summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Scalar/SCCP.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Scalar/SCCP.cpp')
-rw-r--r--llvm/lib/Transforms/Scalar/SCCP.cpp2232
1 files changed, 2232 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Scalar/SCCP.cpp b/llvm/lib/Transforms/Scalar/SCCP.cpp
new file mode 100644
index 0000000000000..10fbdc8aacd2f
--- /dev/null
+++ b/llvm/lib/Transforms/Scalar/SCCP.cpp
@@ -0,0 +1,2232 @@
+//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements sparse conditional constant propagation and merging:
+//
+// Specifically, this:
+// * Assumes values are constant unless proven otherwise
+// * Assumes BasicBlocks are dead unless proven otherwise
+// * Proves values to be constant, and replaces them with constants
+// * Proves conditional branches to be unconditional
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/SCCP.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PointerIntPair.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Analysis/ValueLattice.h"
+#include "llvm/Analysis/ValueLatticeUtils.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/PredicateInfo.h"
+#include <cassert>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "sccp"
+
+STATISTIC(NumInstRemoved, "Number of instructions removed");
+STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
+
+STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
+STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
+STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
+
+namespace {
+
+/// LatticeVal class - This class represents the different lattice values that
+/// an LLVM value may occupy. It is a simple class with value semantics.
+///
+class LatticeVal {
+ enum LatticeValueTy {
+ /// unknown - This LLVM Value has no known value yet.
+ unknown,
+
+ /// constant - This LLVM Value has a specific constant value.
+ constant,
+
+ /// forcedconstant - This LLVM Value was thought to be undef until
+ /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
+ /// with another (different) constant, it goes to overdefined, instead of
+ /// asserting.
+ forcedconstant,
+
+ /// overdefined - This instruction is not known to be constant, and we know
+ /// it has a value.
+ overdefined
+ };
+
+ /// Val: This stores the current lattice value along with the Constant* for
+ /// the constant if this is a 'constant' or 'forcedconstant' value.
+ PointerIntPair<Constant *, 2, LatticeValueTy> Val;
+
+ LatticeValueTy getLatticeValue() const {
+ return Val.getInt();
+ }
+
+public:
+ LatticeVal() : Val(nullptr, unknown) {}
+
+ bool isUnknown() const { return getLatticeValue() == unknown; }
+
+ bool isConstant() const {
+ return getLatticeValue() == constant || getLatticeValue() == forcedconstant;
+ }
+
+ bool isOverdefined() const { return getLatticeValue() == overdefined; }
+
+ Constant *getConstant() const {
+ assert(isConstant() && "Cannot get the constant of a non-constant!");
+ return Val.getPointer();
+ }
+
+ /// markOverdefined - Return true if this is a change in status.
+ bool markOverdefined() {
+ if (isOverdefined())
+ return false;
+
+ Val.setInt(overdefined);
+ return true;
+ }
+
+ /// markConstant - Return true if this is a change in status.
+ bool markConstant(Constant *V) {
+ if (getLatticeValue() == constant) { // Constant but not forcedconstant.
+ assert(getConstant() == V && "Marking constant with different value");
+ return false;
+ }
+
+ if (isUnknown()) {
+ Val.setInt(constant);
+ assert(V && "Marking constant with NULL");
+ Val.setPointer(V);
+ } else {
+ assert(getLatticeValue() == forcedconstant &&
+ "Cannot move from overdefined to constant!");
+ // Stay at forcedconstant if the constant is the same.
+ if (V == getConstant()) return false;
+
+ // Otherwise, we go to overdefined. Assumptions made based on the
+ // forced value are possibly wrong. Assuming this is another constant
+ // could expose a contradiction.
+ Val.setInt(overdefined);
+ }
+ return true;
+ }
+
+ /// getConstantInt - If this is a constant with a ConstantInt value, return it
+ /// otherwise return null.
+ ConstantInt *getConstantInt() const {
+ if (isConstant())
+ return dyn_cast<ConstantInt>(getConstant());
+ return nullptr;
+ }
+
+ /// getBlockAddress - If this is a constant with a BlockAddress value, return
+ /// it, otherwise return null.
+ BlockAddress *getBlockAddress() const {
+ if (isConstant())
+ return dyn_cast<BlockAddress>(getConstant());
+ return nullptr;
+ }
+
+ void markForcedConstant(Constant *V) {
+ assert(isUnknown() && "Can't force a defined value!");
+ Val.setInt(forcedconstant);
+ Val.setPointer(V);
+ }
+
+ ValueLatticeElement toValueLattice() const {
+ if (isOverdefined())
+ return ValueLatticeElement::getOverdefined();
+ if (isConstant())
+ return ValueLatticeElement::get(getConstant());
+ return ValueLatticeElement();
+ }
+};
+
+//===----------------------------------------------------------------------===//
+//
+/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
+/// Constant Propagation.
+///
+class SCCPSolver : public InstVisitor<SCCPSolver> {
+ const DataLayout &DL;
+ std::function<const TargetLibraryInfo &(Function &)> GetTLI;
+ SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
+ DenseMap<Value *, LatticeVal> ValueState; // The state each value is in.
+ // The state each parameter is in.
+ DenseMap<Value *, ValueLatticeElement> ParamState;
+
+ /// StructValueState - This maintains ValueState for values that have
+ /// StructType, for example for formal arguments, calls, insertelement, etc.
+ DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState;
+
+ /// GlobalValue - If we are tracking any values for the contents of a global
+ /// variable, we keep a mapping from the constant accessor to the element of
+ /// the global, to the currently known value. If the value becomes
+ /// overdefined, it's entry is simply removed from this map.
+ DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals;
+
+ /// TrackedRetVals - If we are tracking arguments into and the return
+ /// value out of a function, it will have an entry in this map, indicating
+ /// what the known return value for the function is.
+ MapVector<Function *, LatticeVal> TrackedRetVals;
+
+ /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
+ /// that return multiple values.
+ MapVector<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals;
+
+ /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
+ /// represented here for efficient lookup.
+ SmallPtrSet<Function *, 16> MRVFunctionsTracked;
+
+ /// MustTailFunctions - Each function here is a callee of non-removable
+ /// musttail call site.
+ SmallPtrSet<Function *, 16> MustTailCallees;
+
+ /// TrackingIncomingArguments - This is the set of functions for whose
+ /// arguments we make optimistic assumptions about and try to prove as
+ /// constants.
+ SmallPtrSet<Function *, 16> TrackingIncomingArguments;
+
+ /// The reason for two worklists is that overdefined is the lowest state
+ /// on the lattice, and moving things to overdefined as fast as possible
+ /// makes SCCP converge much faster.
+ ///
+ /// By having a separate worklist, we accomplish this because everything
+ /// possibly overdefined will become overdefined at the soonest possible
+ /// point.
+ SmallVector<Value *, 64> OverdefinedInstWorkList;
+ SmallVector<Value *, 64> InstWorkList;
+
+ // The BasicBlock work list
+ SmallVector<BasicBlock *, 64> BBWorkList;
+
+ /// KnownFeasibleEdges - Entries in this set are edges which have already had
+ /// PHI nodes retriggered.
+ using Edge = std::pair<BasicBlock *, BasicBlock *>;
+ DenseSet<Edge> KnownFeasibleEdges;
+
+ DenseMap<Function *, AnalysisResultsForFn> AnalysisResults;
+ DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers;
+
+public:
+ void addAnalysis(Function &F, AnalysisResultsForFn A) {
+ AnalysisResults.insert({&F, std::move(A)});
+ }
+
+ const PredicateBase *getPredicateInfoFor(Instruction *I) {
+ auto A = AnalysisResults.find(I->getParent()->getParent());
+ if (A == AnalysisResults.end())
+ return nullptr;
+ return A->second.PredInfo->getPredicateInfoFor(I);
+ }
+
+ DomTreeUpdater getDTU(Function &F) {
+ auto A = AnalysisResults.find(&F);
+ assert(A != AnalysisResults.end() && "Need analysis results for function.");
+ return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy};
+ }
+
+ SCCPSolver(const DataLayout &DL,
+ std::function<const TargetLibraryInfo &(Function &)> GetTLI)
+ : DL(DL), GetTLI(std::move(GetTLI)) {}
+
+ /// MarkBlockExecutable - This method can be used by clients to mark all of
+ /// the blocks that are known to be intrinsically live in the processed unit.
+ ///
+ /// This returns true if the block was not considered live before.
+ bool MarkBlockExecutable(BasicBlock *BB) {
+ if (!BBExecutable.insert(BB).second)
+ return false;
+ LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
+ BBWorkList.push_back(BB); // Add the block to the work list!
+ return true;
+ }
+
+ /// TrackValueOfGlobalVariable - Clients can use this method to
+ /// inform the SCCPSolver that it should track loads and stores to the
+ /// specified global variable if it can. This is only legal to call if
+ /// performing Interprocedural SCCP.
+ void TrackValueOfGlobalVariable(GlobalVariable *GV) {
+ // We only track the contents of scalar globals.
+ if (GV->getValueType()->isSingleValueType()) {
+ LatticeVal &IV = TrackedGlobals[GV];
+ if (!isa<UndefValue>(GV->getInitializer()))
+ IV.markConstant(GV->getInitializer());
+ }
+ }
+
+ /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
+ /// and out of the specified function (which cannot have its address taken),
+ /// this method must be called.
+ void AddTrackedFunction(Function *F) {
+ // Add an entry, F -> undef.
+ if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
+ MRVFunctionsTracked.insert(F);
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
+ LatticeVal()));
+ } else
+ TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
+ }
+
+ /// AddMustTailCallee - If the SCCP solver finds that this function is called
+ /// from non-removable musttail call site.
+ void AddMustTailCallee(Function *F) {
+ MustTailCallees.insert(F);
+ }
+
+ /// Returns true if the given function is called from non-removable musttail
+ /// call site.
+ bool isMustTailCallee(Function *F) {
+ return MustTailCallees.count(F);
+ }
+
+ void AddArgumentTrackedFunction(Function *F) {
+ TrackingIncomingArguments.insert(F);
+ }
+
+ /// Returns true if the given function is in the solver's set of
+ /// argument-tracked functions.
+ bool isArgumentTrackedFunction(Function *F) {
+ return TrackingIncomingArguments.count(F);
+ }
+
+ /// Solve - Solve for constants and executable blocks.
+ void Solve();
+
+ /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
+ /// that branches on undef values cannot reach any of their successors.
+ /// However, this is not a safe assumption. After we solve dataflow, this
+ /// method should be use to handle this. If this returns true, the solver
+ /// should be rerun.
+ bool ResolvedUndefsIn(Function &F);
+
+ bool isBlockExecutable(BasicBlock *BB) const {
+ return BBExecutable.count(BB);
+ }
+
+ // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
+ // block to the 'To' basic block is currently feasible.
+ bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
+
+ std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const {
+ std::vector<LatticeVal> StructValues;
+ auto *STy = dyn_cast<StructType>(V->getType());
+ assert(STy && "getStructLatticeValueFor() can be called only on structs");
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ auto I = StructValueState.find(std::make_pair(V, i));
+ assert(I != StructValueState.end() && "Value not in valuemap!");
+ StructValues.push_back(I->second);
+ }
+ return StructValues;
+ }
+
+ const LatticeVal &getLatticeValueFor(Value *V) const {
+ assert(!V->getType()->isStructTy() &&
+ "Should use getStructLatticeValueFor");
+ DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V);
+ assert(I != ValueState.end() &&
+ "V not found in ValueState nor Paramstate map!");
+ return I->second;
+ }
+
+ /// getTrackedRetVals - Get the inferred return value map.
+ const MapVector<Function*, LatticeVal> &getTrackedRetVals() {
+ return TrackedRetVals;
+ }
+
+ /// getTrackedGlobals - Get and return the set of inferred initializers for
+ /// global variables.
+ const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
+ return TrackedGlobals;
+ }
+
+ /// getMRVFunctionsTracked - Get the set of functions which return multiple
+ /// values tracked by the pass.
+ const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() {
+ return MRVFunctionsTracked;
+ }
+
+ /// getMustTailCallees - Get the set of functions which are called
+ /// from non-removable musttail call sites.
+ const SmallPtrSet<Function *, 16> getMustTailCallees() {
+ return MustTailCallees;
+ }
+
+ /// markOverdefined - Mark the specified value overdefined. This
+ /// works with both scalars and structs.
+ void markOverdefined(Value *V) {
+ if (auto *STy = dyn_cast<StructType>(V->getType()))
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ markOverdefined(getStructValueState(V, i), V);
+ else
+ markOverdefined(ValueState[V], V);
+ }
+
+ // isStructLatticeConstant - Return true if all the lattice values
+ // corresponding to elements of the structure are not overdefined,
+ // false otherwise.
+ bool isStructLatticeConstant(Function *F, StructType *STy) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
+ assert(It != TrackedMultipleRetVals.end());
+ LatticeVal LV = It->second;
+ if (LV.isOverdefined())
+ return false;
+ }
+ return true;
+ }
+
+private:
+ // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined
+ void pushToWorkList(LatticeVal &IV, Value *V) {
+ if (IV.isOverdefined())
+ return OverdefinedInstWorkList.push_back(V);
+ InstWorkList.push_back(V);
+ }
+
+ // markConstant - Make a value be marked as "constant". If the value
+ // is not already a constant, add it to the instruction work list so that
+ // the users of the instruction are updated later.
+ bool markConstant(LatticeVal &IV, Value *V, Constant *C) {
+ if (!IV.markConstant(C)) return false;
+ LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
+ pushToWorkList(IV, V);
+ return true;
+ }
+
+ bool markConstant(Value *V, Constant *C) {
+ assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
+ return markConstant(ValueState[V], V, C);
+ }
+
+ void markForcedConstant(Value *V, Constant *C) {
+ assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
+ LatticeVal &IV = ValueState[V];
+ IV.markForcedConstant(C);
+ LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n');
+ pushToWorkList(IV, V);
+ }
+
+ // markOverdefined - Make a value be marked as "overdefined". If the
+ // value is not already overdefined, add it to the overdefined instruction
+ // work list so that the users of the instruction are updated later.
+ bool markOverdefined(LatticeVal &IV, Value *V) {
+ if (!IV.markOverdefined()) return false;
+
+ LLVM_DEBUG(dbgs() << "markOverdefined: ";
+ if (auto *F = dyn_cast<Function>(V)) dbgs()
+ << "Function '" << F->getName() << "'\n";
+ else dbgs() << *V << '\n');
+ // Only instructions go on the work list
+ pushToWorkList(IV, V);
+ return true;
+ }
+
+ bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) {
+ if (IV.isOverdefined() || MergeWithV.isUnknown())
+ return false; // Noop.
+ if (MergeWithV.isOverdefined())
+ return markOverdefined(IV, V);
+ if (IV.isUnknown())
+ return markConstant(IV, V, MergeWithV.getConstant());
+ if (IV.getConstant() != MergeWithV.getConstant())
+ return markOverdefined(IV, V);
+ return false;
+ }
+
+ bool mergeInValue(Value *V, LatticeVal MergeWithV) {
+ assert(!V->getType()->isStructTy() &&
+ "non-structs should use markConstant");
+ return mergeInValue(ValueState[V], V, MergeWithV);
+ }
+
+ /// getValueState - Return the LatticeVal object that corresponds to the
+ /// value. This function handles the case when the value hasn't been seen yet
+ /// by properly seeding constants etc.
+ LatticeVal &getValueState(Value *V) {
+ assert(!V->getType()->isStructTy() && "Should use getStructValueState");
+
+ std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I =
+ ValueState.insert(std::make_pair(V, LatticeVal()));
+ LatticeVal &LV = I.first->second;
+
+ if (!I.second)
+ return LV; // Common case, already in the map.
+
+ if (auto *C = dyn_cast<Constant>(V)) {
+ // Undef values remain unknown.
+ if (!isa<UndefValue>(V))
+ LV.markConstant(C); // Constants are constant
+ }
+
+ // All others are underdefined by default.
+ return LV;
+ }
+
+ ValueLatticeElement &getParamState(Value *V) {
+ assert(!V->getType()->isStructTy() && "Should use getStructValueState");
+
+ std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool>
+ PI = ParamState.insert(std::make_pair(V, ValueLatticeElement()));
+ ValueLatticeElement &LV = PI.first->second;
+ if (PI.second)
+ LV = getValueState(V).toValueLattice();
+
+ return LV;
+ }
+
+ /// getStructValueState - Return the LatticeVal object that corresponds to the
+ /// value/field pair. This function handles the case when the value hasn't
+ /// been seen yet by properly seeding constants etc.
+ LatticeVal &getStructValueState(Value *V, unsigned i) {
+ assert(V->getType()->isStructTy() && "Should use getValueState");
+ assert(i < cast<StructType>(V->getType())->getNumElements() &&
+ "Invalid element #");
+
+ std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator,
+ bool> I = StructValueState.insert(
+ std::make_pair(std::make_pair(V, i), LatticeVal()));
+ LatticeVal &LV = I.first->second;
+
+ if (!I.second)
+ return LV; // Common case, already in the map.
+
+ if (auto *C = dyn_cast<Constant>(V)) {
+ Constant *Elt = C->getAggregateElement(i);
+
+ if (!Elt)
+ LV.markOverdefined(); // Unknown sort of constant.
+ else if (isa<UndefValue>(Elt))
+ ; // Undef values remain unknown.
+ else
+ LV.markConstant(Elt); // Constants are constant.
+ }
+
+ // All others are underdefined by default.
+ return LV;
+ }
+
+ /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
+ /// work list if it is not already executable.
+ bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
+ if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
+ return false; // This edge is already known to be executable!
+
+ if (!MarkBlockExecutable(Dest)) {
+ // If the destination is already executable, we just made an *edge*
+ // feasible that wasn't before. Revisit the PHI nodes in the block
+ // because they have potentially new operands.
+ LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
+ << " -> " << Dest->getName() << '\n');
+
+ for (PHINode &PN : Dest->phis())
+ visitPHINode(PN);
+ }
+ return true;
+ }
+
+ // getFeasibleSuccessors - Return a vector of booleans to indicate which
+ // successors are reachable from a given terminator instruction.
+ void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
+
+ // OperandChangedState - This method is invoked on all of the users of an
+ // instruction that was just changed state somehow. Based on this
+ // information, we need to update the specified user of this instruction.
+ void OperandChangedState(Instruction *I) {
+ if (BBExecutable.count(I->getParent())) // Inst is executable?
+ visit(*I);
+ }
+
+ // Add U as additional user of V.
+ void addAdditionalUser(Value *V, User *U) {
+ auto Iter = AdditionalUsers.insert({V, {}});
+ Iter.first->second.insert(U);
+ }
+
+ // Mark I's users as changed, including AdditionalUsers.
+ void markUsersAsChanged(Value *I) {
+ for (User *U : I->users())
+ if (auto *UI = dyn_cast<Instruction>(U))
+ OperandChangedState(UI);
+
+ auto Iter = AdditionalUsers.find(I);
+ if (Iter != AdditionalUsers.end()) {
+ for (User *U : Iter->second)
+ if (auto *UI = dyn_cast<Instruction>(U))
+ OperandChangedState(UI);
+ }
+ }
+
+private:
+ friend class InstVisitor<SCCPSolver>;
+
+ // visit implementations - Something changed in this instruction. Either an
+ // operand made a transition, or the instruction is newly executable. Change
+ // the value type of I to reflect these changes if appropriate.
+ void visitPHINode(PHINode &I);
+
+ // Terminators
+
+ void visitReturnInst(ReturnInst &I);
+ void visitTerminator(Instruction &TI);
+
+ void visitCastInst(CastInst &I);
+ void visitSelectInst(SelectInst &I);
+ void visitUnaryOperator(Instruction &I);
+ void visitBinaryOperator(Instruction &I);
+ void visitCmpInst(CmpInst &I);
+ void visitExtractValueInst(ExtractValueInst &EVI);
+ void visitInsertValueInst(InsertValueInst &IVI);
+
+ void visitCatchSwitchInst(CatchSwitchInst &CPI) {
+ markOverdefined(&CPI);
+ visitTerminator(CPI);
+ }
+
+ // Instructions that cannot be folded away.
+
+ void visitStoreInst (StoreInst &I);
+ void visitLoadInst (LoadInst &I);
+ void visitGetElementPtrInst(GetElementPtrInst &I);
+
+ void visitCallInst (CallInst &I) {
+ visitCallSite(&I);
+ }
+
+ void visitInvokeInst (InvokeInst &II) {
+ visitCallSite(&II);
+ visitTerminator(II);
+ }
+
+ void visitCallBrInst (CallBrInst &CBI) {
+ visitCallSite(&CBI);
+ visitTerminator(CBI);
+ }
+
+ void visitCallSite (CallSite CS);
+ void visitResumeInst (ResumeInst &I) { /*returns void*/ }
+ void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ }
+ void visitFenceInst (FenceInst &I) { /*returns void*/ }
+
+ void visitInstruction(Instruction &I) {
+ // All the instructions we don't do any special handling for just
+ // go to overdefined.
+ LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
+ markOverdefined(&I);
+ }
+};
+
+} // end anonymous namespace
+
+// getFeasibleSuccessors - Return a vector of booleans to indicate which
+// successors are reachable from a given terminator instruction.
+void SCCPSolver::getFeasibleSuccessors(Instruction &TI,
+ SmallVectorImpl<bool> &Succs) {
+ Succs.resize(TI.getNumSuccessors());
+ if (auto *BI = dyn_cast<BranchInst>(&TI)) {
+ if (BI->isUnconditional()) {
+ Succs[0] = true;
+ return;
+ }
+
+ LatticeVal BCValue = getValueState(BI->getCondition());
+ ConstantInt *CI = BCValue.getConstantInt();
+ if (!CI) {
+ // Overdefined condition variables, and branches on unfoldable constant
+ // conditions, mean the branch could go either way.
+ if (!BCValue.isUnknown())
+ Succs[0] = Succs[1] = true;
+ return;
+ }
+
+ // Constant condition variables mean the branch can only go a single way.
+ Succs[CI->isZero()] = true;
+ return;
+ }
+
+ // Unwinding instructions successors are always executable.
+ if (TI.isExceptionalTerminator()) {
+ Succs.assign(TI.getNumSuccessors(), true);
+ return;
+ }
+
+ if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
+ if (!SI->getNumCases()) {
+ Succs[0] = true;
+ return;
+ }
+ LatticeVal SCValue = getValueState(SI->getCondition());
+ ConstantInt *CI = SCValue.getConstantInt();
+
+ if (!CI) { // Overdefined or unknown condition?
+ // All destinations are executable!
+ if (!SCValue.isUnknown())
+ Succs.assign(TI.getNumSuccessors(), true);
+ return;
+ }
+
+ Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
+ return;
+ }
+
+ // In case of indirect branch and its address is a blockaddress, we mark
+ // the target as executable.
+ if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
+ // Casts are folded by visitCastInst.
+ LatticeVal IBRValue = getValueState(IBR->getAddress());
+ BlockAddress *Addr = IBRValue.getBlockAddress();
+ if (!Addr) { // Overdefined or unknown condition?
+ // All destinations are executable!
+ if (!IBRValue.isUnknown())
+ Succs.assign(TI.getNumSuccessors(), true);
+ return;
+ }
+
+ BasicBlock* T = Addr->getBasicBlock();
+ assert(Addr->getFunction() == T->getParent() &&
+ "Block address of a different function ?");
+ for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
+ // This is the target.
+ if (IBR->getDestination(i) == T) {
+ Succs[i] = true;
+ return;
+ }
+ }
+
+ // If we didn't find our destination in the IBR successor list, then we
+ // have undefined behavior. Its ok to assume no successor is executable.
+ return;
+ }
+
+ // In case of callbr, we pessimistically assume that all successors are
+ // feasible.
+ if (isa<CallBrInst>(&TI)) {
+ Succs.assign(TI.getNumSuccessors(), true);
+ return;
+ }
+
+ LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
+ llvm_unreachable("SCCP: Don't know how to handle this terminator!");
+}
+
+// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
+// block to the 'To' basic block is currently feasible.
+bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
+ // Check if we've called markEdgeExecutable on the edge yet. (We could
+ // be more aggressive and try to consider edges which haven't been marked
+ // yet, but there isn't any need.)
+ return KnownFeasibleEdges.count(Edge(From, To));
+}
+
+// visit Implementations - Something changed in this instruction, either an
+// operand made a transition, or the instruction is newly executable. Change
+// the value type of I to reflect these changes if appropriate. This method
+// makes sure to do the following actions:
+//
+// 1. If a phi node merges two constants in, and has conflicting value coming
+// from different branches, or if the PHI node merges in an overdefined
+// value, then the PHI node becomes overdefined.
+// 2. If a phi node merges only constants in, and they all agree on value, the
+// PHI node becomes a constant value equal to that.
+// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
+// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
+// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
+// 6. If a conditional branch has a value that is constant, make the selected
+// destination executable
+// 7. If a conditional branch has a value that is overdefined, make all
+// successors executable.
+void SCCPSolver::visitPHINode(PHINode &PN) {
+ // If this PN returns a struct, just mark the result overdefined.
+ // TODO: We could do a lot better than this if code actually uses this.
+ if (PN.getType()->isStructTy())
+ return (void)markOverdefined(&PN);
+
+ if (getValueState(&PN).isOverdefined())
+ return; // Quick exit
+
+ // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
+ // and slow us down a lot. Just mark them overdefined.
+ if (PN.getNumIncomingValues() > 64)
+ return (void)markOverdefined(&PN);
+
+ // Look at all of the executable operands of the PHI node. If any of them
+ // are overdefined, the PHI becomes overdefined as well. If they are all
+ // constant, and they agree with each other, the PHI becomes the identical
+ // constant. If they are constant and don't agree, the PHI is overdefined.
+ // If there are no executable operands, the PHI remains unknown.
+ Constant *OperandVal = nullptr;
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
+ LatticeVal IV = getValueState(PN.getIncomingValue(i));
+ if (IV.isUnknown()) continue; // Doesn't influence PHI node.
+
+ if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
+ continue;
+
+ if (IV.isOverdefined()) // PHI node becomes overdefined!
+ return (void)markOverdefined(&PN);
+
+ if (!OperandVal) { // Grab the first value.
+ OperandVal = IV.getConstant();
+ continue;
+ }
+
+ // There is already a reachable operand. If we conflict with it,
+ // then the PHI node becomes overdefined. If we agree with it, we
+ // can continue on.
+
+ // Check to see if there are two different constants merging, if so, the PHI
+ // node is overdefined.
+ if (IV.getConstant() != OperandVal)
+ return (void)markOverdefined(&PN);
+ }
+
+ // If we exited the loop, this means that the PHI node only has constant
+ // arguments that agree with each other(and OperandVal is the constant) or
+ // OperandVal is null because there are no defined incoming arguments. If
+ // this is the case, the PHI remains unknown.
+ if (OperandVal)
+ markConstant(&PN, OperandVal); // Acquire operand value
+}
+
+void SCCPSolver::visitReturnInst(ReturnInst &I) {
+ if (I.getNumOperands() == 0) return; // ret void
+
+ Function *F = I.getParent()->getParent();
+ Value *ResultOp = I.getOperand(0);
+
+ // If we are tracking the return value of this function, merge it in.
+ if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
+ MapVector<Function*, LatticeVal>::iterator TFRVI =
+ TrackedRetVals.find(F);
+ if (TFRVI != TrackedRetVals.end()) {
+ mergeInValue(TFRVI->second, F, getValueState(ResultOp));
+ return;
+ }
+ }
+
+ // Handle functions that return multiple values.
+ if (!TrackedMultipleRetVals.empty()) {
+ if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
+ if (MRVFunctionsTracked.count(F))
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
+ getStructValueState(ResultOp, i));
+ }
+}
+
+void SCCPSolver::visitTerminator(Instruction &TI) {
+ SmallVector<bool, 16> SuccFeasible;
+ getFeasibleSuccessors(TI, SuccFeasible);
+
+ BasicBlock *BB = TI.getParent();
+
+ // Mark all feasible successors executable.
+ for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
+ if (SuccFeasible[i])
+ markEdgeExecutable(BB, TI.getSuccessor(i));
+}
+
+void SCCPSolver::visitCastInst(CastInst &I) {
+ LatticeVal OpSt = getValueState(I.getOperand(0));
+ if (OpSt.isOverdefined()) // Inherit overdefinedness of operand
+ markOverdefined(&I);
+ else if (OpSt.isConstant()) {
+ // Fold the constant as we build.
+ Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(),
+ I.getType(), DL);
+ if (isa<UndefValue>(C))
+ return;
+ // Propagate constant value
+ markConstant(&I, C);
+ }
+}
+
+void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
+ // If this returns a struct, mark all elements over defined, we don't track
+ // structs in structs.
+ if (EVI.getType()->isStructTy())
+ return (void)markOverdefined(&EVI);
+
+ // If this is extracting from more than one level of struct, we don't know.
+ if (EVI.getNumIndices() != 1)
+ return (void)markOverdefined(&EVI);
+
+ Value *AggVal = EVI.getAggregateOperand();
+ if (AggVal->getType()->isStructTy()) {
+ unsigned i = *EVI.idx_begin();
+ LatticeVal EltVal = getStructValueState(AggVal, i);
+ mergeInValue(getValueState(&EVI), &EVI, EltVal);
+ } else {
+ // Otherwise, must be extracting from an array.
+ return (void)markOverdefined(&EVI);
+ }
+}
+
+void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
+ auto *STy = dyn_cast<StructType>(IVI.getType());
+ if (!STy)
+ return (void)markOverdefined(&IVI);
+
+ // If this has more than one index, we can't handle it, drive all results to
+ // undef.
+ if (IVI.getNumIndices() != 1)
+ return (void)markOverdefined(&IVI);
+
+ Value *Aggr = IVI.getAggregateOperand();
+ unsigned Idx = *IVI.idx_begin();
+
+ // Compute the result based on what we're inserting.
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ // This passes through all values that aren't the inserted element.
+ if (i != Idx) {
+ LatticeVal EltVal = getStructValueState(Aggr, i);
+ mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
+ continue;
+ }
+
+ Value *Val = IVI.getInsertedValueOperand();
+ if (Val->getType()->isStructTy())
+ // We don't track structs in structs.
+ markOverdefined(getStructValueState(&IVI, i), &IVI);
+ else {
+ LatticeVal InVal = getValueState(Val);
+ mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
+ }
+ }
+}
+
+void SCCPSolver::visitSelectInst(SelectInst &I) {
+ // If this select returns a struct, just mark the result overdefined.
+ // TODO: We could do a lot better than this if code actually uses this.
+ if (I.getType()->isStructTy())
+ return (void)markOverdefined(&I);
+
+ LatticeVal CondValue = getValueState(I.getCondition());
+ if (CondValue.isUnknown())
+ return;
+
+ if (ConstantInt *CondCB = CondValue.getConstantInt()) {
+ Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
+ mergeInValue(&I, getValueState(OpVal));
+ return;
+ }
+
+ // Otherwise, the condition is overdefined or a constant we can't evaluate.
+ // See if we can produce something better than overdefined based on the T/F
+ // value.
+ LatticeVal TVal = getValueState(I.getTrueValue());
+ LatticeVal FVal = getValueState(I.getFalseValue());
+
+ // select ?, C, C -> C.
+ if (TVal.isConstant() && FVal.isConstant() &&
+ TVal.getConstant() == FVal.getConstant())
+ return (void)markConstant(&I, FVal.getConstant());
+
+ if (TVal.isUnknown()) // select ?, undef, X -> X.
+ return (void)mergeInValue(&I, FVal);
+ if (FVal.isUnknown()) // select ?, X, undef -> X.
+ return (void)mergeInValue(&I, TVal);
+ markOverdefined(&I);
+}
+
+// Handle Unary Operators.
+void SCCPSolver::visitUnaryOperator(Instruction &I) {
+ LatticeVal V0State = getValueState(I.getOperand(0));
+
+ LatticeVal &IV = ValueState[&I];
+ if (IV.isOverdefined()) return;
+
+ if (V0State.isConstant()) {
+ Constant *C = ConstantExpr::get(I.getOpcode(), V0State.getConstant());
+
+ // op Y -> undef.
+ if (isa<UndefValue>(C))
+ return;
+ return (void)markConstant(IV, &I, C);
+ }
+
+ // If something is undef, wait for it to resolve.
+ if (!V0State.isOverdefined())
+ return;
+
+ markOverdefined(&I);
+}
+
+// Handle Binary Operators.
+void SCCPSolver::visitBinaryOperator(Instruction &I) {
+ LatticeVal V1State = getValueState(I.getOperand(0));
+ LatticeVal V2State = getValueState(I.getOperand(1));
+
+ LatticeVal &IV = ValueState[&I];
+ if (IV.isOverdefined()) return;
+
+ if (V1State.isConstant() && V2State.isConstant()) {
+ Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(),
+ V2State.getConstant());
+ // X op Y -> undef.
+ if (isa<UndefValue>(C))
+ return;
+ return (void)markConstant(IV, &I, C);
+ }
+
+ // If something is undef, wait for it to resolve.
+ if (!V1State.isOverdefined() && !V2State.isOverdefined())
+ return;
+
+ // Otherwise, one of our operands is overdefined. Try to produce something
+ // better than overdefined with some tricks.
+ // If this is 0 / Y, it doesn't matter that the second operand is
+ // overdefined, and we can replace it with zero.
+ if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv)
+ if (V1State.isConstant() && V1State.getConstant()->isNullValue())
+ return (void)markConstant(IV, &I, V1State.getConstant());
+
+ // If this is:
+ // -> AND/MUL with 0
+ // -> OR with -1
+ // it doesn't matter that the other operand is overdefined.
+ if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul ||
+ I.getOpcode() == Instruction::Or) {
+ LatticeVal *NonOverdefVal = nullptr;
+ if (!V1State.isOverdefined())
+ NonOverdefVal = &V1State;
+ else if (!V2State.isOverdefined())
+ NonOverdefVal = &V2State;
+
+ if (NonOverdefVal) {
+ if (NonOverdefVal->isUnknown())
+ return;
+
+ if (I.getOpcode() == Instruction::And ||
+ I.getOpcode() == Instruction::Mul) {
+ // X and 0 = 0
+ // X * 0 = 0
+ if (NonOverdefVal->getConstant()->isNullValue())
+ return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
+ } else {
+ // X or -1 = -1
+ if (ConstantInt *CI = NonOverdefVal->getConstantInt())
+ if (CI->isMinusOne())
+ return (void)markConstant(IV, &I, NonOverdefVal->getConstant());
+ }
+ }
+ }
+
+ markOverdefined(&I);
+}
+
+// Handle ICmpInst instruction.
+void SCCPSolver::visitCmpInst(CmpInst &I) {
+ // Do not cache this lookup, getValueState calls later in the function might
+ // invalidate the reference.
+ if (ValueState[&I].isOverdefined()) return;
+
+ Value *Op1 = I.getOperand(0);
+ Value *Op2 = I.getOperand(1);
+
+ // For parameters, use ParamState which includes constant range info if
+ // available.
+ auto V1Param = ParamState.find(Op1);
+ ValueLatticeElement V1State = (V1Param != ParamState.end())
+ ? V1Param->second
+ : getValueState(Op1).toValueLattice();
+
+ auto V2Param = ParamState.find(Op2);
+ ValueLatticeElement V2State = V2Param != ParamState.end()
+ ? V2Param->second
+ : getValueState(Op2).toValueLattice();
+
+ Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State);
+ if (C) {
+ if (isa<UndefValue>(C))
+ return;
+ LatticeVal CV;
+ CV.markConstant(C);
+ mergeInValue(&I, CV);
+ return;
+ }
+
+ // If operands are still unknown, wait for it to resolve.
+ if (!V1State.isOverdefined() && !V2State.isOverdefined() &&
+ !ValueState[&I].isConstant())
+ return;
+
+ markOverdefined(&I);
+}
+
+// Handle getelementptr instructions. If all operands are constants then we
+// can turn this into a getelementptr ConstantExpr.
+void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
+ if (ValueState[&I].isOverdefined()) return;
+
+ SmallVector<Constant*, 8> Operands;
+ Operands.reserve(I.getNumOperands());
+
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
+ LatticeVal State = getValueState(I.getOperand(i));
+ if (State.isUnknown())
+ return; // Operands are not resolved yet.
+
+ if (State.isOverdefined())
+ return (void)markOverdefined(&I);
+
+ assert(State.isConstant() && "Unknown state!");
+ Operands.push_back(State.getConstant());
+ }
+
+ Constant *Ptr = Operands[0];
+ auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end());
+ Constant *C =
+ ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices);
+ if (isa<UndefValue>(C))
+ return;
+ markConstant(&I, C);
+}
+
+void SCCPSolver::visitStoreInst(StoreInst &SI) {
+ // If this store is of a struct, ignore it.
+ if (SI.getOperand(0)->getType()->isStructTy())
+ return;
+
+ if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
+ return;
+
+ GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
+ DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
+ if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
+
+ // Get the value we are storing into the global, then merge it.
+ mergeInValue(I->second, GV, getValueState(SI.getOperand(0)));
+ if (I->second.isOverdefined())
+ TrackedGlobals.erase(I); // No need to keep tracking this!
+}
+
+// Handle load instructions. If the operand is a constant pointer to a constant
+// global, we can replace the load with the loaded constant value!
+void SCCPSolver::visitLoadInst(LoadInst &I) {
+ // If this load is of a struct, just mark the result overdefined.
+ if (I.getType()->isStructTy())
+ return (void)markOverdefined(&I);
+
+ LatticeVal PtrVal = getValueState(I.getOperand(0));
+ if (PtrVal.isUnknown()) return; // The pointer is not resolved yet!
+
+ LatticeVal &IV = ValueState[&I];
+ if (IV.isOverdefined()) return;
+
+ if (!PtrVal.isConstant() || I.isVolatile())
+ return (void)markOverdefined(IV, &I);
+
+ Constant *Ptr = PtrVal.getConstant();
+
+ // load null is undefined.
+ if (isa<ConstantPointerNull>(Ptr)) {
+ if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
+ return (void)markOverdefined(IV, &I);
+ else
+ return;
+ }
+
+ // Transform load (constant global) into the value loaded.
+ if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
+ if (!TrackedGlobals.empty()) {
+ // If we are tracking this global, merge in the known value for it.
+ DenseMap<GlobalVariable*, LatticeVal>::iterator It =
+ TrackedGlobals.find(GV);
+ if (It != TrackedGlobals.end()) {
+ mergeInValue(IV, &I, It->second);
+ return;
+ }
+ }
+ }
+
+ // Transform load from a constant into a constant if possible.
+ if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) {
+ if (isa<UndefValue>(C))
+ return;
+ return (void)markConstant(IV, &I, C);
+ }
+
+ // Otherwise we cannot say for certain what value this load will produce.
+ // Bail out.
+ markOverdefined(IV, &I);
+}
+
+void SCCPSolver::visitCallSite(CallSite CS) {
+ Function *F = CS.getCalledFunction();
+ Instruction *I = CS.getInstruction();
+
+ if (auto *II = dyn_cast<IntrinsicInst>(I)) {
+ if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
+ if (ValueState[I].isOverdefined())
+ return;
+
+ auto *PI = getPredicateInfoFor(I);
+ if (!PI)
+ return;
+
+ Value *CopyOf = I->getOperand(0);
+ auto *PBranch = dyn_cast<PredicateBranch>(PI);
+ if (!PBranch) {
+ mergeInValue(ValueState[I], I, getValueState(CopyOf));
+ return;
+ }
+
+ Value *Cond = PBranch->Condition;
+
+ // Everything below relies on the condition being a comparison.
+ auto *Cmp = dyn_cast<CmpInst>(Cond);
+ if (!Cmp) {
+ mergeInValue(ValueState[I], I, getValueState(CopyOf));
+ return;
+ }
+
+ Value *CmpOp0 = Cmp->getOperand(0);
+ Value *CmpOp1 = Cmp->getOperand(1);
+ if (CopyOf != CmpOp0 && CopyOf != CmpOp1) {
+ mergeInValue(ValueState[I], I, getValueState(CopyOf));
+ return;
+ }
+
+ if (CmpOp0 != CopyOf)
+ std::swap(CmpOp0, CmpOp1);
+
+ LatticeVal OriginalVal = getValueState(CopyOf);
+ LatticeVal EqVal = getValueState(CmpOp1);
+ LatticeVal &IV = ValueState[I];
+ if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) {
+ addAdditionalUser(CmpOp1, I);
+ if (OriginalVal.isConstant())
+ mergeInValue(IV, I, OriginalVal);
+ else
+ mergeInValue(IV, I, EqVal);
+ return;
+ }
+ if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) {
+ addAdditionalUser(CmpOp1, I);
+ if (OriginalVal.isConstant())
+ mergeInValue(IV, I, OriginalVal);
+ else
+ mergeInValue(IV, I, EqVal);
+ return;
+ }
+
+ return (void)mergeInValue(IV, I, getValueState(CopyOf));
+ }
+ }
+
+ // The common case is that we aren't tracking the callee, either because we
+ // are not doing interprocedural analysis or the callee is indirect, or is
+ // external. Handle these cases first.
+ if (!F || F->isDeclaration()) {
+CallOverdefined:
+ // Void return and not tracking callee, just bail.
+ if (I->getType()->isVoidTy()) return;
+
+ // Otherwise, if we have a single return value case, and if the function is
+ // a declaration, maybe we can constant fold it.
+ if (F && F->isDeclaration() && !I->getType()->isStructTy() &&
+ canConstantFoldCallTo(cast<CallBase>(CS.getInstruction()), F)) {
+ SmallVector<Constant*, 8> Operands;
+ for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
+ AI != E; ++AI) {
+ if (AI->get()->getType()->isStructTy())
+ return markOverdefined(I); // Can't handle struct args.
+ LatticeVal State = getValueState(*AI);
+
+ if (State.isUnknown())
+ return; // Operands are not resolved yet.
+ if (State.isOverdefined())
+ return (void)markOverdefined(I);
+ assert(State.isConstant() && "Unknown state!");
+ Operands.push_back(State.getConstant());
+ }
+
+ if (getValueState(I).isOverdefined())
+ return;
+
+ // If we can constant fold this, mark the result of the call as a
+ // constant.
+ if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), F,
+ Operands, &GetTLI(*F))) {
+ // call -> undef.
+ if (isa<UndefValue>(C))
+ return;
+ return (void)markConstant(I, C);
+ }
+ }
+
+ // Otherwise, we don't know anything about this call, mark it overdefined.
+ return (void)markOverdefined(I);
+ }
+
+ // If this is a local function that doesn't have its address taken, mark its
+ // entry block executable and merge in the actual arguments to the call into
+ // the formal arguments of the function.
+ if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){
+ MarkBlockExecutable(&F->front());
+
+ // Propagate information from this call site into the callee.
+ CallSite::arg_iterator CAI = CS.arg_begin();
+ for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
+ AI != E; ++AI, ++CAI) {
+ // If this argument is byval, and if the function is not readonly, there
+ // will be an implicit copy formed of the input aggregate.
+ if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
+ markOverdefined(&*AI);
+ continue;
+ }
+
+ if (auto *STy = dyn_cast<StructType>(AI->getType())) {
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ LatticeVal CallArg = getStructValueState(*CAI, i);
+ mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg);
+ }
+ } else {
+ // Most other parts of the Solver still only use the simpler value
+ // lattice, so we propagate changes for parameters to both lattices.
+ LatticeVal ConcreteArgument = getValueState(*CAI);
+ bool ParamChanged =
+ getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL);
+ bool ValueChanged = mergeInValue(&*AI, ConcreteArgument);
+ // Add argument to work list, if the state of a parameter changes but
+ // ValueState does not change (because it is already overdefined there),
+ // We have to take changes in ParamState into account, as it is used
+ // when evaluating Cmp instructions.
+ if (!ValueChanged && ParamChanged)
+ pushToWorkList(ValueState[&*AI], &*AI);
+ }
+ }
+ }
+
+ // If this is a single/zero retval case, see if we're tracking the function.
+ if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
+ if (!MRVFunctionsTracked.count(F))
+ goto CallOverdefined; // Not tracking this callee.
+
+ // If we are tracking this callee, propagate the result of the function
+ // into this call site.
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
+ mergeInValue(getStructValueState(I, i), I,
+ TrackedMultipleRetVals[std::make_pair(F, i)]);
+ } else {
+ MapVector<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
+ if (TFRVI == TrackedRetVals.end())
+ goto CallOverdefined; // Not tracking this callee.
+
+ // If so, propagate the return value of the callee into this call result.
+ mergeInValue(I, TFRVI->second);
+ }
+}
+
+void SCCPSolver::Solve() {
+ // Process the work lists until they are empty!
+ while (!BBWorkList.empty() || !InstWorkList.empty() ||
+ !OverdefinedInstWorkList.empty()) {
+ // Process the overdefined instruction's work list first, which drives other
+ // things to overdefined more quickly.
+ while (!OverdefinedInstWorkList.empty()) {
+ Value *I = OverdefinedInstWorkList.pop_back_val();
+
+ LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
+
+ // "I" got into the work list because it either made the transition from
+ // bottom to constant, or to overdefined.
+ //
+ // Anything on this worklist that is overdefined need not be visited
+ // since all of its users will have already been marked as overdefined
+ // Update all of the users of this instruction's value.
+ //
+ markUsersAsChanged(I);
+ }
+
+ // Process the instruction work list.
+ while (!InstWorkList.empty()) {
+ Value *I = InstWorkList.pop_back_val();
+
+ LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
+
+ // "I" got into the work list because it made the transition from undef to
+ // constant.
+ //
+ // Anything on this worklist that is overdefined need not be visited
+ // since all of its users will have already been marked as overdefined.
+ // Update all of the users of this instruction's value.
+ //
+ if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
+ markUsersAsChanged(I);
+ }
+
+ // Process the basic block work list.
+ while (!BBWorkList.empty()) {
+ BasicBlock *BB = BBWorkList.back();
+ BBWorkList.pop_back();
+
+ LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
+
+ // Notify all instructions in this basic block that they are newly
+ // executable.
+ visit(BB);
+ }
+ }
+}
+
+/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
+/// that branches on undef values cannot reach any of their successors.
+/// However, this is not a safe assumption. After we solve dataflow, this
+/// method should be use to handle this. If this returns true, the solver
+/// should be rerun.
+///
+/// This method handles this by finding an unresolved branch and marking it one
+/// of the edges from the block as being feasible, even though the condition
+/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
+/// CFG and only slightly pessimizes the analysis results (by marking one,
+/// potentially infeasible, edge feasible). This cannot usefully modify the
+/// constraints on the condition of the branch, as that would impact other users
+/// of the value.
+///
+/// This scan also checks for values that use undefs, whose results are actually
+/// defined. For example, 'zext i8 undef to i32' should produce all zeros
+/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
+/// even if X isn't defined.
+bool SCCPSolver::ResolvedUndefsIn(Function &F) {
+ for (BasicBlock &BB : F) {
+ if (!BBExecutable.count(&BB))
+ continue;
+
+ for (Instruction &I : BB) {
+ // Look for instructions which produce undef values.
+ if (I.getType()->isVoidTy()) continue;
+
+ if (auto *STy = dyn_cast<StructType>(I.getType())) {
+ // Only a few things that can be structs matter for undef.
+
+ // Tracked calls must never be marked overdefined in ResolvedUndefsIn.
+ if (CallSite CS = CallSite(&I))
+ if (Function *F = CS.getCalledFunction())
+ if (MRVFunctionsTracked.count(F))
+ continue;
+
+ // extractvalue and insertvalue don't need to be marked; they are
+ // tracked as precisely as their operands.
+ if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
+ continue;
+
+ // Send the results of everything else to overdefined. We could be
+ // more precise than this but it isn't worth bothering.
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ LatticeVal &LV = getStructValueState(&I, i);
+ if (LV.isUnknown())
+ markOverdefined(LV, &I);
+ }
+ continue;
+ }
+
+ LatticeVal &LV = getValueState(&I);
+ if (!LV.isUnknown())
+ continue;
+
+ // There are two reasons a call can have an undef result
+ // 1. It could be tracked.
+ // 2. It could be constant-foldable.
+ // Because of the way we solve return values, tracked calls must
+ // never be marked overdefined in ResolvedUndefsIn.
+ if (CallSite CS = CallSite(&I)) {
+ if (Function *F = CS.getCalledFunction())
+ if (TrackedRetVals.count(F))
+ continue;
+
+ // If the call is constant-foldable, we mark it overdefined because
+ // we do not know what return values are valid.
+ markOverdefined(&I);
+ return true;
+ }
+
+ // extractvalue is safe; check here because the argument is a struct.
+ if (isa<ExtractValueInst>(I))
+ continue;
+
+ // Compute the operand LatticeVals, for convenience below.
+ // Anything taking a struct is conservatively assumed to require
+ // overdefined markings.
+ if (I.getOperand(0)->getType()->isStructTy()) {
+ markOverdefined(&I);
+ return true;
+ }
+ LatticeVal Op0LV = getValueState(I.getOperand(0));
+ LatticeVal Op1LV;
+ if (I.getNumOperands() == 2) {
+ if (I.getOperand(1)->getType()->isStructTy()) {
+ markOverdefined(&I);
+ return true;
+ }
+
+ Op1LV = getValueState(I.getOperand(1));
+ }
+ // If this is an instructions whose result is defined even if the input is
+ // not fully defined, propagate the information.
+ Type *ITy = I.getType();
+ switch (I.getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast:
+ break; // Any undef -> undef
+ case Instruction::FSub:
+ case Instruction::FAdd:
+ case Instruction::FMul:
+ case Instruction::FDiv:
+ case Instruction::FRem:
+ // Floating-point binary operation: be conservative.
+ if (Op0LV.isUnknown() && Op1LV.isUnknown())
+ markForcedConstant(&I, Constant::getNullValue(ITy));
+ else
+ markOverdefined(&I);
+ return true;
+ case Instruction::FNeg:
+ break; // fneg undef -> undef
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ // undef -> 0; some outputs are impossible
+ markForcedConstant(&I, Constant::getNullValue(ITy));
+ return true;
+ case Instruction::Mul:
+ case Instruction::And:
+ // Both operands undef -> undef
+ if (Op0LV.isUnknown() && Op1LV.isUnknown())
+ break;
+ // undef * X -> 0. X could be zero.
+ // undef & X -> 0. X could be zero.
+ markForcedConstant(&I, Constant::getNullValue(ITy));
+ return true;
+ case Instruction::Or:
+ // Both operands undef -> undef
+ if (Op0LV.isUnknown() && Op1LV.isUnknown())
+ break;
+ // undef | X -> -1. X could be -1.
+ markForcedConstant(&I, Constant::getAllOnesValue(ITy));
+ return true;
+ case Instruction::Xor:
+ // undef ^ undef -> 0; strictly speaking, this is not strictly
+ // necessary, but we try to be nice to people who expect this
+ // behavior in simple cases
+ if (Op0LV.isUnknown() && Op1LV.isUnknown()) {
+ markForcedConstant(&I, Constant::getNullValue(ITy));
+ return true;
+ }
+ // undef ^ X -> undef
+ break;
+ case Instruction::SDiv:
+ case Instruction::UDiv:
+ case Instruction::SRem:
+ case Instruction::URem:
+ // X / undef -> undef. No change.
+ // X % undef -> undef. No change.
+ if (Op1LV.isUnknown()) break;
+
+ // X / 0 -> undef. No change.
+ // X % 0 -> undef. No change.
+ if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue())
+ break;
+
+ // undef / X -> 0. X could be maxint.
+ // undef % X -> 0. X could be 1.
+ markForcedConstant(&I, Constant::getNullValue(ITy));
+ return true;
+ case Instruction::AShr:
+ // X >>a undef -> undef.
+ if (Op1LV.isUnknown()) break;
+
+ // Shifting by the bitwidth or more is undefined.
+ if (Op1LV.isConstant()) {
+ if (auto *ShiftAmt = Op1LV.getConstantInt())
+ if (ShiftAmt->getLimitedValue() >=
+ ShiftAmt->getType()->getScalarSizeInBits())
+ break;
+ }
+
+ // undef >>a X -> 0
+ markForcedConstant(&I, Constant::getNullValue(ITy));
+ return true;
+ case Instruction::LShr:
+ case Instruction::Shl:
+ // X << undef -> undef.
+ // X >> undef -> undef.
+ if (Op1LV.isUnknown()) break;
+
+ // Shifting by the bitwidth or more is undefined.
+ if (Op1LV.isConstant()) {
+ if (auto *ShiftAmt = Op1LV.getConstantInt())
+ if (ShiftAmt->getLimitedValue() >=
+ ShiftAmt->getType()->getScalarSizeInBits())
+ break;
+ }
+
+ // undef << X -> 0
+ // undef >> X -> 0
+ markForcedConstant(&I, Constant::getNullValue(ITy));
+ return true;
+ case Instruction::Select:
+ Op1LV = getValueState(I.getOperand(1));
+ // undef ? X : Y -> X or Y. There could be commonality between X/Y.
+ if (Op0LV.isUnknown()) {
+ if (!Op1LV.isConstant()) // Pick the constant one if there is any.
+ Op1LV = getValueState(I.getOperand(2));
+ } else if (Op1LV.isUnknown()) {
+ // c ? undef : undef -> undef. No change.
+ Op1LV = getValueState(I.getOperand(2));
+ if (Op1LV.isUnknown())
+ break;
+ // Otherwise, c ? undef : x -> x.
+ } else {
+ // Leave Op1LV as Operand(1)'s LatticeValue.
+ }
+
+ if (Op1LV.isConstant())
+ markForcedConstant(&I, Op1LV.getConstant());
+ else
+ markOverdefined(&I);
+ return true;
+ case Instruction::Load:
+ // A load here means one of two things: a load of undef from a global,
+ // a load from an unknown pointer. Either way, having it return undef
+ // is okay.
+ break;
+ case Instruction::ICmp:
+ // X == undef -> undef. Other comparisons get more complicated.
+ Op0LV = getValueState(I.getOperand(0));
+ Op1LV = getValueState(I.getOperand(1));
+
+ if ((Op0LV.isUnknown() || Op1LV.isUnknown()) &&
+ cast<ICmpInst>(&I)->isEquality())
+ break;
+ markOverdefined(&I);
+ return true;
+ case Instruction::Call:
+ case Instruction::Invoke:
+ case Instruction::CallBr:
+ llvm_unreachable("Call-like instructions should have be handled early");
+ default:
+ // If we don't know what should happen here, conservatively mark it
+ // overdefined.
+ markOverdefined(&I);
+ return true;
+ }
+ }
+
+ // Check to see if we have a branch or switch on an undefined value. If so
+ // we force the branch to go one way or the other to make the successor
+ // values live. It doesn't really matter which way we force it.
+ Instruction *TI = BB.getTerminator();
+ if (auto *BI = dyn_cast<BranchInst>(TI)) {
+ if (!BI->isConditional()) continue;
+ if (!getValueState(BI->getCondition()).isUnknown())
+ continue;
+
+ // If the input to SCCP is actually branch on undef, fix the undef to
+ // false.
+ if (isa<UndefValue>(BI->getCondition())) {
+ BI->setCondition(ConstantInt::getFalse(BI->getContext()));
+ markEdgeExecutable(&BB, TI->getSuccessor(1));
+ return true;
+ }
+
+ // Otherwise, it is a branch on a symbolic value which is currently
+ // considered to be undef. Make sure some edge is executable, so a
+ // branch on "undef" always flows somewhere.
+ // FIXME: Distinguish between dead code and an LLVM "undef" value.
+ BasicBlock *DefaultSuccessor = TI->getSuccessor(1);
+ if (markEdgeExecutable(&BB, DefaultSuccessor))
+ return true;
+
+ continue;
+ }
+
+ if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) {
+ // Indirect branch with no successor ?. Its ok to assume it branches
+ // to no target.
+ if (IBR->getNumSuccessors() < 1)
+ continue;
+
+ if (!getValueState(IBR->getAddress()).isUnknown())
+ continue;
+
+ // If the input to SCCP is actually branch on undef, fix the undef to
+ // the first successor of the indirect branch.
+ if (isa<UndefValue>(IBR->getAddress())) {
+ IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0)));
+ markEdgeExecutable(&BB, IBR->getSuccessor(0));
+ return true;
+ }
+
+ // Otherwise, it is a branch on a symbolic value which is currently
+ // considered to be undef. Make sure some edge is executable, so a
+ // branch on "undef" always flows somewhere.
+ // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere:
+ // we can assume the branch has undefined behavior instead.
+ BasicBlock *DefaultSuccessor = IBR->getSuccessor(0);
+ if (markEdgeExecutable(&BB, DefaultSuccessor))
+ return true;
+
+ continue;
+ }
+
+ if (auto *SI = dyn_cast<SwitchInst>(TI)) {
+ if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown())
+ continue;
+
+ // If the input to SCCP is actually switch on undef, fix the undef to
+ // the first constant.
+ if (isa<UndefValue>(SI->getCondition())) {
+ SI->setCondition(SI->case_begin()->getCaseValue());
+ markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor());
+ return true;
+ }
+
+ // Otherwise, it is a branch on a symbolic value which is currently
+ // considered to be undef. Make sure some edge is executable, so a
+ // branch on "undef" always flows somewhere.
+ // FIXME: Distinguish between dead code and an LLVM "undef" value.
+ BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor();
+ if (markEdgeExecutable(&BB, DefaultSuccessor))
+ return true;
+
+ continue;
+ }
+ }
+
+ return false;
+}
+
+static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) {
+ Constant *Const = nullptr;
+ if (V->getType()->isStructTy()) {
+ std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V);
+ if (llvm::any_of(IVs,
+ [](const LatticeVal &LV) { return LV.isOverdefined(); }))
+ return false;
+ std::vector<Constant *> ConstVals;
+ auto *ST = cast<StructType>(V->getType());
+ for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
+ LatticeVal V = IVs[i];
+ ConstVals.push_back(V.isConstant()
+ ? V.getConstant()
+ : UndefValue::get(ST->getElementType(i)));
+ }
+ Const = ConstantStruct::get(ST, ConstVals);
+ } else {
+ const LatticeVal &IV = Solver.getLatticeValueFor(V);
+ if (IV.isOverdefined())
+ return false;
+
+ Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType());
+ }
+ assert(Const && "Constant is nullptr here!");
+
+ // Replacing `musttail` instructions with constant breaks `musttail` invariant
+ // unless the call itself can be removed
+ CallInst *CI = dyn_cast<CallInst>(V);
+ if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) {
+ CallSite CS(CI);
+ Function *F = CS.getCalledFunction();
+
+ // Don't zap returns of the callee
+ if (F)
+ Solver.AddMustTailCallee(F);
+
+ LLVM_DEBUG(dbgs() << " Can\'t treat the result of musttail call : " << *CI
+ << " as a constant\n");
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
+
+ // Replaces all of the uses of a variable with uses of the constant.
+ V->replaceAllUsesWith(Const);
+ return true;
+}
+
+// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm,
+// and return true if the function was modified.
+static bool runSCCP(Function &F, const DataLayout &DL,
+ const TargetLibraryInfo *TLI) {
+ LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n");
+ SCCPSolver Solver(
+ DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; });
+
+ // Mark the first block of the function as being executable.
+ Solver.MarkBlockExecutable(&F.front());
+
+ // Mark all arguments to the function as being overdefined.
+ for (Argument &AI : F.args())
+ Solver.markOverdefined(&AI);
+
+ // Solve for constants.
+ bool ResolvedUndefs = true;
+ while (ResolvedUndefs) {
+ Solver.Solve();
+ LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n");
+ ResolvedUndefs = Solver.ResolvedUndefsIn(F);
+ }
+
+ bool MadeChanges = false;
+
+ // If we decided that there are basic blocks that are dead in this function,
+ // delete their contents now. Note that we cannot actually delete the blocks,
+ // as we cannot modify the CFG of the function.
+
+ for (BasicBlock &BB : F) {
+ if (!Solver.isBlockExecutable(&BB)) {
+ LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << BB);
+
+ ++NumDeadBlocks;
+ NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB);
+
+ MadeChanges = true;
+ continue;
+ }
+
+ // Iterate over all of the instructions in a function, replacing them with
+ // constants if we have found them to be of constant values.
+ for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
+ Instruction *Inst = &*BI++;
+ if (Inst->getType()->isVoidTy() || Inst->isTerminator())
+ continue;
+
+ if (tryToReplaceWithConstant(Solver, Inst)) {
+ if (isInstructionTriviallyDead(Inst))
+ Inst->eraseFromParent();
+ // Hey, we just changed something!
+ MadeChanges = true;
+ ++NumInstRemoved;
+ }
+ }
+ }
+
+ return MadeChanges;
+}
+
+PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) {
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
+ if (!runSCCP(F, DL, &TLI))
+ return PreservedAnalyses::all();
+
+ auto PA = PreservedAnalyses();
+ PA.preserve<GlobalsAA>();
+ PA.preserveSet<CFGAnalyses>();
+ return PA;
+}
+
+namespace {
+
+//===--------------------------------------------------------------------===//
+//
+/// SCCP Class - This class uses the SCCPSolver to implement a per-function
+/// Sparse Conditional Constant Propagator.
+///
+class SCCPLegacyPass : public FunctionPass {
+public:
+ // Pass identification, replacement for typeid
+ static char ID;
+
+ SCCPLegacyPass() : FunctionPass(ID) {
+ initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addPreserved<GlobalsAAWrapperPass>();
+ AU.setPreservesCFG();
+ }
+
+ // runOnFunction - Run the Sparse Conditional Constant Propagation
+ // algorithm, and return true if the function was modified.
+ bool runOnFunction(Function &F) override {
+ if (skipFunction(F))
+ return false;
+ const DataLayout &DL = F.getParent()->getDataLayout();
+ const TargetLibraryInfo *TLI =
+ &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
+ return runSCCP(F, DL, TLI);
+ }
+};
+
+} // end anonymous namespace
+
+char SCCPLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp",
+ "Sparse Conditional Constant Propagation", false, false)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_END(SCCPLegacyPass, "sccp",
+ "Sparse Conditional Constant Propagation", false, false)
+
+// createSCCPPass - This is the public interface to this file.
+FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); }
+
+static void findReturnsToZap(Function &F,
+ SmallVector<ReturnInst *, 8> &ReturnsToZap,
+ SCCPSolver &Solver) {
+ // We can only do this if we know that nothing else can call the function.
+ if (!Solver.isArgumentTrackedFunction(&F))
+ return;
+
+ // There is a non-removable musttail call site of this function. Zapping
+ // returns is not allowed.
+ if (Solver.isMustTailCallee(&F)) {
+ LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName()
+ << " due to present musttail call of it\n");
+ return;
+ }
+
+ assert(
+ all_of(F.users(),
+ [&Solver](User *U) {
+ if (isa<Instruction>(U) &&
+ !Solver.isBlockExecutable(cast<Instruction>(U)->getParent()))
+ return true;
+ // Non-callsite uses are not impacted by zapping. Also, constant
+ // uses (like blockaddresses) could stuck around, without being
+ // used in the underlying IR, meaning we do not have lattice
+ // values for them.
+ if (!CallSite(U))
+ return true;
+ if (U->getType()->isStructTy()) {
+ return all_of(
+ Solver.getStructLatticeValueFor(U),
+ [](const LatticeVal &LV) { return !LV.isOverdefined(); });
+ }
+ return !Solver.getLatticeValueFor(U).isOverdefined();
+ }) &&
+ "We can only zap functions where all live users have a concrete value");
+
+ for (BasicBlock &BB : F) {
+ if (CallInst *CI = BB.getTerminatingMustTailCall()) {
+ LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present "
+ << "musttail call : " << *CI << "\n");
+ (void)CI;
+ return;
+ }
+
+ if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
+ if (!isa<UndefValue>(RI->getOperand(0)))
+ ReturnsToZap.push_back(RI);
+ }
+}
+
+// Update the condition for terminators that are branching on indeterminate
+// values, forcing them to use a specific edge.
+static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) {
+ BasicBlock *Dest = nullptr;
+ Constant *C = nullptr;
+ if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
+ if (!isa<ConstantInt>(SI->getCondition())) {
+ // Indeterminate switch; use first case value.
+ Dest = SI->case_begin()->getCaseSuccessor();
+ C = SI->case_begin()->getCaseValue();
+ }
+ } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
+ if (!isa<ConstantInt>(BI->getCondition())) {
+ // Indeterminate branch; use false.
+ Dest = BI->getSuccessor(1);
+ C = ConstantInt::getFalse(BI->getContext());
+ }
+ } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) {
+ if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) {
+ // Indeterminate indirectbr; use successor 0.
+ Dest = IBR->getSuccessor(0);
+ C = BlockAddress::get(IBR->getSuccessor(0));
+ }
+ } else {
+ llvm_unreachable("Unexpected terminator instruction");
+ }
+ if (C) {
+ assert(Solver.isEdgeFeasible(I->getParent(), Dest) &&
+ "Didn't find feasible edge?");
+ (void)Dest;
+
+ I->setOperand(0, C);
+ }
+}
+
+bool llvm::runIPSCCP(
+ Module &M, const DataLayout &DL,
+ std::function<const TargetLibraryInfo &(Function &)> GetTLI,
+ function_ref<AnalysisResultsForFn(Function &)> getAnalysis) {
+ SCCPSolver Solver(DL, GetTLI);
+
+ // Loop over all functions, marking arguments to those with their addresses
+ // taken or that are external as overdefined.
+ for (Function &F : M) {
+ if (F.isDeclaration())
+ continue;
+
+ Solver.addAnalysis(F, getAnalysis(F));
+
+ // Determine if we can track the function's return values. If so, add the
+ // function to the solver's set of return-tracked functions.
+ if (canTrackReturnsInterprocedurally(&F))
+ Solver.AddTrackedFunction(&F);
+
+ // Determine if we can track the function's arguments. If so, add the
+ // function to the solver's set of argument-tracked functions.
+ if (canTrackArgumentsInterprocedurally(&F)) {
+ Solver.AddArgumentTrackedFunction(&F);
+ continue;
+ }
+
+ // Assume the function is called.
+ Solver.MarkBlockExecutable(&F.front());
+
+ // Assume nothing about the incoming arguments.
+ for (Argument &AI : F.args())
+ Solver.markOverdefined(&AI);
+ }
+
+ // Determine if we can track any of the module's global variables. If so, add
+ // the global variables we can track to the solver's set of tracked global
+ // variables.
+ for (GlobalVariable &G : M.globals()) {
+ G.removeDeadConstantUsers();
+ if (canTrackGlobalVariableInterprocedurally(&G))
+ Solver.TrackValueOfGlobalVariable(&G);
+ }
+
+ // Solve for constants.
+ bool ResolvedUndefs = true;
+ Solver.Solve();
+ while (ResolvedUndefs) {
+ LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n");
+ ResolvedUndefs = false;
+ for (Function &F : M)
+ if (Solver.ResolvedUndefsIn(F)) {
+ // We run Solve() after we resolved an undef in a function, because
+ // we might deduce a fact that eliminates an undef in another function.
+ Solver.Solve();
+ ResolvedUndefs = true;
+ }
+ }
+
+ bool MadeChanges = false;
+
+ // Iterate over all of the instructions in the module, replacing them with
+ // constants if we have found them to be of constant values.
+
+ for (Function &F : M) {
+ if (F.isDeclaration())
+ continue;
+
+ SmallVector<BasicBlock *, 512> BlocksToErase;
+
+ if (Solver.isBlockExecutable(&F.front()))
+ for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;
+ ++AI) {
+ if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) {
+ ++IPNumArgsElimed;
+ continue;
+ }
+ }
+
+ for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+ if (!Solver.isBlockExecutable(&*BB)) {
+ LLVM_DEBUG(dbgs() << " BasicBlock Dead:" << *BB);
+ ++NumDeadBlocks;
+
+ MadeChanges = true;
+
+ if (&*BB != &F.front())
+ BlocksToErase.push_back(&*BB);
+ continue;
+ }
+
+ for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
+ Instruction *Inst = &*BI++;
+ if (Inst->getType()->isVoidTy())
+ continue;
+ if (tryToReplaceWithConstant(Solver, Inst)) {
+ if (Inst->isSafeToRemove())
+ Inst->eraseFromParent();
+ // Hey, we just changed something!
+ MadeChanges = true;
+ ++IPNumInstRemoved;
+ }
+ }
+ }
+
+ DomTreeUpdater DTU = Solver.getDTU(F);
+ // Change dead blocks to unreachable. We do it after replacing constants
+ // in all executable blocks, because changeToUnreachable may remove PHI
+ // nodes in executable blocks we found values for. The function's entry
+ // block is not part of BlocksToErase, so we have to handle it separately.
+ for (BasicBlock *BB : BlocksToErase) {
+ NumInstRemoved +=
+ changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false,
+ /*PreserveLCSSA=*/false, &DTU);
+ }
+ if (!Solver.isBlockExecutable(&F.front()))
+ NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(),
+ /*UseLLVMTrap=*/false,
+ /*PreserveLCSSA=*/false, &DTU);
+
+ // Now that all instructions in the function are constant folded,
+ // use ConstantFoldTerminator to get rid of in-edges, record DT updates and
+ // delete dead BBs.
+ for (BasicBlock *DeadBB : BlocksToErase) {
+ // If there are any PHI nodes in this successor, drop entries for BB now.
+ for (Value::user_iterator UI = DeadBB->user_begin(),
+ UE = DeadBB->user_end();
+ UI != UE;) {
+ // Grab the user and then increment the iterator early, as the user
+ // will be deleted. Step past all adjacent uses from the same user.
+ auto *I = dyn_cast<Instruction>(*UI);
+ do { ++UI; } while (UI != UE && *UI == I);
+
+ // Ignore blockaddress users; BasicBlock's dtor will handle them.
+ if (!I) continue;
+
+ // If we have forced an edge for an indeterminate value, then force the
+ // terminator to fold to that edge.
+ forceIndeterminateEdge(I, Solver);
+ BasicBlock *InstBB = I->getParent();
+ bool Folded = ConstantFoldTerminator(InstBB,
+ /*DeleteDeadConditions=*/false,
+ /*TLI=*/nullptr, &DTU);
+ assert(Folded &&
+ "Expect TermInst on constantint or blockaddress to be folded");
+ (void) Folded;
+ // If we folded the terminator to an unconditional branch to another
+ // dead block, replace it with Unreachable, to avoid trying to fold that
+ // branch again.
+ BranchInst *BI = cast<BranchInst>(InstBB->getTerminator());
+ if (BI && BI->isUnconditional() &&
+ !Solver.isBlockExecutable(BI->getSuccessor(0))) {
+ InstBB->getTerminator()->eraseFromParent();
+ new UnreachableInst(InstBB->getContext(), InstBB);
+ }
+ }
+ // Mark dead BB for deletion.
+ DTU.deleteBB(DeadBB);
+ }
+
+ for (BasicBlock &BB : F) {
+ for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) {
+ Instruction *Inst = &*BI++;
+ if (Solver.getPredicateInfoFor(Inst)) {
+ if (auto *II = dyn_cast<IntrinsicInst>(Inst)) {
+ if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
+ Value *Op = II->getOperand(0);
+ Inst->replaceAllUsesWith(Op);
+ Inst->eraseFromParent();
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // If we inferred constant or undef return values for a function, we replaced
+ // all call uses with the inferred value. This means we don't need to bother
+ // actually returning anything from the function. Replace all return
+ // instructions with return undef.
+ //
+ // Do this in two stages: first identify the functions we should process, then
+ // actually zap their returns. This is important because we can only do this
+ // if the address of the function isn't taken. In cases where a return is the
+ // last use of a function, the order of processing functions would affect
+ // whether other functions are optimizable.
+ SmallVector<ReturnInst*, 8> ReturnsToZap;
+
+ const MapVector<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
+ for (const auto &I : RV) {
+ Function *F = I.first;
+ if (I.second.isOverdefined() || F->getReturnType()->isVoidTy())
+ continue;
+ findReturnsToZap(*F, ReturnsToZap, Solver);
+ }
+
+ for (const auto &F : Solver.getMRVFunctionsTracked()) {
+ assert(F->getReturnType()->isStructTy() &&
+ "The return type should be a struct");
+ StructType *STy = cast<StructType>(F->getReturnType());
+ if (Solver.isStructLatticeConstant(F, STy))
+ findReturnsToZap(*F, ReturnsToZap, Solver);
+ }
+
+ // Zap all returns which we've identified as zap to change.
+ for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) {
+ Function *F = ReturnsToZap[i]->getParent()->getParent();
+ ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType()));
+ }
+
+ // If we inferred constant or undef values for globals variables, we can
+ // delete the global and any stores that remain to it.
+ const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
+ for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
+ E = TG.end(); I != E; ++I) {
+ GlobalVariable *GV = I->first;
+ assert(!I->second.isOverdefined() &&
+ "Overdefined values should have been taken out of the map!");
+ LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName()
+ << "' is constant!\n");
+ while (!GV->use_empty()) {
+ StoreInst *SI = cast<StoreInst>(GV->user_back());
+ SI->eraseFromParent();
+ }
+ M.getGlobalList().erase(GV);
+ ++IPNumGlobalConst;
+ }
+
+ return MadeChanges;
+}