diff options
Diffstat (limited to 'module/icp/algs/sha2/sha2.c')
-rw-r--r-- | module/icp/algs/sha2/sha2.c | 956 |
1 files changed, 956 insertions, 0 deletions
diff --git a/module/icp/algs/sha2/sha2.c b/module/icp/algs/sha2/sha2.c new file mode 100644 index 0000000000000..75f6a3c1af4b9 --- /dev/null +++ b/module/icp/algs/sha2/sha2.c @@ -0,0 +1,956 @@ +/* + * Copyright 2009 Sun Microsystems, Inc. All rights reserved. + * Use is subject to license terms. + */ +/* + * Copyright 2013 Saso Kiselkov. All rights reserved. + */ + +/* + * The basic framework for this code came from the reference + * implementation for MD5. That implementation is Copyright (C) + * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved. + * + * License to copy and use this software is granted provided that it + * is identified as the "RSA Data Security, Inc. MD5 Message-Digest + * Algorithm" in all material mentioning or referencing this software + * or this function. + * + * License is also granted to make and use derivative works provided + * that such works are identified as "derived from the RSA Data + * Security, Inc. MD5 Message-Digest Algorithm" in all material + * mentioning or referencing the derived work. + * + * RSA Data Security, Inc. makes no representations concerning either + * the merchantability of this software or the suitability of this + * software for any particular purpose. It is provided "as is" + * without express or implied warranty of any kind. + * + * These notices must be retained in any copies of any part of this + * documentation and/or software. + * + * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2 + * standard, available at + * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf + * Not as fast as one would like -- further optimizations are encouraged + * and appreciated. + */ + +#include <sys/zfs_context.h> +#define _SHA2_IMPL +#include <sys/sha2.h> +#include <sha2/sha2_consts.h> + +#define _RESTRICT_KYWD + +#ifdef _ZFS_LITTLE_ENDIAN +#include <sys/byteorder.h> +#define HAVE_HTONL +#endif +#include <sys/isa_defs.h> /* for _ILP32 */ + +static void Encode(uint8_t *, uint32_t *, size_t); +static void Encode64(uint8_t *, uint64_t *, size_t); + +/* userspace only supports the generic version */ +#if defined(__amd64) && defined(_KERNEL) +#define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1) +#define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1) + +void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); +void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num); + +#else +static void SHA256Transform(SHA2_CTX *, const uint8_t *); +static void SHA512Transform(SHA2_CTX *, const uint8_t *); +#endif /* __amd64 && _KERNEL */ + +static uint8_t PADDING[128] = { 0x80, /* all zeros */ }; + +/* + * The low-level checksum routines use a lot of stack space. On systems where + * small stacks are enforced (like 32-bit kernel builds), insert compiler memory + * barriers to reduce stack frame size. This can reduce the SHA512Transform() + * stack frame usage from 3k to <1k on ARM32, for example. + */ +#if defined(_ILP32) || defined(__powerpc) /* small stack */ +#define SMALL_STACK_MEMORY_BARRIER asm volatile("": : :"memory"); +#else +#define SMALL_STACK_MEMORY_BARRIER +#endif + +/* Ch and Maj are the basic SHA2 functions. */ +#define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d))) +#define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d))) + +/* Rotates x right n bits. */ +#define ROTR(x, n) \ + (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n)))) + +/* Shift x right n bits */ +#define SHR(x, n) ((x) >> (n)) + +/* SHA256 Functions */ +#define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22)) +#define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25)) +#define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3)) +#define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10)) + +#define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \ + T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \ + d += T1; \ + T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \ + h = T1 + T2 + +/* SHA384/512 Functions */ +#define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39)) +#define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41)) +#define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7)) +#define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6)) +#define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \ + T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \ + d += T1; \ + T2 = BIGSIGMA0(a) + Maj(a, b, c); \ + h = T1 + T2; \ + SMALL_STACK_MEMORY_BARRIER; + +/* + * sparc optimization: + * + * on the sparc, we can load big endian 32-bit data easily. note that + * special care must be taken to ensure the address is 32-bit aligned. + * in the interest of speed, we don't check to make sure, since + * careful programming can guarantee this for us. + */ + +#if defined(_ZFS_BIG_ENDIAN) +#define LOAD_BIG_32(addr) (*(uint32_t *)(addr)) +#define LOAD_BIG_64(addr) (*(uint64_t *)(addr)) + +#elif defined(HAVE_HTONL) +#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr))) +#define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr))) + +#else +/* little endian -- will work on big endian, but slowly */ +#define LOAD_BIG_32(addr) \ + (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3]) +#define LOAD_BIG_64(addr) \ + (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \ + ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \ + ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \ + ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7]) +#endif /* _BIG_ENDIAN */ + + +#if !defined(__amd64) || !defined(_KERNEL) +/* SHA256 Transform */ + +static void +SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk) +{ + uint32_t a = ctx->state.s32[0]; + uint32_t b = ctx->state.s32[1]; + uint32_t c = ctx->state.s32[2]; + uint32_t d = ctx->state.s32[3]; + uint32_t e = ctx->state.s32[4]; + uint32_t f = ctx->state.s32[5]; + uint32_t g = ctx->state.s32[6]; + uint32_t h = ctx->state.s32[7]; + + uint32_t w0, w1, w2, w3, w4, w5, w6, w7; + uint32_t w8, w9, w10, w11, w12, w13, w14, w15; + uint32_t T1, T2; + +#if defined(__sparc) + static const uint32_t sha256_consts[] = { + SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2, + SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5, + SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8, + SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11, + SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14, + SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17, + SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20, + SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23, + SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26, + SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29, + SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32, + SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35, + SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38, + SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41, + SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44, + SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47, + SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50, + SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53, + SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56, + SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59, + SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62, + SHA256_CONST_63 + }; +#endif /* __sparc */ + + if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */ + bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32)); + blk = (uint8_t *)ctx->buf_un.buf32; + } + + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w0 = LOAD_BIG_32(blk + 4 * 0); + SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w1 = LOAD_BIG_32(blk + 4 * 1); + SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w2 = LOAD_BIG_32(blk + 4 * 2); + SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w3 = LOAD_BIG_32(blk + 4 * 3); + SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w4 = LOAD_BIG_32(blk + 4 * 4); + SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w5 = LOAD_BIG_32(blk + 4 * 5); + SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w6 = LOAD_BIG_32(blk + 4 * 6); + SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w7 = LOAD_BIG_32(blk + 4 * 7); + SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w8 = LOAD_BIG_32(blk + 4 * 8); + SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w9 = LOAD_BIG_32(blk + 4 * 9); + SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w10 = LOAD_BIG_32(blk + 4 * 10); + SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w11 = LOAD_BIG_32(blk + 4 * 11); + SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w12 = LOAD_BIG_32(blk + 4 * 12); + SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w13 = LOAD_BIG_32(blk + 4 * 13); + SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w14 = LOAD_BIG_32(blk + 4 * 14); + SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w15 = LOAD_BIG_32(blk + 4 * 15); + SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15); + + w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; + SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0); + w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; + SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1); + w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; + SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2); + w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; + SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3); + w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; + SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4); + w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; + SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5); + w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; + SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6); + w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; + SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7); + w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; + SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8); + w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; + SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9); + w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; + SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10); + w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; + SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11); + w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; + SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12); + w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; + SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13); + w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; + SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14); + w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; + SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15); + + w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; + SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0); + w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; + SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1); + w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; + SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2); + w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; + SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3); + w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; + SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4); + w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; + SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5); + w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; + SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6); + w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; + SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7); + w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; + SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8); + w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; + SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9); + w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; + SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10); + w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; + SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11); + w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; + SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12); + w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; + SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13); + w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; + SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14); + w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; + SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15); + + w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0; + SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0); + w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1; + SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1); + w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2; + SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2); + w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3; + SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3); + w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4; + SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4); + w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5; + SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5); + w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6; + SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6); + w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7; + SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7); + w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8; + SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8); + w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9; + SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9); + w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10; + SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10); + w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11; + SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11); + w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12; + SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12); + w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13; + SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13); + w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14; + SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14); + w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15; + SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15); + + ctx->state.s32[0] += a; + ctx->state.s32[1] += b; + ctx->state.s32[2] += c; + ctx->state.s32[3] += d; + ctx->state.s32[4] += e; + ctx->state.s32[5] += f; + ctx->state.s32[6] += g; + ctx->state.s32[7] += h; +} + + +/* SHA384 and SHA512 Transform */ + +static void +SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk) +{ + + uint64_t a = ctx->state.s64[0]; + uint64_t b = ctx->state.s64[1]; + uint64_t c = ctx->state.s64[2]; + uint64_t d = ctx->state.s64[3]; + uint64_t e = ctx->state.s64[4]; + uint64_t f = ctx->state.s64[5]; + uint64_t g = ctx->state.s64[6]; + uint64_t h = ctx->state.s64[7]; + + uint64_t w0, w1, w2, w3, w4, w5, w6, w7; + uint64_t w8, w9, w10, w11, w12, w13, w14, w15; + uint64_t T1, T2; + +#if defined(__sparc) + static const uint64_t sha512_consts[] = { + SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2, + SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5, + SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8, + SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11, + SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14, + SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17, + SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20, + SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23, + SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26, + SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29, + SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32, + SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35, + SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38, + SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41, + SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44, + SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47, + SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50, + SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53, + SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56, + SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59, + SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62, + SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65, + SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68, + SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71, + SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74, + SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77, + SHA512_CONST_78, SHA512_CONST_79 + }; +#endif /* __sparc */ + + + if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */ + bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64)); + blk = (uint8_t *)ctx->buf_un.buf64; + } + + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w0 = LOAD_BIG_64(blk + 8 * 0); + SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w1 = LOAD_BIG_64(blk + 8 * 1); + SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w2 = LOAD_BIG_64(blk + 8 * 2); + SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w3 = LOAD_BIG_64(blk + 8 * 3); + SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w4 = LOAD_BIG_64(blk + 8 * 4); + SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w5 = LOAD_BIG_64(blk + 8 * 5); + SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w6 = LOAD_BIG_64(blk + 8 * 6); + SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w7 = LOAD_BIG_64(blk + 8 * 7); + SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w8 = LOAD_BIG_64(blk + 8 * 8); + SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w9 = LOAD_BIG_64(blk + 8 * 9); + SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w10 = LOAD_BIG_64(blk + 8 * 10); + SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w11 = LOAD_BIG_64(blk + 8 * 11); + SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w12 = LOAD_BIG_64(blk + 8 * 12); + SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w13 = LOAD_BIG_64(blk + 8 * 13); + SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w14 = LOAD_BIG_64(blk + 8 * 14); + SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14); + /* LINTED E_BAD_PTR_CAST_ALIGN */ + w15 = LOAD_BIG_64(blk + 8 * 15); + SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15); + + w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; + SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0); + w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; + SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1); + w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; + SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2); + w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; + SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3); + w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; + SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4); + w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; + SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5); + w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; + SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6); + w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; + SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7); + w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; + SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8); + w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; + SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9); + w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; + SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10); + w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; + SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11); + w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; + SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12); + w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; + SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13); + w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; + SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14); + w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; + SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15); + + w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; + SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0); + w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; + SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1); + w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; + SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2); + w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; + SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3); + w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; + SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4); + w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; + SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5); + w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; + SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6); + w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; + SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7); + w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; + SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8); + w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; + SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9); + w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; + SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10); + w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; + SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11); + w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; + SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12); + w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; + SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13); + w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; + SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14); + w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; + SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15); + + w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; + SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0); + w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; + SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1); + w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; + SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2); + w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; + SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3); + w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; + SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4); + w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; + SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5); + w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; + SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6); + w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; + SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7); + w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; + SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8); + w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; + SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9); + w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; + SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10); + w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; + SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11); + w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; + SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12); + w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; + SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13); + w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; + SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14); + w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; + SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15); + + w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0; + SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0); + w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1; + SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1); + w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2; + SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2); + w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3; + SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3); + w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4; + SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4); + w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5; + SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5); + w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6; + SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6); + w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7; + SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7); + w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8; + SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8); + w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9; + SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9); + w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10; + SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10); + w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11; + SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11); + w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12; + SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12); + w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13; + SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13); + w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14; + SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14); + w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15; + SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15); + + ctx->state.s64[0] += a; + ctx->state.s64[1] += b; + ctx->state.s64[2] += c; + ctx->state.s64[3] += d; + ctx->state.s64[4] += e; + ctx->state.s64[5] += f; + ctx->state.s64[6] += g; + ctx->state.s64[7] += h; + +} +#endif /* !__amd64 || !_KERNEL */ + + +/* + * Encode() + * + * purpose: to convert a list of numbers from little endian to big endian + * input: uint8_t * : place to store the converted big endian numbers + * uint32_t * : place to get numbers to convert from + * size_t : the length of the input in bytes + * output: void + */ + +static void +Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input, + size_t len) +{ + size_t i, j; + +#if defined(__sparc) + if (IS_P2ALIGNED(output, sizeof (uint32_t))) { + for (i = 0, j = 0; j < len; i++, j += 4) { + /* LINTED E_BAD_PTR_CAST_ALIGN */ + *((uint32_t *)(output + j)) = input[i]; + } + } else { +#endif /* little endian -- will work on big endian, but slowly */ + for (i = 0, j = 0; j < len; i++, j += 4) { + output[j] = (input[i] >> 24) & 0xff; + output[j + 1] = (input[i] >> 16) & 0xff; + output[j + 2] = (input[i] >> 8) & 0xff; + output[j + 3] = input[i] & 0xff; + } +#if defined(__sparc) + } +#endif +} + +static void +Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input, + size_t len) +{ + size_t i, j; + +#if defined(__sparc) + if (IS_P2ALIGNED(output, sizeof (uint64_t))) { + for (i = 0, j = 0; j < len; i++, j += 8) { + /* LINTED E_BAD_PTR_CAST_ALIGN */ + *((uint64_t *)(output + j)) = input[i]; + } + } else { +#endif /* little endian -- will work on big endian, but slowly */ + for (i = 0, j = 0; j < len; i++, j += 8) { + + output[j] = (input[i] >> 56) & 0xff; + output[j + 1] = (input[i] >> 48) & 0xff; + output[j + 2] = (input[i] >> 40) & 0xff; + output[j + 3] = (input[i] >> 32) & 0xff; + output[j + 4] = (input[i] >> 24) & 0xff; + output[j + 5] = (input[i] >> 16) & 0xff; + output[j + 6] = (input[i] >> 8) & 0xff; + output[j + 7] = input[i] & 0xff; + } +#if defined(__sparc) + } +#endif +} + + +void +SHA2Init(uint64_t mech, SHA2_CTX *ctx) +{ + + switch (mech) { + case SHA256_MECH_INFO_TYPE: + case SHA256_HMAC_MECH_INFO_TYPE: + case SHA256_HMAC_GEN_MECH_INFO_TYPE: + ctx->state.s32[0] = 0x6a09e667U; + ctx->state.s32[1] = 0xbb67ae85U; + ctx->state.s32[2] = 0x3c6ef372U; + ctx->state.s32[3] = 0xa54ff53aU; + ctx->state.s32[4] = 0x510e527fU; + ctx->state.s32[5] = 0x9b05688cU; + ctx->state.s32[6] = 0x1f83d9abU; + ctx->state.s32[7] = 0x5be0cd19U; + break; + case SHA384_MECH_INFO_TYPE: + case SHA384_HMAC_MECH_INFO_TYPE: + case SHA384_HMAC_GEN_MECH_INFO_TYPE: + ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL; + ctx->state.s64[1] = 0x629a292a367cd507ULL; + ctx->state.s64[2] = 0x9159015a3070dd17ULL; + ctx->state.s64[3] = 0x152fecd8f70e5939ULL; + ctx->state.s64[4] = 0x67332667ffc00b31ULL; + ctx->state.s64[5] = 0x8eb44a8768581511ULL; + ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL; + ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL; + break; + case SHA512_MECH_INFO_TYPE: + case SHA512_HMAC_MECH_INFO_TYPE: + case SHA512_HMAC_GEN_MECH_INFO_TYPE: + ctx->state.s64[0] = 0x6a09e667f3bcc908ULL; + ctx->state.s64[1] = 0xbb67ae8584caa73bULL; + ctx->state.s64[2] = 0x3c6ef372fe94f82bULL; + ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL; + ctx->state.s64[4] = 0x510e527fade682d1ULL; + ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL; + ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL; + ctx->state.s64[7] = 0x5be0cd19137e2179ULL; + break; + case SHA512_224_MECH_INFO_TYPE: + ctx->state.s64[0] = 0x8C3D37C819544DA2ULL; + ctx->state.s64[1] = 0x73E1996689DCD4D6ULL; + ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL; + ctx->state.s64[3] = 0x679DD514582F9FCFULL; + ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL; + ctx->state.s64[5] = 0x77E36F7304C48942ULL; + ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL; + ctx->state.s64[7] = 0x1112E6AD91D692A1ULL; + break; + case SHA512_256_MECH_INFO_TYPE: + ctx->state.s64[0] = 0x22312194FC2BF72CULL; + ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL; + ctx->state.s64[2] = 0x2393B86B6F53B151ULL; + ctx->state.s64[3] = 0x963877195940EABDULL; + ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL; + ctx->state.s64[5] = 0xBE5E1E2553863992ULL; + ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL; + ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL; + break; +#ifdef _KERNEL + default: + cmn_err(CE_PANIC, + "sha2_init: failed to find a supported algorithm: 0x%x", + (uint32_t)mech); + +#endif /* _KERNEL */ + } + + ctx->algotype = (uint32_t)mech; + ctx->count.c64[0] = ctx->count.c64[1] = 0; +} + +#ifndef _KERNEL + +// #pragma inline(SHA256Init, SHA384Init, SHA512Init) +void +SHA256Init(SHA256_CTX *ctx) +{ + SHA2Init(SHA256, ctx); +} + +void +SHA384Init(SHA384_CTX *ctx) +{ + SHA2Init(SHA384, ctx); +} + +void +SHA512Init(SHA512_CTX *ctx) +{ + SHA2Init(SHA512, ctx); +} + +#endif /* _KERNEL */ + +/* + * SHA2Update() + * + * purpose: continues an sha2 digest operation, using the message block + * to update the context. + * input: SHA2_CTX * : the context to update + * void * : the message block + * size_t : the length of the message block, in bytes + * output: void + */ + +void +SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len) +{ + uint32_t i, buf_index, buf_len, buf_limit; + const uint8_t *input = inptr; + uint32_t algotype = ctx->algotype; + + /* check for noop */ + if (input_len == 0) + return; + + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { + buf_limit = 64; + + /* compute number of bytes mod 64 */ + buf_index = (ctx->count.c32[1] >> 3) & 0x3F; + + /* update number of bits */ + if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3)) + ctx->count.c32[0]++; + + ctx->count.c32[0] += (input_len >> 29); + + } else { + buf_limit = 128; + + /* compute number of bytes mod 128 */ + buf_index = (ctx->count.c64[1] >> 3) & 0x7F; + + /* update number of bits */ + if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3)) + ctx->count.c64[0]++; + + ctx->count.c64[0] += (input_len >> 29); + } + + buf_len = buf_limit - buf_index; + + /* transform as many times as possible */ + i = 0; + if (input_len >= buf_len) { + + /* + * general optimization: + * + * only do initial bcopy() and SHA2Transform() if + * buf_index != 0. if buf_index == 0, we're just + * wasting our time doing the bcopy() since there + * wasn't any data left over from a previous call to + * SHA2Update(). + */ + if (buf_index) { + bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len); + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) + SHA256Transform(ctx, ctx->buf_un.buf8); + else + SHA512Transform(ctx, ctx->buf_un.buf8); + + i = buf_len; + } + +#if !defined(__amd64) || !defined(_KERNEL) + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { + for (; i + buf_limit - 1 < input_len; i += buf_limit) { + SHA256Transform(ctx, &input[i]); + } + } else { + for (; i + buf_limit - 1 < input_len; i += buf_limit) { + SHA512Transform(ctx, &input[i]); + } + } + +#else + uint32_t block_count; + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { + block_count = (input_len - i) >> 6; + if (block_count > 0) { + SHA256TransformBlocks(ctx, &input[i], + block_count); + i += block_count << 6; + } + } else { + block_count = (input_len - i) >> 7; + if (block_count > 0) { + SHA512TransformBlocks(ctx, &input[i], + block_count); + i += block_count << 7; + } + } +#endif /* !__amd64 || !_KERNEL */ + + /* + * general optimization: + * + * if i and input_len are the same, return now instead + * of calling bcopy(), since the bcopy() in this case + * will be an expensive noop. + */ + + if (input_len == i) + return; + + buf_index = 0; + } + + /* buffer remaining input */ + bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i); +} + + +/* + * SHA2Final() + * + * purpose: ends an sha2 digest operation, finalizing the message digest and + * zeroing the context. + * input: uchar_t * : a buffer to store the digest + * : The function actually uses void* because many + * : callers pass things other than uchar_t here. + * SHA2_CTX * : the context to finalize, save, and zero + * output: void + */ + +void +SHA2Final(void *digest, SHA2_CTX *ctx) +{ + uint8_t bitcount_be[sizeof (ctx->count.c32)]; + uint8_t bitcount_be64[sizeof (ctx->count.c64)]; + uint32_t index; + uint32_t algotype = ctx->algotype; + + if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) { + index = (ctx->count.c32[1] >> 3) & 0x3f; + Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be)); + SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index); + SHA2Update(ctx, bitcount_be, sizeof (bitcount_be)); + Encode(digest, ctx->state.s32, sizeof (ctx->state.s32)); + } else { + index = (ctx->count.c64[1] >> 3) & 0x7f; + Encode64(bitcount_be64, ctx->count.c64, + sizeof (bitcount_be64)); + SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index); + SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64)); + if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) { + ctx->state.s64[6] = ctx->state.s64[7] = 0; + Encode64(digest, ctx->state.s64, + sizeof (uint64_t) * 6); + } else if (algotype == SHA512_224_MECH_INFO_TYPE) { + uint8_t last[sizeof (uint64_t)]; + /* + * Since SHA-512/224 doesn't align well to 64-bit + * boundaries, we must do the encoding in three steps: + * 1) encode the three 64-bit words that fit neatly + * 2) encode the last 64-bit word to a temp buffer + * 3) chop out the lower 32-bits from the temp buffer + * and append them to the digest + */ + Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3); + Encode64(last, &ctx->state.s64[3], sizeof (uint64_t)); + bcopy(last, (uint8_t *)digest + 24, 4); + } else if (algotype == SHA512_256_MECH_INFO_TYPE) { + Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4); + } else { + Encode64(digest, ctx->state.s64, + sizeof (ctx->state.s64)); + } + } + + /* zeroize sensitive information */ + bzero(ctx, sizeof (*ctx)); +} + +#ifdef _KERNEL +EXPORT_SYMBOL(SHA2Init); +EXPORT_SYMBOL(SHA2Update); +EXPORT_SYMBOL(SHA2Final); +#endif |