Mapping from instructions to matrixes. It is used to identify + /// matrix instructions. + const MapVector<Value *, MatrixTy> &Inst2Matrix; + + /// Mapping from values to the leaves of all expressions that the value is + /// part of. + const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared; + + /// Set of matrix expressions in the scope of a given DISubprogram. + const SmallSetVector<Value *, 32> &ExprsInSubprogram; + + /// Leaf node of the expression to linearize. + Value *Leaf; + + /// Used to keep track of sub-expressions that get reused while linearizing + /// the expression. Re-used sub-expressions are marked as (reused). + SmallPtrSet<Value *, 8> ReusedExprs; + + ExprLinearizer(const DataLayout &DL, + const MapVector<Value *, MatrixTy> &Inst2Matrix, + const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, + const SmallSetVector<Value *, 32> &ExprsInSubprogram, + Value *Leaf) + : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared), + ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {} + + void indent(unsigned N) { + LineLength += N; + for (unsigned i = 0; i < N; i++) + Stream << " "; + } + + void lineBreak() { + Stream << "\n"; + LineLength = 0; + } + + void maybeIndent(unsigned Indent) { + if (LineLength >= LengthToBreak) + lineBreak(); + + if (LineLength == 0) + indent(Indent); + } + + void write(StringRef S) { + LineLength += S.size(); + Stream << S; + } + + Value *getUnderlyingObjectThroughLoads(Value *V) { + if (Value *Ptr = getPointerOperand(V)) + return getUnderlyingObjectThroughLoads(Ptr); + else if (V->getType()->isPointerTy()) + return GetUnderlyingObject(V, DL); + return V; + } + + /// Returns true if \p V is a matrix value in the given subprogram. + bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); } + + /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to + /// \p SS. + void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) { + auto M = Inst2Matrix.find(V); + if (M == Inst2Matrix.end()) + SS << "unknown"; + else { + SS << M->second.getNumRows(); + SS << "x"; + SS << M->second.getNumColumns(); + } + } + + /// Write the called function name. Handles calls to llvm.matrix.* + /// specially: we write the name, followed by the dimensions of the input + /// matrixes, followed by the scalar type name. + void writeFnName(CallInst *CI) { + if (!CI->getCalledFunction()) + write("<no called fn>"); + else { + StringRef Name = CI->getCalledFunction()->getName(); + if (!Name.startswith("llvm.matrix")) { + write(Name); + return; + } + IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); + write(StringRef(Intrinsic::getName(II->getIntrinsicID(), {})) + .drop_front(StringRef("llvm.matrix.").size())); + write("."); + std::string Tmp = ""; + raw_string_ostream SS(Tmp); + + switch (II->getIntrinsicID()) { + case Intrinsic::matrix_multiply: + prettyPrintMatrixType(II->getOperand(0), SS); + SS << "."; + prettyPrintMatrixType(II->getOperand(1), SS); + SS << "." << *II->getType()->getScalarType(); + break; + case Intrinsic::matrix_transpose: + prettyPrintMatrixType(II->getOperand(0), SS); + SS << "." << *II->getType()->getScalarType(); + break; + case Intrinsic::matrix_column_major_load: + prettyPrintMatrixType(II, SS); + SS << "." << *II->getType()->getScalarType(); + break; + case Intrinsic::matrix_column_major_store: + prettyPrintMatrixType(II->getOperand(0), SS); + SS << "." << *II->getOperand(0)->getType()->getScalarType(); + break; + default: + llvm_unreachable("Unhandled case"); + } + SS.flush(); + write(Tmp); + } + } + + unsigned getNumShapeArgs(CallInst *CI) const { + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { + switch (II->getIntrinsicID()) { + case Intrinsic::matrix_multiply: + return 3; + case Intrinsic::matrix_transpose: + return 2; + case Intrinsic::matrix_column_major_load: + case Intrinsic::matrix_column_major_store: + return 3; + default: + return 0; + } + } + return 0; + } + + /// Special printing for values: for pointers, we print if they refer to an + /// (function) external address or a stack address, for other values we + /// either print the constant or "scalar"/"matrix" for other values. + void write(Value *V) { + V = getUnderlyingObjectThroughLoads(V); + if (V->getType()->isPointerTy()) { + if (isa<AllocaInst>(V)) { + Stream << "stack addr"; + LineLength += StringRef("stack addr").size(); + } else { + Stream << "addr"; + LineLength += StringRef("addr").size(); + } + if (!V->getName().empty()) { + Stream << " %" << V->getName() << ""; + LineLength += V->getName().size() + 2; + } + return; + } + + std::string Tmp; + raw_string_ostream TmpStream(Tmp); + + if (auto *CI = dyn_cast<ConstantInt>(V)) + TmpStream << CI->getValue(); + else if (isa<Constant>(V)) + TmpStream << "constant"; + else { + if (isMatrix(V)) + TmpStream << "matrix"; + else + TmpStream << "scalar"; + } + TmpStream.flush(); + Tmp = std::string(StringRef(Tmp).trim()); + LineLength += Tmp.size(); + Stream << Tmp; + } + + /// Linearize expression \p Expr starting at an indentation of \p Indent. + /// Expressions that are re-used multiple times are prefixed with (reused) + /// at the re-used root instruction. + void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused, + bool ParentShared) { + auto *I = cast<Instruction>(Expr); + maybeIndent(Indent); + SmallVector<Value *, 8> Ops; + + // Is Expr shared with other expression leaves? + bool ExprShared = false; + + // Deal with shared subtrees. Mark them as shared, if required. + if (!ParentShared) { + auto SI = Shared.find(Expr); + assert(SI != Shared.end() && SI->second.count(Leaf)); + + for (Value *S : SI->second) { + if (S == Leaf) + continue; + DebugLoc DL = cast<Instruction>(S)->getDebugLoc(); + write("shared with remark at line " + std::to_string(DL.getLine()) + + " column " + std::to_string(DL.getCol()) + " ("); + } + ExprShared = SI->second.size() > 1; + } + + bool Reused = !ReusedExprs.insert(Expr).second; + if (Reused && !ParentReused) + write("(reused) "); + + if (auto *CI = dyn_cast<CallInst>(I)) { + writeFnName(CI); + + Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI)); + } else if (isa<BitCastInst>(Expr)) { + // Special case bitcasts, which are used to materialize matrixes from + // non-matrix ops. + write("matrix"); + return; + } else { + Ops.append(I->value_op_begin(), I->value_op_end()); + write(std::string(I->getOpcodeName())); + } + + write(std::string("(")); + + unsigned NumOpsToBreak = 1; + if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>())) + NumOpsToBreak = 2; + + for (Value *Op : Ops) { + if (Ops.size() > NumOpsToBreak) + lineBreak(); + + maybeIndent(Indent + 1); + if (isMatrix(Op)) + linearizeExpr(Op, Indent + 1, Reused, ExprShared); + else + write(Op); + if (Op != Ops.back()) + write(", "); + } + + write(")"); + } + + const std::string &getResult() { + Stream.flush(); + return Str; + } + }; + + /// Generate remarks for matrix operations in a function. To generate remarks + /// for matrix expressions, the following approach is used: + /// 1. Use the inlined-at debug information to group matrix operations to the + /// DISubprograms they are contained in. + /// 2. Collect leaves of matrix expressions (done in + /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression + // mapping. Leaves are lowered matrix instructions without other matrix + // users (like stores) in the current subprogram. + /// 3. For each leaf, create a remark containing a linearizied version of the + /// matrix expression. The expression is linearized by a recursive + /// bottom-up traversal of the matrix operands, starting at a leaf. Note + /// that multiple leaves can share sub-expressions. Shared subexpressions + /// are explicitly marked as shared(). + struct RemarkGenerator { + const MapVector<Value *, MatrixTy> &Inst2Matrix; + OptimizationRemarkEmitter &ORE; + Function &Func; + const DataLayout &DL; + + RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix, + OptimizationRemarkEmitter &ORE, Function &Func) + : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func), + DL(Func.getParent()->getDataLayout()) {} + + /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are + /// instructions in Inst2Matrix returning void or without any users in + /// \p ExprsInSubprogram. Currently that should only include stores. + SmallVector<Value *, 4> + getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) { + SmallVector<Value *, 4> Leaves; + for (auto *Expr : ExprsInSubprogram) + if (Expr->getType()->isVoidTy() || + !any_of(Expr->users(), [&ExprsInSubprogram](User *U) { + return ExprsInSubprogram.count(U); + })) + Leaves.push_back(Expr); + return Leaves; + } + + /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf + /// to all visited expressions in \p Shared. Limit the matrix operations to + /// the ones in \p ExprsInSubprogram. + void collectSharedInfo(Value *Leaf, Value *V, + const SmallSetVector<Value *, 32> &ExprsInSubprogram, + DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) { + + if (!ExprsInSubprogram.count(V)) + return; + + auto I = Shared.insert({V, {}}); + I.first->second.insert(Leaf); + + for (Value *Op : cast<Instruction>(V)->operand_values()) + collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared); + return; + } + + /// Calculate the number of exclusive and shared op counts for expression + /// starting at \p V. Expressions used multiple times are counted once. + /// Limit the matrix operations to the ones in \p ExprsInSubprogram. + std::pair<OpInfoTy, OpInfoTy> + sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs, + const SmallSetVector<Value *, 32> &ExprsInSubprogram, + DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const { + if (!ExprsInSubprogram.count(Root)) + return {}; + + // Already counted this expression. Stop. + if (!ReusedExprs.insert(Root).second) + return {}; + + OpInfoTy SharedCount; + OpInfoTy Count; + + auto I = Shared.find(Root); + auto CM = Inst2Matrix.find(Root); + if (I->second.size() == 1) + Count = CM->second.getOpInfo(); + else + SharedCount = CM->second.getOpInfo(); + + for (Value *Op : cast<Instruction>(Root)->operand_values()) { + auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared); + Count += C.first; + SharedCount += C.second; + } + return {Count, SharedCount}; + } + + void emitRemarks() { + if (!ORE.allowExtraAnalysis(DEBUG_TYPE)) + return; + + // Map matrix operations to their containting subprograms, by traversing + // the inlinedAt chain. If the function does not have a DISubprogram, we + // only map them to the containing function. + MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs; + for (auto &KV : Inst2Matrix) { + if (Func.getSubprogram()) { + auto *I = cast<Instruction>(KV.first); + DILocation *Context = I->getDebugLoc(); + while (Context) { + auto I = + Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}}); + I.first->second.push_back(KV.first); + Context = DebugLoc(Context).getInlinedAt(); + } + } else { + auto I = Subprog2Exprs.insert({nullptr, {}}); + I.first->second.push_back(KV.first); + } + } + for (auto &KV : Subprog2Exprs) { + SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(), + KV.second.end()); + auto Leaves = getExpressionLeaves(ExprsInSubprogram); + + DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared; + for (Value *Leaf : Leaves) + collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared); + + // Generate remarks for each leaf. + for (auto *L : Leaves) { + + DebugLoc Loc = cast<Instruction>(L)->getDebugLoc(); + DILocation *Context = cast<Instruction>(L)->getDebugLoc(); + while (Context) { + if (getSubprogram(Context->getScope()) == KV.first) { + Loc = Context; + break; + } + Context = DebugLoc(Context).getInlinedAt(); + } + + SmallPtrSet<Value *, 8> ReusedExprs; + OpInfoTy Counts, SharedCounts; + std::tie(Counts, SharedCounts) = + sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared); + + OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc, + cast<Instruction>(L)->getParent()); + + Rem << "Lowered with "; + Rem << ore::NV("NumStores", Counts.NumStores) << " stores, " + << ore::NV("NumLoads", Counts.NumLoads) << " loads, " + << ore::NV("NumComputeOps", Counts.NumComputeOps) + << " compute ops"; + + if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 || + SharedCounts.NumComputeOps > 0) { + Rem << ",\nadditionally " + << ore::NV("NumStores", SharedCounts.NumStores) << " stores, " + << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, " + << ore::NV("NumFPOps", SharedCounts.NumComputeOps) + << " compute ops" + << " are shared with other expressions"; + } + + Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL)); + ORE.emit(Rem); + } + } + } + + std::string + linearize(Value *L, + const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, + const SmallSetVector<Value *, 32> &ExprsInSubprogram, + const DataLayout &DL) { + ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L); + Lin.linearizeExpr(L, 0, false, false); + return Lin.getResult(); + } + }; }; } // namespace PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F, FunctionAnalysisManager &AM) { auto &TTI = AM.getResult<TargetIRAnalysis>(F); - LowerMatrixIntrinsics LMT(F, TTI); + auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); + auto &AA = AM.getResult<AAManager>(F); + auto &DT = AM.getResult<DominatorTreeAnalysis>(F); + auto &LI = AM.getResult<LoopAnalysis>(F); + + LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE); if (LMT.Visit()) { PreservedAnalyses PA; PA.preserveSet<CFGAnalyses>(); @@ -869,15 +1889,24 @@ public: } bool runOnFunction(Function &F) override { - auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - LowerMatrixIntrinsics LMT(F, *TTI); + auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); + auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE); bool C = LMT.Visit(); return C; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.setPreservesCFG(); + AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addPreserved<LoopInfoWrapperPass>(); } }; } // namespace @@ -886,6 +1915,10 @@ static const char pass_name[] = "Lower the matrix intrinsics"; char LowerMatrixIntrinsicsLegacyPass::ID = 0; INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, false, false) +INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, false, false) |