summaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp')
-rw-r--r--llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp822
1 files changed, 822 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp b/llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp
new file mode 100644
index 0000000000000..bf2e87b0d49f6
--- /dev/null
+++ b/llvm/lib/Transforms/Utils/LoopUnrollAndJam.cpp
@@ -0,0 +1,822 @@
+//===-- LoopUnrollAndJam.cpp - Loop unrolling utilities -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements loop unroll and jam as a routine, much like
+// LoopUnroll.cpp implements loop unroll.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/DependenceAnalysis.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/Analysis/LoopAnalysisManager.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/Utils/Local.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/LoopSimplify.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "loop-unroll-and-jam"
+
+STATISTIC(NumUnrolledAndJammed, "Number of loops unroll and jammed");
+STATISTIC(NumCompletelyUnrolledAndJammed, "Number of loops unroll and jammed");
+
+typedef SmallPtrSet<BasicBlock *, 4> BasicBlockSet;
+
+// Partition blocks in an outer/inner loop pair into blocks before and after
+// the loop
+static bool partitionOuterLoopBlocks(Loop *L, Loop *SubLoop,
+ BasicBlockSet &ForeBlocks,
+ BasicBlockSet &SubLoopBlocks,
+ BasicBlockSet &AftBlocks,
+ DominatorTree *DT) {
+ BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
+ SubLoopBlocks.insert(SubLoop->block_begin(), SubLoop->block_end());
+
+ for (BasicBlock *BB : L->blocks()) {
+ if (!SubLoop->contains(BB)) {
+ if (DT->dominates(SubLoopLatch, BB))
+ AftBlocks.insert(BB);
+ else
+ ForeBlocks.insert(BB);
+ }
+ }
+
+ // Check that all blocks in ForeBlocks together dominate the subloop
+ // TODO: This might ideally be done better with a dominator/postdominators.
+ BasicBlock *SubLoopPreHeader = SubLoop->getLoopPreheader();
+ for (BasicBlock *BB : ForeBlocks) {
+ if (BB == SubLoopPreHeader)
+ continue;
+ Instruction *TI = BB->getTerminator();
+ for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
+ if (!ForeBlocks.count(TI->getSuccessor(i)))
+ return false;
+ }
+
+ return true;
+}
+
+// Looks at the phi nodes in Header for values coming from Latch. For these
+// instructions and all their operands calls Visit on them, keeping going for
+// all the operands in AftBlocks. Returns false if Visit returns false,
+// otherwise returns true. This is used to process the instructions in the
+// Aft blocks that need to be moved before the subloop. It is used in two
+// places. One to check that the required set of instructions can be moved
+// before the loop. Then to collect the instructions to actually move in
+// moveHeaderPhiOperandsToForeBlocks.
+template <typename T>
+static bool processHeaderPhiOperands(BasicBlock *Header, BasicBlock *Latch,
+ BasicBlockSet &AftBlocks, T Visit) {
+ SmallVector<Instruction *, 8> Worklist;
+ for (auto &Phi : Header->phis()) {
+ Value *V = Phi.getIncomingValueForBlock(Latch);
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ Worklist.push_back(I);
+ }
+
+ while (!Worklist.empty()) {
+ Instruction *I = Worklist.back();
+ Worklist.pop_back();
+ if (!Visit(I))
+ return false;
+
+ if (AftBlocks.count(I->getParent()))
+ for (auto &U : I->operands())
+ if (Instruction *II = dyn_cast<Instruction>(U))
+ Worklist.push_back(II);
+ }
+
+ return true;
+}
+
+// Move the phi operands of Header from Latch out of AftBlocks to InsertLoc.
+static void moveHeaderPhiOperandsToForeBlocks(BasicBlock *Header,
+ BasicBlock *Latch,
+ Instruction *InsertLoc,
+ BasicBlockSet &AftBlocks) {
+ // We need to ensure we move the instructions in the correct order,
+ // starting with the earliest required instruction and moving forward.
+ std::vector<Instruction *> Visited;
+ processHeaderPhiOperands(Header, Latch, AftBlocks,
+ [&Visited, &AftBlocks](Instruction *I) {
+ if (AftBlocks.count(I->getParent()))
+ Visited.push_back(I);
+ return true;
+ });
+
+ // Move all instructions in program order to before the InsertLoc
+ BasicBlock *InsertLocBB = InsertLoc->getParent();
+ for (Instruction *I : reverse(Visited)) {
+ if (I->getParent() != InsertLocBB)
+ I->moveBefore(InsertLoc);
+ }
+}
+
+/*
+ This method performs Unroll and Jam. For a simple loop like:
+ for (i = ..)
+ Fore(i)
+ for (j = ..)
+ SubLoop(i, j)
+ Aft(i)
+
+ Instead of doing normal inner or outer unrolling, we do:
+ for (i = .., i+=2)
+ Fore(i)
+ Fore(i+1)
+ for (j = ..)
+ SubLoop(i, j)
+ SubLoop(i+1, j)
+ Aft(i)
+ Aft(i+1)
+
+ So the outer loop is essetially unrolled and then the inner loops are fused
+ ("jammed") together into a single loop. This can increase speed when there
+ are loads in SubLoop that are invariant to i, as they become shared between
+ the now jammed inner loops.
+
+ We do this by spliting the blocks in the loop into Fore, Subloop and Aft.
+ Fore blocks are those before the inner loop, Aft are those after. Normal
+ Unroll code is used to copy each of these sets of blocks and the results are
+ combined together into the final form above.
+
+ isSafeToUnrollAndJam should be used prior to calling this to make sure the
+ unrolling will be valid. Checking profitablility is also advisable.
+
+ If EpilogueLoop is non-null, it receives the epilogue loop (if it was
+ necessary to create one and not fully unrolled).
+*/
+LoopUnrollResult llvm::UnrollAndJamLoop(
+ Loop *L, unsigned Count, unsigned TripCount, unsigned TripMultiple,
+ bool UnrollRemainder, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
+ AssumptionCache *AC, OptimizationRemarkEmitter *ORE, Loop **EpilogueLoop) {
+
+ // When we enter here we should have already checked that it is safe
+ BasicBlock *Header = L->getHeader();
+ assert(L->getSubLoops().size() == 1);
+ Loop *SubLoop = *L->begin();
+
+ // Don't enter the unroll code if there is nothing to do.
+ if (TripCount == 0 && Count < 2) {
+ LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; almost nothing to do\n");
+ return LoopUnrollResult::Unmodified;
+ }
+
+ assert(Count > 0);
+ assert(TripMultiple > 0);
+ assert(TripCount == 0 || TripCount % TripMultiple == 0);
+
+ // Are we eliminating the loop control altogether?
+ bool CompletelyUnroll = (Count == TripCount);
+
+ // We use the runtime remainder in cases where we don't know trip multiple
+ if (TripMultiple == 1 || TripMultiple % Count != 0) {
+ if (!UnrollRuntimeLoopRemainder(L, Count, /*AllowExpensiveTripCount*/ false,
+ /*UseEpilogRemainder*/ true,
+ UnrollRemainder, /*ForgetAllSCEV*/ false,
+ LI, SE, DT, AC, true, EpilogueLoop)) {
+ LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; remainder loop could not be "
+ "generated when assuming runtime trip count\n");
+ return LoopUnrollResult::Unmodified;
+ }
+ }
+
+ // Notify ScalarEvolution that the loop will be substantially changed,
+ // if not outright eliminated.
+ if (SE) {
+ SE->forgetLoop(L);
+ SE->forgetLoop(SubLoop);
+ }
+
+ using namespace ore;
+ // Report the unrolling decision.
+ if (CompletelyUnroll) {
+ LLVM_DEBUG(dbgs() << "COMPLETELY UNROLL AND JAMMING loop %"
+ << Header->getName() << " with trip count " << TripCount
+ << "!\n");
+ ORE->emit(OptimizationRemark(DEBUG_TYPE, "FullyUnrolled", L->getStartLoc(),
+ L->getHeader())
+ << "completely unroll and jammed loop with "
+ << NV("UnrollCount", TripCount) << " iterations");
+ } else {
+ auto DiagBuilder = [&]() {
+ OptimizationRemark Diag(DEBUG_TYPE, "PartialUnrolled", L->getStartLoc(),
+ L->getHeader());
+ return Diag << "unroll and jammed loop by a factor of "
+ << NV("UnrollCount", Count);
+ };
+
+ LLVM_DEBUG(dbgs() << "UNROLL AND JAMMING loop %" << Header->getName()
+ << " by " << Count);
+ if (TripMultiple != 1) {
+ LLVM_DEBUG(dbgs() << " with " << TripMultiple << " trips per branch");
+ ORE->emit([&]() {
+ return DiagBuilder() << " with " << NV("TripMultiple", TripMultiple)
+ << " trips per branch";
+ });
+ } else {
+ LLVM_DEBUG(dbgs() << " with run-time trip count");
+ ORE->emit([&]() { return DiagBuilder() << " with run-time trip count"; });
+ }
+ LLVM_DEBUG(dbgs() << "!\n");
+ }
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
+ assert(Preheader && LatchBlock && Header);
+ assert(BI && !BI->isUnconditional());
+ bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
+ BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
+ bool SubLoopContinueOnTrue = SubLoop->contains(
+ SubLoop->getLoopLatch()->getTerminator()->getSuccessor(0));
+
+ // Partition blocks in an outer/inner loop pair into blocks before and after
+ // the loop
+ BasicBlockSet SubLoopBlocks;
+ BasicBlockSet ForeBlocks;
+ BasicBlockSet AftBlocks;
+ partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks, AftBlocks,
+ DT);
+
+ // We keep track of the entering/first and exiting/last block of each of
+ // Fore/SubLoop/Aft in each iteration. This helps make the stapling up of
+ // blocks easier.
+ std::vector<BasicBlock *> ForeBlocksFirst;
+ std::vector<BasicBlock *> ForeBlocksLast;
+ std::vector<BasicBlock *> SubLoopBlocksFirst;
+ std::vector<BasicBlock *> SubLoopBlocksLast;
+ std::vector<BasicBlock *> AftBlocksFirst;
+ std::vector<BasicBlock *> AftBlocksLast;
+ ForeBlocksFirst.push_back(Header);
+ ForeBlocksLast.push_back(SubLoop->getLoopPreheader());
+ SubLoopBlocksFirst.push_back(SubLoop->getHeader());
+ SubLoopBlocksLast.push_back(SubLoop->getExitingBlock());
+ AftBlocksFirst.push_back(SubLoop->getExitBlock());
+ AftBlocksLast.push_back(L->getExitingBlock());
+ // Maps Blocks[0] -> Blocks[It]
+ ValueToValueMapTy LastValueMap;
+
+ // Move any instructions from fore phi operands from AftBlocks into Fore.
+ moveHeaderPhiOperandsToForeBlocks(
+ Header, LatchBlock, SubLoop->getLoopPreheader()->getTerminator(),
+ AftBlocks);
+
+ // The current on-the-fly SSA update requires blocks to be processed in
+ // reverse postorder so that LastValueMap contains the correct value at each
+ // exit.
+ LoopBlocksDFS DFS(L);
+ DFS.perform(LI);
+ // Stash the DFS iterators before adding blocks to the loop.
+ LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO();
+ LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO();
+
+ if (Header->getParent()->isDebugInfoForProfiling())
+ for (BasicBlock *BB : L->getBlocks())
+ for (Instruction &I : *BB)
+ if (!isa<DbgInfoIntrinsic>(&I))
+ if (const DILocation *DIL = I.getDebugLoc()) {
+ auto NewDIL = DIL->cloneByMultiplyingDuplicationFactor(Count);
+ if (NewDIL)
+ I.setDebugLoc(NewDIL.getValue());
+ else
+ LLVM_DEBUG(dbgs()
+ << "Failed to create new discriminator: "
+ << DIL->getFilename() << " Line: " << DIL->getLine());
+ }
+
+ // Copy all blocks
+ for (unsigned It = 1; It != Count; ++It) {
+ std::vector<BasicBlock *> NewBlocks;
+ // Maps Blocks[It] -> Blocks[It-1]
+ DenseMap<Value *, Value *> PrevItValueMap;
+
+ for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
+ ValueToValueMapTy VMap;
+ BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It));
+ Header->getParent()->getBasicBlockList().push_back(New);
+
+ if (ForeBlocks.count(*BB)) {
+ L->addBasicBlockToLoop(New, *LI);
+
+ if (*BB == ForeBlocksFirst[0])
+ ForeBlocksFirst.push_back(New);
+ if (*BB == ForeBlocksLast[0])
+ ForeBlocksLast.push_back(New);
+ } else if (SubLoopBlocks.count(*BB)) {
+ SubLoop->addBasicBlockToLoop(New, *LI);
+
+ if (*BB == SubLoopBlocksFirst[0])
+ SubLoopBlocksFirst.push_back(New);
+ if (*BB == SubLoopBlocksLast[0])
+ SubLoopBlocksLast.push_back(New);
+ } else if (AftBlocks.count(*BB)) {
+ L->addBasicBlockToLoop(New, *LI);
+
+ if (*BB == AftBlocksFirst[0])
+ AftBlocksFirst.push_back(New);
+ if (*BB == AftBlocksLast[0])
+ AftBlocksLast.push_back(New);
+ } else {
+ llvm_unreachable("BB being cloned should be in Fore/Sub/Aft");
+ }
+
+ // Update our running maps of newest clones
+ PrevItValueMap[New] = (It == 1 ? *BB : LastValueMap[*BB]);
+ LastValueMap[*BB] = New;
+ for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end();
+ VI != VE; ++VI) {
+ PrevItValueMap[VI->second] =
+ const_cast<Value *>(It == 1 ? VI->first : LastValueMap[VI->first]);
+ LastValueMap[VI->first] = VI->second;
+ }
+
+ NewBlocks.push_back(New);
+
+ // Update DomTree:
+ if (*BB == ForeBlocksFirst[0])
+ DT->addNewBlock(New, ForeBlocksLast[It - 1]);
+ else if (*BB == SubLoopBlocksFirst[0])
+ DT->addNewBlock(New, SubLoopBlocksLast[It - 1]);
+ else if (*BB == AftBlocksFirst[0])
+ DT->addNewBlock(New, AftBlocksLast[It - 1]);
+ else {
+ // Each set of blocks (Fore/Sub/Aft) will have the same internal domtree
+ // structure.
+ auto BBDomNode = DT->getNode(*BB);
+ auto BBIDom = BBDomNode->getIDom();
+ BasicBlock *OriginalBBIDom = BBIDom->getBlock();
+ assert(OriginalBBIDom);
+ assert(LastValueMap[cast<Value>(OriginalBBIDom)]);
+ DT->addNewBlock(
+ New, cast<BasicBlock>(LastValueMap[cast<Value>(OriginalBBIDom)]));
+ }
+ }
+
+ // Remap all instructions in the most recent iteration
+ for (BasicBlock *NewBlock : NewBlocks) {
+ for (Instruction &I : *NewBlock) {
+ ::remapInstruction(&I, LastValueMap);
+ if (auto *II = dyn_cast<IntrinsicInst>(&I))
+ if (II->getIntrinsicID() == Intrinsic::assume)
+ AC->registerAssumption(II);
+ }
+ }
+
+ // Alter the ForeBlocks phi's, pointing them at the latest version of the
+ // value from the previous iteration's phis
+ for (PHINode &Phi : ForeBlocksFirst[It]->phis()) {
+ Value *OldValue = Phi.getIncomingValueForBlock(AftBlocksLast[It]);
+ assert(OldValue && "should have incoming edge from Aft[It]");
+ Value *NewValue = OldValue;
+ if (Value *PrevValue = PrevItValueMap[OldValue])
+ NewValue = PrevValue;
+
+ assert(Phi.getNumOperands() == 2);
+ Phi.setIncomingBlock(0, ForeBlocksLast[It - 1]);
+ Phi.setIncomingValue(0, NewValue);
+ Phi.removeIncomingValue(1);
+ }
+ }
+
+ // Now that all the basic blocks for the unrolled iterations are in place,
+ // finish up connecting the blocks and phi nodes. At this point LastValueMap
+ // is the last unrolled iterations values.
+
+ // Update Phis in BB from OldBB to point to NewBB
+ auto updatePHIBlocks = [](BasicBlock *BB, BasicBlock *OldBB,
+ BasicBlock *NewBB) {
+ for (PHINode &Phi : BB->phis()) {
+ int I = Phi.getBasicBlockIndex(OldBB);
+ Phi.setIncomingBlock(I, NewBB);
+ }
+ };
+ // Update Phis in BB from OldBB to point to NewBB and use the latest value
+ // from LastValueMap
+ auto updatePHIBlocksAndValues = [](BasicBlock *BB, BasicBlock *OldBB,
+ BasicBlock *NewBB,
+ ValueToValueMapTy &LastValueMap) {
+ for (PHINode &Phi : BB->phis()) {
+ for (unsigned b = 0; b < Phi.getNumIncomingValues(); ++b) {
+ if (Phi.getIncomingBlock(b) == OldBB) {
+ Value *OldValue = Phi.getIncomingValue(b);
+ if (Value *LastValue = LastValueMap[OldValue])
+ Phi.setIncomingValue(b, LastValue);
+ Phi.setIncomingBlock(b, NewBB);
+ break;
+ }
+ }
+ }
+ };
+ // Move all the phis from Src into Dest
+ auto movePHIs = [](BasicBlock *Src, BasicBlock *Dest) {
+ Instruction *insertPoint = Dest->getFirstNonPHI();
+ while (PHINode *Phi = dyn_cast<PHINode>(Src->begin()))
+ Phi->moveBefore(insertPoint);
+ };
+
+ // Update the PHI values outside the loop to point to the last block
+ updatePHIBlocksAndValues(LoopExit, AftBlocksLast[0], AftBlocksLast.back(),
+ LastValueMap);
+
+ // Update ForeBlocks successors and phi nodes
+ BranchInst *ForeTerm =
+ cast<BranchInst>(ForeBlocksLast.back()->getTerminator());
+ BasicBlock *Dest = SubLoopBlocksFirst[0];
+ ForeTerm->setSuccessor(0, Dest);
+
+ if (CompletelyUnroll) {
+ while (PHINode *Phi = dyn_cast<PHINode>(ForeBlocksFirst[0]->begin())) {
+ Phi->replaceAllUsesWith(Phi->getIncomingValueForBlock(Preheader));
+ Phi->getParent()->getInstList().erase(Phi);
+ }
+ } else {
+ // Update the PHI values to point to the last aft block
+ updatePHIBlocksAndValues(ForeBlocksFirst[0], AftBlocksLast[0],
+ AftBlocksLast.back(), LastValueMap);
+ }
+
+ for (unsigned It = 1; It != Count; It++) {
+ // Remap ForeBlock successors from previous iteration to this
+ BranchInst *ForeTerm =
+ cast<BranchInst>(ForeBlocksLast[It - 1]->getTerminator());
+ BasicBlock *Dest = ForeBlocksFirst[It];
+ ForeTerm->setSuccessor(0, Dest);
+ }
+
+ // Subloop successors and phis
+ BranchInst *SubTerm =
+ cast<BranchInst>(SubLoopBlocksLast.back()->getTerminator());
+ SubTerm->setSuccessor(!SubLoopContinueOnTrue, SubLoopBlocksFirst[0]);
+ SubTerm->setSuccessor(SubLoopContinueOnTrue, AftBlocksFirst[0]);
+ updatePHIBlocks(SubLoopBlocksFirst[0], ForeBlocksLast[0],
+ ForeBlocksLast.back());
+ updatePHIBlocks(SubLoopBlocksFirst[0], SubLoopBlocksLast[0],
+ SubLoopBlocksLast.back());
+
+ for (unsigned It = 1; It != Count; It++) {
+ // Replace the conditional branch of the previous iteration subloop with an
+ // unconditional one to this one
+ BranchInst *SubTerm =
+ cast<BranchInst>(SubLoopBlocksLast[It - 1]->getTerminator());
+ BranchInst::Create(SubLoopBlocksFirst[It], SubTerm);
+ SubTerm->eraseFromParent();
+
+ updatePHIBlocks(SubLoopBlocksFirst[It], ForeBlocksLast[It],
+ ForeBlocksLast.back());
+ updatePHIBlocks(SubLoopBlocksFirst[It], SubLoopBlocksLast[It],
+ SubLoopBlocksLast.back());
+ movePHIs(SubLoopBlocksFirst[It], SubLoopBlocksFirst[0]);
+ }
+
+ // Aft blocks successors and phis
+ BranchInst *Term = cast<BranchInst>(AftBlocksLast.back()->getTerminator());
+ if (CompletelyUnroll) {
+ BranchInst::Create(LoopExit, Term);
+ Term->eraseFromParent();
+ } else {
+ Term->setSuccessor(!ContinueOnTrue, ForeBlocksFirst[0]);
+ }
+ updatePHIBlocks(AftBlocksFirst[0], SubLoopBlocksLast[0],
+ SubLoopBlocksLast.back());
+
+ for (unsigned It = 1; It != Count; It++) {
+ // Replace the conditional branch of the previous iteration subloop with an
+ // unconditional one to this one
+ BranchInst *AftTerm =
+ cast<BranchInst>(AftBlocksLast[It - 1]->getTerminator());
+ BranchInst::Create(AftBlocksFirst[It], AftTerm);
+ AftTerm->eraseFromParent();
+
+ updatePHIBlocks(AftBlocksFirst[It], SubLoopBlocksLast[It],
+ SubLoopBlocksLast.back());
+ movePHIs(AftBlocksFirst[It], AftBlocksFirst[0]);
+ }
+
+ DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
+ // Dominator Tree. Remove the old links between Fore, Sub and Aft, adding the
+ // new ones required.
+ if (Count != 1) {
+ SmallVector<DominatorTree::UpdateType, 4> DTUpdates;
+ DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete, ForeBlocksLast[0],
+ SubLoopBlocksFirst[0]);
+ DTUpdates.emplace_back(DominatorTree::UpdateKind::Delete,
+ SubLoopBlocksLast[0], AftBlocksFirst[0]);
+
+ DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
+ ForeBlocksLast.back(), SubLoopBlocksFirst[0]);
+ DTUpdates.emplace_back(DominatorTree::UpdateKind::Insert,
+ SubLoopBlocksLast.back(), AftBlocksFirst[0]);
+ DTU.applyUpdatesPermissive(DTUpdates);
+ }
+
+ // Merge adjacent basic blocks, if possible.
+ SmallPtrSet<BasicBlock *, 16> MergeBlocks;
+ MergeBlocks.insert(ForeBlocksLast.begin(), ForeBlocksLast.end());
+ MergeBlocks.insert(SubLoopBlocksLast.begin(), SubLoopBlocksLast.end());
+ MergeBlocks.insert(AftBlocksLast.begin(), AftBlocksLast.end());
+ while (!MergeBlocks.empty()) {
+ BasicBlock *BB = *MergeBlocks.begin();
+ BranchInst *Term = dyn_cast<BranchInst>(BB->getTerminator());
+ if (Term && Term->isUnconditional() && L->contains(Term->getSuccessor(0))) {
+ BasicBlock *Dest = Term->getSuccessor(0);
+ BasicBlock *Fold = Dest->getUniquePredecessor();
+ if (MergeBlockIntoPredecessor(Dest, &DTU, LI)) {
+ // Don't remove BB and add Fold as they are the same BB
+ assert(Fold == BB);
+ (void)Fold;
+ MergeBlocks.erase(Dest);
+ } else
+ MergeBlocks.erase(BB);
+ } else
+ MergeBlocks.erase(BB);
+ }
+ // Apply updates to the DomTree.
+ DT = &DTU.getDomTree();
+
+ // At this point, the code is well formed. We now do a quick sweep over the
+ // inserted code, doing constant propagation and dead code elimination as we
+ // go.
+ simplifyLoopAfterUnroll(SubLoop, true, LI, SE, DT, AC);
+ simplifyLoopAfterUnroll(L, !CompletelyUnroll && Count > 1, LI, SE, DT, AC);
+
+ NumCompletelyUnrolledAndJammed += CompletelyUnroll;
+ ++NumUnrolledAndJammed;
+
+#ifndef NDEBUG
+ // We shouldn't have done anything to break loop simplify form or LCSSA.
+ Loop *OuterL = L->getParentLoop();
+ Loop *OutestLoop = OuterL ? OuterL : (!CompletelyUnroll ? L : SubLoop);
+ assert(OutestLoop->isRecursivelyLCSSAForm(*DT, *LI));
+ if (!CompletelyUnroll)
+ assert(L->isLoopSimplifyForm());
+ assert(SubLoop->isLoopSimplifyForm());
+ assert(DT->verify());
+#endif
+
+ // Update LoopInfo if the loop is completely removed.
+ if (CompletelyUnroll)
+ LI->erase(L);
+
+ return CompletelyUnroll ? LoopUnrollResult::FullyUnrolled
+ : LoopUnrollResult::PartiallyUnrolled;
+}
+
+static bool getLoadsAndStores(BasicBlockSet &Blocks,
+ SmallVector<Value *, 4> &MemInstr) {
+ // Scan the BBs and collect legal loads and stores.
+ // Returns false if non-simple loads/stores are found.
+ for (BasicBlock *BB : Blocks) {
+ for (Instruction &I : *BB) {
+ if (auto *Ld = dyn_cast<LoadInst>(&I)) {
+ if (!Ld->isSimple())
+ return false;
+ MemInstr.push_back(&I);
+ } else if (auto *St = dyn_cast<StoreInst>(&I)) {
+ if (!St->isSimple())
+ return false;
+ MemInstr.push_back(&I);
+ } else if (I.mayReadOrWriteMemory()) {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+static bool checkDependencies(SmallVector<Value *, 4> &Earlier,
+ SmallVector<Value *, 4> &Later,
+ unsigned LoopDepth, bool InnerLoop,
+ DependenceInfo &DI) {
+ // Use DA to check for dependencies between loads and stores that make unroll
+ // and jam invalid
+ for (Value *I : Earlier) {
+ for (Value *J : Later) {
+ Instruction *Src = cast<Instruction>(I);
+ Instruction *Dst = cast<Instruction>(J);
+ if (Src == Dst)
+ continue;
+ // Ignore Input dependencies.
+ if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
+ continue;
+
+ // Track dependencies, and if we find them take a conservative approach
+ // by allowing only = or < (not >), altough some > would be safe
+ // (depending upon unroll width).
+ // For the inner loop, we need to disallow any (> <) dependencies
+ // FIXME: Allow > so long as distance is less than unroll width
+ if (auto D = DI.depends(Src, Dst, true)) {
+ assert(D->isOrdered() && "Expected an output, flow or anti dep.");
+
+ if (D->isConfused()) {
+ LLVM_DEBUG(dbgs() << " Confused dependency between:\n"
+ << " " << *Src << "\n"
+ << " " << *Dst << "\n");
+ return false;
+ }
+ if (!InnerLoop) {
+ if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT) {
+ LLVM_DEBUG(dbgs() << " > dependency between:\n"
+ << " " << *Src << "\n"
+ << " " << *Dst << "\n");
+ return false;
+ }
+ } else {
+ assert(LoopDepth + 1 <= D->getLevels());
+ if (D->getDirection(LoopDepth) & Dependence::DVEntry::GT &&
+ D->getDirection(LoopDepth + 1) & Dependence::DVEntry::LT) {
+ LLVM_DEBUG(dbgs() << " < > dependency between:\n"
+ << " " << *Src << "\n"
+ << " " << *Dst << "\n");
+ return false;
+ }
+ }
+ }
+ }
+ }
+ return true;
+}
+
+static bool checkDependencies(Loop *L, BasicBlockSet &ForeBlocks,
+ BasicBlockSet &SubLoopBlocks,
+ BasicBlockSet &AftBlocks, DependenceInfo &DI) {
+ // Get all loads/store pairs for each blocks
+ SmallVector<Value *, 4> ForeMemInstr;
+ SmallVector<Value *, 4> SubLoopMemInstr;
+ SmallVector<Value *, 4> AftMemInstr;
+ if (!getLoadsAndStores(ForeBlocks, ForeMemInstr) ||
+ !getLoadsAndStores(SubLoopBlocks, SubLoopMemInstr) ||
+ !getLoadsAndStores(AftBlocks, AftMemInstr))
+ return false;
+
+ // Check for dependencies between any blocks that may change order
+ unsigned LoopDepth = L->getLoopDepth();
+ return checkDependencies(ForeMemInstr, SubLoopMemInstr, LoopDepth, false,
+ DI) &&
+ checkDependencies(ForeMemInstr, AftMemInstr, LoopDepth, false, DI) &&
+ checkDependencies(SubLoopMemInstr, AftMemInstr, LoopDepth, false,
+ DI) &&
+ checkDependencies(SubLoopMemInstr, SubLoopMemInstr, LoopDepth, true,
+ DI);
+}
+
+bool llvm::isSafeToUnrollAndJam(Loop *L, ScalarEvolution &SE, DominatorTree &DT,
+ DependenceInfo &DI) {
+ /* We currently handle outer loops like this:
+ |
+ ForeFirst <----\ }
+ Blocks | } ForeBlocks
+ ForeLast | }
+ | |
+ SubLoopFirst <\ | }
+ Blocks | | } SubLoopBlocks
+ SubLoopLast -/ | }
+ | |
+ AftFirst | }
+ Blocks | } AftBlocks
+ AftLast ------/ }
+ |
+
+ There are (theoretically) any number of blocks in ForeBlocks, SubLoopBlocks
+ and AftBlocks, providing that there is one edge from Fores to SubLoops,
+ one edge from SubLoops to Afts and a single outer loop exit (from Afts).
+ In practice we currently limit Aft blocks to a single block, and limit
+ things further in the profitablility checks of the unroll and jam pass.
+
+ Because of the way we rearrange basic blocks, we also require that
+ the Fore blocks on all unrolled iterations are safe to move before the
+ SubLoop blocks of all iterations. So we require that the phi node looping
+ operands of ForeHeader can be moved to at least the end of ForeEnd, so that
+ we can arrange cloned Fore Blocks before the subloop and match up Phi's
+ correctly.
+
+ i.e. The old order of blocks used to be F1 S1_1 S1_2 A1 F2 S2_1 S2_2 A2.
+ It needs to be safe to tranform this to F1 F2 S1_1 S2_1 S1_2 S2_2 A1 A2.
+
+ There are then a number of checks along the lines of no calls, no
+ exceptions, inner loop IV is consistent, etc. Note that for loops requiring
+ runtime unrolling, UnrollRuntimeLoopRemainder can also fail in
+ UnrollAndJamLoop if the trip count cannot be easily calculated.
+ */
+
+ if (!L->isLoopSimplifyForm() || L->getSubLoops().size() != 1)
+ return false;
+ Loop *SubLoop = L->getSubLoops()[0];
+ if (!SubLoop->isLoopSimplifyForm())
+ return false;
+
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *Latch = L->getLoopLatch();
+ BasicBlock *Exit = L->getExitingBlock();
+ BasicBlock *SubLoopHeader = SubLoop->getHeader();
+ BasicBlock *SubLoopLatch = SubLoop->getLoopLatch();
+ BasicBlock *SubLoopExit = SubLoop->getExitingBlock();
+
+ if (Latch != Exit)
+ return false;
+ if (SubLoopLatch != SubLoopExit)
+ return false;
+
+ if (Header->hasAddressTaken() || SubLoopHeader->hasAddressTaken()) {
+ LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Address taken\n");
+ return false;
+ }
+
+ // Split blocks into Fore/SubLoop/Aft based on dominators
+ BasicBlockSet SubLoopBlocks;
+ BasicBlockSet ForeBlocks;
+ BasicBlockSet AftBlocks;
+ if (!partitionOuterLoopBlocks(L, SubLoop, ForeBlocks, SubLoopBlocks,
+ AftBlocks, &DT)) {
+ LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Incompatible loop layout\n");
+ return false;
+ }
+
+ // Aft blocks may need to move instructions to fore blocks, which becomes more
+ // difficult if there are multiple (potentially conditionally executed)
+ // blocks. For now we just exclude loops with multiple aft blocks.
+ if (AftBlocks.size() != 1) {
+ LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Can't currently handle "
+ "multiple blocks after the loop\n");
+ return false;
+ }
+
+ // Check inner loop backedge count is consistent on all iterations of the
+ // outer loop
+ if (!hasIterationCountInvariantInParent(SubLoop, SE)) {
+ LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Inner loop iteration count is "
+ "not consistent on each iteration\n");
+ return false;
+ }
+
+ // Check the loop safety info for exceptions.
+ SimpleLoopSafetyInfo LSI;
+ LSI.computeLoopSafetyInfo(L);
+ if (LSI.anyBlockMayThrow()) {
+ LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; Something may throw\n");
+ return false;
+ }
+
+ // We've ruled out the easy stuff and now need to check that there are no
+ // interdependencies which may prevent us from moving the:
+ // ForeBlocks before Subloop and AftBlocks.
+ // Subloop before AftBlocks.
+ // ForeBlock phi operands before the subloop
+
+ // Make sure we can move all instructions we need to before the subloop
+ if (!processHeaderPhiOperands(
+ Header, Latch, AftBlocks, [&AftBlocks, &SubLoop](Instruction *I) {
+ if (SubLoop->contains(I->getParent()))
+ return false;
+ if (AftBlocks.count(I->getParent())) {
+ // If we hit a phi node in afts we know we are done (probably
+ // LCSSA)
+ if (isa<PHINode>(I))
+ return false;
+ // Can't move instructions with side effects or memory
+ // reads/writes
+ if (I->mayHaveSideEffects() || I->mayReadOrWriteMemory())
+ return false;
+ }
+ // Keep going
+ return true;
+ })) {
+ LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; can't move required "
+ "instructions after subloop to before it\n");
+ return false;
+ }
+
+ // Check for memory dependencies which prohibit the unrolling we are doing.
+ // Because of the way we are unrolling Fore/Sub/Aft blocks, we need to check
+ // there are no dependencies between Fore-Sub, Fore-Aft, Sub-Aft and Sub-Sub.
+ if (!checkDependencies(L, ForeBlocks, SubLoopBlocks, AftBlocks, DI)) {
+ LLVM_DEBUG(dbgs() << "Won't unroll-and-jam; failed dependency check\n");
+ return false;
+ }
+
+ return true;
+}