diff options
Diffstat (limited to 'llvm/lib/Transforms/Utils/ValueMapper.cpp')
-rw-r--r-- | llvm/lib/Transforms/Utils/ValueMapper.cpp | 1141 |
1 files changed, 1141 insertions, 0 deletions
diff --git a/llvm/lib/Transforms/Utils/ValueMapper.cpp b/llvm/lib/Transforms/Utils/ValueMapper.cpp new file mode 100644 index 0000000000000..da68d3713b404 --- /dev/null +++ b/llvm/lib/Transforms/Utils/ValueMapper.cpp @@ -0,0 +1,1141 @@ +//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the MapValue function, which is shared by various parts of +// the lib/Transforms/Utils library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/ValueMapper.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalObject.h" +#include "llvm/IR/GlobalIndirectSymbol.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/Support/Casting.h" +#include <cassert> +#include <limits> +#include <memory> +#include <utility> + +using namespace llvm; + +// Out of line method to get vtable etc for class. +void ValueMapTypeRemapper::anchor() {} +void ValueMaterializer::anchor() {} + +namespace { + +/// A basic block used in a BlockAddress whose function body is not yet +/// materialized. +struct DelayedBasicBlock { + BasicBlock *OldBB; + std::unique_ptr<BasicBlock> TempBB; + + DelayedBasicBlock(const BlockAddress &Old) + : OldBB(Old.getBasicBlock()), + TempBB(BasicBlock::Create(Old.getContext())) {} +}; + +struct WorklistEntry { + enum EntryKind { + MapGlobalInit, + MapAppendingVar, + MapGlobalIndirectSymbol, + RemapFunction + }; + struct GVInitTy { + GlobalVariable *GV; + Constant *Init; + }; + struct AppendingGVTy { + GlobalVariable *GV; + Constant *InitPrefix; + }; + struct GlobalIndirectSymbolTy { + GlobalIndirectSymbol *GIS; + Constant *Target; + }; + + unsigned Kind : 2; + unsigned MCID : 29; + unsigned AppendingGVIsOldCtorDtor : 1; + unsigned AppendingGVNumNewMembers; + union { + GVInitTy GVInit; + AppendingGVTy AppendingGV; + GlobalIndirectSymbolTy GlobalIndirectSymbol; + Function *RemapF; + } Data; +}; + +struct MappingContext { + ValueToValueMapTy *VM; + ValueMaterializer *Materializer = nullptr; + + /// Construct a MappingContext with a value map and materializer. + explicit MappingContext(ValueToValueMapTy &VM, + ValueMaterializer *Materializer = nullptr) + : VM(&VM), Materializer(Materializer) {} +}; + +class Mapper { + friend class MDNodeMapper; + +#ifndef NDEBUG + DenseSet<GlobalValue *> AlreadyScheduled; +#endif + + RemapFlags Flags; + ValueMapTypeRemapper *TypeMapper; + unsigned CurrentMCID = 0; + SmallVector<MappingContext, 2> MCs; + SmallVector<WorklistEntry, 4> Worklist; + SmallVector<DelayedBasicBlock, 1> DelayedBBs; + SmallVector<Constant *, 16> AppendingInits; + +public: + Mapper(ValueToValueMapTy &VM, RemapFlags Flags, + ValueMapTypeRemapper *TypeMapper, ValueMaterializer *Materializer) + : Flags(Flags), TypeMapper(TypeMapper), + MCs(1, MappingContext(VM, Materializer)) {} + + /// ValueMapper should explicitly call \a flush() before destruction. + ~Mapper() { assert(!hasWorkToDo() && "Expected to be flushed"); } + + bool hasWorkToDo() const { return !Worklist.empty(); } + + unsigned + registerAlternateMappingContext(ValueToValueMapTy &VM, + ValueMaterializer *Materializer = nullptr) { + MCs.push_back(MappingContext(VM, Materializer)); + return MCs.size() - 1; + } + + void addFlags(RemapFlags Flags); + + void remapGlobalObjectMetadata(GlobalObject &GO); + + Value *mapValue(const Value *V); + void remapInstruction(Instruction *I); + void remapFunction(Function &F); + + Constant *mapConstant(const Constant *C) { + return cast_or_null<Constant>(mapValue(C)); + } + + /// Map metadata. + /// + /// Find the mapping for MD. Guarantees that the return will be resolved + /// (not an MDNode, or MDNode::isResolved() returns true). + Metadata *mapMetadata(const Metadata *MD); + + void scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, + unsigned MCID); + void scheduleMapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, + bool IsOldCtorDtor, + ArrayRef<Constant *> NewMembers, + unsigned MCID); + void scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target, + unsigned MCID); + void scheduleRemapFunction(Function &F, unsigned MCID); + + void flush(); + +private: + void mapGlobalInitializer(GlobalVariable &GV, Constant &Init); + void mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, + bool IsOldCtorDtor, + ArrayRef<Constant *> NewMembers); + void mapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, Constant &Target); + void remapFunction(Function &F, ValueToValueMapTy &VM); + + ValueToValueMapTy &getVM() { return *MCs[CurrentMCID].VM; } + ValueMaterializer *getMaterializer() { return MCs[CurrentMCID].Materializer; } + + Value *mapBlockAddress(const BlockAddress &BA); + + /// Map metadata that doesn't require visiting operands. + Optional<Metadata *> mapSimpleMetadata(const Metadata *MD); + + Metadata *mapToMetadata(const Metadata *Key, Metadata *Val); + Metadata *mapToSelf(const Metadata *MD); +}; + +class MDNodeMapper { + Mapper &M; + + /// Data about a node in \a UniquedGraph. + struct Data { + bool HasChanged = false; + unsigned ID = std::numeric_limits<unsigned>::max(); + TempMDNode Placeholder; + }; + + /// A graph of uniqued nodes. + struct UniquedGraph { + SmallDenseMap<const Metadata *, Data, 32> Info; // Node properties. + SmallVector<MDNode *, 16> POT; // Post-order traversal. + + /// Propagate changed operands through the post-order traversal. + /// + /// Iteratively update \a Data::HasChanged for each node based on \a + /// Data::HasChanged of its operands, until fixed point. + void propagateChanges(); + + /// Get a forward reference to a node to use as an operand. + Metadata &getFwdReference(MDNode &Op); + }; + + /// Worklist of distinct nodes whose operands need to be remapped. + SmallVector<MDNode *, 16> DistinctWorklist; + + // Storage for a UniquedGraph. + SmallDenseMap<const Metadata *, Data, 32> InfoStorage; + SmallVector<MDNode *, 16> POTStorage; + +public: + MDNodeMapper(Mapper &M) : M(M) {} + + /// Map a metadata node (and its transitive operands). + /// + /// Map all the (unmapped) nodes in the subgraph under \c N. The iterative + /// algorithm handles distinct nodes and uniqued node subgraphs using + /// different strategies. + /// + /// Distinct nodes are immediately mapped and added to \a DistinctWorklist + /// using \a mapDistinctNode(). Their mapping can always be computed + /// immediately without visiting operands, even if their operands change. + /// + /// The mapping for uniqued nodes depends on whether their operands change. + /// \a mapTopLevelUniquedNode() traverses the transitive uniqued subgraph of + /// a node to calculate uniqued node mappings in bulk. Distinct leafs are + /// added to \a DistinctWorklist with \a mapDistinctNode(). + /// + /// After mapping \c N itself, this function remaps the operands of the + /// distinct nodes in \a DistinctWorklist until the entire subgraph under \c + /// N has been mapped. + Metadata *map(const MDNode &N); + +private: + /// Map a top-level uniqued node and the uniqued subgraph underneath it. + /// + /// This builds up a post-order traversal of the (unmapped) uniqued subgraph + /// underneath \c FirstN and calculates the nodes' mapping. Each node uses + /// the identity mapping (\a Mapper::mapToSelf()) as long as all of its + /// operands uses the identity mapping. + /// + /// The algorithm works as follows: + /// + /// 1. \a createPOT(): traverse the uniqued subgraph under \c FirstN and + /// save the post-order traversal in the given \a UniquedGraph, tracking + /// nodes' operands change. + /// + /// 2. \a UniquedGraph::propagateChanges(): propagate changed operands + /// through the \a UniquedGraph until fixed point, following the rule + /// that if a node changes, any node that references must also change. + /// + /// 3. \a mapNodesInPOT(): map the uniqued nodes, creating new uniqued nodes + /// (referencing new operands) where necessary. + Metadata *mapTopLevelUniquedNode(const MDNode &FirstN); + + /// Try to map the operand of an \a MDNode. + /// + /// If \c Op is already mapped, return the mapping. If it's not an \a + /// MDNode, compute and return the mapping. If it's a distinct \a MDNode, + /// return the result of \a mapDistinctNode(). + /// + /// \return None if \c Op is an unmapped uniqued \a MDNode. + /// \post getMappedOp(Op) only returns None if this returns None. + Optional<Metadata *> tryToMapOperand(const Metadata *Op); + + /// Map a distinct node. + /// + /// Return the mapping for the distinct node \c N, saving the result in \a + /// DistinctWorklist for later remapping. + /// + /// \pre \c N is not yet mapped. + /// \pre \c N.isDistinct(). + MDNode *mapDistinctNode(const MDNode &N); + + /// Get a previously mapped node. + Optional<Metadata *> getMappedOp(const Metadata *Op) const; + + /// Create a post-order traversal of an unmapped uniqued node subgraph. + /// + /// This traverses the metadata graph deeply enough to map \c FirstN. It + /// uses \a tryToMapOperand() (via \a Mapper::mapSimplifiedNode()), so any + /// metadata that has already been mapped will not be part of the POT. + /// + /// Each node that has a changed operand from outside the graph (e.g., a + /// distinct node, an already-mapped uniqued node, or \a ConstantAsMetadata) + /// is marked with \a Data::HasChanged. + /// + /// \return \c true if any nodes in \c G have \a Data::HasChanged. + /// \post \c G.POT is a post-order traversal ending with \c FirstN. + /// \post \a Data::hasChanged in \c G.Info indicates whether any node needs + /// to change because of operands outside the graph. + bool createPOT(UniquedGraph &G, const MDNode &FirstN); + + /// Visit the operands of a uniqued node in the POT. + /// + /// Visit the operands in the range from \c I to \c E, returning the first + /// uniqued node we find that isn't yet in \c G. \c I is always advanced to + /// where to continue the loop through the operands. + /// + /// This sets \c HasChanged if any of the visited operands change. + MDNode *visitOperands(UniquedGraph &G, MDNode::op_iterator &I, + MDNode::op_iterator E, bool &HasChanged); + + /// Map all the nodes in the given uniqued graph. + /// + /// This visits all the nodes in \c G in post-order, using the identity + /// mapping or creating a new node depending on \a Data::HasChanged. + /// + /// \pre \a getMappedOp() returns None for nodes in \c G, but not for any of + /// their operands outside of \c G. + /// \pre \a Data::HasChanged is true for a node in \c G iff any of its + /// operands have changed. + /// \post \a getMappedOp() returns the mapped node for every node in \c G. + void mapNodesInPOT(UniquedGraph &G); + + /// Remap a node's operands using the given functor. + /// + /// Iterate through the operands of \c N and update them in place using \c + /// mapOperand. + /// + /// \pre N.isDistinct() or N.isTemporary(). + template <class OperandMapper> + void remapOperands(MDNode &N, OperandMapper mapOperand); +}; + +} // end anonymous namespace + +Value *Mapper::mapValue(const Value *V) { + ValueToValueMapTy::iterator I = getVM().find(V); + + // If the value already exists in the map, use it. + if (I != getVM().end()) { + assert(I->second && "Unexpected null mapping"); + return I->second; + } + + // If we have a materializer and it can materialize a value, use that. + if (auto *Materializer = getMaterializer()) { + if (Value *NewV = Materializer->materialize(const_cast<Value *>(V))) { + getVM()[V] = NewV; + return NewV; + } + } + + // Global values do not need to be seeded into the VM if they + // are using the identity mapping. + if (isa<GlobalValue>(V)) { + if (Flags & RF_NullMapMissingGlobalValues) + return nullptr; + return getVM()[V] = const_cast<Value *>(V); + } + + if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) { + // Inline asm may need *type* remapping. + FunctionType *NewTy = IA->getFunctionType(); + if (TypeMapper) { + NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy)); + + if (NewTy != IA->getFunctionType()) + V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(), + IA->hasSideEffects(), IA->isAlignStack()); + } + + return getVM()[V] = const_cast<Value *>(V); + } + + if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) { + const Metadata *MD = MDV->getMetadata(); + + if (auto *LAM = dyn_cast<LocalAsMetadata>(MD)) { + // Look through to grab the local value. + if (Value *LV = mapValue(LAM->getValue())) { + if (V == LAM->getValue()) + return const_cast<Value *>(V); + return MetadataAsValue::get(V->getContext(), ValueAsMetadata::get(LV)); + } + + // FIXME: always return nullptr once Verifier::verifyDominatesUse() + // ensures metadata operands only reference defined SSA values. + return (Flags & RF_IgnoreMissingLocals) + ? nullptr + : MetadataAsValue::get(V->getContext(), + MDTuple::get(V->getContext(), None)); + } + + // If this is a module-level metadata and we know that nothing at the module + // level is changing, then use an identity mapping. + if (Flags & RF_NoModuleLevelChanges) + return getVM()[V] = const_cast<Value *>(V); + + // Map the metadata and turn it into a value. + auto *MappedMD = mapMetadata(MD); + if (MD == MappedMD) + return getVM()[V] = const_cast<Value *>(V); + return getVM()[V] = MetadataAsValue::get(V->getContext(), MappedMD); + } + + // Okay, this either must be a constant (which may or may not be mappable) or + // is something that is not in the mapping table. + Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V)); + if (!C) + return nullptr; + + if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) + return mapBlockAddress(*BA); + + auto mapValueOrNull = [this](Value *V) { + auto Mapped = mapValue(V); + assert((Mapped || (Flags & RF_NullMapMissingGlobalValues)) && + "Unexpected null mapping for constant operand without " + "NullMapMissingGlobalValues flag"); + return Mapped; + }; + + // Otherwise, we have some other constant to remap. Start by checking to see + // if all operands have an identity remapping. + unsigned OpNo = 0, NumOperands = C->getNumOperands(); + Value *Mapped = nullptr; + for (; OpNo != NumOperands; ++OpNo) { + Value *Op = C->getOperand(OpNo); + Mapped = mapValueOrNull(Op); + if (!Mapped) + return nullptr; + if (Mapped != Op) + break; + } + + // See if the type mapper wants to remap the type as well. + Type *NewTy = C->getType(); + if (TypeMapper) + NewTy = TypeMapper->remapType(NewTy); + + // If the result type and all operands match up, then just insert an identity + // mapping. + if (OpNo == NumOperands && NewTy == C->getType()) + return getVM()[V] = C; + + // Okay, we need to create a new constant. We've already processed some or + // all of the operands, set them all up now. + SmallVector<Constant*, 8> Ops; + Ops.reserve(NumOperands); + for (unsigned j = 0; j != OpNo; ++j) + Ops.push_back(cast<Constant>(C->getOperand(j))); + + // If one of the operands mismatch, push it and the other mapped operands. + if (OpNo != NumOperands) { + Ops.push_back(cast<Constant>(Mapped)); + + // Map the rest of the operands that aren't processed yet. + for (++OpNo; OpNo != NumOperands; ++OpNo) { + Mapped = mapValueOrNull(C->getOperand(OpNo)); + if (!Mapped) + return nullptr; + Ops.push_back(cast<Constant>(Mapped)); + } + } + Type *NewSrcTy = nullptr; + if (TypeMapper) + if (auto *GEPO = dyn_cast<GEPOperator>(C)) + NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType()); + + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) + return getVM()[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy); + if (isa<ConstantArray>(C)) + return getVM()[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops); + if (isa<ConstantStruct>(C)) + return getVM()[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops); + if (isa<ConstantVector>(C)) + return getVM()[V] = ConstantVector::get(Ops); + // If this is a no-operand constant, it must be because the type was remapped. + if (isa<UndefValue>(C)) + return getVM()[V] = UndefValue::get(NewTy); + if (isa<ConstantAggregateZero>(C)) + return getVM()[V] = ConstantAggregateZero::get(NewTy); + assert(isa<ConstantPointerNull>(C)); + return getVM()[V] = ConstantPointerNull::get(cast<PointerType>(NewTy)); +} + +Value *Mapper::mapBlockAddress(const BlockAddress &BA) { + Function *F = cast<Function>(mapValue(BA.getFunction())); + + // F may not have materialized its initializer. In that case, create a + // dummy basic block for now, and replace it once we've materialized all + // the initializers. + BasicBlock *BB; + if (F->empty()) { + DelayedBBs.push_back(DelayedBasicBlock(BA)); + BB = DelayedBBs.back().TempBB.get(); + } else { + BB = cast_or_null<BasicBlock>(mapValue(BA.getBasicBlock())); + } + + return getVM()[&BA] = BlockAddress::get(F, BB ? BB : BA.getBasicBlock()); +} + +Metadata *Mapper::mapToMetadata(const Metadata *Key, Metadata *Val) { + getVM().MD()[Key].reset(Val); + return Val; +} + +Metadata *Mapper::mapToSelf(const Metadata *MD) { + return mapToMetadata(MD, const_cast<Metadata *>(MD)); +} + +Optional<Metadata *> MDNodeMapper::tryToMapOperand(const Metadata *Op) { + if (!Op) + return nullptr; + + if (Optional<Metadata *> MappedOp = M.mapSimpleMetadata(Op)) { +#ifndef NDEBUG + if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) + assert((!*MappedOp || M.getVM().count(CMD->getValue()) || + M.getVM().getMappedMD(Op)) && + "Expected Value to be memoized"); + else + assert((isa<MDString>(Op) || M.getVM().getMappedMD(Op)) && + "Expected result to be memoized"); +#endif + return *MappedOp; + } + + const MDNode &N = *cast<MDNode>(Op); + if (N.isDistinct()) + return mapDistinctNode(N); + return None; +} + +static Metadata *cloneOrBuildODR(const MDNode &N) { + auto *CT = dyn_cast<DICompositeType>(&N); + // If ODR type uniquing is enabled, we would have uniqued composite types + // with identifiers during bitcode reading, so we can just use CT. + if (CT && CT->getContext().isODRUniquingDebugTypes() && + CT->getIdentifier() != "") + return const_cast<DICompositeType *>(CT); + return MDNode::replaceWithDistinct(N.clone()); +} + +MDNode *MDNodeMapper::mapDistinctNode(const MDNode &N) { + assert(N.isDistinct() && "Expected a distinct node"); + assert(!M.getVM().getMappedMD(&N) && "Expected an unmapped node"); + DistinctWorklist.push_back( + cast<MDNode>((M.Flags & RF_MoveDistinctMDs) + ? M.mapToSelf(&N) + : M.mapToMetadata(&N, cloneOrBuildODR(N)))); + return DistinctWorklist.back(); +} + +static ConstantAsMetadata *wrapConstantAsMetadata(const ConstantAsMetadata &CMD, + Value *MappedV) { + if (CMD.getValue() == MappedV) + return const_cast<ConstantAsMetadata *>(&CMD); + return MappedV ? ConstantAsMetadata::getConstant(MappedV) : nullptr; +} + +Optional<Metadata *> MDNodeMapper::getMappedOp(const Metadata *Op) const { + if (!Op) + return nullptr; + + if (Optional<Metadata *> MappedOp = M.getVM().getMappedMD(Op)) + return *MappedOp; + + if (isa<MDString>(Op)) + return const_cast<Metadata *>(Op); + + if (auto *CMD = dyn_cast<ConstantAsMetadata>(Op)) + return wrapConstantAsMetadata(*CMD, M.getVM().lookup(CMD->getValue())); + + return None; +} + +Metadata &MDNodeMapper::UniquedGraph::getFwdReference(MDNode &Op) { + auto Where = Info.find(&Op); + assert(Where != Info.end() && "Expected a valid reference"); + + auto &OpD = Where->second; + if (!OpD.HasChanged) + return Op; + + // Lazily construct a temporary node. + if (!OpD.Placeholder) + OpD.Placeholder = Op.clone(); + + return *OpD.Placeholder; +} + +template <class OperandMapper> +void MDNodeMapper::remapOperands(MDNode &N, OperandMapper mapOperand) { + assert(!N.isUniqued() && "Expected distinct or temporary nodes"); + for (unsigned I = 0, E = N.getNumOperands(); I != E; ++I) { + Metadata *Old = N.getOperand(I); + Metadata *New = mapOperand(Old); + + if (Old != New) + N.replaceOperandWith(I, New); + } +} + +namespace { + +/// An entry in the worklist for the post-order traversal. +struct POTWorklistEntry { + MDNode *N; ///< Current node. + MDNode::op_iterator Op; ///< Current operand of \c N. + + /// Keep a flag of whether operands have changed in the worklist to avoid + /// hitting the map in \a UniquedGraph. + bool HasChanged = false; + + POTWorklistEntry(MDNode &N) : N(&N), Op(N.op_begin()) {} +}; + +} // end anonymous namespace + +bool MDNodeMapper::createPOT(UniquedGraph &G, const MDNode &FirstN) { + assert(G.Info.empty() && "Expected a fresh traversal"); + assert(FirstN.isUniqued() && "Expected uniqued node in POT"); + + // Construct a post-order traversal of the uniqued subgraph under FirstN. + bool AnyChanges = false; + SmallVector<POTWorklistEntry, 16> Worklist; + Worklist.push_back(POTWorklistEntry(const_cast<MDNode &>(FirstN))); + (void)G.Info[&FirstN]; + while (!Worklist.empty()) { + // Start or continue the traversal through the this node's operands. + auto &WE = Worklist.back(); + if (MDNode *N = visitOperands(G, WE.Op, WE.N->op_end(), WE.HasChanged)) { + // Push a new node to traverse first. + Worklist.push_back(POTWorklistEntry(*N)); + continue; + } + + // Push the node onto the POT. + assert(WE.N->isUniqued() && "Expected only uniqued nodes"); + assert(WE.Op == WE.N->op_end() && "Expected to visit all operands"); + auto &D = G.Info[WE.N]; + AnyChanges |= D.HasChanged = WE.HasChanged; + D.ID = G.POT.size(); + G.POT.push_back(WE.N); + + // Pop the node off the worklist. + Worklist.pop_back(); + } + return AnyChanges; +} + +MDNode *MDNodeMapper::visitOperands(UniquedGraph &G, MDNode::op_iterator &I, + MDNode::op_iterator E, bool &HasChanged) { + while (I != E) { + Metadata *Op = *I++; // Increment even on early return. + if (Optional<Metadata *> MappedOp = tryToMapOperand(Op)) { + // Check if the operand changes. + HasChanged |= Op != *MappedOp; + continue; + } + + // A uniqued metadata node. + MDNode &OpN = *cast<MDNode>(Op); + assert(OpN.isUniqued() && + "Only uniqued operands cannot be mapped immediately"); + if (G.Info.insert(std::make_pair(&OpN, Data())).second) + return &OpN; // This is a new one. Return it. + } + return nullptr; +} + +void MDNodeMapper::UniquedGraph::propagateChanges() { + bool AnyChanges; + do { + AnyChanges = false; + for (MDNode *N : POT) { + auto &D = Info[N]; + if (D.HasChanged) + continue; + + if (llvm::none_of(N->operands(), [&](const Metadata *Op) { + auto Where = Info.find(Op); + return Where != Info.end() && Where->second.HasChanged; + })) + continue; + + AnyChanges = D.HasChanged = true; + } + } while (AnyChanges); +} + +void MDNodeMapper::mapNodesInPOT(UniquedGraph &G) { + // Construct uniqued nodes, building forward references as necessary. + SmallVector<MDNode *, 16> CyclicNodes; + for (auto *N : G.POT) { + auto &D = G.Info[N]; + if (!D.HasChanged) { + // The node hasn't changed. + M.mapToSelf(N); + continue; + } + + // Remember whether this node had a placeholder. + bool HadPlaceholder(D.Placeholder); + + // Clone the uniqued node and remap the operands. + TempMDNode ClonedN = D.Placeholder ? std::move(D.Placeholder) : N->clone(); + remapOperands(*ClonedN, [this, &D, &G](Metadata *Old) { + if (Optional<Metadata *> MappedOp = getMappedOp(Old)) + return *MappedOp; + (void)D; + assert(G.Info[Old].ID > D.ID && "Expected a forward reference"); + return &G.getFwdReference(*cast<MDNode>(Old)); + }); + + auto *NewN = MDNode::replaceWithUniqued(std::move(ClonedN)); + M.mapToMetadata(N, NewN); + + // Nodes that were referenced out of order in the POT are involved in a + // uniquing cycle. + if (HadPlaceholder) + CyclicNodes.push_back(NewN); + } + + // Resolve cycles. + for (auto *N : CyclicNodes) + if (!N->isResolved()) + N->resolveCycles(); +} + +Metadata *MDNodeMapper::map(const MDNode &N) { + assert(DistinctWorklist.empty() && "MDNodeMapper::map is not recursive"); + assert(!(M.Flags & RF_NoModuleLevelChanges) && + "MDNodeMapper::map assumes module-level changes"); + + // Require resolved nodes whenever metadata might be remapped. + assert(N.isResolved() && "Unexpected unresolved node"); + + Metadata *MappedN = + N.isUniqued() ? mapTopLevelUniquedNode(N) : mapDistinctNode(N); + while (!DistinctWorklist.empty()) + remapOperands(*DistinctWorklist.pop_back_val(), [this](Metadata *Old) { + if (Optional<Metadata *> MappedOp = tryToMapOperand(Old)) + return *MappedOp; + return mapTopLevelUniquedNode(*cast<MDNode>(Old)); + }); + return MappedN; +} + +Metadata *MDNodeMapper::mapTopLevelUniquedNode(const MDNode &FirstN) { + assert(FirstN.isUniqued() && "Expected uniqued node"); + + // Create a post-order traversal of uniqued nodes under FirstN. + UniquedGraph G; + if (!createPOT(G, FirstN)) { + // Return early if no nodes have changed. + for (const MDNode *N : G.POT) + M.mapToSelf(N); + return &const_cast<MDNode &>(FirstN); + } + + // Update graph with all nodes that have changed. + G.propagateChanges(); + + // Map all the nodes in the graph. + mapNodesInPOT(G); + + // Return the original node, remapped. + return *getMappedOp(&FirstN); +} + +Optional<Metadata *> Mapper::mapSimpleMetadata(const Metadata *MD) { + // If the value already exists in the map, use it. + if (Optional<Metadata *> NewMD = getVM().getMappedMD(MD)) + return *NewMD; + + if (isa<MDString>(MD)) + return const_cast<Metadata *>(MD); + + // This is a module-level metadata. If nothing at the module level is + // changing, use an identity mapping. + if ((Flags & RF_NoModuleLevelChanges)) + return const_cast<Metadata *>(MD); + + if (auto *CMD = dyn_cast<ConstantAsMetadata>(MD)) { + // Don't memoize ConstantAsMetadata. Instead of lasting until the + // LLVMContext is destroyed, they can be deleted when the GlobalValue they + // reference is destructed. These aren't super common, so the extra + // indirection isn't that expensive. + return wrapConstantAsMetadata(*CMD, mapValue(CMD->getValue())); + } + + assert(isa<MDNode>(MD) && "Expected a metadata node"); + + return None; +} + +Metadata *Mapper::mapMetadata(const Metadata *MD) { + assert(MD && "Expected valid metadata"); + assert(!isa<LocalAsMetadata>(MD) && "Unexpected local metadata"); + + if (Optional<Metadata *> NewMD = mapSimpleMetadata(MD)) + return *NewMD; + + return MDNodeMapper(*this).map(*cast<MDNode>(MD)); +} + +void Mapper::flush() { + // Flush out the worklist of global values. + while (!Worklist.empty()) { + WorklistEntry E = Worklist.pop_back_val(); + CurrentMCID = E.MCID; + switch (E.Kind) { + case WorklistEntry::MapGlobalInit: + E.Data.GVInit.GV->setInitializer(mapConstant(E.Data.GVInit.Init)); + remapGlobalObjectMetadata(*E.Data.GVInit.GV); + break; + case WorklistEntry::MapAppendingVar: { + unsigned PrefixSize = AppendingInits.size() - E.AppendingGVNumNewMembers; + mapAppendingVariable(*E.Data.AppendingGV.GV, + E.Data.AppendingGV.InitPrefix, + E.AppendingGVIsOldCtorDtor, + makeArrayRef(AppendingInits).slice(PrefixSize)); + AppendingInits.resize(PrefixSize); + break; + } + case WorklistEntry::MapGlobalIndirectSymbol: + E.Data.GlobalIndirectSymbol.GIS->setIndirectSymbol( + mapConstant(E.Data.GlobalIndirectSymbol.Target)); + break; + case WorklistEntry::RemapFunction: + remapFunction(*E.Data.RemapF); + break; + } + } + CurrentMCID = 0; + + // Finish logic for block addresses now that all global values have been + // handled. + while (!DelayedBBs.empty()) { + DelayedBasicBlock DBB = DelayedBBs.pop_back_val(); + BasicBlock *BB = cast_or_null<BasicBlock>(mapValue(DBB.OldBB)); + DBB.TempBB->replaceAllUsesWith(BB ? BB : DBB.OldBB); + } +} + +void Mapper::remapInstruction(Instruction *I) { + // Remap operands. + for (Use &Op : I->operands()) { + Value *V = mapValue(Op); + // If we aren't ignoring missing entries, assert that something happened. + if (V) + Op = V; + else + assert((Flags & RF_IgnoreMissingLocals) && + "Referenced value not in value map!"); + } + + // Remap phi nodes' incoming blocks. + if (PHINode *PN = dyn_cast<PHINode>(I)) { + for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { + Value *V = mapValue(PN->getIncomingBlock(i)); + // If we aren't ignoring missing entries, assert that something happened. + if (V) + PN->setIncomingBlock(i, cast<BasicBlock>(V)); + else + assert((Flags & RF_IgnoreMissingLocals) && + "Referenced block not in value map!"); + } + } + + // Remap attached metadata. + SmallVector<std::pair<unsigned, MDNode *>, 4> MDs; + I->getAllMetadata(MDs); + for (const auto &MI : MDs) { + MDNode *Old = MI.second; + MDNode *New = cast_or_null<MDNode>(mapMetadata(Old)); + if (New != Old) + I->setMetadata(MI.first, New); + } + + if (!TypeMapper) + return; + + // If the instruction's type is being remapped, do so now. + if (auto CS = CallSite(I)) { + SmallVector<Type *, 3> Tys; + FunctionType *FTy = CS.getFunctionType(); + Tys.reserve(FTy->getNumParams()); + for (Type *Ty : FTy->params()) + Tys.push_back(TypeMapper->remapType(Ty)); + CS.mutateFunctionType(FunctionType::get( + TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg())); + + LLVMContext &C = CS->getContext(); + AttributeList Attrs = CS.getAttributes(); + for (unsigned i = 0; i < Attrs.getNumAttrSets(); ++i) { + if (Attrs.hasAttribute(i, Attribute::ByVal)) { + Type *Ty = Attrs.getAttribute(i, Attribute::ByVal).getValueAsType(); + if (!Ty) + continue; + + Attrs = Attrs.removeAttribute(C, i, Attribute::ByVal); + Attrs = Attrs.addAttribute( + C, i, Attribute::getWithByValType(C, TypeMapper->remapType(Ty))); + } + } + CS.setAttributes(Attrs); + return; + } + if (auto *AI = dyn_cast<AllocaInst>(I)) + AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType())); + if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { + GEP->setSourceElementType( + TypeMapper->remapType(GEP->getSourceElementType())); + GEP->setResultElementType( + TypeMapper->remapType(GEP->getResultElementType())); + } + I->mutateType(TypeMapper->remapType(I->getType())); +} + +void Mapper::remapGlobalObjectMetadata(GlobalObject &GO) { + SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; + GO.getAllMetadata(MDs); + GO.clearMetadata(); + for (const auto &I : MDs) + GO.addMetadata(I.first, *cast<MDNode>(mapMetadata(I.second))); +} + +void Mapper::remapFunction(Function &F) { + // Remap the operands. + for (Use &Op : F.operands()) + if (Op) + Op = mapValue(Op); + + // Remap the metadata attachments. + remapGlobalObjectMetadata(F); + + // Remap the argument types. + if (TypeMapper) + for (Argument &A : F.args()) + A.mutateType(TypeMapper->remapType(A.getType())); + + // Remap the instructions. + for (BasicBlock &BB : F) + for (Instruction &I : BB) + remapInstruction(&I); +} + +void Mapper::mapAppendingVariable(GlobalVariable &GV, Constant *InitPrefix, + bool IsOldCtorDtor, + ArrayRef<Constant *> NewMembers) { + SmallVector<Constant *, 16> Elements; + if (InitPrefix) { + unsigned NumElements = + cast<ArrayType>(InitPrefix->getType())->getNumElements(); + for (unsigned I = 0; I != NumElements; ++I) + Elements.push_back(InitPrefix->getAggregateElement(I)); + } + + PointerType *VoidPtrTy; + Type *EltTy; + if (IsOldCtorDtor) { + // FIXME: This upgrade is done during linking to support the C API. See + // also IRLinker::linkAppendingVarProto() in IRMover.cpp. + VoidPtrTy = Type::getInt8Ty(GV.getContext())->getPointerTo(); + auto &ST = *cast<StructType>(NewMembers.front()->getType()); + Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy}; + EltTy = StructType::get(GV.getContext(), Tys, false); + } + + for (auto *V : NewMembers) { + Constant *NewV; + if (IsOldCtorDtor) { + auto *S = cast<ConstantStruct>(V); + auto *E1 = cast<Constant>(mapValue(S->getOperand(0))); + auto *E2 = cast<Constant>(mapValue(S->getOperand(1))); + Constant *Null = Constant::getNullValue(VoidPtrTy); + NewV = ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null); + } else { + NewV = cast_or_null<Constant>(mapValue(V)); + } + Elements.push_back(NewV); + } + + GV.setInitializer(ConstantArray::get( + cast<ArrayType>(GV.getType()->getElementType()), Elements)); +} + +void Mapper::scheduleMapGlobalInitializer(GlobalVariable &GV, Constant &Init, + unsigned MCID) { + assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); + assert(MCID < MCs.size() && "Invalid mapping context"); + + WorklistEntry WE; + WE.Kind = WorklistEntry::MapGlobalInit; + WE.MCID = MCID; + WE.Data.GVInit.GV = &GV; + WE.Data.GVInit.Init = &Init; + Worklist.push_back(WE); +} + +void Mapper::scheduleMapAppendingVariable(GlobalVariable &GV, + Constant *InitPrefix, + bool IsOldCtorDtor, + ArrayRef<Constant *> NewMembers, + unsigned MCID) { + assert(AlreadyScheduled.insert(&GV).second && "Should not reschedule"); + assert(MCID < MCs.size() && "Invalid mapping context"); + + WorklistEntry WE; + WE.Kind = WorklistEntry::MapAppendingVar; + WE.MCID = MCID; + WE.Data.AppendingGV.GV = &GV; + WE.Data.AppendingGV.InitPrefix = InitPrefix; + WE.AppendingGVIsOldCtorDtor = IsOldCtorDtor; + WE.AppendingGVNumNewMembers = NewMembers.size(); + Worklist.push_back(WE); + AppendingInits.append(NewMembers.begin(), NewMembers.end()); +} + +void Mapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, + Constant &Target, unsigned MCID) { + assert(AlreadyScheduled.insert(&GIS).second && "Should not reschedule"); + assert(MCID < MCs.size() && "Invalid mapping context"); + + WorklistEntry WE; + WE.Kind = WorklistEntry::MapGlobalIndirectSymbol; + WE.MCID = MCID; + WE.Data.GlobalIndirectSymbol.GIS = &GIS; + WE.Data.GlobalIndirectSymbol.Target = &Target; + Worklist.push_back(WE); +} + +void Mapper::scheduleRemapFunction(Function &F, unsigned MCID) { + assert(AlreadyScheduled.insert(&F).second && "Should not reschedule"); + assert(MCID < MCs.size() && "Invalid mapping context"); + + WorklistEntry WE; + WE.Kind = WorklistEntry::RemapFunction; + WE.MCID = MCID; + WE.Data.RemapF = &F; + Worklist.push_back(WE); +} + +void Mapper::addFlags(RemapFlags Flags) { + assert(!hasWorkToDo() && "Expected to have flushed the worklist"); + this->Flags = this->Flags | Flags; +} + +static Mapper *getAsMapper(void *pImpl) { + return reinterpret_cast<Mapper *>(pImpl); +} + +namespace { + +class FlushingMapper { + Mapper &M; + +public: + explicit FlushingMapper(void *pImpl) : M(*getAsMapper(pImpl)) { + assert(!M.hasWorkToDo() && "Expected to be flushed"); + } + + ~FlushingMapper() { M.flush(); } + + Mapper *operator->() const { return &M; } +}; + +} // end anonymous namespace + +ValueMapper::ValueMapper(ValueToValueMapTy &VM, RemapFlags Flags, + ValueMapTypeRemapper *TypeMapper, + ValueMaterializer *Materializer) + : pImpl(new Mapper(VM, Flags, TypeMapper, Materializer)) {} + +ValueMapper::~ValueMapper() { delete getAsMapper(pImpl); } + +unsigned +ValueMapper::registerAlternateMappingContext(ValueToValueMapTy &VM, + ValueMaterializer *Materializer) { + return getAsMapper(pImpl)->registerAlternateMappingContext(VM, Materializer); +} + +void ValueMapper::addFlags(RemapFlags Flags) { + FlushingMapper(pImpl)->addFlags(Flags); +} + +Value *ValueMapper::mapValue(const Value &V) { + return FlushingMapper(pImpl)->mapValue(&V); +} + +Constant *ValueMapper::mapConstant(const Constant &C) { + return cast_or_null<Constant>(mapValue(C)); +} + +Metadata *ValueMapper::mapMetadata(const Metadata &MD) { + return FlushingMapper(pImpl)->mapMetadata(&MD); +} + +MDNode *ValueMapper::mapMDNode(const MDNode &N) { + return cast_or_null<MDNode>(mapMetadata(N)); +} + +void ValueMapper::remapInstruction(Instruction &I) { + FlushingMapper(pImpl)->remapInstruction(&I); +} + +void ValueMapper::remapFunction(Function &F) { + FlushingMapper(pImpl)->remapFunction(F); +} + +void ValueMapper::scheduleMapGlobalInitializer(GlobalVariable &GV, + Constant &Init, + unsigned MCID) { + getAsMapper(pImpl)->scheduleMapGlobalInitializer(GV, Init, MCID); +} + +void ValueMapper::scheduleMapAppendingVariable(GlobalVariable &GV, + Constant *InitPrefix, + bool IsOldCtorDtor, + ArrayRef<Constant *> NewMembers, + unsigned MCID) { + getAsMapper(pImpl)->scheduleMapAppendingVariable( + GV, InitPrefix, IsOldCtorDtor, NewMembers, MCID); +} + +void ValueMapper::scheduleMapGlobalIndirectSymbol(GlobalIndirectSymbol &GIS, + Constant &Target, + unsigned MCID) { + getAsMapper(pImpl)->scheduleMapGlobalIndirectSymbol(GIS, Target, MCID); +} + +void ValueMapper::scheduleRemapFunction(Function &F, unsigned MCID) { + getAsMapper(pImpl)->scheduleRemapFunction(F, MCID); +} |