summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Utils/LoopUnroll.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Utils/LoopUnroll.cpp')
-rw-r--r--llvm/lib/Transforms/Utils/LoopUnroll.cpp980
1 files changed, 980 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/LoopUnroll.cpp b/llvm/lib/Transforms/Utils/LoopUnroll.cpp
new file mode 100644
index 0000000000000..a7590fc325457
--- /dev/null
+++ b/llvm/lib/Transforms/Utils/LoopUnroll.cpp
@@ -0,0 +1,980 @@
+//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements some loop unrolling utilities. It does not define any
+// actual pass or policy, but provides a single function to perform loop
+// unrolling.
+//
+// The process of unrolling can produce extraneous basic blocks linked with
+// unconditional branches. This will be corrected in the future.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/LoopSimplify.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unroll"
+
+// TODO: Should these be here or in LoopUnroll?
+STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
+STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
+STATISTIC(NumUnrolledWithHeader, "Number of loops unrolled without a "
+ "conditional latch (completely or otherwise)");
+
+static cl::opt<bool>
+UnrollRuntimeEpilog("unroll-runtime-epilog", cl::init(false), cl::Hidden,
+ cl::desc("Allow runtime unrolled loops to be unrolled "
+ "with epilog instead of prolog."));
+
+static cl::opt<bool>
+UnrollVerifyDomtree("unroll-verify-domtree", cl::Hidden,
+ cl::desc("Verify domtree after unrolling"),
+#ifdef EXPENSIVE_CHECKS
+ cl::init(true)
+#else
+ cl::init(false)
+#endif
+ );
+
+/// Convert the instruction operands from referencing the current values into
+/// those specified by VMap.
+void llvm::remapInstruction(Instruction *I, ValueToValueMapTy &VMap) {
+ for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
+ Value *Op = I->getOperand(op);
+
+ // Unwrap arguments of dbg.value intrinsics.
+ bool Wrapped = false;
+ if (auto *V = dyn_cast<MetadataAsValue>(Op))
+ if (auto *Unwrapped = dyn_cast<ValueAsMetadata>(V->getMetadata())) {
+ Op = Unwrapped->getValue();
+ Wrapped = true;
+ }
+
+ auto wrap = [&](Value *V) {
+ auto &C = I->getContext();
+ return Wrapped ? MetadataAsValue::get(C, ValueAsMetadata::get(V)) : V;
+ };
+
+ ValueToValueMapTy::iterator It = VMap.find(Op);
+ if (It != VMap.end())
+ I->setOperand(op, wrap(It->second));
+ }
+
+ if (PHINode *PN = dyn_cast<PHINode>(I)) {
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i));
+ if (It != VMap.end())
+ PN->setIncomingBlock(i, cast<BasicBlock>(It->second));
+ }
+ }
+}
+
+/// Check if unrolling created a situation where we need to insert phi nodes to
+/// preserve LCSSA form.
+/// \param Blocks is a vector of basic blocks representing unrolled loop.
+/// \param L is the outer loop.
+/// It's possible that some of the blocks are in L, and some are not. In this
+/// case, if there is a use is outside L, and definition is inside L, we need to
+/// insert a phi-node, otherwise LCSSA will be broken.
+/// The function is just a helper function for llvm::UnrollLoop that returns
+/// true if this situation occurs, indicating that LCSSA needs to be fixed.
+static bool needToInsertPhisForLCSSA(Loop *L, std::vector<BasicBlock *> Blocks,
+ LoopInfo *LI) {
+ for (BasicBlock *BB : Blocks) {
+ if (LI->getLoopFor(BB) == L)
+ continue;
+ for (Instruction &I : *BB) {
+ for (Use &U : I.operands()) {
+ if (auto Def = dyn_cast<Instruction>(U)) {
+ Loop *DefLoop = LI->getLoopFor(Def->getParent());
+ if (!DefLoop)
+ continue;
+ if (DefLoop->contains(L))
+ return true;
+ }
+ }
+ }
+ }
+ return false;
+}
+
+/// Adds ClonedBB to LoopInfo, creates a new loop for ClonedBB if necessary
+/// and adds a mapping from the original loop to the new loop to NewLoops.
+/// Returns nullptr if no new loop was created and a pointer to the
+/// original loop OriginalBB was part of otherwise.
+const Loop* llvm::addClonedBlockToLoopInfo(BasicBlock *OriginalBB,
+ BasicBlock *ClonedBB, LoopInfo *LI,
+ NewLoopsMap &NewLoops) {
+ // Figure out which loop New is in.
+ const Loop *OldLoop = LI->getLoopFor(OriginalBB);
+ assert(OldLoop && "Should (at least) be in the loop being unrolled!");
+
+ Loop *&NewLoop = NewLoops[OldLoop];
+ if (!NewLoop) {
+ // Found a new sub-loop.
+ assert(OriginalBB == OldLoop->getHeader() &&
+ "Header should be first in RPO");
+
+ NewLoop = LI->AllocateLoop();
+ Loop *NewLoopParent = NewLoops.lookup(OldLoop->getParentLoop());
+
+ if (NewLoopParent)
+ NewLoopParent->addChildLoop(NewLoop);
+ else
+ LI->addTopLevelLoop(NewLoop);
+
+ NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
+ return OldLoop;
+ } else {
+ NewLoop->addBasicBlockToLoop(ClonedBB, *LI);
+ return nullptr;
+ }
+}
+
+/// The function chooses which type of unroll (epilog or prolog) is more
+/// profitabale.
+/// Epilog unroll is more profitable when there is PHI that starts from
+/// constant. In this case epilog will leave PHI start from constant,
+/// but prolog will convert it to non-constant.
+///
+/// loop:
+/// PN = PHI [I, Latch], [CI, PreHeader]
+/// I = foo(PN)
+/// ...
+///
+/// Epilog unroll case.
+/// loop:
+/// PN = PHI [I2, Latch], [CI, PreHeader]
+/// I1 = foo(PN)
+/// I2 = foo(I1)
+/// ...
+/// Prolog unroll case.
+/// NewPN = PHI [PrologI, Prolog], [CI, PreHeader]
+/// loop:
+/// PN = PHI [I2, Latch], [NewPN, PreHeader]
+/// I1 = foo(PN)
+/// I2 = foo(I1)
+/// ...
+///
+static bool isEpilogProfitable(Loop *L) {
+ BasicBlock *PreHeader = L->getLoopPreheader();
+ BasicBlock *Header = L->getHeader();
+ assert(PreHeader && Header);
+ for (const PHINode &PN : Header->phis()) {
+ if (isa<ConstantInt>(PN.getIncomingValueForBlock(PreHeader)))
+ return true;
+ }
+ return false;
+}
+
+/// Perform some cleanup and simplifications on loops after unrolling. It is
+/// useful to simplify the IV's in the new loop, as well as do a quick
+/// simplify/dce pass of the instructions.
+void llvm::simplifyLoopAfterUnroll(Loop *L, bool SimplifyIVs, LoopInfo *LI,
+ ScalarEvolution *SE, DominatorTree *DT,
+ AssumptionCache *AC) {
+ // Simplify any new induction variables in the partially unrolled loop.
+ if (SE && SimplifyIVs) {
+ SmallVector<WeakTrackingVH, 16> DeadInsts;
+ simplifyLoopIVs(L, SE, DT, LI, DeadInsts);
+
+ // Aggressively clean up dead instructions that simplifyLoopIVs already
+ // identified. Any remaining should be cleaned up below.
+ while (!DeadInsts.empty())
+ if (Instruction *Inst =
+ dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
+ RecursivelyDeleteTriviallyDeadInstructions(Inst);
+ }
+
+ // At this point, the code is well formed. We now do a quick sweep over the
+ // inserted code, doing constant propagation and dead code elimination as we
+ // go.
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+ for (BasicBlock *BB : L->getBlocks()) {
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
+ Instruction *Inst = &*I++;
+
+ if (Value *V = SimplifyInstruction(Inst, {DL, nullptr, DT, AC}))
+ if (LI->replacementPreservesLCSSAForm(Inst, V))
+ Inst->replaceAllUsesWith(V);
+ if (isInstructionTriviallyDead(Inst))
+ BB->getInstList().erase(Inst);
+ }
+ }
+
+ // TODO: after peeling or unrolling, previously loop variant conditions are
+ // likely to fold to constants, eagerly propagating those here will require
+ // fewer cleanup passes to be run. Alternatively, a LoopEarlyCSE might be
+ // appropriate.
+}
+
+/// Unroll the given loop by Count. The loop must be in LCSSA form. Unrolling
+/// can only fail when the loop's latch block is not terminated by a conditional
+/// branch instruction. However, if the trip count (and multiple) are not known,
+/// loop unrolling will mostly produce more code that is no faster.
+///
+/// TripCount is the upper bound of the iteration on which control exits
+/// LatchBlock. Control may exit the loop prior to TripCount iterations either
+/// via an early branch in other loop block or via LatchBlock terminator. This
+/// is relaxed from the general definition of trip count which is the number of
+/// times the loop header executes. Note that UnrollLoop assumes that the loop
+/// counter test is in LatchBlock in order to remove unnecesssary instances of
+/// the test. If control can exit the loop from the LatchBlock's terminator
+/// prior to TripCount iterations, flag PreserveCondBr needs to be set.
+///
+/// PreserveCondBr indicates whether the conditional branch of the LatchBlock
+/// needs to be preserved. It is needed when we use trip count upper bound to
+/// fully unroll the loop. If PreserveOnlyFirst is also set then only the first
+/// conditional branch needs to be preserved.
+///
+/// Similarly, TripMultiple divides the number of times that the LatchBlock may
+/// execute without exiting the loop.
+///
+/// If AllowRuntime is true then UnrollLoop will consider unrolling loops that
+/// have a runtime (i.e. not compile time constant) trip count. Unrolling these
+/// loops require a unroll "prologue" that runs "RuntimeTripCount % Count"
+/// iterations before branching into the unrolled loop. UnrollLoop will not
+/// runtime-unroll the loop if computing RuntimeTripCount will be expensive and
+/// AllowExpensiveTripCount is false.
+///
+/// If we want to perform PGO-based loop peeling, PeelCount is set to the
+/// number of iterations we want to peel off.
+///
+/// The LoopInfo Analysis that is passed will be kept consistent.
+///
+/// This utility preserves LoopInfo. It will also preserve ScalarEvolution and
+/// DominatorTree if they are non-null.
+///
+/// If RemainderLoop is non-null, it will receive the remainder loop (if
+/// required and not fully unrolled).
+LoopUnrollResult llvm::UnrollLoop(Loop *L, UnrollLoopOptions ULO, LoopInfo *LI,
+ ScalarEvolution *SE, DominatorTree *DT,
+ AssumptionCache *AC,
+ OptimizationRemarkEmitter *ORE,
+ bool PreserveLCSSA, Loop **RemainderLoop) {
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) {
+ LLVM_DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ if (!LatchBlock) {
+ LLVM_DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ // Loops with indirectbr cannot be cloned.
+ if (!L->isSafeToClone()) {
+ LLVM_DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ // The current loop unroll pass can unroll loops with a single latch or header
+ // that's a conditional branch exiting the loop.
+ // FIXME: The implementation can be extended to work with more complicated
+ // cases, e.g. loops with multiple latches.
+ BasicBlock *Header = L->getHeader();
+ BranchInst *HeaderBI = dyn_cast<BranchInst>(Header->getTerminator());
+ BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
+
+ // FIXME: Support loops without conditional latch and multiple exiting blocks.
+ if (!BI ||
+ (BI->isUnconditional() && (!HeaderBI || HeaderBI->isUnconditional() ||
+ L->getExitingBlock() != Header))) {
+ LLVM_DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional "
+ "branch in the latch or header.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ auto CheckLatchSuccessors = [&](unsigned S1, unsigned S2) {
+ return BI->isConditional() && BI->getSuccessor(S1) == Header &&
+ !L->contains(BI->getSuccessor(S2));
+ };
+
+ // If we have a conditional latch, it must exit the loop.
+ if (BI && BI->isConditional() && !CheckLatchSuccessors(0, 1) &&
+ !CheckLatchSuccessors(1, 0)) {
+ LLVM_DEBUG(
+ dbgs() << "Can't unroll; a conditional latch must exit the loop");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ auto CheckHeaderSuccessors = [&](unsigned S1, unsigned S2) {
+ return HeaderBI && HeaderBI->isConditional() &&
+ L->contains(HeaderBI->getSuccessor(S1)) &&
+ !L->contains(HeaderBI->getSuccessor(S2));
+ };
+
+ // If we do not have a conditional latch, the header must exit the loop.
+ if (BI && !BI->isConditional() && HeaderBI && HeaderBI->isConditional() &&
+ !CheckHeaderSuccessors(0, 1) && !CheckHeaderSuccessors(1, 0)) {
+ LLVM_DEBUG(dbgs() << "Can't unroll; conditional header must exit the loop");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ if (Header->hasAddressTaken()) {
+ // The loop-rotate pass can be helpful to avoid this in many cases.
+ LLVM_DEBUG(
+ dbgs() << " Won't unroll loop: address of header block is taken.\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ if (ULO.TripCount != 0)
+ LLVM_DEBUG(dbgs() << " Trip Count = " << ULO.TripCount << "\n");
+ if (ULO.TripMultiple != 1)
+ LLVM_DEBUG(dbgs() << " Trip Multiple = " << ULO.TripMultiple << "\n");
+
+ // Effectively "DCE" unrolled iterations that are beyond the tripcount
+ // and will never be executed.
+ if (ULO.TripCount != 0 && ULO.Count > ULO.TripCount)
+ ULO.Count = ULO.TripCount;
+
+ // Don't enter the unroll code if there is nothing to do.
+ if (ULO.TripCount == 0 && ULO.Count < 2 && ULO.PeelCount == 0) {
+ LLVM_DEBUG(dbgs() << "Won't unroll; almost nothing to do\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ assert(ULO.Count > 0);
+ assert(ULO.TripMultiple > 0);
+ assert(ULO.TripCount == 0 || ULO.TripCount % ULO.TripMultiple == 0);
+
+ // Are we eliminating the loop control altogether?
+ bool CompletelyUnroll = ULO.Count == ULO.TripCount;
+ SmallVector<BasicBlock *, 4> ExitBlocks;
+ L->getExitBlocks(ExitBlocks);
+ std::vector<BasicBlock*> OriginalLoopBlocks = L->getBlocks();
+
+ // Go through all exits of L and see if there are any phi-nodes there. We just
+ // conservatively assume that they're inserted to preserve LCSSA form, which
+ // means that complete unrolling might break this form. We need to either fix
+ // it in-place after the transformation, or entirely rebuild LCSSA. TODO: For
+ // now we just recompute LCSSA for the outer loop, but it should be possible
+ // to fix it in-place.
+ bool NeedToFixLCSSA = PreserveLCSSA && CompletelyUnroll &&
+ any_of(ExitBlocks, [](const BasicBlock *BB) {
+ return isa<PHINode>(BB->begin());
+ });
+
+ // We assume a run-time trip count if the compiler cannot
+ // figure out the loop trip count and the unroll-runtime
+ // flag is specified.
+ bool RuntimeTripCount =
+ (ULO.TripCount == 0 && ULO.Count > 0 && ULO.AllowRuntime);
+
+ assert((!RuntimeTripCount || !ULO.PeelCount) &&
+ "Did not expect runtime trip-count unrolling "
+ "and peeling for the same loop");
+
+ bool Peeled = false;
+ if (ULO.PeelCount) {
+ Peeled = peelLoop(L, ULO.PeelCount, LI, SE, DT, AC, PreserveLCSSA);
+
+ // Successful peeling may result in a change in the loop preheader/trip
+ // counts. If we later unroll the loop, we want these to be updated.
+ if (Peeled) {
+ // According to our guards and profitability checks the only
+ // meaningful exit should be latch block. Other exits go to deopt,
+ // so we do not worry about them.
+ BasicBlock *ExitingBlock = L->getLoopLatch();
+ assert(ExitingBlock && "Loop without exiting block?");
+ assert(L->isLoopExiting(ExitingBlock) && "Latch is not exiting?");
+ Preheader = L->getLoopPreheader();
+ ULO.TripCount = SE->getSmallConstantTripCount(L, ExitingBlock);
+ ULO.TripMultiple = SE->getSmallConstantTripMultiple(L, ExitingBlock);
+ }
+ }
+
+ // Loops containing convergent instructions must have a count that divides
+ // their TripMultiple.
+ LLVM_DEBUG(
+ {
+ bool HasConvergent = false;
+ for (auto &BB : L->blocks())
+ for (auto &I : *BB)
+ if (auto CS = CallSite(&I))
+ HasConvergent |= CS.isConvergent();
+ assert((!HasConvergent || ULO.TripMultiple % ULO.Count == 0) &&
+ "Unroll count must divide trip multiple if loop contains a "
+ "convergent operation.");
+ });
+
+ bool EpilogProfitability =
+ UnrollRuntimeEpilog.getNumOccurrences() ? UnrollRuntimeEpilog
+ : isEpilogProfitable(L);
+
+ if (RuntimeTripCount && ULO.TripMultiple % ULO.Count != 0 &&
+ !UnrollRuntimeLoopRemainder(L, ULO.Count, ULO.AllowExpensiveTripCount,
+ EpilogProfitability, ULO.UnrollRemainder,
+ ULO.ForgetAllSCEV, LI, SE, DT, AC,
+ PreserveLCSSA, RemainderLoop)) {
+ if (ULO.Force)
+ RuntimeTripCount = false;
+ else {
+ LLVM_DEBUG(dbgs() << "Won't unroll; remainder loop could not be "
+ "generated when assuming runtime trip count\n");
+ return LoopUnrollResult::Unmodified;
+ }
+ }
+
+ // If we know the trip count, we know the multiple...
+ unsigned BreakoutTrip = 0;
+ if (ULO.TripCount != 0) {
+ BreakoutTrip = ULO.TripCount % ULO.Count;
+ ULO.TripMultiple = 0;
+ } else {
+ // Figure out what multiple to use.
+ BreakoutTrip = ULO.TripMultiple =
+ (unsigned)GreatestCommonDivisor64(ULO.Count, ULO.TripMultiple);
+ }
+
+ using namespace ore;
+ // Report the unrolling decision.
+ if (CompletelyUnroll) {
+ LLVM_DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName()
+ << " with trip count " << ULO.TripCount << "!\n");
+ if (ORE)
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
+ L->getHeader())
+ << "completely unrolled loop with "
+ << NV("UnrollCount", ULO.TripCount) << " iterations";
+ });
+ } else if (ULO.PeelCount) {
+ LLVM_DEBUG(dbgs() << "PEELING loop %" << Header->getName()
+ << " with iteration count " << ULO.PeelCount << "!\n");
+ if (ORE)
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "Peeled", L->getStartLoc(),
+ L->getHeader())
+ << " peeled loop by " << NV("PeelCount", ULO.PeelCount)
+ << " iterations";
+ });
+ } else {
+ auto DiagBuilder = [&]() {
+ OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
+ L->getHeader());
+ return Diag << "unrolled loop by a factor of "
+ << NV("UnrollCount", ULO.Count);
+ };
+
+ LLVM_DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by "
+ << ULO.Count);
+ if (ULO.TripMultiple == 0 || BreakoutTrip != ULO.TripMultiple) {
+ LLVM_DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip);
+ if (ORE)
+ ORE->emit([&]() {
+ return DiagBuilder() << " with a breakout at trip "
+ << NV("BreakoutTrip", BreakoutTrip);
+ });
+ } else if (ULO.TripMultiple != 1) {
+ LLVM_DEBUG(dbgs() << " with " << ULO.TripMultiple << " trips per branch");
+ if (ORE)
+ ORE->emit([&]() {
+ return DiagBuilder()
+ << " with " << NV("TripMultiple", ULO.TripMultiple)
+ << " trips per branch";
+ });
+ } else if (RuntimeTripCount) {
+ LLVM_DEBUG(dbgs() << " with run-time trip count");
+ if (ORE)
+ ORE->emit(
+ [&]() { return DiagBuilder() << " with run-time trip count"; });
+ }
+ LLVM_DEBUG(dbgs() << "!\n");
+ }
+
+ // We are going to make changes to this loop. SCEV may be keeping cached info
+ // about it, in particular about backedge taken count. The changes we make
+ // are guaranteed to invalidate this information for our loop. It is tempting
+ // to only invalidate the loop being unrolled, but it is incorrect as long as
+ // all exiting branches from all inner loops have impact on the outer loops,
+ // and if something changes inside them then any of outer loops may also
+ // change. When we forget outermost loop, we also forget all contained loops
+ // and this is what we need here.
+ if (SE) {
+ if (ULO.ForgetAllSCEV)
+ SE->forgetAllLoops();
+ else
+ SE->forgetTopmostLoop(L);
+ }
+
+ bool ContinueOnTrue;
+ bool LatchIsExiting = BI->isConditional();
+ BasicBlock *LoopExit = nullptr;
+ if (LatchIsExiting) {
+ ContinueOnTrue = L->contains(BI->getSuccessor(0));
+ LoopExit = BI->getSuccessor(ContinueOnTrue);
+ } else {
+ NumUnrolledWithHeader++;
+ ContinueOnTrue = L->contains(HeaderBI->getSuccessor(0));
+ LoopExit = HeaderBI->getSuccessor(ContinueOnTrue);
+ }
+
+ // For the first iteration of the loop, we should use the precloned values for
+ // PHI nodes. Insert associations now.
+ ValueToValueMapTy LastValueMap;
+ std::vector<PHINode*> OrigPHINode;
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ OrigPHINode.push_back(cast<PHINode>(I));
+ }
+
+ std::vector<BasicBlock *> Headers;
+ std::vector<BasicBlock *> HeaderSucc;
+ std::vector<BasicBlock *> Latches;
+ Headers.push_back(Header);
+ Latches.push_back(LatchBlock);
+
+ if (!LatchIsExiting) {
+ auto *Term = cast<BranchInst>(Header->getTerminator());
+ if (Term->isUnconditional() || L->contains(Term->getSuccessor(0))) {
+ assert(L->contains(Term->getSuccessor(0)));
+ HeaderSucc.push_back(Term->getSuccessor(0));
+ } else {
+ assert(L->contains(Term->getSuccessor(1)));
+ HeaderSucc.push_back(Term->getSuccessor(1));
+ }
+ }
+
+ // The current on-the-fly SSA update requires blocks to be processed in
+ // reverse postorder so that LastValueMap contains the correct value at each
+ // exit.
+ LoopBlocksDFS DFS(L);
+ DFS.perform(LI);
+
+ // Stash the DFS iterators before adding blocks to the loop.
+ LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
+ LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
+
+ std::vector<BasicBlock*> UnrolledLoopBlocks = L->getBlocks();
+
+ // Loop Unrolling might create new loops. While we do preserve LoopInfo, we
+ // might break loop-simplified form for these loops (as they, e.g., would
+ // share the same exit blocks). We'll keep track of loops for which we can
+ // break this so that later we can re-simplify them.
+ SmallSetVector<Loop *, 4> LoopsToSimplify;
+ for (Loop *SubLoop : *L)
+ LoopsToSimplify.insert(SubLoop);
+
+ if (Header->getParent()->isDebugInfoForProfiling())
+ for (BasicBlock *BB : L->getBlocks())
+ for (Instruction &I : *BB)
+ if (!isa<DbgInfoIntrinsic>(&I))
+ if (const DILocation *DIL = I.getDebugLoc()) {
+ auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(ULO.Count);
+ if (NewDIL)
+ I.setDebugLoc(NewDIL.getValue());
+ else
+ LLVM_DEBUG(dbgs()
+ << "Failed to create new discriminator: "
+ << DIL->getFilename() << " Line: " << DIL->getLine());
+ }
+
+ for (unsigned It = 1; It != ULO.Count; ++It) {
+ std::vector<BasicBlock*> NewBlocks;
+ SmallDenseMap<const Loop *, Loop *, 4> NewLoops;
+ NewLoops[L] = L;
+
+ for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
+ ValueToValueMapTy VMap;
+ BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
+ Header->getParent()->getBasicBlockList().push_back(New);
+
+ assert((*BB != Header || LI->getLoopFor(*BB) == L) &&
+ "Header should not be in a sub-loop");
+ // Tell LI about New.
+ const Loop *OldLoop = addClonedBlockToLoopInfo(*BB, New, LI, NewLoops);
+ if (OldLoop)
+ LoopsToSimplify.insert(NewLoops[OldLoop]);
+
+ if (*BB == Header)
+ // Loop over all of the PHI nodes in the block, changing them to use
+ // the incoming values from the previous block.
+ for (PHINode *OrigPHI : OrigPHINode) {
+ PHINode *NewPHI = cast<PHINode>(VMap[OrigPHI]);
+ Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal))
+ if (It > 1 && L->contains(InValI))
+ InVal = LastValueMap[InValI];
+ VMap[OrigPHI] = InVal;
+ New->getInstList().erase(NewPHI);
+ }
+
+ // Update our running map of newest clones
+ LastValueMap[*BB] = New;
+ for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
+ VI != VE; ++VI)
+ LastValueMap[VI->first] = VI->second;
+
+ // Add phi entries for newly created values to all exit blocks.
+ for (BasicBlock *Succ : successors(*BB)) {
+ if (L->contains(Succ))
+ continue;
+ for (PHINode &PHI : Succ->phis()) {
+ Value *Incoming = PHI.getIncomingValueForBlock(*BB);
+ ValueToValueMapTy::iterator It = LastValueMap.find(Incoming);
+ if (It != LastValueMap.end())
+ Incoming = It->second;
+ PHI.addIncoming(Incoming, New);
+ }
+ }
+ // Keep track of new headers and latches as we create them, so that
+ // we can insert the proper branches later.
+ if (*BB == Header)
+ Headers.push_back(New);
+ if (*BB == LatchBlock)
+ Latches.push_back(New);
+
+ // Keep track of the successor of the new header in the current iteration.
+ for (auto *Pred : predecessors(*BB))
+ if (Pred == Header) {
+ HeaderSucc.push_back(New);
+ break;
+ }
+
+ NewBlocks.push_back(New);
+ UnrolledLoopBlocks.push_back(New);
+
+ // Update DomTree: since we just copy the loop body, and each copy has a
+ // dedicated entry block (copy of the header block), this header's copy
+ // dominates all copied blocks. That means, dominance relations in the
+ // copied body are the same as in the original body.
+ if (DT) {
+ if (*BB == Header)
+ DT->addNewBlock(New, Latches[It - 1]);
+ else {
+ auto BBDomNode = DT->getNode(*BB);
+ auto BBIDom = BBDomNode->getIDom();
+ BasicBlock *OriginalBBIDom = BBIDom->getBlock();
+ DT->addNewBlock(
+ New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
+ }
+ }
+ }
+
+ // Remap all instructions in the most recent iteration
+ for (BasicBlock *NewBlock : NewBlocks) {
+ for (Instruction &I : *NewBlock) {
+ ::remapInstruction(&I, LastValueMap);
+ if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ if (II->getIntrinsicID() == Intrinsic::assume)
+ AC->registerAssumption(II);
+ }
+ }
+ }
+
+ // Loop over the PHI nodes in the original block, setting incoming values.
+ for (PHINode *PN : OrigPHINode) {
+ if (CompletelyUnroll) {
+ PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
+ Header->getInstList().erase(PN);
+ } else if (ULO.Count > 1) {
+ Value *InVal = PN->removeIncomingValue(LatchBlock, false);
+ // If this value was defined in the loop, take the value defined by the
+ // last iteration of the loop.
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
+ if (L->contains(InValI))
+ InVal = LastValueMap[InVal];
+ }
+ assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch");
+ PN->addIncoming(InVal, Latches.back());
+ }
+ }
+
+ auto setDest = [LoopExit, ContinueOnTrue](BasicBlock *Src, BasicBlock *Dest,
+ ArrayRef<BasicBlock *> NextBlocks,
+ BasicBlock *BlockInLoop,
+ bool NeedConditional) {
+ auto *Term = cast<BranchInst>(Src->getTerminator());
+ if (NeedConditional) {
+ // Update the conditional branch's successor for the following
+ // iteration.
+ Term->setSuccessor(!ContinueOnTrue, Dest);
+ } else {
+ // Remove phi operands at this loop exit
+ if (Dest != LoopExit) {
+ BasicBlock *BB = Src;
+ for (BasicBlock *Succ : successors(BB)) {
+ // Preserve the incoming value from BB if we are jumping to the block
+ // in the current loop.
+ if (Succ == BlockInLoop)
+ continue;
+ for (PHINode &Phi : Succ->phis())
+ Phi.removeIncomingValue(BB, false);
+ }
+ }
+ // Replace the conditional branch with an unconditional one.
+ BranchInst::Create(Dest, Term);
+ Term->eraseFromParent();
+ }
+ };
+
+ // Now that all the basic blocks for the unrolled iterations are in place,
+ // set up the branches to connect them.
+ if (LatchIsExiting) {
+ // Set up latches to branch to the new header in the unrolled iterations or
+ // the loop exit for the last latch in a fully unrolled loop.
+ for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
+ // The branch destination.
+ unsigned j = (i + 1) % e;
+ BasicBlock *Dest = Headers[j];
+ bool NeedConditional = true;
+
+ if (RuntimeTripCount && j != 0) {
+ NeedConditional = false;
+ }
+
+ // For a complete unroll, make the last iteration end with a branch
+ // to the exit block.
+ if (CompletelyUnroll) {
+ if (j == 0)
+ Dest = LoopExit;
+ // If using trip count upper bound to completely unroll, we need to keep
+ // the conditional branch except the last one because the loop may exit
+ // after any iteration.
+ assert(NeedConditional &&
+ "NeedCondition cannot be modified by both complete "
+ "unrolling and runtime unrolling");
+ NeedConditional =
+ (ULO.PreserveCondBr && j && !(ULO.PreserveOnlyFirst && i != 0));
+ } else if (j != BreakoutTrip &&
+ (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0)) {
+ // If we know the trip count or a multiple of it, we can safely use an
+ // unconditional branch for some iterations.
+ NeedConditional = false;
+ }
+
+ setDest(Latches[i], Dest, Headers, Headers[i], NeedConditional);
+ }
+ } else {
+ // Setup headers to branch to their new successors in the unrolled
+ // iterations.
+ for (unsigned i = 0, e = Headers.size(); i != e; ++i) {
+ // The branch destination.
+ unsigned j = (i + 1) % e;
+ BasicBlock *Dest = HeaderSucc[i];
+ bool NeedConditional = true;
+
+ if (RuntimeTripCount && j != 0)
+ NeedConditional = false;
+
+ if (CompletelyUnroll)
+ // We cannot drop the conditional branch for the last condition, as we
+ // may have to execute the loop body depending on the condition.
+ NeedConditional = j == 0 || ULO.PreserveCondBr;
+ else if (j != BreakoutTrip &&
+ (ULO.TripMultiple == 0 || j % ULO.TripMultiple != 0))
+ // If we know the trip count or a multiple of it, we can safely use an
+ // unconditional branch for some iterations.
+ NeedConditional = false;
+
+ setDest(Headers[i], Dest, Headers, HeaderSucc[i], NeedConditional);
+ }
+
+ // Set up latches to branch to the new header in the unrolled iterations or
+ // the loop exit for the last latch in a fully unrolled loop.
+
+ for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
+ // The original branch was replicated in each unrolled iteration.
+ BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
+
+ // The branch destination.
+ unsigned j = (i + 1) % e;
+ BasicBlock *Dest = Headers[j];
+
+ // When completely unrolling, the last latch becomes unreachable.
+ if (CompletelyUnroll && j == 0)
+ new UnreachableInst(Term->getContext(), Term);
+ else
+ // Replace the conditional branch with an unconditional one.
+ BranchInst::Create(Dest, Term);
+
+ Term->eraseFromParent();
+ }
+ }
+
+ // Update dominators of blocks we might reach through exits.
+ // Immediate dominator of such block might change, because we add more
+ // routes which can lead to the exit: we can now reach it from the copied
+ // iterations too.
+ if (DT && ULO.Count > 1) {
+ for (auto *BB : OriginalLoopBlocks) {
+ auto *BBDomNode = DT->getNode(BB);
+ SmallVector<BasicBlock *, 16> ChildrenToUpdate;
+ for (auto *ChildDomNode : BBDomNode->getChildren()) {
+ auto *ChildBB = ChildDomNode->getBlock();
+ if (!L->contains(ChildBB))
+ ChildrenToUpdate.push_back(ChildBB);
+ }
+ BasicBlock *NewIDom;
+ BasicBlock *&TermBlock = LatchIsExiting ? LatchBlock : Header;
+ auto &TermBlocks = LatchIsExiting ? Latches : Headers;
+ if (BB == TermBlock) {
+ // The latch is special because we emit unconditional branches in
+ // some cases where the original loop contained a conditional branch.
+ // Since the latch is always at the bottom of the loop, if the latch
+ // dominated an exit before unrolling, the new dominator of that exit
+ // must also be a latch. Specifically, the dominator is the first
+ // latch which ends in a conditional branch, or the last latch if
+ // there is no such latch.
+ // For loops exiting from the header, we limit the supported loops
+ // to have a single exiting block.
+ NewIDom = TermBlocks.back();
+ for (BasicBlock *Iter : TermBlocks) {
+ Instruction *Term = Iter->getTerminator();
+ if (isa<BranchInst>(Term) && cast<BranchInst>(Term)->isConditional()) {
+ NewIDom = Iter;
+ break;
+ }
+ }
+ } else {
+ // The new idom of the block will be the nearest common dominator
+ // of all copies of the previous idom. This is equivalent to the
+ // nearest common dominator of the previous idom and the first latch,
+ // which dominates all copies of the previous idom.
+ NewIDom = DT->findNearestCommonDominator(BB, LatchBlock);
+ }
+ for (auto *ChildBB : ChildrenToUpdate)
+ DT->changeImmediateDominator(ChildBB, NewIDom);
+ }
+ }
+
+ assert(!DT || !UnrollVerifyDomtree ||
+ DT->verify(DominatorTree::VerificationLevel::Fast));
+
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
+ // Merge adjacent basic blocks, if possible.
+ for (BasicBlock *Latch : Latches) {
+ BranchInst *Term = dyn_cast<BranchInst>(Latch->getTerminator());
+ assert((Term ||
+ (CompletelyUnroll && !LatchIsExiting && Latch == Latches.back())) &&
+ "Need a branch as terminator, except when fully unrolling with "
+ "unconditional latch");
+ if (Term && Term->isUnconditional()) {
+ BasicBlock *Dest = Term->getSuccessor(0);
+ BasicBlock *Fold = Dest->getUniquePredecessor();
+ if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
+ // Dest has been folded into Fold. Update our worklists accordingly.
+ std::replace(Latches.begin(), Latches.end(), Dest, Fold);
+ UnrolledLoopBlocks.erase(std::remove(UnrolledLoopBlocks.begin(),
+ UnrolledLoopBlocks.end(), Dest),
+ UnrolledLoopBlocks.end());
+ }
+ }
+ }
+ // Apply updates to the DomTree.
+ DT = &DTU.getDomTree();
+
+ // At this point, the code is well formed. We now simplify the unrolled loop,
+ // doing constant propagation and dead code elimination as we go.
+ simplifyLoopAfterUnroll(L, !CompletelyUnroll && (ULO.Count > 1 || Peeled), LI,
+ SE, DT, AC);
+
+ NumCompletelyUnrolled += CompletelyUnroll;
+ ++NumUnrolled;
+
+ Loop *OuterL = L->getParentLoop();
+ // Update LoopInfo if the loop is completely removed.
+ if (CompletelyUnroll)
+ LI->erase(L);
+
+ // After complete unrolling most of the blocks should be contained in OuterL.
+ // However, some of them might happen to be out of OuterL (e.g. if they
+ // precede a loop exit). In this case we might need to insert PHI nodes in
+ // order to preserve LCSSA form.
+ // We don't need to check this if we already know that we need to fix LCSSA
+ // form.
+ // TODO: For now we just recompute LCSSA for the outer loop in this case, but
+ // it should be possible to fix it in-place.
+ if (PreserveLCSSA && OuterL && CompletelyUnroll && !NeedToFixLCSSA)
+ NeedToFixLCSSA |= ::needToInsertPhisForLCSSA(OuterL, UnrolledLoopBlocks, LI);
+
+ // If we have a pass and a DominatorTree we should re-simplify impacted loops
+ // to ensure subsequent analyses can rely on this form. We want to simplify
+ // at least one layer outside of the loop that was unrolled so that any
+ // changes to the parent loop exposed by the unrolling are considered.
+ if (DT) {
+ if (OuterL) {
+ // OuterL includes all loops for which we can break loop-simplify, so
+ // it's sufficient to simplify only it (it'll recursively simplify inner
+ // loops too).
+ if (NeedToFixLCSSA) {
+ // LCSSA must be performed on the outermost affected loop. The unrolled
+ // loop's last loop latch is guaranteed to be in the outermost loop
+ // after LoopInfo's been updated by LoopInfo::erase.
+ Loop *LatchLoop = LI->getLoopFor(Latches.back());
+ Loop *FixLCSSALoop = OuterL;
+ if (!FixLCSSALoop->contains(LatchLoop))
+ while (FixLCSSALoop->getParentLoop() != LatchLoop)
+ FixLCSSALoop = FixLCSSALoop->getParentLoop();
+
+ formLCSSARecursively(*FixLCSSALoop, *DT, LI, SE);
+ } else if (PreserveLCSSA) {
+ assert(OuterL->isLCSSAForm(*DT) &&
+ "Loops should be in LCSSA form after loop-unroll.");
+ }
+
+ // TODO: That potentially might be compile-time expensive. We should try
+ // to fix the loop-simplified form incrementally.
+ simplifyLoop(OuterL, DT, LI, SE, AC, nullptr, PreserveLCSSA);
+ } else {
+ // Simplify loops for which we might've broken loop-simplify form.
+ for (Loop *SubLoop : LoopsToSimplify)
+ simplifyLoop(SubLoop, DT, LI, SE, AC, nullptr, PreserveLCSSA);
+ }
+ }
+
+ return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
+ : LoopUnrollResult::PartiallyUnrolled;
+}
+
+/// Given an llvm.loop loop id metadata node, returns the loop hint metadata
+/// node with the given name (for example, "llvm.loop.unroll.count"). If no
+/// such metadata node exists, then nullptr is returned.
+MDNode *llvm::GetUnrollMetadata(MDNode *LoopID, StringRef Name) {
+ // First operand should refer to the loop id itself.
+ assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+ for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+ if (!MD)
+ continue;
+
+ MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+ if (!S)
+ continue;
+
+ if (Name.equals(S->getString()))
+ return MD;
+ }
+ return nullptr;
+}