diff options
Diffstat (limited to 'llvm/lib/Transforms/Scalar/SCCP.cpp')
| -rw-r--r-- | llvm/lib/Transforms/Scalar/SCCP.cpp | 2232 | 
1 files changed, 2232 insertions, 0 deletions
| diff --git a/llvm/lib/Transforms/Scalar/SCCP.cpp b/llvm/lib/Transforms/Scalar/SCCP.cpp new file mode 100644 index 0000000000000..10fbdc8aacd2f --- /dev/null +++ b/llvm/lib/Transforms/Scalar/SCCP.cpp @@ -0,0 +1,2232 @@ +//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements sparse conditional constant propagation and merging: +// +// Specifically, this: +//   * Assumes values are constant unless proven otherwise +//   * Assumes BasicBlocks are dead unless proven otherwise +//   * Proves values to be constant, and replaces them with constants +//   * Proves conditional branches to be unconditional +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/SCCP.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/PointerIntPair.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Analysis/ValueLattice.h" +#include "llvm/Analysis/ValueLatticeUtils.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/PredicateInfo.h" +#include <cassert> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "sccp" + +STATISTIC(NumInstRemoved, "Number of instructions removed"); +STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); + +STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); +STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); +STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); + +namespace { + +/// LatticeVal class - This class represents the different lattice values that +/// an LLVM value may occupy.  It is a simple class with value semantics. +/// +class LatticeVal { +  enum LatticeValueTy { +    /// unknown - This LLVM Value has no known value yet. +    unknown, + +    /// constant - This LLVM Value has a specific constant value. +    constant, + +    /// forcedconstant - This LLVM Value was thought to be undef until +    /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged +    /// with another (different) constant, it goes to overdefined, instead of +    /// asserting. +    forcedconstant, + +    /// overdefined - This instruction is not known to be constant, and we know +    /// it has a value. +    overdefined +  }; + +  /// Val: This stores the current lattice value along with the Constant* for +  /// the constant if this is a 'constant' or 'forcedconstant' value. +  PointerIntPair<Constant *, 2, LatticeValueTy> Val; + +  LatticeValueTy getLatticeValue() const { +    return Val.getInt(); +  } + +public: +  LatticeVal() : Val(nullptr, unknown) {} + +  bool isUnknown() const { return getLatticeValue() == unknown; } + +  bool isConstant() const { +    return getLatticeValue() == constant || getLatticeValue() == forcedconstant; +  } + +  bool isOverdefined() const { return getLatticeValue() == overdefined; } + +  Constant *getConstant() const { +    assert(isConstant() && "Cannot get the constant of a non-constant!"); +    return Val.getPointer(); +  } + +  /// markOverdefined - Return true if this is a change in status. +  bool markOverdefined() { +    if (isOverdefined()) +      return false; + +    Val.setInt(overdefined); +    return true; +  } + +  /// markConstant - Return true if this is a change in status. +  bool markConstant(Constant *V) { +    if (getLatticeValue() == constant) { // Constant but not forcedconstant. +      assert(getConstant() == V && "Marking constant with different value"); +      return false; +    } + +    if (isUnknown()) { +      Val.setInt(constant); +      assert(V && "Marking constant with NULL"); +      Val.setPointer(V); +    } else { +      assert(getLatticeValue() == forcedconstant && +             "Cannot move from overdefined to constant!"); +      // Stay at forcedconstant if the constant is the same. +      if (V == getConstant()) return false; + +      // Otherwise, we go to overdefined.  Assumptions made based on the +      // forced value are possibly wrong.  Assuming this is another constant +      // could expose a contradiction. +      Val.setInt(overdefined); +    } +    return true; +  } + +  /// getConstantInt - If this is a constant with a ConstantInt value, return it +  /// otherwise return null. +  ConstantInt *getConstantInt() const { +    if (isConstant()) +      return dyn_cast<ConstantInt>(getConstant()); +    return nullptr; +  } + +  /// getBlockAddress - If this is a constant with a BlockAddress value, return +  /// it, otherwise return null. +  BlockAddress *getBlockAddress() const { +    if (isConstant()) +      return dyn_cast<BlockAddress>(getConstant()); +    return nullptr; +  } + +  void markForcedConstant(Constant *V) { +    assert(isUnknown() && "Can't force a defined value!"); +    Val.setInt(forcedconstant); +    Val.setPointer(V); +  } + +  ValueLatticeElement toValueLattice() const { +    if (isOverdefined()) +      return ValueLatticeElement::getOverdefined(); +    if (isConstant()) +      return ValueLatticeElement::get(getConstant()); +    return ValueLatticeElement(); +  } +}; + +//===----------------------------------------------------------------------===// +// +/// SCCPSolver - This class is a general purpose solver for Sparse Conditional +/// Constant Propagation. +/// +class SCCPSolver : public InstVisitor<SCCPSolver> { +  const DataLayout &DL; +  std::function<const TargetLibraryInfo &(Function &)> GetTLI; +  SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable. +  DenseMap<Value *, LatticeVal> ValueState;  // The state each value is in. +  // The state each parameter is in. +  DenseMap<Value *, ValueLatticeElement> ParamState; + +  /// StructValueState - This maintains ValueState for values that have +  /// StructType, for example for formal arguments, calls, insertelement, etc. +  DenseMap<std::pair<Value *, unsigned>, LatticeVal> StructValueState; + +  /// GlobalValue - If we are tracking any values for the contents of a global +  /// variable, we keep a mapping from the constant accessor to the element of +  /// the global, to the currently known value.  If the value becomes +  /// overdefined, it's entry is simply removed from this map. +  DenseMap<GlobalVariable *, LatticeVal> TrackedGlobals; + +  /// TrackedRetVals - If we are tracking arguments into and the return +  /// value out of a function, it will have an entry in this map, indicating +  /// what the known return value for the function is. +  MapVector<Function *, LatticeVal> TrackedRetVals; + +  /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions +  /// that return multiple values. +  MapVector<std::pair<Function *, unsigned>, LatticeVal> TrackedMultipleRetVals; + +  /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is +  /// represented here for efficient lookup. +  SmallPtrSet<Function *, 16> MRVFunctionsTracked; + +  /// MustTailFunctions - Each function here is a callee of non-removable +  /// musttail call site. +  SmallPtrSet<Function *, 16> MustTailCallees; + +  /// TrackingIncomingArguments - This is the set of functions for whose +  /// arguments we make optimistic assumptions about and try to prove as +  /// constants. +  SmallPtrSet<Function *, 16> TrackingIncomingArguments; + +  /// The reason for two worklists is that overdefined is the lowest state +  /// on the lattice, and moving things to overdefined as fast as possible +  /// makes SCCP converge much faster. +  /// +  /// By having a separate worklist, we accomplish this because everything +  /// possibly overdefined will become overdefined at the soonest possible +  /// point. +  SmallVector<Value *, 64> OverdefinedInstWorkList; +  SmallVector<Value *, 64> InstWorkList; + +  // The BasicBlock work list +  SmallVector<BasicBlock *, 64>  BBWorkList; + +  /// KnownFeasibleEdges - Entries in this set are edges which have already had +  /// PHI nodes retriggered. +  using Edge = std::pair<BasicBlock *, BasicBlock *>; +  DenseSet<Edge> KnownFeasibleEdges; + +  DenseMap<Function *, AnalysisResultsForFn> AnalysisResults; +  DenseMap<Value *, SmallPtrSet<User *, 2>> AdditionalUsers; + +public: +  void addAnalysis(Function &F, AnalysisResultsForFn A) { +    AnalysisResults.insert({&F, std::move(A)}); +  } + +  const PredicateBase *getPredicateInfoFor(Instruction *I) { +    auto A = AnalysisResults.find(I->getParent()->getParent()); +    if (A == AnalysisResults.end()) +      return nullptr; +    return A->second.PredInfo->getPredicateInfoFor(I); +  } + +  DomTreeUpdater getDTU(Function &F) { +    auto A = AnalysisResults.find(&F); +    assert(A != AnalysisResults.end() && "Need analysis results for function."); +    return {A->second.DT, A->second.PDT, DomTreeUpdater::UpdateStrategy::Lazy}; +  } + +  SCCPSolver(const DataLayout &DL, +             std::function<const TargetLibraryInfo &(Function &)> GetTLI) +      : DL(DL), GetTLI(std::move(GetTLI)) {} + +  /// MarkBlockExecutable - This method can be used by clients to mark all of +  /// the blocks that are known to be intrinsically live in the processed unit. +  /// +  /// This returns true if the block was not considered live before. +  bool MarkBlockExecutable(BasicBlock *BB) { +    if (!BBExecutable.insert(BB).second) +      return false; +    LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n'); +    BBWorkList.push_back(BB);  // Add the block to the work list! +    return true; +  } + +  /// TrackValueOfGlobalVariable - Clients can use this method to +  /// inform the SCCPSolver that it should track loads and stores to the +  /// specified global variable if it can.  This is only legal to call if +  /// performing Interprocedural SCCP. +  void TrackValueOfGlobalVariable(GlobalVariable *GV) { +    // We only track the contents of scalar globals. +    if (GV->getValueType()->isSingleValueType()) { +      LatticeVal &IV = TrackedGlobals[GV]; +      if (!isa<UndefValue>(GV->getInitializer())) +        IV.markConstant(GV->getInitializer()); +    } +  } + +  /// AddTrackedFunction - If the SCCP solver is supposed to track calls into +  /// and out of the specified function (which cannot have its address taken), +  /// this method must be called. +  void AddTrackedFunction(Function *F) { +    // Add an entry, F -> undef. +    if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { +      MRVFunctionsTracked.insert(F); +      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) +        TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), +                                                     LatticeVal())); +    } else +      TrackedRetVals.insert(std::make_pair(F, LatticeVal())); +  } + +  /// AddMustTailCallee - If the SCCP solver finds that this function is called +  /// from non-removable musttail call site. +  void AddMustTailCallee(Function *F) { +    MustTailCallees.insert(F); +  } + +  /// Returns true if the given function is called from non-removable musttail +  /// call site. +  bool isMustTailCallee(Function *F) { +    return MustTailCallees.count(F); +  } + +  void AddArgumentTrackedFunction(Function *F) { +    TrackingIncomingArguments.insert(F); +  } + +  /// Returns true if the given function is in the solver's set of +  /// argument-tracked functions. +  bool isArgumentTrackedFunction(Function *F) { +    return TrackingIncomingArguments.count(F); +  } + +  /// Solve - Solve for constants and executable blocks. +  void Solve(); + +  /// ResolvedUndefsIn - While solving the dataflow for a function, we assume +  /// that branches on undef values cannot reach any of their successors. +  /// However, this is not a safe assumption.  After we solve dataflow, this +  /// method should be use to handle this.  If this returns true, the solver +  /// should be rerun. +  bool ResolvedUndefsIn(Function &F); + +  bool isBlockExecutable(BasicBlock *BB) const { +    return BBExecutable.count(BB); +  } + +  // isEdgeFeasible - Return true if the control flow edge from the 'From' basic +  // block to the 'To' basic block is currently feasible. +  bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); + +  std::vector<LatticeVal> getStructLatticeValueFor(Value *V) const { +    std::vector<LatticeVal> StructValues; +    auto *STy = dyn_cast<StructType>(V->getType()); +    assert(STy && "getStructLatticeValueFor() can be called only on structs"); +    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { +      auto I = StructValueState.find(std::make_pair(V, i)); +      assert(I != StructValueState.end() && "Value not in valuemap!"); +      StructValues.push_back(I->second); +    } +    return StructValues; +  } + +  const LatticeVal &getLatticeValueFor(Value *V) const { +    assert(!V->getType()->isStructTy() && +           "Should use getStructLatticeValueFor"); +    DenseMap<Value *, LatticeVal>::const_iterator I = ValueState.find(V); +    assert(I != ValueState.end() && +           "V not found in ValueState nor Paramstate map!"); +    return I->second; +  } + +  /// getTrackedRetVals - Get the inferred return value map. +  const MapVector<Function*, LatticeVal> &getTrackedRetVals() { +    return TrackedRetVals; +  } + +  /// getTrackedGlobals - Get and return the set of inferred initializers for +  /// global variables. +  const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { +    return TrackedGlobals; +  } + +  /// getMRVFunctionsTracked - Get the set of functions which return multiple +  /// values tracked by the pass. +  const SmallPtrSet<Function *, 16> getMRVFunctionsTracked() { +    return MRVFunctionsTracked; +  } + +  /// getMustTailCallees - Get the set of functions which are called +  /// from non-removable musttail call sites. +  const SmallPtrSet<Function *, 16> getMustTailCallees() { +    return MustTailCallees; +  } + +  /// markOverdefined - Mark the specified value overdefined.  This +  /// works with both scalars and structs. +  void markOverdefined(Value *V) { +    if (auto *STy = dyn_cast<StructType>(V->getType())) +      for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) +        markOverdefined(getStructValueState(V, i), V); +    else +      markOverdefined(ValueState[V], V); +  } + +  // isStructLatticeConstant - Return true if all the lattice values +  // corresponding to elements of the structure are not overdefined, +  // false otherwise. +  bool isStructLatticeConstant(Function *F, StructType *STy) { +    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { +      const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i)); +      assert(It != TrackedMultipleRetVals.end()); +      LatticeVal LV = It->second; +      if (LV.isOverdefined()) +        return false; +    } +    return true; +  } + +private: +  // pushToWorkList - Helper for markConstant/markForcedConstant/markOverdefined +  void pushToWorkList(LatticeVal &IV, Value *V) { +    if (IV.isOverdefined()) +      return OverdefinedInstWorkList.push_back(V); +    InstWorkList.push_back(V); +  } + +  // markConstant - Make a value be marked as "constant".  If the value +  // is not already a constant, add it to the instruction work list so that +  // the users of the instruction are updated later. +  bool markConstant(LatticeVal &IV, Value *V, Constant *C) { +    if (!IV.markConstant(C)) return false; +    LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); +    pushToWorkList(IV, V); +    return true; +  } + +  bool markConstant(Value *V, Constant *C) { +    assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); +    return markConstant(ValueState[V], V, C); +  } + +  void markForcedConstant(Value *V, Constant *C) { +    assert(!V->getType()->isStructTy() && "structs should use mergeInValue"); +    LatticeVal &IV = ValueState[V]; +    IV.markForcedConstant(C); +    LLVM_DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); +    pushToWorkList(IV, V); +  } + +  // markOverdefined - Make a value be marked as "overdefined". If the +  // value is not already overdefined, add it to the overdefined instruction +  // work list so that the users of the instruction are updated later. +  bool markOverdefined(LatticeVal &IV, Value *V) { +    if (!IV.markOverdefined()) return false; + +    LLVM_DEBUG(dbgs() << "markOverdefined: "; +               if (auto *F = dyn_cast<Function>(V)) dbgs() +               << "Function '" << F->getName() << "'\n"; +               else dbgs() << *V << '\n'); +    // Only instructions go on the work list +    pushToWorkList(IV, V); +    return true; +  } + +  bool mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { +    if (IV.isOverdefined() || MergeWithV.isUnknown()) +      return false; // Noop. +    if (MergeWithV.isOverdefined()) +      return markOverdefined(IV, V); +    if (IV.isUnknown()) +      return markConstant(IV, V, MergeWithV.getConstant()); +    if (IV.getConstant() != MergeWithV.getConstant()) +      return markOverdefined(IV, V); +    return false; +  } + +  bool mergeInValue(Value *V, LatticeVal MergeWithV) { +    assert(!V->getType()->isStructTy() && +           "non-structs should use markConstant"); +    return mergeInValue(ValueState[V], V, MergeWithV); +  } + +  /// getValueState - Return the LatticeVal object that corresponds to the +  /// value.  This function handles the case when the value hasn't been seen yet +  /// by properly seeding constants etc. +  LatticeVal &getValueState(Value *V) { +    assert(!V->getType()->isStructTy() && "Should use getStructValueState"); + +    std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = +      ValueState.insert(std::make_pair(V, LatticeVal())); +    LatticeVal &LV = I.first->second; + +    if (!I.second) +      return LV;  // Common case, already in the map. + +    if (auto *C = dyn_cast<Constant>(V)) { +      // Undef values remain unknown. +      if (!isa<UndefValue>(V)) +        LV.markConstant(C);          // Constants are constant +    } + +    // All others are underdefined by default. +    return LV; +  } + +  ValueLatticeElement &getParamState(Value *V) { +    assert(!V->getType()->isStructTy() && "Should use getStructValueState"); + +    std::pair<DenseMap<Value*, ValueLatticeElement>::iterator, bool> +        PI = ParamState.insert(std::make_pair(V, ValueLatticeElement())); +    ValueLatticeElement &LV = PI.first->second; +    if (PI.second) +      LV = getValueState(V).toValueLattice(); + +    return LV; +  } + +  /// getStructValueState - Return the LatticeVal object that corresponds to the +  /// value/field pair.  This function handles the case when the value hasn't +  /// been seen yet by properly seeding constants etc. +  LatticeVal &getStructValueState(Value *V, unsigned i) { +    assert(V->getType()->isStructTy() && "Should use getValueState"); +    assert(i < cast<StructType>(V->getType())->getNumElements() && +           "Invalid element #"); + +    std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, +              bool> I = StructValueState.insert( +                        std::make_pair(std::make_pair(V, i), LatticeVal())); +    LatticeVal &LV = I.first->second; + +    if (!I.second) +      return LV;  // Common case, already in the map. + +    if (auto *C = dyn_cast<Constant>(V)) { +      Constant *Elt = C->getAggregateElement(i); + +      if (!Elt) +        LV.markOverdefined();      // Unknown sort of constant. +      else if (isa<UndefValue>(Elt)) +        ; // Undef values remain unknown. +      else +        LV.markConstant(Elt);      // Constants are constant. +    } + +    // All others are underdefined by default. +    return LV; +  } + +  /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB +  /// work list if it is not already executable. +  bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { +    if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) +      return false;  // This edge is already known to be executable! + +    if (!MarkBlockExecutable(Dest)) { +      // If the destination is already executable, we just made an *edge* +      // feasible that wasn't before.  Revisit the PHI nodes in the block +      // because they have potentially new operands. +      LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() +                        << " -> " << Dest->getName() << '\n'); + +      for (PHINode &PN : Dest->phis()) +        visitPHINode(PN); +    } +    return true; +  } + +  // getFeasibleSuccessors - Return a vector of booleans to indicate which +  // successors are reachable from a given terminator instruction. +  void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs); + +  // OperandChangedState - This method is invoked on all of the users of an +  // instruction that was just changed state somehow.  Based on this +  // information, we need to update the specified user of this instruction. +  void OperandChangedState(Instruction *I) { +    if (BBExecutable.count(I->getParent()))   // Inst is executable? +      visit(*I); +  } + +  // Add U as additional user of V. +  void addAdditionalUser(Value *V, User *U) { +    auto Iter = AdditionalUsers.insert({V, {}}); +    Iter.first->second.insert(U); +  } + +  // Mark I's users as changed, including AdditionalUsers. +  void markUsersAsChanged(Value *I) { +    for (User *U : I->users()) +      if (auto *UI = dyn_cast<Instruction>(U)) +        OperandChangedState(UI); + +    auto Iter = AdditionalUsers.find(I); +    if (Iter != AdditionalUsers.end()) { +      for (User *U : Iter->second) +        if (auto *UI = dyn_cast<Instruction>(U)) +          OperandChangedState(UI); +    } +  } + +private: +  friend class InstVisitor<SCCPSolver>; + +  // visit implementations - Something changed in this instruction.  Either an +  // operand made a transition, or the instruction is newly executable.  Change +  // the value type of I to reflect these changes if appropriate. +  void visitPHINode(PHINode &I); + +  // Terminators + +  void visitReturnInst(ReturnInst &I); +  void visitTerminator(Instruction &TI); + +  void visitCastInst(CastInst &I); +  void visitSelectInst(SelectInst &I); +  void visitUnaryOperator(Instruction &I); +  void visitBinaryOperator(Instruction &I); +  void visitCmpInst(CmpInst &I); +  void visitExtractValueInst(ExtractValueInst &EVI); +  void visitInsertValueInst(InsertValueInst &IVI); + +  void visitCatchSwitchInst(CatchSwitchInst &CPI) { +    markOverdefined(&CPI); +    visitTerminator(CPI); +  } + +  // Instructions that cannot be folded away. + +  void visitStoreInst     (StoreInst &I); +  void visitLoadInst      (LoadInst &I); +  void visitGetElementPtrInst(GetElementPtrInst &I); + +  void visitCallInst      (CallInst &I) { +    visitCallSite(&I); +  } + +  void visitInvokeInst    (InvokeInst &II) { +    visitCallSite(&II); +    visitTerminator(II); +  } + +  void visitCallBrInst    (CallBrInst &CBI) { +    visitCallSite(&CBI); +    visitTerminator(CBI); +  } + +  void visitCallSite      (CallSite CS); +  void visitResumeInst    (ResumeInst &I) { /*returns void*/ } +  void visitUnreachableInst(UnreachableInst &I) { /*returns void*/ } +  void visitFenceInst     (FenceInst &I) { /*returns void*/ } + +  void visitInstruction(Instruction &I) { +    // All the instructions we don't do any special handling for just +    // go to overdefined. +    LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n'); +    markOverdefined(&I); +  } +}; + +} // end anonymous namespace + +// getFeasibleSuccessors - Return a vector of booleans to indicate which +// successors are reachable from a given terminator instruction. +void SCCPSolver::getFeasibleSuccessors(Instruction &TI, +                                       SmallVectorImpl<bool> &Succs) { +  Succs.resize(TI.getNumSuccessors()); +  if (auto *BI = dyn_cast<BranchInst>(&TI)) { +    if (BI->isUnconditional()) { +      Succs[0] = true; +      return; +    } + +    LatticeVal BCValue = getValueState(BI->getCondition()); +    ConstantInt *CI = BCValue.getConstantInt(); +    if (!CI) { +      // Overdefined condition variables, and branches on unfoldable constant +      // conditions, mean the branch could go either way. +      if (!BCValue.isUnknown()) +        Succs[0] = Succs[1] = true; +      return; +    } + +    // Constant condition variables mean the branch can only go a single way. +    Succs[CI->isZero()] = true; +    return; +  } + +  // Unwinding instructions successors are always executable. +  if (TI.isExceptionalTerminator()) { +    Succs.assign(TI.getNumSuccessors(), true); +    return; +  } + +  if (auto *SI = dyn_cast<SwitchInst>(&TI)) { +    if (!SI->getNumCases()) { +      Succs[0] = true; +      return; +    } +    LatticeVal SCValue = getValueState(SI->getCondition()); +    ConstantInt *CI = SCValue.getConstantInt(); + +    if (!CI) {   // Overdefined or unknown condition? +      // All destinations are executable! +      if (!SCValue.isUnknown()) +        Succs.assign(TI.getNumSuccessors(), true); +      return; +    } + +    Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true; +    return; +  } + +  // In case of indirect branch and its address is a blockaddress, we mark +  // the target as executable. +  if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) { +    // Casts are folded by visitCastInst. +    LatticeVal IBRValue = getValueState(IBR->getAddress()); +    BlockAddress *Addr = IBRValue.getBlockAddress(); +    if (!Addr) {   // Overdefined or unknown condition? +      // All destinations are executable! +      if (!IBRValue.isUnknown()) +        Succs.assign(TI.getNumSuccessors(), true); +      return; +    } + +    BasicBlock* T = Addr->getBasicBlock(); +    assert(Addr->getFunction() == T->getParent() && +           "Block address of a different function ?"); +    for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) { +      // This is the target. +      if (IBR->getDestination(i) == T) { +        Succs[i] = true; +        return; +      } +    } + +    // If we didn't find our destination in the IBR successor list, then we +    // have undefined behavior. Its ok to assume no successor is executable. +    return; +  } + +  // In case of callbr, we pessimistically assume that all successors are +  // feasible. +  if (isa<CallBrInst>(&TI)) { +    Succs.assign(TI.getNumSuccessors(), true); +    return; +  } + +  LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n'); +  llvm_unreachable("SCCP: Don't know how to handle this terminator!"); +} + +// isEdgeFeasible - Return true if the control flow edge from the 'From' basic +// block to the 'To' basic block is currently feasible. +bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { +  // Check if we've called markEdgeExecutable on the edge yet. (We could +  // be more aggressive and try to consider edges which haven't been marked +  // yet, but there isn't any need.) +  return KnownFeasibleEdges.count(Edge(From, To)); +} + +// visit Implementations - Something changed in this instruction, either an +// operand made a transition, or the instruction is newly executable.  Change +// the value type of I to reflect these changes if appropriate.  This method +// makes sure to do the following actions: +// +// 1. If a phi node merges two constants in, and has conflicting value coming +//    from different branches, or if the PHI node merges in an overdefined +//    value, then the PHI node becomes overdefined. +// 2. If a phi node merges only constants in, and they all agree on value, the +//    PHI node becomes a constant value equal to that. +// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant +// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined +// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined +// 6. If a conditional branch has a value that is constant, make the selected +//    destination executable +// 7. If a conditional branch has a value that is overdefined, make all +//    successors executable. +void SCCPSolver::visitPHINode(PHINode &PN) { +  // If this PN returns a struct, just mark the result overdefined. +  // TODO: We could do a lot better than this if code actually uses this. +  if (PN.getType()->isStructTy()) +    return (void)markOverdefined(&PN); + +  if (getValueState(&PN).isOverdefined()) +    return;  // Quick exit + +  // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, +  // and slow us down a lot.  Just mark them overdefined. +  if (PN.getNumIncomingValues() > 64) +    return (void)markOverdefined(&PN); + +  // Look at all of the executable operands of the PHI node.  If any of them +  // are overdefined, the PHI becomes overdefined as well.  If they are all +  // constant, and they agree with each other, the PHI becomes the identical +  // constant.  If they are constant and don't agree, the PHI is overdefined. +  // If there are no executable operands, the PHI remains unknown. +  Constant *OperandVal = nullptr; +  for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { +    LatticeVal IV = getValueState(PN.getIncomingValue(i)); +    if (IV.isUnknown()) continue;  // Doesn't influence PHI node. + +    if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) +      continue; + +    if (IV.isOverdefined())    // PHI node becomes overdefined! +      return (void)markOverdefined(&PN); + +    if (!OperandVal) {   // Grab the first value. +      OperandVal = IV.getConstant(); +      continue; +    } + +    // There is already a reachable operand.  If we conflict with it, +    // then the PHI node becomes overdefined.  If we agree with it, we +    // can continue on. + +    // Check to see if there are two different constants merging, if so, the PHI +    // node is overdefined. +    if (IV.getConstant() != OperandVal) +      return (void)markOverdefined(&PN); +  } + +  // If we exited the loop, this means that the PHI node only has constant +  // arguments that agree with each other(and OperandVal is the constant) or +  // OperandVal is null because there are no defined incoming arguments.  If +  // this is the case, the PHI remains unknown. +  if (OperandVal) +    markConstant(&PN, OperandVal);      // Acquire operand value +} + +void SCCPSolver::visitReturnInst(ReturnInst &I) { +  if (I.getNumOperands() == 0) return;  // ret void + +  Function *F = I.getParent()->getParent(); +  Value *ResultOp = I.getOperand(0); + +  // If we are tracking the return value of this function, merge it in. +  if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { +    MapVector<Function*, LatticeVal>::iterator TFRVI = +      TrackedRetVals.find(F); +    if (TFRVI != TrackedRetVals.end()) { +      mergeInValue(TFRVI->second, F, getValueState(ResultOp)); +      return; +    } +  } + +  // Handle functions that return multiple values. +  if (!TrackedMultipleRetVals.empty()) { +    if (auto *STy = dyn_cast<StructType>(ResultOp->getType())) +      if (MRVFunctionsTracked.count(F)) +        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) +          mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, +                       getStructValueState(ResultOp, i)); +  } +} + +void SCCPSolver::visitTerminator(Instruction &TI) { +  SmallVector<bool, 16> SuccFeasible; +  getFeasibleSuccessors(TI, SuccFeasible); + +  BasicBlock *BB = TI.getParent(); + +  // Mark all feasible successors executable. +  for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) +    if (SuccFeasible[i]) +      markEdgeExecutable(BB, TI.getSuccessor(i)); +} + +void SCCPSolver::visitCastInst(CastInst &I) { +  LatticeVal OpSt = getValueState(I.getOperand(0)); +  if (OpSt.isOverdefined())          // Inherit overdefinedness of operand +    markOverdefined(&I); +  else if (OpSt.isConstant()) { +    // Fold the constant as we build. +    Constant *C = ConstantFoldCastOperand(I.getOpcode(), OpSt.getConstant(), +                                          I.getType(), DL); +    if (isa<UndefValue>(C)) +      return; +    // Propagate constant value +    markConstant(&I, C); +  } +} + +void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { +  // If this returns a struct, mark all elements over defined, we don't track +  // structs in structs. +  if (EVI.getType()->isStructTy()) +    return (void)markOverdefined(&EVI); + +  // If this is extracting from more than one level of struct, we don't know. +  if (EVI.getNumIndices() != 1) +    return (void)markOverdefined(&EVI); + +  Value *AggVal = EVI.getAggregateOperand(); +  if (AggVal->getType()->isStructTy()) { +    unsigned i = *EVI.idx_begin(); +    LatticeVal EltVal = getStructValueState(AggVal, i); +    mergeInValue(getValueState(&EVI), &EVI, EltVal); +  } else { +    // Otherwise, must be extracting from an array. +    return (void)markOverdefined(&EVI); +  } +} + +void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { +  auto *STy = dyn_cast<StructType>(IVI.getType()); +  if (!STy) +    return (void)markOverdefined(&IVI); + +  // If this has more than one index, we can't handle it, drive all results to +  // undef. +  if (IVI.getNumIndices() != 1) +    return (void)markOverdefined(&IVI); + +  Value *Aggr = IVI.getAggregateOperand(); +  unsigned Idx = *IVI.idx_begin(); + +  // Compute the result based on what we're inserting. +  for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { +    // This passes through all values that aren't the inserted element. +    if (i != Idx) { +      LatticeVal EltVal = getStructValueState(Aggr, i); +      mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); +      continue; +    } + +    Value *Val = IVI.getInsertedValueOperand(); +    if (Val->getType()->isStructTy()) +      // We don't track structs in structs. +      markOverdefined(getStructValueState(&IVI, i), &IVI); +    else { +      LatticeVal InVal = getValueState(Val); +      mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); +    } +  } +} + +void SCCPSolver::visitSelectInst(SelectInst &I) { +  // If this select returns a struct, just mark the result overdefined. +  // TODO: We could do a lot better than this if code actually uses this. +  if (I.getType()->isStructTy()) +    return (void)markOverdefined(&I); + +  LatticeVal CondValue = getValueState(I.getCondition()); +  if (CondValue.isUnknown()) +    return; + +  if (ConstantInt *CondCB = CondValue.getConstantInt()) { +    Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); +    mergeInValue(&I, getValueState(OpVal)); +    return; +  } + +  // Otherwise, the condition is overdefined or a constant we can't evaluate. +  // See if we can produce something better than overdefined based on the T/F +  // value. +  LatticeVal TVal = getValueState(I.getTrueValue()); +  LatticeVal FVal = getValueState(I.getFalseValue()); + +  // select ?, C, C -> C. +  if (TVal.isConstant() && FVal.isConstant() && +      TVal.getConstant() == FVal.getConstant()) +    return (void)markConstant(&I, FVal.getConstant()); + +  if (TVal.isUnknown())   // select ?, undef, X -> X. +    return (void)mergeInValue(&I, FVal); +  if (FVal.isUnknown())   // select ?, X, undef -> X. +    return (void)mergeInValue(&I, TVal); +  markOverdefined(&I); +} + +// Handle Unary Operators. +void SCCPSolver::visitUnaryOperator(Instruction &I) { +  LatticeVal V0State = getValueState(I.getOperand(0)); + +  LatticeVal &IV = ValueState[&I]; +  if (IV.isOverdefined()) return; + +  if (V0State.isConstant()) { +    Constant *C = ConstantExpr::get(I.getOpcode(), V0State.getConstant()); + +    // op Y -> undef. +    if (isa<UndefValue>(C)) +      return; +    return (void)markConstant(IV, &I, C); +  } + +  // If something is undef, wait for it to resolve. +  if (!V0State.isOverdefined()) +    return; + +  markOverdefined(&I); +} + +// Handle Binary Operators. +void SCCPSolver::visitBinaryOperator(Instruction &I) { +  LatticeVal V1State = getValueState(I.getOperand(0)); +  LatticeVal V2State = getValueState(I.getOperand(1)); + +  LatticeVal &IV = ValueState[&I]; +  if (IV.isOverdefined()) return; + +  if (V1State.isConstant() && V2State.isConstant()) { +    Constant *C = ConstantExpr::get(I.getOpcode(), V1State.getConstant(), +                                    V2State.getConstant()); +    // X op Y -> undef. +    if (isa<UndefValue>(C)) +      return; +    return (void)markConstant(IV, &I, C); +  } + +  // If something is undef, wait for it to resolve. +  if (!V1State.isOverdefined() && !V2State.isOverdefined()) +    return; + +  // Otherwise, one of our operands is overdefined.  Try to produce something +  // better than overdefined with some tricks. +  // If this is 0 / Y, it doesn't matter that the second operand is +  // overdefined, and we can replace it with zero. +  if (I.getOpcode() == Instruction::UDiv || I.getOpcode() == Instruction::SDiv) +    if (V1State.isConstant() && V1State.getConstant()->isNullValue()) +      return (void)markConstant(IV, &I, V1State.getConstant()); + +  // If this is: +  // -> AND/MUL with 0 +  // -> OR with -1 +  // it doesn't matter that the other operand is overdefined. +  if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Mul || +      I.getOpcode() == Instruction::Or) { +    LatticeVal *NonOverdefVal = nullptr; +    if (!V1State.isOverdefined()) +      NonOverdefVal = &V1State; +    else if (!V2State.isOverdefined()) +      NonOverdefVal = &V2State; + +    if (NonOverdefVal) { +      if (NonOverdefVal->isUnknown()) +        return; + +      if (I.getOpcode() == Instruction::And || +          I.getOpcode() == Instruction::Mul) { +        // X and 0 = 0 +        // X * 0 = 0 +        if (NonOverdefVal->getConstant()->isNullValue()) +          return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); +      } else { +        // X or -1 = -1 +        if (ConstantInt *CI = NonOverdefVal->getConstantInt()) +          if (CI->isMinusOne()) +            return (void)markConstant(IV, &I, NonOverdefVal->getConstant()); +      } +    } +  } + +  markOverdefined(&I); +} + +// Handle ICmpInst instruction. +void SCCPSolver::visitCmpInst(CmpInst &I) { +  // Do not cache this lookup, getValueState calls later in the function might +  // invalidate the reference. +  if (ValueState[&I].isOverdefined()) return; + +  Value *Op1 = I.getOperand(0); +  Value *Op2 = I.getOperand(1); + +  // For parameters, use ParamState which includes constant range info if +  // available. +  auto V1Param = ParamState.find(Op1); +  ValueLatticeElement V1State = (V1Param != ParamState.end()) +                                    ? V1Param->second +                                    : getValueState(Op1).toValueLattice(); + +  auto V2Param = ParamState.find(Op2); +  ValueLatticeElement V2State = V2Param != ParamState.end() +                                    ? V2Param->second +                                    : getValueState(Op2).toValueLattice(); + +  Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State); +  if (C) { +    if (isa<UndefValue>(C)) +      return; +    LatticeVal CV; +    CV.markConstant(C); +    mergeInValue(&I, CV); +    return; +  } + +  // If operands are still unknown, wait for it to resolve. +  if (!V1State.isOverdefined() && !V2State.isOverdefined() && +      !ValueState[&I].isConstant()) +    return; + +  markOverdefined(&I); +} + +// Handle getelementptr instructions.  If all operands are constants then we +// can turn this into a getelementptr ConstantExpr. +void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { +  if (ValueState[&I].isOverdefined()) return; + +  SmallVector<Constant*, 8> Operands; +  Operands.reserve(I.getNumOperands()); + +  for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { +    LatticeVal State = getValueState(I.getOperand(i)); +    if (State.isUnknown()) +      return;  // Operands are not resolved yet. + +    if (State.isOverdefined()) +      return (void)markOverdefined(&I); + +    assert(State.isConstant() && "Unknown state!"); +    Operands.push_back(State.getConstant()); +  } + +  Constant *Ptr = Operands[0]; +  auto Indices = makeArrayRef(Operands.begin() + 1, Operands.end()); +  Constant *C = +      ConstantExpr::getGetElementPtr(I.getSourceElementType(), Ptr, Indices); +  if (isa<UndefValue>(C)) +      return; +  markConstant(&I, C); +} + +void SCCPSolver::visitStoreInst(StoreInst &SI) { +  // If this store is of a struct, ignore it. +  if (SI.getOperand(0)->getType()->isStructTy()) +    return; + +  if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) +    return; + +  GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); +  DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); +  if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; + +  // Get the value we are storing into the global, then merge it. +  mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); +  if (I->second.isOverdefined()) +    TrackedGlobals.erase(I);      // No need to keep tracking this! +} + +// Handle load instructions.  If the operand is a constant pointer to a constant +// global, we can replace the load with the loaded constant value! +void SCCPSolver::visitLoadInst(LoadInst &I) { +  // If this load is of a struct, just mark the result overdefined. +  if (I.getType()->isStructTy()) +    return (void)markOverdefined(&I); + +  LatticeVal PtrVal = getValueState(I.getOperand(0)); +  if (PtrVal.isUnknown()) return;   // The pointer is not resolved yet! + +  LatticeVal &IV = ValueState[&I]; +  if (IV.isOverdefined()) return; + +  if (!PtrVal.isConstant() || I.isVolatile()) +    return (void)markOverdefined(IV, &I); + +  Constant *Ptr = PtrVal.getConstant(); + +  // load null is undefined. +  if (isa<ConstantPointerNull>(Ptr)) { +    if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace())) +      return (void)markOverdefined(IV, &I); +    else +      return; +  } + +  // Transform load (constant global) into the value loaded. +  if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) { +    if (!TrackedGlobals.empty()) { +      // If we are tracking this global, merge in the known value for it. +      DenseMap<GlobalVariable*, LatticeVal>::iterator It = +        TrackedGlobals.find(GV); +      if (It != TrackedGlobals.end()) { +        mergeInValue(IV, &I, It->second); +        return; +      } +    } +  } + +  // Transform load from a constant into a constant if possible. +  if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL)) { +    if (isa<UndefValue>(C)) +      return; +    return (void)markConstant(IV, &I, C); +  } + +  // Otherwise we cannot say for certain what value this load will produce. +  // Bail out. +  markOverdefined(IV, &I); +} + +void SCCPSolver::visitCallSite(CallSite CS) { +  Function *F = CS.getCalledFunction(); +  Instruction *I = CS.getInstruction(); + +  if (auto *II = dyn_cast<IntrinsicInst>(I)) { +    if (II->getIntrinsicID() == Intrinsic::ssa_copy) { +      if (ValueState[I].isOverdefined()) +        return; + +      auto *PI = getPredicateInfoFor(I); +      if (!PI) +        return; + +      Value *CopyOf = I->getOperand(0); +      auto *PBranch = dyn_cast<PredicateBranch>(PI); +      if (!PBranch) { +        mergeInValue(ValueState[I], I, getValueState(CopyOf)); +        return; +      } + +      Value *Cond = PBranch->Condition; + +      // Everything below relies on the condition being a comparison. +      auto *Cmp = dyn_cast<CmpInst>(Cond); +      if (!Cmp) { +        mergeInValue(ValueState[I], I, getValueState(CopyOf)); +        return; +      } + +      Value *CmpOp0 = Cmp->getOperand(0); +      Value *CmpOp1 = Cmp->getOperand(1); +      if (CopyOf != CmpOp0 && CopyOf != CmpOp1) { +        mergeInValue(ValueState[I], I, getValueState(CopyOf)); +        return; +      } + +      if (CmpOp0 != CopyOf) +        std::swap(CmpOp0, CmpOp1); + +      LatticeVal OriginalVal = getValueState(CopyOf); +      LatticeVal EqVal = getValueState(CmpOp1); +      LatticeVal &IV = ValueState[I]; +      if (PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_EQ) { +        addAdditionalUser(CmpOp1, I); +        if (OriginalVal.isConstant()) +          mergeInValue(IV, I, OriginalVal); +        else +          mergeInValue(IV, I, EqVal); +        return; +      } +      if (!PBranch->TrueEdge && Cmp->getPredicate() == CmpInst::ICMP_NE) { +        addAdditionalUser(CmpOp1, I); +        if (OriginalVal.isConstant()) +          mergeInValue(IV, I, OriginalVal); +        else +          mergeInValue(IV, I, EqVal); +        return; +      } + +      return (void)mergeInValue(IV, I, getValueState(CopyOf)); +    } +  } + +  // The common case is that we aren't tracking the callee, either because we +  // are not doing interprocedural analysis or the callee is indirect, or is +  // external.  Handle these cases first. +  if (!F || F->isDeclaration()) { +CallOverdefined: +    // Void return and not tracking callee, just bail. +    if (I->getType()->isVoidTy()) return; + +    // Otherwise, if we have a single return value case, and if the function is +    // a declaration, maybe we can constant fold it. +    if (F && F->isDeclaration() && !I->getType()->isStructTy() && +        canConstantFoldCallTo(cast<CallBase>(CS.getInstruction()), F)) { +      SmallVector<Constant*, 8> Operands; +      for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); +           AI != E; ++AI) { +        if (AI->get()->getType()->isStructTy()) +          return markOverdefined(I); // Can't handle struct args. +        LatticeVal State = getValueState(*AI); + +        if (State.isUnknown()) +          return;  // Operands are not resolved yet. +        if (State.isOverdefined()) +          return (void)markOverdefined(I); +        assert(State.isConstant() && "Unknown state!"); +        Operands.push_back(State.getConstant()); +      } + +      if (getValueState(I).isOverdefined()) +        return; + +      // If we can constant fold this, mark the result of the call as a +      // constant. +      if (Constant *C = ConstantFoldCall(cast<CallBase>(CS.getInstruction()), F, +                                         Operands, &GetTLI(*F))) { +        // call -> undef. +        if (isa<UndefValue>(C)) +          return; +        return (void)markConstant(I, C); +      } +    } + +    // Otherwise, we don't know anything about this call, mark it overdefined. +    return (void)markOverdefined(I); +  } + +  // If this is a local function that doesn't have its address taken, mark its +  // entry block executable and merge in the actual arguments to the call into +  // the formal arguments of the function. +  if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ +    MarkBlockExecutable(&F->front()); + +    // Propagate information from this call site into the callee. +    CallSite::arg_iterator CAI = CS.arg_begin(); +    for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); +         AI != E; ++AI, ++CAI) { +      // If this argument is byval, and if the function is not readonly, there +      // will be an implicit copy formed of the input aggregate. +      if (AI->hasByValAttr() && !F->onlyReadsMemory()) { +        markOverdefined(&*AI); +        continue; +      } + +      if (auto *STy = dyn_cast<StructType>(AI->getType())) { +        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { +          LatticeVal CallArg = getStructValueState(*CAI, i); +          mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg); +        } +      } else { +        // Most other parts of the Solver still only use the simpler value +        // lattice, so we propagate changes for parameters to both lattices. +        LatticeVal ConcreteArgument = getValueState(*CAI); +        bool ParamChanged = +            getParamState(&*AI).mergeIn(ConcreteArgument.toValueLattice(), DL); +         bool ValueChanged = mergeInValue(&*AI, ConcreteArgument); +        // Add argument to work list, if the state of a parameter changes but +        // ValueState does not change (because it is already overdefined there), +        // We have to take changes in ParamState into account, as it is used +        // when evaluating Cmp instructions. +        if (!ValueChanged && ParamChanged) +          pushToWorkList(ValueState[&*AI], &*AI); +      } +    } +  } + +  // If this is a single/zero retval case, see if we're tracking the function. +  if (auto *STy = dyn_cast<StructType>(F->getReturnType())) { +    if (!MRVFunctionsTracked.count(F)) +      goto CallOverdefined;  // Not tracking this callee. + +    // If we are tracking this callee, propagate the result of the function +    // into this call site. +    for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) +      mergeInValue(getStructValueState(I, i), I, +                   TrackedMultipleRetVals[std::make_pair(F, i)]); +  } else { +    MapVector<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); +    if (TFRVI == TrackedRetVals.end()) +      goto CallOverdefined;  // Not tracking this callee. + +    // If so, propagate the return value of the callee into this call result. +    mergeInValue(I, TFRVI->second); +  } +} + +void SCCPSolver::Solve() { +  // Process the work lists until they are empty! +  while (!BBWorkList.empty() || !InstWorkList.empty() || +         !OverdefinedInstWorkList.empty()) { +    // Process the overdefined instruction's work list first, which drives other +    // things to overdefined more quickly. +    while (!OverdefinedInstWorkList.empty()) { +      Value *I = OverdefinedInstWorkList.pop_back_val(); + +      LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); + +      // "I" got into the work list because it either made the transition from +      // bottom to constant, or to overdefined. +      // +      // Anything on this worklist that is overdefined need not be visited +      // since all of its users will have already been marked as overdefined +      // Update all of the users of this instruction's value. +      // +      markUsersAsChanged(I); +    } + +    // Process the instruction work list. +    while (!InstWorkList.empty()) { +      Value *I = InstWorkList.pop_back_val(); + +      LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); + +      // "I" got into the work list because it made the transition from undef to +      // constant. +      // +      // Anything on this worklist that is overdefined need not be visited +      // since all of its users will have already been marked as overdefined. +      // Update all of the users of this instruction's value. +      // +      if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) +        markUsersAsChanged(I); +    } + +    // Process the basic block work list. +    while (!BBWorkList.empty()) { +      BasicBlock *BB = BBWorkList.back(); +      BBWorkList.pop_back(); + +      LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); + +      // Notify all instructions in this basic block that they are newly +      // executable. +      visit(BB); +    } +  } +} + +/// ResolvedUndefsIn - While solving the dataflow for a function, we assume +/// that branches on undef values cannot reach any of their successors. +/// However, this is not a safe assumption.  After we solve dataflow, this +/// method should be use to handle this.  If this returns true, the solver +/// should be rerun. +/// +/// This method handles this by finding an unresolved branch and marking it one +/// of the edges from the block as being feasible, even though the condition +/// doesn't say it would otherwise be.  This allows SCCP to find the rest of the +/// CFG and only slightly pessimizes the analysis results (by marking one, +/// potentially infeasible, edge feasible).  This cannot usefully modify the +/// constraints on the condition of the branch, as that would impact other users +/// of the value. +/// +/// This scan also checks for values that use undefs, whose results are actually +/// defined.  For example, 'zext i8 undef to i32' should produce all zeros +/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, +/// even if X isn't defined. +bool SCCPSolver::ResolvedUndefsIn(Function &F) { +  for (BasicBlock &BB : F) { +    if (!BBExecutable.count(&BB)) +      continue; + +    for (Instruction &I : BB) { +      // Look for instructions which produce undef values. +      if (I.getType()->isVoidTy()) continue; + +      if (auto *STy = dyn_cast<StructType>(I.getType())) { +        // Only a few things that can be structs matter for undef. + +        // Tracked calls must never be marked overdefined in ResolvedUndefsIn. +        if (CallSite CS = CallSite(&I)) +          if (Function *F = CS.getCalledFunction()) +            if (MRVFunctionsTracked.count(F)) +              continue; + +        // extractvalue and insertvalue don't need to be marked; they are +        // tracked as precisely as their operands. +        if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I)) +          continue; + +        // Send the results of everything else to overdefined.  We could be +        // more precise than this but it isn't worth bothering. +        for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { +          LatticeVal &LV = getStructValueState(&I, i); +          if (LV.isUnknown()) +            markOverdefined(LV, &I); +        } +        continue; +      } + +      LatticeVal &LV = getValueState(&I); +      if (!LV.isUnknown()) +        continue; + +      // There are two reasons a call can have an undef result +      // 1. It could be tracked. +      // 2. It could be constant-foldable. +      // Because of the way we solve return values, tracked calls must +      // never be marked overdefined in ResolvedUndefsIn. +      if (CallSite CS = CallSite(&I)) { +        if (Function *F = CS.getCalledFunction()) +          if (TrackedRetVals.count(F)) +            continue; + +        // If the call is constant-foldable, we mark it overdefined because +        // we do not know what return values are valid. +        markOverdefined(&I); +        return true; +      } + +      // extractvalue is safe; check here because the argument is a struct. +      if (isa<ExtractValueInst>(I)) +        continue; + +      // Compute the operand LatticeVals, for convenience below. +      // Anything taking a struct is conservatively assumed to require +      // overdefined markings. +      if (I.getOperand(0)->getType()->isStructTy()) { +        markOverdefined(&I); +        return true; +      } +      LatticeVal Op0LV = getValueState(I.getOperand(0)); +      LatticeVal Op1LV; +      if (I.getNumOperands() == 2) { +        if (I.getOperand(1)->getType()->isStructTy()) { +          markOverdefined(&I); +          return true; +        } + +        Op1LV = getValueState(I.getOperand(1)); +      } +      // If this is an instructions whose result is defined even if the input is +      // not fully defined, propagate the information. +      Type *ITy = I.getType(); +      switch (I.getOpcode()) { +      case Instruction::Add: +      case Instruction::Sub: +      case Instruction::Trunc: +      case Instruction::FPTrunc: +      case Instruction::BitCast: +        break; // Any undef -> undef +      case Instruction::FSub: +      case Instruction::FAdd: +      case Instruction::FMul: +      case Instruction::FDiv: +      case Instruction::FRem: +        // Floating-point binary operation: be conservative. +        if (Op0LV.isUnknown() && Op1LV.isUnknown()) +          markForcedConstant(&I, Constant::getNullValue(ITy)); +        else +          markOverdefined(&I); +        return true; +      case Instruction::FNeg: +        break; // fneg undef -> undef +      case Instruction::ZExt: +      case Instruction::SExt: +      case Instruction::FPToUI: +      case Instruction::FPToSI: +      case Instruction::FPExt: +      case Instruction::PtrToInt: +      case Instruction::IntToPtr: +      case Instruction::SIToFP: +      case Instruction::UIToFP: +        // undef -> 0; some outputs are impossible +        markForcedConstant(&I, Constant::getNullValue(ITy)); +        return true; +      case Instruction::Mul: +      case Instruction::And: +        // Both operands undef -> undef +        if (Op0LV.isUnknown() && Op1LV.isUnknown()) +          break; +        // undef * X -> 0.   X could be zero. +        // undef & X -> 0.   X could be zero. +        markForcedConstant(&I, Constant::getNullValue(ITy)); +        return true; +      case Instruction::Or: +        // Both operands undef -> undef +        if (Op0LV.isUnknown() && Op1LV.isUnknown()) +          break; +        // undef | X -> -1.   X could be -1. +        markForcedConstant(&I, Constant::getAllOnesValue(ITy)); +        return true; +      case Instruction::Xor: +        // undef ^ undef -> 0; strictly speaking, this is not strictly +        // necessary, but we try to be nice to people who expect this +        // behavior in simple cases +        if (Op0LV.isUnknown() && Op1LV.isUnknown()) { +          markForcedConstant(&I, Constant::getNullValue(ITy)); +          return true; +        } +        // undef ^ X -> undef +        break; +      case Instruction::SDiv: +      case Instruction::UDiv: +      case Instruction::SRem: +      case Instruction::URem: +        // X / undef -> undef.  No change. +        // X % undef -> undef.  No change. +        if (Op1LV.isUnknown()) break; + +        // X / 0 -> undef.  No change. +        // X % 0 -> undef.  No change. +        if (Op1LV.isConstant() && Op1LV.getConstant()->isZeroValue()) +          break; + +        // undef / X -> 0.   X could be maxint. +        // undef % X -> 0.   X could be 1. +        markForcedConstant(&I, Constant::getNullValue(ITy)); +        return true; +      case Instruction::AShr: +        // X >>a undef -> undef. +        if (Op1LV.isUnknown()) break; + +        // Shifting by the bitwidth or more is undefined. +        if (Op1LV.isConstant()) { +          if (auto *ShiftAmt = Op1LV.getConstantInt()) +            if (ShiftAmt->getLimitedValue() >= +                ShiftAmt->getType()->getScalarSizeInBits()) +              break; +        } + +        // undef >>a X -> 0 +        markForcedConstant(&I, Constant::getNullValue(ITy)); +        return true; +      case Instruction::LShr: +      case Instruction::Shl: +        // X << undef -> undef. +        // X >> undef -> undef. +        if (Op1LV.isUnknown()) break; + +        // Shifting by the bitwidth or more is undefined. +        if (Op1LV.isConstant()) { +          if (auto *ShiftAmt = Op1LV.getConstantInt()) +            if (ShiftAmt->getLimitedValue() >= +                ShiftAmt->getType()->getScalarSizeInBits()) +              break; +        } + +        // undef << X -> 0 +        // undef >> X -> 0 +        markForcedConstant(&I, Constant::getNullValue(ITy)); +        return true; +      case Instruction::Select: +        Op1LV = getValueState(I.getOperand(1)); +        // undef ? X : Y  -> X or Y.  There could be commonality between X/Y. +        if (Op0LV.isUnknown()) { +          if (!Op1LV.isConstant())  // Pick the constant one if there is any. +            Op1LV = getValueState(I.getOperand(2)); +        } else if (Op1LV.isUnknown()) { +          // c ? undef : undef -> undef.  No change. +          Op1LV = getValueState(I.getOperand(2)); +          if (Op1LV.isUnknown()) +            break; +          // Otherwise, c ? undef : x -> x. +        } else { +          // Leave Op1LV as Operand(1)'s LatticeValue. +        } + +        if (Op1LV.isConstant()) +          markForcedConstant(&I, Op1LV.getConstant()); +        else +          markOverdefined(&I); +        return true; +      case Instruction::Load: +        // A load here means one of two things: a load of undef from a global, +        // a load from an unknown pointer.  Either way, having it return undef +        // is okay. +        break; +      case Instruction::ICmp: +        // X == undef -> undef.  Other comparisons get more complicated. +        Op0LV = getValueState(I.getOperand(0)); +        Op1LV = getValueState(I.getOperand(1)); + +        if ((Op0LV.isUnknown() || Op1LV.isUnknown()) && +            cast<ICmpInst>(&I)->isEquality()) +          break; +        markOverdefined(&I); +        return true; +      case Instruction::Call: +      case Instruction::Invoke: +      case Instruction::CallBr: +        llvm_unreachable("Call-like instructions should have be handled early"); +      default: +        // If we don't know what should happen here, conservatively mark it +        // overdefined. +        markOverdefined(&I); +        return true; +      } +    } + +    // Check to see if we have a branch or switch on an undefined value.  If so +    // we force the branch to go one way or the other to make the successor +    // values live.  It doesn't really matter which way we force it. +    Instruction *TI = BB.getTerminator(); +    if (auto *BI = dyn_cast<BranchInst>(TI)) { +      if (!BI->isConditional()) continue; +      if (!getValueState(BI->getCondition()).isUnknown()) +        continue; + +      // If the input to SCCP is actually branch on undef, fix the undef to +      // false. +      if (isa<UndefValue>(BI->getCondition())) { +        BI->setCondition(ConstantInt::getFalse(BI->getContext())); +        markEdgeExecutable(&BB, TI->getSuccessor(1)); +        return true; +      } + +      // Otherwise, it is a branch on a symbolic value which is currently +      // considered to be undef.  Make sure some edge is executable, so a +      // branch on "undef" always flows somewhere. +      // FIXME: Distinguish between dead code and an LLVM "undef" value. +      BasicBlock *DefaultSuccessor = TI->getSuccessor(1); +      if (markEdgeExecutable(&BB, DefaultSuccessor)) +        return true; + +      continue; +    } + +   if (auto *IBR = dyn_cast<IndirectBrInst>(TI)) { +      // Indirect branch with no successor ?. Its ok to assume it branches +      // to no target. +      if (IBR->getNumSuccessors() < 1) +        continue; + +      if (!getValueState(IBR->getAddress()).isUnknown()) +        continue; + +      // If the input to SCCP is actually branch on undef, fix the undef to +      // the first successor of the indirect branch. +      if (isa<UndefValue>(IBR->getAddress())) { +        IBR->setAddress(BlockAddress::get(IBR->getSuccessor(0))); +        markEdgeExecutable(&BB, IBR->getSuccessor(0)); +        return true; +      } + +      // Otherwise, it is a branch on a symbolic value which is currently +      // considered to be undef.  Make sure some edge is executable, so a +      // branch on "undef" always flows somewhere. +      // FIXME: IndirectBr on "undef" doesn't actually need to go anywhere: +      // we can assume the branch has undefined behavior instead. +      BasicBlock *DefaultSuccessor = IBR->getSuccessor(0); +      if (markEdgeExecutable(&BB, DefaultSuccessor)) +        return true; + +      continue; +    } + +    if (auto *SI = dyn_cast<SwitchInst>(TI)) { +      if (!SI->getNumCases() || !getValueState(SI->getCondition()).isUnknown()) +        continue; + +      // If the input to SCCP is actually switch on undef, fix the undef to +      // the first constant. +      if (isa<UndefValue>(SI->getCondition())) { +        SI->setCondition(SI->case_begin()->getCaseValue()); +        markEdgeExecutable(&BB, SI->case_begin()->getCaseSuccessor()); +        return true; +      } + +      // Otherwise, it is a branch on a symbolic value which is currently +      // considered to be undef.  Make sure some edge is executable, so a +      // branch on "undef" always flows somewhere. +      // FIXME: Distinguish between dead code and an LLVM "undef" value. +      BasicBlock *DefaultSuccessor = SI->case_begin()->getCaseSuccessor(); +      if (markEdgeExecutable(&BB, DefaultSuccessor)) +        return true; + +      continue; +    } +  } + +  return false; +} + +static bool tryToReplaceWithConstant(SCCPSolver &Solver, Value *V) { +  Constant *Const = nullptr; +  if (V->getType()->isStructTy()) { +    std::vector<LatticeVal> IVs = Solver.getStructLatticeValueFor(V); +    if (llvm::any_of(IVs, +                     [](const LatticeVal &LV) { return LV.isOverdefined(); })) +      return false; +    std::vector<Constant *> ConstVals; +    auto *ST = cast<StructType>(V->getType()); +    for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) { +      LatticeVal V = IVs[i]; +      ConstVals.push_back(V.isConstant() +                              ? V.getConstant() +                              : UndefValue::get(ST->getElementType(i))); +    } +    Const = ConstantStruct::get(ST, ConstVals); +  } else { +    const LatticeVal &IV = Solver.getLatticeValueFor(V); +    if (IV.isOverdefined()) +      return false; + +    Const = IV.isConstant() ? IV.getConstant() : UndefValue::get(V->getType()); +  } +  assert(Const && "Constant is nullptr here!"); + +  // Replacing `musttail` instructions with constant breaks `musttail` invariant +  // unless the call itself can be removed +  CallInst *CI = dyn_cast<CallInst>(V); +  if (CI && CI->isMustTailCall() && !CI->isSafeToRemove()) { +    CallSite CS(CI); +    Function *F = CS.getCalledFunction(); + +    // Don't zap returns of the callee +    if (F) +      Solver.AddMustTailCallee(F); + +    LLVM_DEBUG(dbgs() << "  Can\'t treat the result of musttail call : " << *CI +                      << " as a constant\n"); +    return false; +  } + +  LLVM_DEBUG(dbgs() << "  Constant: " << *Const << " = " << *V << '\n'); + +  // Replaces all of the uses of a variable with uses of the constant. +  V->replaceAllUsesWith(Const); +  return true; +} + +// runSCCP() - Run the Sparse Conditional Constant Propagation algorithm, +// and return true if the function was modified. +static bool runSCCP(Function &F, const DataLayout &DL, +                    const TargetLibraryInfo *TLI) { +  LLVM_DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); +  SCCPSolver Solver( +      DL, [TLI](Function &F) -> const TargetLibraryInfo & { return *TLI; }); + +  // Mark the first block of the function as being executable. +  Solver.MarkBlockExecutable(&F.front()); + +  // Mark all arguments to the function as being overdefined. +  for (Argument &AI : F.args()) +    Solver.markOverdefined(&AI); + +  // Solve for constants. +  bool ResolvedUndefs = true; +  while (ResolvedUndefs) { +    Solver.Solve(); +    LLVM_DEBUG(dbgs() << "RESOLVING UNDEFs\n"); +    ResolvedUndefs = Solver.ResolvedUndefsIn(F); +  } + +  bool MadeChanges = false; + +  // If we decided that there are basic blocks that are dead in this function, +  // delete their contents now.  Note that we cannot actually delete the blocks, +  // as we cannot modify the CFG of the function. + +  for (BasicBlock &BB : F) { +    if (!Solver.isBlockExecutable(&BB)) { +      LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << BB); + +      ++NumDeadBlocks; +      NumInstRemoved += removeAllNonTerminatorAndEHPadInstructions(&BB); + +      MadeChanges = true; +      continue; +    } + +    // Iterate over all of the instructions in a function, replacing them with +    // constants if we have found them to be of constant values. +    for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { +      Instruction *Inst = &*BI++; +      if (Inst->getType()->isVoidTy() || Inst->isTerminator()) +        continue; + +      if (tryToReplaceWithConstant(Solver, Inst)) { +        if (isInstructionTriviallyDead(Inst)) +          Inst->eraseFromParent(); +        // Hey, we just changed something! +        MadeChanges = true; +        ++NumInstRemoved; +      } +    } +  } + +  return MadeChanges; +} + +PreservedAnalyses SCCPPass::run(Function &F, FunctionAnalysisManager &AM) { +  const DataLayout &DL = F.getParent()->getDataLayout(); +  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); +  if (!runSCCP(F, DL, &TLI)) +    return PreservedAnalyses::all(); + +  auto PA = PreservedAnalyses(); +  PA.preserve<GlobalsAA>(); +  PA.preserveSet<CFGAnalyses>(); +  return PA; +} + +namespace { + +//===--------------------------------------------------------------------===// +// +/// SCCP Class - This class uses the SCCPSolver to implement a per-function +/// Sparse Conditional Constant Propagator. +/// +class SCCPLegacyPass : public FunctionPass { +public: +  // Pass identification, replacement for typeid +  static char ID; + +  SCCPLegacyPass() : FunctionPass(ID) { +    initializeSCCPLegacyPassPass(*PassRegistry::getPassRegistry()); +  } + +  void getAnalysisUsage(AnalysisUsage &AU) const override { +    AU.addRequired<TargetLibraryInfoWrapperPass>(); +    AU.addPreserved<GlobalsAAWrapperPass>(); +    AU.setPreservesCFG(); +  } + +  // runOnFunction - Run the Sparse Conditional Constant Propagation +  // algorithm, and return true if the function was modified. +  bool runOnFunction(Function &F) override { +    if (skipFunction(F)) +      return false; +    const DataLayout &DL = F.getParent()->getDataLayout(); +    const TargetLibraryInfo *TLI = +        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); +    return runSCCP(F, DL, TLI); +  } +}; + +} // end anonymous namespace + +char SCCPLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(SCCPLegacyPass, "sccp", +                      "Sparse Conditional Constant Propagation", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(SCCPLegacyPass, "sccp", +                    "Sparse Conditional Constant Propagation", false, false) + +// createSCCPPass - This is the public interface to this file. +FunctionPass *llvm::createSCCPPass() { return new SCCPLegacyPass(); } + +static void findReturnsToZap(Function &F, +                             SmallVector<ReturnInst *, 8> &ReturnsToZap, +                             SCCPSolver &Solver) { +  // We can only do this if we know that nothing else can call the function. +  if (!Solver.isArgumentTrackedFunction(&F)) +    return; + +  // There is a non-removable musttail call site of this function. Zapping +  // returns is not allowed. +  if (Solver.isMustTailCallee(&F)) { +    LLVM_DEBUG(dbgs() << "Can't zap returns of the function : " << F.getName() +                      << " due to present musttail call of it\n"); +    return; +  } + +  assert( +      all_of(F.users(), +             [&Solver](User *U) { +               if (isa<Instruction>(U) && +                   !Solver.isBlockExecutable(cast<Instruction>(U)->getParent())) +                 return true; +               // Non-callsite uses are not impacted by zapping. Also, constant +               // uses (like blockaddresses) could stuck around, without being +               // used in the underlying IR, meaning we do not have lattice +               // values for them. +               if (!CallSite(U)) +                 return true; +               if (U->getType()->isStructTy()) { +                 return all_of( +                     Solver.getStructLatticeValueFor(U), +                     [](const LatticeVal &LV) { return !LV.isOverdefined(); }); +               } +               return !Solver.getLatticeValueFor(U).isOverdefined(); +             }) && +      "We can only zap functions where all live users have a concrete value"); + +  for (BasicBlock &BB : F) { +    if (CallInst *CI = BB.getTerminatingMustTailCall()) { +      LLVM_DEBUG(dbgs() << "Can't zap return of the block due to present " +                        << "musttail call : " << *CI << "\n"); +      (void)CI; +      return; +    } + +    if (auto *RI = dyn_cast<ReturnInst>(BB.getTerminator())) +      if (!isa<UndefValue>(RI->getOperand(0))) +        ReturnsToZap.push_back(RI); +  } +} + +// Update the condition for terminators that are branching on indeterminate +// values, forcing them to use a specific edge. +static void forceIndeterminateEdge(Instruction* I, SCCPSolver &Solver) { +  BasicBlock *Dest = nullptr; +  Constant *C = nullptr; +  if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { +    if (!isa<ConstantInt>(SI->getCondition())) { +      // Indeterminate switch; use first case value. +      Dest = SI->case_begin()->getCaseSuccessor(); +      C = SI->case_begin()->getCaseValue(); +    } +  } else if (BranchInst *BI = dyn_cast<BranchInst>(I)) { +    if (!isa<ConstantInt>(BI->getCondition())) { +      // Indeterminate branch; use false. +      Dest = BI->getSuccessor(1); +      C = ConstantInt::getFalse(BI->getContext()); +    } +  } else if (IndirectBrInst *IBR = dyn_cast<IndirectBrInst>(I)) { +    if (!isa<BlockAddress>(IBR->getAddress()->stripPointerCasts())) { +      // Indeterminate indirectbr; use successor 0. +      Dest = IBR->getSuccessor(0); +      C = BlockAddress::get(IBR->getSuccessor(0)); +    } +  } else { +    llvm_unreachable("Unexpected terminator instruction"); +  } +  if (C) { +    assert(Solver.isEdgeFeasible(I->getParent(), Dest) && +           "Didn't find feasible edge?"); +    (void)Dest; + +    I->setOperand(0, C); +  } +} + +bool llvm::runIPSCCP( +    Module &M, const DataLayout &DL, +    std::function<const TargetLibraryInfo &(Function &)> GetTLI, +    function_ref<AnalysisResultsForFn(Function &)> getAnalysis) { +  SCCPSolver Solver(DL, GetTLI); + +  // Loop over all functions, marking arguments to those with their addresses +  // taken or that are external as overdefined. +  for (Function &F : M) { +    if (F.isDeclaration()) +      continue; + +    Solver.addAnalysis(F, getAnalysis(F)); + +    // Determine if we can track the function's return values. If so, add the +    // function to the solver's set of return-tracked functions. +    if (canTrackReturnsInterprocedurally(&F)) +      Solver.AddTrackedFunction(&F); + +    // Determine if we can track the function's arguments. If so, add the +    // function to the solver's set of argument-tracked functions. +    if (canTrackArgumentsInterprocedurally(&F)) { +      Solver.AddArgumentTrackedFunction(&F); +      continue; +    } + +    // Assume the function is called. +    Solver.MarkBlockExecutable(&F.front()); + +    // Assume nothing about the incoming arguments. +    for (Argument &AI : F.args()) +      Solver.markOverdefined(&AI); +  } + +  // Determine if we can track any of the module's global variables. If so, add +  // the global variables we can track to the solver's set of tracked global +  // variables. +  for (GlobalVariable &G : M.globals()) { +    G.removeDeadConstantUsers(); +    if (canTrackGlobalVariableInterprocedurally(&G)) +      Solver.TrackValueOfGlobalVariable(&G); +  } + +  // Solve for constants. +  bool ResolvedUndefs = true; +  Solver.Solve(); +  while (ResolvedUndefs) { +    LLVM_DEBUG(dbgs() << "RESOLVING UNDEFS\n"); +    ResolvedUndefs = false; +    for (Function &F : M) +      if (Solver.ResolvedUndefsIn(F)) { +        // We run Solve() after we resolved an undef in a function, because +        // we might deduce a fact that eliminates an undef in another function. +        Solver.Solve(); +        ResolvedUndefs = true; +      } +  } + +  bool MadeChanges = false; + +  // Iterate over all of the instructions in the module, replacing them with +  // constants if we have found them to be of constant values. + +  for (Function &F : M) { +    if (F.isDeclaration()) +      continue; + +    SmallVector<BasicBlock *, 512> BlocksToErase; + +    if (Solver.isBlockExecutable(&F.front())) +      for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E; +           ++AI) { +        if (!AI->use_empty() && tryToReplaceWithConstant(Solver, &*AI)) { +          ++IPNumArgsElimed; +          continue; +        } +      } + +    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { +      if (!Solver.isBlockExecutable(&*BB)) { +        LLVM_DEBUG(dbgs() << "  BasicBlock Dead:" << *BB); +        ++NumDeadBlocks; + +        MadeChanges = true; + +        if (&*BB != &F.front()) +          BlocksToErase.push_back(&*BB); +        continue; +      } + +      for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { +        Instruction *Inst = &*BI++; +        if (Inst->getType()->isVoidTy()) +          continue; +        if (tryToReplaceWithConstant(Solver, Inst)) { +          if (Inst->isSafeToRemove()) +            Inst->eraseFromParent(); +          // Hey, we just changed something! +          MadeChanges = true; +          ++IPNumInstRemoved; +        } +      } +    } + +    DomTreeUpdater DTU = Solver.getDTU(F); +    // Change dead blocks to unreachable. We do it after replacing constants +    // in all executable blocks, because changeToUnreachable may remove PHI +    // nodes in executable blocks we found values for. The function's entry +    // block is not part of BlocksToErase, so we have to handle it separately. +    for (BasicBlock *BB : BlocksToErase) { +      NumInstRemoved += +          changeToUnreachable(BB->getFirstNonPHI(), /*UseLLVMTrap=*/false, +                              /*PreserveLCSSA=*/false, &DTU); +    } +    if (!Solver.isBlockExecutable(&F.front())) +      NumInstRemoved += changeToUnreachable(F.front().getFirstNonPHI(), +                                            /*UseLLVMTrap=*/false, +                                            /*PreserveLCSSA=*/false, &DTU); + +    // Now that all instructions in the function are constant folded, +    // use ConstantFoldTerminator to get rid of in-edges, record DT updates and +    // delete dead BBs. +    for (BasicBlock *DeadBB : BlocksToErase) { +      // If there are any PHI nodes in this successor, drop entries for BB now. +      for (Value::user_iterator UI = DeadBB->user_begin(), +                                UE = DeadBB->user_end(); +           UI != UE;) { +        // Grab the user and then increment the iterator early, as the user +        // will be deleted. Step past all adjacent uses from the same user. +        auto *I = dyn_cast<Instruction>(*UI); +        do { ++UI; } while (UI != UE && *UI == I); + +        // Ignore blockaddress users; BasicBlock's dtor will handle them. +        if (!I) continue; + +        // If we have forced an edge for an indeterminate value, then force the +        // terminator to fold to that edge. +        forceIndeterminateEdge(I, Solver); +        BasicBlock *InstBB = I->getParent(); +        bool Folded = ConstantFoldTerminator(InstBB, +                                             /*DeleteDeadConditions=*/false, +                                             /*TLI=*/nullptr, &DTU); +        assert(Folded && +              "Expect TermInst on constantint or blockaddress to be folded"); +        (void) Folded; +        // If we folded the terminator to an unconditional branch to another +        // dead block, replace it with Unreachable, to avoid trying to fold that +        // branch again. +        BranchInst *BI = cast<BranchInst>(InstBB->getTerminator()); +        if (BI && BI->isUnconditional() && +            !Solver.isBlockExecutable(BI->getSuccessor(0))) { +          InstBB->getTerminator()->eraseFromParent(); +          new UnreachableInst(InstBB->getContext(), InstBB); +        } +      } +      // Mark dead BB for deletion. +      DTU.deleteBB(DeadBB); +    } + +    for (BasicBlock &BB : F) { +      for (BasicBlock::iterator BI = BB.begin(), E = BB.end(); BI != E;) { +        Instruction *Inst = &*BI++; +        if (Solver.getPredicateInfoFor(Inst)) { +          if (auto *II = dyn_cast<IntrinsicInst>(Inst)) { +            if (II->getIntrinsicID() == Intrinsic::ssa_copy) { +              Value *Op = II->getOperand(0); +              Inst->replaceAllUsesWith(Op); +              Inst->eraseFromParent(); +            } +          } +        } +      } +    } +  } + +  // If we inferred constant or undef return values for a function, we replaced +  // all call uses with the inferred value.  This means we don't need to bother +  // actually returning anything from the function.  Replace all return +  // instructions with return undef. +  // +  // Do this in two stages: first identify the functions we should process, then +  // actually zap their returns.  This is important because we can only do this +  // if the address of the function isn't taken.  In cases where a return is the +  // last use of a function, the order of processing functions would affect +  // whether other functions are optimizable. +  SmallVector<ReturnInst*, 8> ReturnsToZap; + +  const MapVector<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); +  for (const auto &I : RV) { +    Function *F = I.first; +    if (I.second.isOverdefined() || F->getReturnType()->isVoidTy()) +      continue; +    findReturnsToZap(*F, ReturnsToZap, Solver); +  } + +  for (const auto &F : Solver.getMRVFunctionsTracked()) { +    assert(F->getReturnType()->isStructTy() && +           "The return type should be a struct"); +    StructType *STy = cast<StructType>(F->getReturnType()); +    if (Solver.isStructLatticeConstant(F, STy)) +      findReturnsToZap(*F, ReturnsToZap, Solver); +  } + +  // Zap all returns which we've identified as zap to change. +  for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { +    Function *F = ReturnsToZap[i]->getParent()->getParent(); +    ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); +  } + +  // If we inferred constant or undef values for globals variables, we can +  // delete the global and any stores that remain to it. +  const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); +  for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), +         E = TG.end(); I != E; ++I) { +    GlobalVariable *GV = I->first; +    assert(!I->second.isOverdefined() && +           "Overdefined values should have been taken out of the map!"); +    LLVM_DEBUG(dbgs() << "Found that GV '" << GV->getName() +                      << "' is constant!\n"); +    while (!GV->use_empty()) { +      StoreInst *SI = cast<StoreInst>(GV->user_back()); +      SI->eraseFromParent(); +    } +    M.getGlobalList().erase(GV); +    ++IPNumGlobalConst; +  } + +  return MadeChanges; +} | 
