summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Utils/CloneFunction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Utils/CloneFunction.cpp')
-rw-r--r--llvm/lib/Transforms/Utils/CloneFunction.cpp878
1 files changed, 878 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/CloneFunction.cpp b/llvm/lib/Transforms/Utils/CloneFunction.cpp
new file mode 100644
index 0000000000000..75e8963303c24
--- /dev/null
+++ b/llvm/lib/Transforms/Utils/CloneFunction.cpp
@@ -0,0 +1,878 @@
+//===- CloneFunction.cpp - Clone a function into another function ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CloneFunctionInto interface, which is used as the
+// low-level function cloner. This is used by the CloneFunction and function
+// inliner to do the dirty work of copying the body of a function around.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/DomTreeUpdater.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfo.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/ValueMapper.h"
+#include <map>
+using namespace llvm;
+
+/// See comments in Cloning.h.
+BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
+ const Twine &NameSuffix, Function *F,
+ ClonedCodeInfo *CodeInfo,
+ DebugInfoFinder *DIFinder) {
+ DenseMap<const MDNode *, MDNode *> Cache;
+ BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
+ if (BB->hasName())
+ NewBB->setName(BB->getName() + NameSuffix);
+
+ bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
+ Module *TheModule = F ? F->getParent() : nullptr;
+
+ // Loop over all instructions, and copy them over.
+ for (const Instruction &I : *BB) {
+ if (DIFinder && TheModule)
+ DIFinder->processInstruction(*TheModule, I);
+
+ Instruction *NewInst = I.clone();
+ if (I.hasName())
+ NewInst->setName(I.getName() + NameSuffix);
+ NewBB->getInstList().push_back(NewInst);
+ VMap[&I] = NewInst; // Add instruction map to value.
+
+ hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I));
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
+ if (isa<ConstantInt>(AI->getArraySize()))
+ hasStaticAllocas = true;
+ else
+ hasDynamicAllocas = true;
+ }
+ }
+
+ if (CodeInfo) {
+ CodeInfo->ContainsCalls |= hasCalls;
+ CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
+ CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
+ BB != &BB->getParent()->getEntryBlock();
+ }
+ return NewBB;
+}
+
+// Clone OldFunc into NewFunc, transforming the old arguments into references to
+// VMap values.
+//
+void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
+ ValueToValueMapTy &VMap,
+ bool ModuleLevelChanges,
+ SmallVectorImpl<ReturnInst*> &Returns,
+ const char *NameSuffix, ClonedCodeInfo *CodeInfo,
+ ValueMapTypeRemapper *TypeMapper,
+ ValueMaterializer *Materializer) {
+ assert(NameSuffix && "NameSuffix cannot be null!");
+
+#ifndef NDEBUG
+ for (const Argument &I : OldFunc->args())
+ assert(VMap.count(&I) && "No mapping from source argument specified!");
+#endif
+
+ // Copy all attributes other than those stored in the AttributeList. We need
+ // to remap the parameter indices of the AttributeList.
+ AttributeList NewAttrs = NewFunc->getAttributes();
+ NewFunc->copyAttributesFrom(OldFunc);
+ NewFunc->setAttributes(NewAttrs);
+
+ // Fix up the personality function that got copied over.
+ if (OldFunc->hasPersonalityFn())
+ NewFunc->setPersonalityFn(
+ MapValue(OldFunc->getPersonalityFn(), VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
+ TypeMapper, Materializer));
+
+ SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
+ AttributeList OldAttrs = OldFunc->getAttributes();
+
+ // Clone any argument attributes that are present in the VMap.
+ for (const Argument &OldArg : OldFunc->args()) {
+ if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
+ NewArgAttrs[NewArg->getArgNo()] =
+ OldAttrs.getParamAttributes(OldArg.getArgNo());
+ }
+ }
+
+ NewFunc->setAttributes(
+ AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
+ OldAttrs.getRetAttributes(), NewArgAttrs));
+
+ bool MustCloneSP =
+ OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
+ DISubprogram *SP = OldFunc->getSubprogram();
+ if (SP) {
+ assert(!MustCloneSP || ModuleLevelChanges);
+ // Add mappings for some DebugInfo nodes that we don't want duplicated
+ // even if they're distinct.
+ auto &MD = VMap.MD();
+ MD[SP->getUnit()].reset(SP->getUnit());
+ MD[SP->getType()].reset(SP->getType());
+ MD[SP->getFile()].reset(SP->getFile());
+ // If we're not cloning into the same module, no need to clone the
+ // subprogram
+ if (!MustCloneSP)
+ MD[SP].reset(SP);
+ }
+
+ SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
+ OldFunc->getAllMetadata(MDs);
+ for (auto MD : MDs) {
+ NewFunc->addMetadata(
+ MD.first,
+ *MapMetadata(MD.second, VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
+ TypeMapper, Materializer));
+ }
+
+ // When we remap instructions, we want to avoid duplicating inlined
+ // DISubprograms, so record all subprograms we find as we duplicate
+ // instructions and then freeze them in the MD map.
+ // We also record information about dbg.value and dbg.declare to avoid
+ // duplicating the types.
+ DebugInfoFinder DIFinder;
+
+ // Loop over all of the basic blocks in the function, cloning them as
+ // appropriate. Note that we save BE this way in order to handle cloning of
+ // recursive functions into themselves.
+ //
+ for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
+ BI != BE; ++BI) {
+ const BasicBlock &BB = *BI;
+
+ // Create a new basic block and copy instructions into it!
+ BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
+ ModuleLevelChanges ? &DIFinder : nullptr);
+
+ // Add basic block mapping.
+ VMap[&BB] = CBB;
+
+ // It is only legal to clone a function if a block address within that
+ // function is never referenced outside of the function. Given that, we
+ // want to map block addresses from the old function to block addresses in
+ // the clone. (This is different from the generic ValueMapper
+ // implementation, which generates an invalid blockaddress when
+ // cloning a function.)
+ if (BB.hasAddressTaken()) {
+ Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
+ const_cast<BasicBlock*>(&BB));
+ VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
+ }
+
+ // Note return instructions for the caller.
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
+ Returns.push_back(RI);
+ }
+
+ for (DISubprogram *ISP : DIFinder.subprograms())
+ if (ISP != SP)
+ VMap.MD()[ISP].reset(ISP);
+
+ for (DICompileUnit *CU : DIFinder.compile_units())
+ VMap.MD()[CU].reset(CU);
+
+ for (DIType *Type : DIFinder.types())
+ VMap.MD()[Type].reset(Type);
+
+ // Loop over all of the instructions in the function, fixing up operand
+ // references as we go. This uses VMap to do all the hard work.
+ for (Function::iterator BB =
+ cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
+ BE = NewFunc->end();
+ BB != BE; ++BB)
+ // Loop over all instructions, fixing each one as we find it...
+ for (Instruction &II : *BB)
+ RemapInstruction(&II, VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
+ TypeMapper, Materializer);
+
+ // Register all DICompileUnits of the old parent module in the new parent module
+ auto* OldModule = OldFunc->getParent();
+ auto* NewModule = NewFunc->getParent();
+ if (OldModule && NewModule && OldModule != NewModule && DIFinder.compile_unit_count()) {
+ auto* NMD = NewModule->getOrInsertNamedMetadata("llvm.dbg.cu");
+ // Avoid multiple insertions of the same DICompileUnit to NMD.
+ SmallPtrSet<const void*, 8> Visited;
+ for (auto* Operand : NMD->operands())
+ Visited.insert(Operand);
+ for (auto* Unit : DIFinder.compile_units())
+ // VMap.MD()[Unit] == Unit
+ if (Visited.insert(Unit).second)
+ NMD->addOperand(Unit);
+ }
+}
+
+/// Return a copy of the specified function and add it to that function's
+/// module. Also, any references specified in the VMap are changed to refer to
+/// their mapped value instead of the original one. If any of the arguments to
+/// the function are in the VMap, the arguments are deleted from the resultant
+/// function. The VMap is updated to include mappings from all of the
+/// instructions and basicblocks in the function from their old to new values.
+///
+Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
+ ClonedCodeInfo *CodeInfo) {
+ std::vector<Type*> ArgTypes;
+
+ // The user might be deleting arguments to the function by specifying them in
+ // the VMap. If so, we need to not add the arguments to the arg ty vector
+ //
+ for (const Argument &I : F->args())
+ if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
+ ArgTypes.push_back(I.getType());
+
+ // Create a new function type...
+ FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
+ ArgTypes, F->getFunctionType()->isVarArg());
+
+ // Create the new function...
+ Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(),
+ F->getName(), F->getParent());
+
+ // Loop over the arguments, copying the names of the mapped arguments over...
+ Function::arg_iterator DestI = NewF->arg_begin();
+ for (const Argument & I : F->args())
+ if (VMap.count(&I) == 0) { // Is this argument preserved?
+ DestI->setName(I.getName()); // Copy the name over...
+ VMap[&I] = &*DestI++; // Add mapping to VMap
+ }
+
+ SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned.
+ CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
+ CodeInfo);
+
+ return NewF;
+}
+
+
+
+namespace {
+ /// This is a private class used to implement CloneAndPruneFunctionInto.
+ struct PruningFunctionCloner {
+ Function *NewFunc;
+ const Function *OldFunc;
+ ValueToValueMapTy &VMap;
+ bool ModuleLevelChanges;
+ const char *NameSuffix;
+ ClonedCodeInfo *CodeInfo;
+
+ public:
+ PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
+ ValueToValueMapTy &valueMap, bool moduleLevelChanges,
+ const char *nameSuffix, ClonedCodeInfo *codeInfo)
+ : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
+ ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
+ CodeInfo(codeInfo) {}
+
+ /// The specified block is found to be reachable, clone it and
+ /// anything that it can reach.
+ void CloneBlock(const BasicBlock *BB,
+ BasicBlock::const_iterator StartingInst,
+ std::vector<const BasicBlock*> &ToClone);
+ };
+}
+
+/// The specified block is found to be reachable, clone it and
+/// anything that it can reach.
+void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
+ BasicBlock::const_iterator StartingInst,
+ std::vector<const BasicBlock*> &ToClone){
+ WeakTrackingVH &BBEntry = VMap[BB];
+
+ // Have we already cloned this block?
+ if (BBEntry) return;
+
+ // Nope, clone it now.
+ BasicBlock *NewBB;
+ BBEntry = NewBB = BasicBlock::Create(BB->getContext());
+ if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
+
+ // It is only legal to clone a function if a block address within that
+ // function is never referenced outside of the function. Given that, we
+ // want to map block addresses from the old function to block addresses in
+ // the clone. (This is different from the generic ValueMapper
+ // implementation, which generates an invalid blockaddress when
+ // cloning a function.)
+ //
+ // Note that we don't need to fix the mapping for unreachable blocks;
+ // the default mapping there is safe.
+ if (BB->hasAddressTaken()) {
+ Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
+ const_cast<BasicBlock*>(BB));
+ VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
+ }
+
+ bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
+
+ // Loop over all instructions, and copy them over, DCE'ing as we go. This
+ // loop doesn't include the terminator.
+ for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
+ II != IE; ++II) {
+
+ Instruction *NewInst = II->clone();
+
+ // Eagerly remap operands to the newly cloned instruction, except for PHI
+ // nodes for which we defer processing until we update the CFG.
+ if (!isa<PHINode>(NewInst)) {
+ RemapInstruction(NewInst, VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
+
+ // If we can simplify this instruction to some other value, simply add
+ // a mapping to that value rather than inserting a new instruction into
+ // the basic block.
+ if (Value *V =
+ SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
+ // On the off-chance that this simplifies to an instruction in the old
+ // function, map it back into the new function.
+ if (NewFunc != OldFunc)
+ if (Value *MappedV = VMap.lookup(V))
+ V = MappedV;
+
+ if (!NewInst->mayHaveSideEffects()) {
+ VMap[&*II] = V;
+ NewInst->deleteValue();
+ continue;
+ }
+ }
+ }
+
+ if (II->hasName())
+ NewInst->setName(II->getName()+NameSuffix);
+ VMap[&*II] = NewInst; // Add instruction map to value.
+ NewBB->getInstList().push_back(NewInst);
+ hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
+
+ if (CodeInfo)
+ if (auto CS = ImmutableCallSite(&*II))
+ if (CS.hasOperandBundles())
+ CodeInfo->OperandBundleCallSites.push_back(NewInst);
+
+ if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
+ if (isa<ConstantInt>(AI->getArraySize()))
+ hasStaticAllocas = true;
+ else
+ hasDynamicAllocas = true;
+ }
+ }
+
+ // Finally, clone over the terminator.
+ const Instruction *OldTI = BB->getTerminator();
+ bool TerminatorDone = false;
+ if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
+ if (BI->isConditional()) {
+ // If the condition was a known constant in the callee...
+ ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
+ // Or is a known constant in the caller...
+ if (!Cond) {
+ Value *V = VMap.lookup(BI->getCondition());
+ Cond = dyn_cast_or_null<ConstantInt>(V);
+ }
+
+ // Constant fold to uncond branch!
+ if (Cond) {
+ BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
+ VMap[OldTI] = BranchInst::Create(Dest, NewBB);
+ ToClone.push_back(Dest);
+ TerminatorDone = true;
+ }
+ }
+ } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
+ // If switching on a value known constant in the caller.
+ ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
+ if (!Cond) { // Or known constant after constant prop in the callee...
+ Value *V = VMap.lookup(SI->getCondition());
+ Cond = dyn_cast_or_null<ConstantInt>(V);
+ }
+ if (Cond) { // Constant fold to uncond branch!
+ SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
+ BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
+ VMap[OldTI] = BranchInst::Create(Dest, NewBB);
+ ToClone.push_back(Dest);
+ TerminatorDone = true;
+ }
+ }
+
+ if (!TerminatorDone) {
+ Instruction *NewInst = OldTI->clone();
+ if (OldTI->hasName())
+ NewInst->setName(OldTI->getName()+NameSuffix);
+ NewBB->getInstList().push_back(NewInst);
+ VMap[OldTI] = NewInst; // Add instruction map to value.
+
+ if (CodeInfo)
+ if (auto CS = ImmutableCallSite(OldTI))
+ if (CS.hasOperandBundles())
+ CodeInfo->OperandBundleCallSites.push_back(NewInst);
+
+ // Recursively clone any reachable successor blocks.
+ const Instruction *TI = BB->getTerminator();
+ for (const BasicBlock *Succ : successors(TI))
+ ToClone.push_back(Succ);
+ }
+
+ if (CodeInfo) {
+ CodeInfo->ContainsCalls |= hasCalls;
+ CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
+ CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas &&
+ BB != &BB->getParent()->front();
+ }
+}
+
+/// This works like CloneAndPruneFunctionInto, except that it does not clone the
+/// entire function. Instead it starts at an instruction provided by the caller
+/// and copies (and prunes) only the code reachable from that instruction.
+void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
+ const Instruction *StartingInst,
+ ValueToValueMapTy &VMap,
+ bool ModuleLevelChanges,
+ SmallVectorImpl<ReturnInst *> &Returns,
+ const char *NameSuffix,
+ ClonedCodeInfo *CodeInfo) {
+ assert(NameSuffix && "NameSuffix cannot be null!");
+
+ ValueMapTypeRemapper *TypeMapper = nullptr;
+ ValueMaterializer *Materializer = nullptr;
+
+#ifndef NDEBUG
+ // If the cloning starts at the beginning of the function, verify that
+ // the function arguments are mapped.
+ if (!StartingInst)
+ for (const Argument &II : OldFunc->args())
+ assert(VMap.count(&II) && "No mapping from source argument specified!");
+#endif
+
+ PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
+ NameSuffix, CodeInfo);
+ const BasicBlock *StartingBB;
+ if (StartingInst)
+ StartingBB = StartingInst->getParent();
+ else {
+ StartingBB = &OldFunc->getEntryBlock();
+ StartingInst = &StartingBB->front();
+ }
+
+ // Clone the entry block, and anything recursively reachable from it.
+ std::vector<const BasicBlock*> CloneWorklist;
+ PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
+ while (!CloneWorklist.empty()) {
+ const BasicBlock *BB = CloneWorklist.back();
+ CloneWorklist.pop_back();
+ PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
+ }
+
+ // Loop over all of the basic blocks in the old function. If the block was
+ // reachable, we have cloned it and the old block is now in the value map:
+ // insert it into the new function in the right order. If not, ignore it.
+ //
+ // Defer PHI resolution until rest of function is resolved.
+ SmallVector<const PHINode*, 16> PHIToResolve;
+ for (const BasicBlock &BI : *OldFunc) {
+ Value *V = VMap.lookup(&BI);
+ BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
+ if (!NewBB) continue; // Dead block.
+
+ // Add the new block to the new function.
+ NewFunc->getBasicBlockList().push_back(NewBB);
+
+ // Handle PHI nodes specially, as we have to remove references to dead
+ // blocks.
+ for (const PHINode &PN : BI.phis()) {
+ // PHI nodes may have been remapped to non-PHI nodes by the caller or
+ // during the cloning process.
+ if (isa<PHINode>(VMap[&PN]))
+ PHIToResolve.push_back(&PN);
+ else
+ break;
+ }
+
+ // Finally, remap the terminator instructions, as those can't be remapped
+ // until all BBs are mapped.
+ RemapInstruction(NewBB->getTerminator(), VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
+ TypeMapper, Materializer);
+ }
+
+ // Defer PHI resolution until rest of function is resolved, PHI resolution
+ // requires the CFG to be up-to-date.
+ for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
+ const PHINode *OPN = PHIToResolve[phino];
+ unsigned NumPreds = OPN->getNumIncomingValues();
+ const BasicBlock *OldBB = OPN->getParent();
+ BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
+
+ // Map operands for blocks that are live and remove operands for blocks
+ // that are dead.
+ for (; phino != PHIToResolve.size() &&
+ PHIToResolve[phino]->getParent() == OldBB; ++phino) {
+ OPN = PHIToResolve[phino];
+ PHINode *PN = cast<PHINode>(VMap[OPN]);
+ for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
+ Value *V = VMap.lookup(PN->getIncomingBlock(pred));
+ if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
+ Value *InVal = MapValue(PN->getIncomingValue(pred),
+ VMap,
+ ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
+ assert(InVal && "Unknown input value?");
+ PN->setIncomingValue(pred, InVal);
+ PN->setIncomingBlock(pred, MappedBlock);
+ } else {
+ PN->removeIncomingValue(pred, false);
+ --pred; // Revisit the next entry.
+ --e;
+ }
+ }
+ }
+
+ // The loop above has removed PHI entries for those blocks that are dead
+ // and has updated others. However, if a block is live (i.e. copied over)
+ // but its terminator has been changed to not go to this block, then our
+ // phi nodes will have invalid entries. Update the PHI nodes in this
+ // case.
+ PHINode *PN = cast<PHINode>(NewBB->begin());
+ NumPreds = pred_size(NewBB);
+ if (NumPreds != PN->getNumIncomingValues()) {
+ assert(NumPreds < PN->getNumIncomingValues());
+ // Count how many times each predecessor comes to this block.
+ std::map<BasicBlock*, unsigned> PredCount;
+ for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
+ PI != E; ++PI)
+ --PredCount[*PI];
+
+ // Figure out how many entries to remove from each PHI.
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
+ ++PredCount[PN->getIncomingBlock(i)];
+
+ // At this point, the excess predecessor entries are positive in the
+ // map. Loop over all of the PHIs and remove excess predecessor
+ // entries.
+ BasicBlock::iterator I = NewBB->begin();
+ for (; (PN = dyn_cast<PHINode>(I)); ++I) {
+ for (const auto &PCI : PredCount) {
+ BasicBlock *Pred = PCI.first;
+ for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
+ PN->removeIncomingValue(Pred, false);
+ }
+ }
+ }
+
+ // If the loops above have made these phi nodes have 0 or 1 operand,
+ // replace them with undef or the input value. We must do this for
+ // correctness, because 0-operand phis are not valid.
+ PN = cast<PHINode>(NewBB->begin());
+ if (PN->getNumIncomingValues() == 0) {
+ BasicBlock::iterator I = NewBB->begin();
+ BasicBlock::const_iterator OldI = OldBB->begin();
+ while ((PN = dyn_cast<PHINode>(I++))) {
+ Value *NV = UndefValue::get(PN->getType());
+ PN->replaceAllUsesWith(NV);
+ assert(VMap[&*OldI] == PN && "VMap mismatch");
+ VMap[&*OldI] = NV;
+ PN->eraseFromParent();
+ ++OldI;
+ }
+ }
+ }
+
+ // Make a second pass over the PHINodes now that all of them have been
+ // remapped into the new function, simplifying the PHINode and performing any
+ // recursive simplifications exposed. This will transparently update the
+ // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
+ // two PHINodes, the iteration over the old PHIs remains valid, and the
+ // mapping will just map us to the new node (which may not even be a PHI
+ // node).
+ const DataLayout &DL = NewFunc->getParent()->getDataLayout();
+ SmallSetVector<const Value *, 8> Worklist;
+ for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
+ if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
+ Worklist.insert(PHIToResolve[Idx]);
+
+ // Note that we must test the size on each iteration, the worklist can grow.
+ for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
+ const Value *OrigV = Worklist[Idx];
+ auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
+ if (!I)
+ continue;
+
+ // Skip over non-intrinsic callsites, we don't want to remove any nodes from
+ // the CGSCC.
+ CallSite CS = CallSite(I);
+ if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
+ continue;
+
+ // See if this instruction simplifies.
+ Value *SimpleV = SimplifyInstruction(I, DL);
+ if (!SimpleV)
+ continue;
+
+ // Stash away all the uses of the old instruction so we can check them for
+ // recursive simplifications after a RAUW. This is cheaper than checking all
+ // uses of To on the recursive step in most cases.
+ for (const User *U : OrigV->users())
+ Worklist.insert(cast<Instruction>(U));
+
+ // Replace the instruction with its simplified value.
+ I->replaceAllUsesWith(SimpleV);
+
+ // If the original instruction had no side effects, remove it.
+ if (isInstructionTriviallyDead(I))
+ I->eraseFromParent();
+ else
+ VMap[OrigV] = I;
+ }
+
+ // Now that the inlined function body has been fully constructed, go through
+ // and zap unconditional fall-through branches. This happens all the time when
+ // specializing code: code specialization turns conditional branches into
+ // uncond branches, and this code folds them.
+ Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
+ Function::iterator I = Begin;
+ while (I != NewFunc->end()) {
+ // We need to simplify conditional branches and switches with a constant
+ // operand. We try to prune these out when cloning, but if the
+ // simplification required looking through PHI nodes, those are only
+ // available after forming the full basic block. That may leave some here,
+ // and we still want to prune the dead code as early as possible.
+ //
+ // Do the folding before we check if the block is dead since we want code
+ // like
+ // bb:
+ // br i1 undef, label %bb, label %bb
+ // to be simplified to
+ // bb:
+ // br label %bb
+ // before we call I->getSinglePredecessor().
+ ConstantFoldTerminator(&*I);
+
+ // Check if this block has become dead during inlining or other
+ // simplifications. Note that the first block will appear dead, as it has
+ // not yet been wired up properly.
+ if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
+ I->getSinglePredecessor() == &*I)) {
+ BasicBlock *DeadBB = &*I++;
+ DeleteDeadBlock(DeadBB);
+ continue;
+ }
+
+ BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
+ if (!BI || BI->isConditional()) { ++I; continue; }
+
+ BasicBlock *Dest = BI->getSuccessor(0);
+ if (!Dest->getSinglePredecessor()) {
+ ++I; continue;
+ }
+
+ // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
+ // above should have zapped all of them..
+ assert(!isa<PHINode>(Dest->begin()));
+
+ // We know all single-entry PHI nodes in the inlined function have been
+ // removed, so we just need to splice the blocks.
+ BI->eraseFromParent();
+
+ // Make all PHI nodes that referred to Dest now refer to I as their source.
+ Dest->replaceAllUsesWith(&*I);
+
+ // Move all the instructions in the succ to the pred.
+ I->getInstList().splice(I->end(), Dest->getInstList());
+
+ // Remove the dest block.
+ Dest->eraseFromParent();
+
+ // Do not increment I, iteratively merge all things this block branches to.
+ }
+
+ // Make a final pass over the basic blocks from the old function to gather
+ // any return instructions which survived folding. We have to do this here
+ // because we can iteratively remove and merge returns above.
+ for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
+ E = NewFunc->end();
+ I != E; ++I)
+ if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
+ Returns.push_back(RI);
+}
+
+
+/// This works exactly like CloneFunctionInto,
+/// except that it does some simple constant prop and DCE on the fly. The
+/// effect of this is to copy significantly less code in cases where (for
+/// example) a function call with constant arguments is inlined, and those
+/// constant arguments cause a significant amount of code in the callee to be
+/// dead. Since this doesn't produce an exact copy of the input, it can't be
+/// used for things like CloneFunction or CloneModule.
+void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
+ ValueToValueMapTy &VMap,
+ bool ModuleLevelChanges,
+ SmallVectorImpl<ReturnInst*> &Returns,
+ const char *NameSuffix,
+ ClonedCodeInfo *CodeInfo,
+ Instruction *TheCall) {
+ CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
+ ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
+}
+
+/// Remaps instructions in \p Blocks using the mapping in \p VMap.
+void llvm::remapInstructionsInBlocks(
+ const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
+ // Rewrite the code to refer to itself.
+ for (auto *BB : Blocks)
+ for (auto &Inst : *BB)
+ RemapInstruction(&Inst, VMap,
+ RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
+}
+
+/// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p
+/// Blocks.
+///
+/// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
+/// \p LoopDomBB. Insert the new blocks before block specified in \p Before.
+Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
+ Loop *OrigLoop, ValueToValueMapTy &VMap,
+ const Twine &NameSuffix, LoopInfo *LI,
+ DominatorTree *DT,
+ SmallVectorImpl<BasicBlock *> &Blocks) {
+ Function *F = OrigLoop->getHeader()->getParent();
+ Loop *ParentLoop = OrigLoop->getParentLoop();
+ DenseMap<Loop *, Loop *> LMap;
+
+ Loop *NewLoop = LI->AllocateLoop();
+ LMap[OrigLoop] = NewLoop;
+ if (ParentLoop)
+ ParentLoop->addChildLoop(NewLoop);
+ else
+ LI->addTopLevelLoop(NewLoop);
+
+ BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
+ assert(OrigPH && "No preheader");
+ BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
+ // To rename the loop PHIs.
+ VMap[OrigPH] = NewPH;
+ Blocks.push_back(NewPH);
+
+ // Update LoopInfo.
+ if (ParentLoop)
+ ParentLoop->addBasicBlockToLoop(NewPH, *LI);
+
+ // Update DominatorTree.
+ DT->addNewBlock(NewPH, LoopDomBB);
+
+ for (Loop *CurLoop : OrigLoop->getLoopsInPreorder()) {
+ Loop *&NewLoop = LMap[CurLoop];
+ if (!NewLoop) {
+ NewLoop = LI->AllocateLoop();
+
+ // Establish the parent/child relationship.
+ Loop *OrigParent = CurLoop->getParentLoop();
+ assert(OrigParent && "Could not find the original parent loop");
+ Loop *NewParentLoop = LMap[OrigParent];
+ assert(NewParentLoop && "Could not find the new parent loop");
+
+ NewParentLoop->addChildLoop(NewLoop);
+ }
+ }
+
+ for (BasicBlock *BB : OrigLoop->getBlocks()) {
+ Loop *CurLoop = LI->getLoopFor(BB);
+ Loop *&NewLoop = LMap[CurLoop];
+ assert(NewLoop && "Expecting new loop to be allocated");
+
+ BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
+ VMap[BB] = NewBB;
+
+ // Update LoopInfo.
+ NewLoop->addBasicBlockToLoop(NewBB, *LI);
+ if (BB == CurLoop->getHeader())
+ NewLoop->moveToHeader(NewBB);
+
+ // Add DominatorTree node. After seeing all blocks, update to correct
+ // IDom.
+ DT->addNewBlock(NewBB, NewPH);
+
+ Blocks.push_back(NewBB);
+ }
+
+ for (BasicBlock *BB : OrigLoop->getBlocks()) {
+ // Update DominatorTree.
+ BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
+ DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
+ cast<BasicBlock>(VMap[IDomBB]));
+ }
+
+ // Move them physically from the end of the block list.
+ F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
+ NewPH);
+ F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
+ NewLoop->getHeader()->getIterator(), F->end());
+
+ return NewLoop;
+}
+
+/// Duplicate non-Phi instructions from the beginning of block up to
+/// StopAt instruction into a split block between BB and its predecessor.
+BasicBlock *llvm::DuplicateInstructionsInSplitBetween(
+ BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt,
+ ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) {
+
+ assert(count(successors(PredBB), BB) == 1 &&
+ "There must be a single edge between PredBB and BB!");
+ // We are going to have to map operands from the original BB block to the new
+ // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
+ // account for entry from PredBB.
+ BasicBlock::iterator BI = BB->begin();
+ for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
+ ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
+
+ BasicBlock *NewBB = SplitEdge(PredBB, BB);
+ NewBB->setName(PredBB->getName() + ".split");
+ Instruction *NewTerm = NewBB->getTerminator();
+
+ // FIXME: SplitEdge does not yet take a DTU, so we include the split edge
+ // in the update set here.
+ DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB},
+ {DominatorTree::Insert, PredBB, NewBB},
+ {DominatorTree::Insert, NewBB, BB}});
+
+ // Clone the non-phi instructions of BB into NewBB, keeping track of the
+ // mapping and using it to remap operands in the cloned instructions.
+ // Stop once we see the terminator too. This covers the case where BB's
+ // terminator gets replaced and StopAt == BB's terminator.
+ for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) {
+ Instruction *New = BI->clone();
+ New->setName(BI->getName());
+ New->insertBefore(NewTerm);
+ ValueMapping[&*BI] = New;
+
+ // Remap operands to patch up intra-block references.
+ for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
+ if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
+ auto I = ValueMapping.find(Inst);
+ if (I != ValueMapping.end())
+ New->setOperand(i, I->second);
+ }
+ }
+
+ return NewBB;
+}