summaryrefslogtreecommitdiff
path: root/module/icp/algs/sha2/sha2.c
diff options
context:
space:
mode:
Diffstat (limited to 'module/icp/algs/sha2/sha2.c')
-rw-r--r--module/icp/algs/sha2/sha2.c956
1 files changed, 956 insertions, 0 deletions
diff --git a/module/icp/algs/sha2/sha2.c b/module/icp/algs/sha2/sha2.c
new file mode 100644
index 0000000000000..75f6a3c1af4b9
--- /dev/null
+++ b/module/icp/algs/sha2/sha2.c
@@ -0,0 +1,956 @@
+/*
+ * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
+ * Use is subject to license terms.
+ */
+/*
+ * Copyright 2013 Saso Kiselkov. All rights reserved.
+ */
+
+/*
+ * The basic framework for this code came from the reference
+ * implementation for MD5. That implementation is Copyright (C)
+ * 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.
+ *
+ * License to copy and use this software is granted provided that it
+ * is identified as the "RSA Data Security, Inc. MD5 Message-Digest
+ * Algorithm" in all material mentioning or referencing this software
+ * or this function.
+ *
+ * License is also granted to make and use derivative works provided
+ * that such works are identified as "derived from the RSA Data
+ * Security, Inc. MD5 Message-Digest Algorithm" in all material
+ * mentioning or referencing the derived work.
+ *
+ * RSA Data Security, Inc. makes no representations concerning either
+ * the merchantability of this software or the suitability of this
+ * software for any particular purpose. It is provided "as is"
+ * without express or implied warranty of any kind.
+ *
+ * These notices must be retained in any copies of any part of this
+ * documentation and/or software.
+ *
+ * NOTE: Cleaned-up and optimized, version of SHA2, based on the FIPS 180-2
+ * standard, available at
+ * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
+ * Not as fast as one would like -- further optimizations are encouraged
+ * and appreciated.
+ */
+
+#include <sys/zfs_context.h>
+#define _SHA2_IMPL
+#include <sys/sha2.h>
+#include <sha2/sha2_consts.h>
+
+#define _RESTRICT_KYWD
+
+#ifdef _ZFS_LITTLE_ENDIAN
+#include <sys/byteorder.h>
+#define HAVE_HTONL
+#endif
+#include <sys/isa_defs.h> /* for _ILP32 */
+
+static void Encode(uint8_t *, uint32_t *, size_t);
+static void Encode64(uint8_t *, uint64_t *, size_t);
+
+/* userspace only supports the generic version */
+#if defined(__amd64) && defined(_KERNEL)
+#define SHA512Transform(ctx, in) SHA512TransformBlocks((ctx), (in), 1)
+#define SHA256Transform(ctx, in) SHA256TransformBlocks((ctx), (in), 1)
+
+void SHA512TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
+void SHA256TransformBlocks(SHA2_CTX *ctx, const void *in, size_t num);
+
+#else
+static void SHA256Transform(SHA2_CTX *, const uint8_t *);
+static void SHA512Transform(SHA2_CTX *, const uint8_t *);
+#endif /* __amd64 && _KERNEL */
+
+static uint8_t PADDING[128] = { 0x80, /* all zeros */ };
+
+/*
+ * The low-level checksum routines use a lot of stack space. On systems where
+ * small stacks are enforced (like 32-bit kernel builds), insert compiler memory
+ * barriers to reduce stack frame size. This can reduce the SHA512Transform()
+ * stack frame usage from 3k to <1k on ARM32, for example.
+ */
+#if defined(_ILP32) || defined(__powerpc) /* small stack */
+#define SMALL_STACK_MEMORY_BARRIER asm volatile("": : :"memory");
+#else
+#define SMALL_STACK_MEMORY_BARRIER
+#endif
+
+/* Ch and Maj are the basic SHA2 functions. */
+#define Ch(b, c, d) (((b) & (c)) ^ ((~b) & (d)))
+#define Maj(b, c, d) (((b) & (c)) ^ ((b) & (d)) ^ ((c) & (d)))
+
+/* Rotates x right n bits. */
+#define ROTR(x, n) \
+ (((x) >> (n)) | ((x) << ((sizeof (x) * NBBY)-(n))))
+
+/* Shift x right n bits */
+#define SHR(x, n) ((x) >> (n))
+
+/* SHA256 Functions */
+#define BIGSIGMA0_256(x) (ROTR((x), 2) ^ ROTR((x), 13) ^ ROTR((x), 22))
+#define BIGSIGMA1_256(x) (ROTR((x), 6) ^ ROTR((x), 11) ^ ROTR((x), 25))
+#define SIGMA0_256(x) (ROTR((x), 7) ^ ROTR((x), 18) ^ SHR((x), 3))
+#define SIGMA1_256(x) (ROTR((x), 17) ^ ROTR((x), 19) ^ SHR((x), 10))
+
+#define SHA256ROUND(a, b, c, d, e, f, g, h, i, w) \
+ T1 = h + BIGSIGMA1_256(e) + Ch(e, f, g) + SHA256_CONST(i) + w; \
+ d += T1; \
+ T2 = BIGSIGMA0_256(a) + Maj(a, b, c); \
+ h = T1 + T2
+
+/* SHA384/512 Functions */
+#define BIGSIGMA0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
+#define BIGSIGMA1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
+#define SIGMA0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ SHR((x), 7))
+#define SIGMA1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ SHR((x), 6))
+#define SHA512ROUND(a, b, c, d, e, f, g, h, i, w) \
+ T1 = h + BIGSIGMA1(e) + Ch(e, f, g) + SHA512_CONST(i) + w; \
+ d += T1; \
+ T2 = BIGSIGMA0(a) + Maj(a, b, c); \
+ h = T1 + T2; \
+ SMALL_STACK_MEMORY_BARRIER;
+
+/*
+ * sparc optimization:
+ *
+ * on the sparc, we can load big endian 32-bit data easily. note that
+ * special care must be taken to ensure the address is 32-bit aligned.
+ * in the interest of speed, we don't check to make sure, since
+ * careful programming can guarantee this for us.
+ */
+
+#if defined(_ZFS_BIG_ENDIAN)
+#define LOAD_BIG_32(addr) (*(uint32_t *)(addr))
+#define LOAD_BIG_64(addr) (*(uint64_t *)(addr))
+
+#elif defined(HAVE_HTONL)
+#define LOAD_BIG_32(addr) htonl(*((uint32_t *)(addr)))
+#define LOAD_BIG_64(addr) htonll(*((uint64_t *)(addr)))
+
+#else
+/* little endian -- will work on big endian, but slowly */
+#define LOAD_BIG_32(addr) \
+ (((addr)[0] << 24) | ((addr)[1] << 16) | ((addr)[2] << 8) | (addr)[3])
+#define LOAD_BIG_64(addr) \
+ (((uint64_t)(addr)[0] << 56) | ((uint64_t)(addr)[1] << 48) | \
+ ((uint64_t)(addr)[2] << 40) | ((uint64_t)(addr)[3] << 32) | \
+ ((uint64_t)(addr)[4] << 24) | ((uint64_t)(addr)[5] << 16) | \
+ ((uint64_t)(addr)[6] << 8) | (uint64_t)(addr)[7])
+#endif /* _BIG_ENDIAN */
+
+
+#if !defined(__amd64) || !defined(_KERNEL)
+/* SHA256 Transform */
+
+static void
+SHA256Transform(SHA2_CTX *ctx, const uint8_t *blk)
+{
+ uint32_t a = ctx->state.s32[0];
+ uint32_t b = ctx->state.s32[1];
+ uint32_t c = ctx->state.s32[2];
+ uint32_t d = ctx->state.s32[3];
+ uint32_t e = ctx->state.s32[4];
+ uint32_t f = ctx->state.s32[5];
+ uint32_t g = ctx->state.s32[6];
+ uint32_t h = ctx->state.s32[7];
+
+ uint32_t w0, w1, w2, w3, w4, w5, w6, w7;
+ uint32_t w8, w9, w10, w11, w12, w13, w14, w15;
+ uint32_t T1, T2;
+
+#if defined(__sparc)
+ static const uint32_t sha256_consts[] = {
+ SHA256_CONST_0, SHA256_CONST_1, SHA256_CONST_2,
+ SHA256_CONST_3, SHA256_CONST_4, SHA256_CONST_5,
+ SHA256_CONST_6, SHA256_CONST_7, SHA256_CONST_8,
+ SHA256_CONST_9, SHA256_CONST_10, SHA256_CONST_11,
+ SHA256_CONST_12, SHA256_CONST_13, SHA256_CONST_14,
+ SHA256_CONST_15, SHA256_CONST_16, SHA256_CONST_17,
+ SHA256_CONST_18, SHA256_CONST_19, SHA256_CONST_20,
+ SHA256_CONST_21, SHA256_CONST_22, SHA256_CONST_23,
+ SHA256_CONST_24, SHA256_CONST_25, SHA256_CONST_26,
+ SHA256_CONST_27, SHA256_CONST_28, SHA256_CONST_29,
+ SHA256_CONST_30, SHA256_CONST_31, SHA256_CONST_32,
+ SHA256_CONST_33, SHA256_CONST_34, SHA256_CONST_35,
+ SHA256_CONST_36, SHA256_CONST_37, SHA256_CONST_38,
+ SHA256_CONST_39, SHA256_CONST_40, SHA256_CONST_41,
+ SHA256_CONST_42, SHA256_CONST_43, SHA256_CONST_44,
+ SHA256_CONST_45, SHA256_CONST_46, SHA256_CONST_47,
+ SHA256_CONST_48, SHA256_CONST_49, SHA256_CONST_50,
+ SHA256_CONST_51, SHA256_CONST_52, SHA256_CONST_53,
+ SHA256_CONST_54, SHA256_CONST_55, SHA256_CONST_56,
+ SHA256_CONST_57, SHA256_CONST_58, SHA256_CONST_59,
+ SHA256_CONST_60, SHA256_CONST_61, SHA256_CONST_62,
+ SHA256_CONST_63
+ };
+#endif /* __sparc */
+
+ if ((uintptr_t)blk & 0x3) { /* not 4-byte aligned? */
+ bcopy(blk, ctx->buf_un.buf32, sizeof (ctx->buf_un.buf32));
+ blk = (uint8_t *)ctx->buf_un.buf32;
+ }
+
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w0 = LOAD_BIG_32(blk + 4 * 0);
+ SHA256ROUND(a, b, c, d, e, f, g, h, 0, w0);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w1 = LOAD_BIG_32(blk + 4 * 1);
+ SHA256ROUND(h, a, b, c, d, e, f, g, 1, w1);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w2 = LOAD_BIG_32(blk + 4 * 2);
+ SHA256ROUND(g, h, a, b, c, d, e, f, 2, w2);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w3 = LOAD_BIG_32(blk + 4 * 3);
+ SHA256ROUND(f, g, h, a, b, c, d, e, 3, w3);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w4 = LOAD_BIG_32(blk + 4 * 4);
+ SHA256ROUND(e, f, g, h, a, b, c, d, 4, w4);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w5 = LOAD_BIG_32(blk + 4 * 5);
+ SHA256ROUND(d, e, f, g, h, a, b, c, 5, w5);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w6 = LOAD_BIG_32(blk + 4 * 6);
+ SHA256ROUND(c, d, e, f, g, h, a, b, 6, w6);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w7 = LOAD_BIG_32(blk + 4 * 7);
+ SHA256ROUND(b, c, d, e, f, g, h, a, 7, w7);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w8 = LOAD_BIG_32(blk + 4 * 8);
+ SHA256ROUND(a, b, c, d, e, f, g, h, 8, w8);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w9 = LOAD_BIG_32(blk + 4 * 9);
+ SHA256ROUND(h, a, b, c, d, e, f, g, 9, w9);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w10 = LOAD_BIG_32(blk + 4 * 10);
+ SHA256ROUND(g, h, a, b, c, d, e, f, 10, w10);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w11 = LOAD_BIG_32(blk + 4 * 11);
+ SHA256ROUND(f, g, h, a, b, c, d, e, 11, w11);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w12 = LOAD_BIG_32(blk + 4 * 12);
+ SHA256ROUND(e, f, g, h, a, b, c, d, 12, w12);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w13 = LOAD_BIG_32(blk + 4 * 13);
+ SHA256ROUND(d, e, f, g, h, a, b, c, 13, w13);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w14 = LOAD_BIG_32(blk + 4 * 14);
+ SHA256ROUND(c, d, e, f, g, h, a, b, 14, w14);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w15 = LOAD_BIG_32(blk + 4 * 15);
+ SHA256ROUND(b, c, d, e, f, g, h, a, 15, w15);
+
+ w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
+ SHA256ROUND(a, b, c, d, e, f, g, h, 16, w0);
+ w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
+ SHA256ROUND(h, a, b, c, d, e, f, g, 17, w1);
+ w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
+ SHA256ROUND(g, h, a, b, c, d, e, f, 18, w2);
+ w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
+ SHA256ROUND(f, g, h, a, b, c, d, e, 19, w3);
+ w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
+ SHA256ROUND(e, f, g, h, a, b, c, d, 20, w4);
+ w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
+ SHA256ROUND(d, e, f, g, h, a, b, c, 21, w5);
+ w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
+ SHA256ROUND(c, d, e, f, g, h, a, b, 22, w6);
+ w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
+ SHA256ROUND(b, c, d, e, f, g, h, a, 23, w7);
+ w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
+ SHA256ROUND(a, b, c, d, e, f, g, h, 24, w8);
+ w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
+ SHA256ROUND(h, a, b, c, d, e, f, g, 25, w9);
+ w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
+ SHA256ROUND(g, h, a, b, c, d, e, f, 26, w10);
+ w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
+ SHA256ROUND(f, g, h, a, b, c, d, e, 27, w11);
+ w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
+ SHA256ROUND(e, f, g, h, a, b, c, d, 28, w12);
+ w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
+ SHA256ROUND(d, e, f, g, h, a, b, c, 29, w13);
+ w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
+ SHA256ROUND(c, d, e, f, g, h, a, b, 30, w14);
+ w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
+ SHA256ROUND(b, c, d, e, f, g, h, a, 31, w15);
+
+ w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
+ SHA256ROUND(a, b, c, d, e, f, g, h, 32, w0);
+ w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
+ SHA256ROUND(h, a, b, c, d, e, f, g, 33, w1);
+ w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
+ SHA256ROUND(g, h, a, b, c, d, e, f, 34, w2);
+ w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
+ SHA256ROUND(f, g, h, a, b, c, d, e, 35, w3);
+ w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
+ SHA256ROUND(e, f, g, h, a, b, c, d, 36, w4);
+ w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
+ SHA256ROUND(d, e, f, g, h, a, b, c, 37, w5);
+ w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
+ SHA256ROUND(c, d, e, f, g, h, a, b, 38, w6);
+ w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
+ SHA256ROUND(b, c, d, e, f, g, h, a, 39, w7);
+ w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
+ SHA256ROUND(a, b, c, d, e, f, g, h, 40, w8);
+ w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
+ SHA256ROUND(h, a, b, c, d, e, f, g, 41, w9);
+ w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
+ SHA256ROUND(g, h, a, b, c, d, e, f, 42, w10);
+ w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
+ SHA256ROUND(f, g, h, a, b, c, d, e, 43, w11);
+ w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
+ SHA256ROUND(e, f, g, h, a, b, c, d, 44, w12);
+ w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
+ SHA256ROUND(d, e, f, g, h, a, b, c, 45, w13);
+ w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
+ SHA256ROUND(c, d, e, f, g, h, a, b, 46, w14);
+ w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
+ SHA256ROUND(b, c, d, e, f, g, h, a, 47, w15);
+
+ w0 = SIGMA1_256(w14) + w9 + SIGMA0_256(w1) + w0;
+ SHA256ROUND(a, b, c, d, e, f, g, h, 48, w0);
+ w1 = SIGMA1_256(w15) + w10 + SIGMA0_256(w2) + w1;
+ SHA256ROUND(h, a, b, c, d, e, f, g, 49, w1);
+ w2 = SIGMA1_256(w0) + w11 + SIGMA0_256(w3) + w2;
+ SHA256ROUND(g, h, a, b, c, d, e, f, 50, w2);
+ w3 = SIGMA1_256(w1) + w12 + SIGMA0_256(w4) + w3;
+ SHA256ROUND(f, g, h, a, b, c, d, e, 51, w3);
+ w4 = SIGMA1_256(w2) + w13 + SIGMA0_256(w5) + w4;
+ SHA256ROUND(e, f, g, h, a, b, c, d, 52, w4);
+ w5 = SIGMA1_256(w3) + w14 + SIGMA0_256(w6) + w5;
+ SHA256ROUND(d, e, f, g, h, a, b, c, 53, w5);
+ w6 = SIGMA1_256(w4) + w15 + SIGMA0_256(w7) + w6;
+ SHA256ROUND(c, d, e, f, g, h, a, b, 54, w6);
+ w7 = SIGMA1_256(w5) + w0 + SIGMA0_256(w8) + w7;
+ SHA256ROUND(b, c, d, e, f, g, h, a, 55, w7);
+ w8 = SIGMA1_256(w6) + w1 + SIGMA0_256(w9) + w8;
+ SHA256ROUND(a, b, c, d, e, f, g, h, 56, w8);
+ w9 = SIGMA1_256(w7) + w2 + SIGMA0_256(w10) + w9;
+ SHA256ROUND(h, a, b, c, d, e, f, g, 57, w9);
+ w10 = SIGMA1_256(w8) + w3 + SIGMA0_256(w11) + w10;
+ SHA256ROUND(g, h, a, b, c, d, e, f, 58, w10);
+ w11 = SIGMA1_256(w9) + w4 + SIGMA0_256(w12) + w11;
+ SHA256ROUND(f, g, h, a, b, c, d, e, 59, w11);
+ w12 = SIGMA1_256(w10) + w5 + SIGMA0_256(w13) + w12;
+ SHA256ROUND(e, f, g, h, a, b, c, d, 60, w12);
+ w13 = SIGMA1_256(w11) + w6 + SIGMA0_256(w14) + w13;
+ SHA256ROUND(d, e, f, g, h, a, b, c, 61, w13);
+ w14 = SIGMA1_256(w12) + w7 + SIGMA0_256(w15) + w14;
+ SHA256ROUND(c, d, e, f, g, h, a, b, 62, w14);
+ w15 = SIGMA1_256(w13) + w8 + SIGMA0_256(w0) + w15;
+ SHA256ROUND(b, c, d, e, f, g, h, a, 63, w15);
+
+ ctx->state.s32[0] += a;
+ ctx->state.s32[1] += b;
+ ctx->state.s32[2] += c;
+ ctx->state.s32[3] += d;
+ ctx->state.s32[4] += e;
+ ctx->state.s32[5] += f;
+ ctx->state.s32[6] += g;
+ ctx->state.s32[7] += h;
+}
+
+
+/* SHA384 and SHA512 Transform */
+
+static void
+SHA512Transform(SHA2_CTX *ctx, const uint8_t *blk)
+{
+
+ uint64_t a = ctx->state.s64[0];
+ uint64_t b = ctx->state.s64[1];
+ uint64_t c = ctx->state.s64[2];
+ uint64_t d = ctx->state.s64[3];
+ uint64_t e = ctx->state.s64[4];
+ uint64_t f = ctx->state.s64[5];
+ uint64_t g = ctx->state.s64[6];
+ uint64_t h = ctx->state.s64[7];
+
+ uint64_t w0, w1, w2, w3, w4, w5, w6, w7;
+ uint64_t w8, w9, w10, w11, w12, w13, w14, w15;
+ uint64_t T1, T2;
+
+#if defined(__sparc)
+ static const uint64_t sha512_consts[] = {
+ SHA512_CONST_0, SHA512_CONST_1, SHA512_CONST_2,
+ SHA512_CONST_3, SHA512_CONST_4, SHA512_CONST_5,
+ SHA512_CONST_6, SHA512_CONST_7, SHA512_CONST_8,
+ SHA512_CONST_9, SHA512_CONST_10, SHA512_CONST_11,
+ SHA512_CONST_12, SHA512_CONST_13, SHA512_CONST_14,
+ SHA512_CONST_15, SHA512_CONST_16, SHA512_CONST_17,
+ SHA512_CONST_18, SHA512_CONST_19, SHA512_CONST_20,
+ SHA512_CONST_21, SHA512_CONST_22, SHA512_CONST_23,
+ SHA512_CONST_24, SHA512_CONST_25, SHA512_CONST_26,
+ SHA512_CONST_27, SHA512_CONST_28, SHA512_CONST_29,
+ SHA512_CONST_30, SHA512_CONST_31, SHA512_CONST_32,
+ SHA512_CONST_33, SHA512_CONST_34, SHA512_CONST_35,
+ SHA512_CONST_36, SHA512_CONST_37, SHA512_CONST_38,
+ SHA512_CONST_39, SHA512_CONST_40, SHA512_CONST_41,
+ SHA512_CONST_42, SHA512_CONST_43, SHA512_CONST_44,
+ SHA512_CONST_45, SHA512_CONST_46, SHA512_CONST_47,
+ SHA512_CONST_48, SHA512_CONST_49, SHA512_CONST_50,
+ SHA512_CONST_51, SHA512_CONST_52, SHA512_CONST_53,
+ SHA512_CONST_54, SHA512_CONST_55, SHA512_CONST_56,
+ SHA512_CONST_57, SHA512_CONST_58, SHA512_CONST_59,
+ SHA512_CONST_60, SHA512_CONST_61, SHA512_CONST_62,
+ SHA512_CONST_63, SHA512_CONST_64, SHA512_CONST_65,
+ SHA512_CONST_66, SHA512_CONST_67, SHA512_CONST_68,
+ SHA512_CONST_69, SHA512_CONST_70, SHA512_CONST_71,
+ SHA512_CONST_72, SHA512_CONST_73, SHA512_CONST_74,
+ SHA512_CONST_75, SHA512_CONST_76, SHA512_CONST_77,
+ SHA512_CONST_78, SHA512_CONST_79
+ };
+#endif /* __sparc */
+
+
+ if ((uintptr_t)blk & 0x7) { /* not 8-byte aligned? */
+ bcopy(blk, ctx->buf_un.buf64, sizeof (ctx->buf_un.buf64));
+ blk = (uint8_t *)ctx->buf_un.buf64;
+ }
+
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w0 = LOAD_BIG_64(blk + 8 * 0);
+ SHA512ROUND(a, b, c, d, e, f, g, h, 0, w0);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w1 = LOAD_BIG_64(blk + 8 * 1);
+ SHA512ROUND(h, a, b, c, d, e, f, g, 1, w1);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w2 = LOAD_BIG_64(blk + 8 * 2);
+ SHA512ROUND(g, h, a, b, c, d, e, f, 2, w2);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w3 = LOAD_BIG_64(blk + 8 * 3);
+ SHA512ROUND(f, g, h, a, b, c, d, e, 3, w3);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w4 = LOAD_BIG_64(blk + 8 * 4);
+ SHA512ROUND(e, f, g, h, a, b, c, d, 4, w4);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w5 = LOAD_BIG_64(blk + 8 * 5);
+ SHA512ROUND(d, e, f, g, h, a, b, c, 5, w5);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w6 = LOAD_BIG_64(blk + 8 * 6);
+ SHA512ROUND(c, d, e, f, g, h, a, b, 6, w6);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w7 = LOAD_BIG_64(blk + 8 * 7);
+ SHA512ROUND(b, c, d, e, f, g, h, a, 7, w7);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w8 = LOAD_BIG_64(blk + 8 * 8);
+ SHA512ROUND(a, b, c, d, e, f, g, h, 8, w8);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w9 = LOAD_BIG_64(blk + 8 * 9);
+ SHA512ROUND(h, a, b, c, d, e, f, g, 9, w9);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w10 = LOAD_BIG_64(blk + 8 * 10);
+ SHA512ROUND(g, h, a, b, c, d, e, f, 10, w10);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w11 = LOAD_BIG_64(blk + 8 * 11);
+ SHA512ROUND(f, g, h, a, b, c, d, e, 11, w11);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w12 = LOAD_BIG_64(blk + 8 * 12);
+ SHA512ROUND(e, f, g, h, a, b, c, d, 12, w12);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w13 = LOAD_BIG_64(blk + 8 * 13);
+ SHA512ROUND(d, e, f, g, h, a, b, c, 13, w13);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w14 = LOAD_BIG_64(blk + 8 * 14);
+ SHA512ROUND(c, d, e, f, g, h, a, b, 14, w14);
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ w15 = LOAD_BIG_64(blk + 8 * 15);
+ SHA512ROUND(b, c, d, e, f, g, h, a, 15, w15);
+
+ w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 16, w0);
+ w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 17, w1);
+ w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 18, w2);
+ w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 19, w3);
+ w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 20, w4);
+ w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 21, w5);
+ w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 22, w6);
+ w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 23, w7);
+ w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 24, w8);
+ w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 25, w9);
+ w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 26, w10);
+ w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 27, w11);
+ w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 28, w12);
+ w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 29, w13);
+ w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 30, w14);
+ w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 31, w15);
+
+ w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 32, w0);
+ w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 33, w1);
+ w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 34, w2);
+ w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 35, w3);
+ w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 36, w4);
+ w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 37, w5);
+ w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 38, w6);
+ w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 39, w7);
+ w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 40, w8);
+ w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 41, w9);
+ w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 42, w10);
+ w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 43, w11);
+ w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 44, w12);
+ w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 45, w13);
+ w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 46, w14);
+ w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 47, w15);
+
+ w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 48, w0);
+ w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 49, w1);
+ w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 50, w2);
+ w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 51, w3);
+ w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 52, w4);
+ w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 53, w5);
+ w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 54, w6);
+ w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 55, w7);
+ w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 56, w8);
+ w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 57, w9);
+ w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 58, w10);
+ w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 59, w11);
+ w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 60, w12);
+ w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 61, w13);
+ w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 62, w14);
+ w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 63, w15);
+
+ w0 = SIGMA1(w14) + w9 + SIGMA0(w1) + w0;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 64, w0);
+ w1 = SIGMA1(w15) + w10 + SIGMA0(w2) + w1;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 65, w1);
+ w2 = SIGMA1(w0) + w11 + SIGMA0(w3) + w2;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 66, w2);
+ w3 = SIGMA1(w1) + w12 + SIGMA0(w4) + w3;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 67, w3);
+ w4 = SIGMA1(w2) + w13 + SIGMA0(w5) + w4;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 68, w4);
+ w5 = SIGMA1(w3) + w14 + SIGMA0(w6) + w5;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 69, w5);
+ w6 = SIGMA1(w4) + w15 + SIGMA0(w7) + w6;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 70, w6);
+ w7 = SIGMA1(w5) + w0 + SIGMA0(w8) + w7;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 71, w7);
+ w8 = SIGMA1(w6) + w1 + SIGMA0(w9) + w8;
+ SHA512ROUND(a, b, c, d, e, f, g, h, 72, w8);
+ w9 = SIGMA1(w7) + w2 + SIGMA0(w10) + w9;
+ SHA512ROUND(h, a, b, c, d, e, f, g, 73, w9);
+ w10 = SIGMA1(w8) + w3 + SIGMA0(w11) + w10;
+ SHA512ROUND(g, h, a, b, c, d, e, f, 74, w10);
+ w11 = SIGMA1(w9) + w4 + SIGMA0(w12) + w11;
+ SHA512ROUND(f, g, h, a, b, c, d, e, 75, w11);
+ w12 = SIGMA1(w10) + w5 + SIGMA0(w13) + w12;
+ SHA512ROUND(e, f, g, h, a, b, c, d, 76, w12);
+ w13 = SIGMA1(w11) + w6 + SIGMA0(w14) + w13;
+ SHA512ROUND(d, e, f, g, h, a, b, c, 77, w13);
+ w14 = SIGMA1(w12) + w7 + SIGMA0(w15) + w14;
+ SHA512ROUND(c, d, e, f, g, h, a, b, 78, w14);
+ w15 = SIGMA1(w13) + w8 + SIGMA0(w0) + w15;
+ SHA512ROUND(b, c, d, e, f, g, h, a, 79, w15);
+
+ ctx->state.s64[0] += a;
+ ctx->state.s64[1] += b;
+ ctx->state.s64[2] += c;
+ ctx->state.s64[3] += d;
+ ctx->state.s64[4] += e;
+ ctx->state.s64[5] += f;
+ ctx->state.s64[6] += g;
+ ctx->state.s64[7] += h;
+
+}
+#endif /* !__amd64 || !_KERNEL */
+
+
+/*
+ * Encode()
+ *
+ * purpose: to convert a list of numbers from little endian to big endian
+ * input: uint8_t * : place to store the converted big endian numbers
+ * uint32_t * : place to get numbers to convert from
+ * size_t : the length of the input in bytes
+ * output: void
+ */
+
+static void
+Encode(uint8_t *_RESTRICT_KYWD output, uint32_t *_RESTRICT_KYWD input,
+ size_t len)
+{
+ size_t i, j;
+
+#if defined(__sparc)
+ if (IS_P2ALIGNED(output, sizeof (uint32_t))) {
+ for (i = 0, j = 0; j < len; i++, j += 4) {
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ *((uint32_t *)(output + j)) = input[i];
+ }
+ } else {
+#endif /* little endian -- will work on big endian, but slowly */
+ for (i = 0, j = 0; j < len; i++, j += 4) {
+ output[j] = (input[i] >> 24) & 0xff;
+ output[j + 1] = (input[i] >> 16) & 0xff;
+ output[j + 2] = (input[i] >> 8) & 0xff;
+ output[j + 3] = input[i] & 0xff;
+ }
+#if defined(__sparc)
+ }
+#endif
+}
+
+static void
+Encode64(uint8_t *_RESTRICT_KYWD output, uint64_t *_RESTRICT_KYWD input,
+ size_t len)
+{
+ size_t i, j;
+
+#if defined(__sparc)
+ if (IS_P2ALIGNED(output, sizeof (uint64_t))) {
+ for (i = 0, j = 0; j < len; i++, j += 8) {
+ /* LINTED E_BAD_PTR_CAST_ALIGN */
+ *((uint64_t *)(output + j)) = input[i];
+ }
+ } else {
+#endif /* little endian -- will work on big endian, but slowly */
+ for (i = 0, j = 0; j < len; i++, j += 8) {
+
+ output[j] = (input[i] >> 56) & 0xff;
+ output[j + 1] = (input[i] >> 48) & 0xff;
+ output[j + 2] = (input[i] >> 40) & 0xff;
+ output[j + 3] = (input[i] >> 32) & 0xff;
+ output[j + 4] = (input[i] >> 24) & 0xff;
+ output[j + 5] = (input[i] >> 16) & 0xff;
+ output[j + 6] = (input[i] >> 8) & 0xff;
+ output[j + 7] = input[i] & 0xff;
+ }
+#if defined(__sparc)
+ }
+#endif
+}
+
+
+void
+SHA2Init(uint64_t mech, SHA2_CTX *ctx)
+{
+
+ switch (mech) {
+ case SHA256_MECH_INFO_TYPE:
+ case SHA256_HMAC_MECH_INFO_TYPE:
+ case SHA256_HMAC_GEN_MECH_INFO_TYPE:
+ ctx->state.s32[0] = 0x6a09e667U;
+ ctx->state.s32[1] = 0xbb67ae85U;
+ ctx->state.s32[2] = 0x3c6ef372U;
+ ctx->state.s32[3] = 0xa54ff53aU;
+ ctx->state.s32[4] = 0x510e527fU;
+ ctx->state.s32[5] = 0x9b05688cU;
+ ctx->state.s32[6] = 0x1f83d9abU;
+ ctx->state.s32[7] = 0x5be0cd19U;
+ break;
+ case SHA384_MECH_INFO_TYPE:
+ case SHA384_HMAC_MECH_INFO_TYPE:
+ case SHA384_HMAC_GEN_MECH_INFO_TYPE:
+ ctx->state.s64[0] = 0xcbbb9d5dc1059ed8ULL;
+ ctx->state.s64[1] = 0x629a292a367cd507ULL;
+ ctx->state.s64[2] = 0x9159015a3070dd17ULL;
+ ctx->state.s64[3] = 0x152fecd8f70e5939ULL;
+ ctx->state.s64[4] = 0x67332667ffc00b31ULL;
+ ctx->state.s64[5] = 0x8eb44a8768581511ULL;
+ ctx->state.s64[6] = 0xdb0c2e0d64f98fa7ULL;
+ ctx->state.s64[7] = 0x47b5481dbefa4fa4ULL;
+ break;
+ case SHA512_MECH_INFO_TYPE:
+ case SHA512_HMAC_MECH_INFO_TYPE:
+ case SHA512_HMAC_GEN_MECH_INFO_TYPE:
+ ctx->state.s64[0] = 0x6a09e667f3bcc908ULL;
+ ctx->state.s64[1] = 0xbb67ae8584caa73bULL;
+ ctx->state.s64[2] = 0x3c6ef372fe94f82bULL;
+ ctx->state.s64[3] = 0xa54ff53a5f1d36f1ULL;
+ ctx->state.s64[4] = 0x510e527fade682d1ULL;
+ ctx->state.s64[5] = 0x9b05688c2b3e6c1fULL;
+ ctx->state.s64[6] = 0x1f83d9abfb41bd6bULL;
+ ctx->state.s64[7] = 0x5be0cd19137e2179ULL;
+ break;
+ case SHA512_224_MECH_INFO_TYPE:
+ ctx->state.s64[0] = 0x8C3D37C819544DA2ULL;
+ ctx->state.s64[1] = 0x73E1996689DCD4D6ULL;
+ ctx->state.s64[2] = 0x1DFAB7AE32FF9C82ULL;
+ ctx->state.s64[3] = 0x679DD514582F9FCFULL;
+ ctx->state.s64[4] = 0x0F6D2B697BD44DA8ULL;
+ ctx->state.s64[5] = 0x77E36F7304C48942ULL;
+ ctx->state.s64[6] = 0x3F9D85A86A1D36C8ULL;
+ ctx->state.s64[7] = 0x1112E6AD91D692A1ULL;
+ break;
+ case SHA512_256_MECH_INFO_TYPE:
+ ctx->state.s64[0] = 0x22312194FC2BF72CULL;
+ ctx->state.s64[1] = 0x9F555FA3C84C64C2ULL;
+ ctx->state.s64[2] = 0x2393B86B6F53B151ULL;
+ ctx->state.s64[3] = 0x963877195940EABDULL;
+ ctx->state.s64[4] = 0x96283EE2A88EFFE3ULL;
+ ctx->state.s64[5] = 0xBE5E1E2553863992ULL;
+ ctx->state.s64[6] = 0x2B0199FC2C85B8AAULL;
+ ctx->state.s64[7] = 0x0EB72DDC81C52CA2ULL;
+ break;
+#ifdef _KERNEL
+ default:
+ cmn_err(CE_PANIC,
+ "sha2_init: failed to find a supported algorithm: 0x%x",
+ (uint32_t)mech);
+
+#endif /* _KERNEL */
+ }
+
+ ctx->algotype = (uint32_t)mech;
+ ctx->count.c64[0] = ctx->count.c64[1] = 0;
+}
+
+#ifndef _KERNEL
+
+// #pragma inline(SHA256Init, SHA384Init, SHA512Init)
+void
+SHA256Init(SHA256_CTX *ctx)
+{
+ SHA2Init(SHA256, ctx);
+}
+
+void
+SHA384Init(SHA384_CTX *ctx)
+{
+ SHA2Init(SHA384, ctx);
+}
+
+void
+SHA512Init(SHA512_CTX *ctx)
+{
+ SHA2Init(SHA512, ctx);
+}
+
+#endif /* _KERNEL */
+
+/*
+ * SHA2Update()
+ *
+ * purpose: continues an sha2 digest operation, using the message block
+ * to update the context.
+ * input: SHA2_CTX * : the context to update
+ * void * : the message block
+ * size_t : the length of the message block, in bytes
+ * output: void
+ */
+
+void
+SHA2Update(SHA2_CTX *ctx, const void *inptr, size_t input_len)
+{
+ uint32_t i, buf_index, buf_len, buf_limit;
+ const uint8_t *input = inptr;
+ uint32_t algotype = ctx->algotype;
+
+ /* check for noop */
+ if (input_len == 0)
+ return;
+
+ if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
+ buf_limit = 64;
+
+ /* compute number of bytes mod 64 */
+ buf_index = (ctx->count.c32[1] >> 3) & 0x3F;
+
+ /* update number of bits */
+ if ((ctx->count.c32[1] += (input_len << 3)) < (input_len << 3))
+ ctx->count.c32[0]++;
+
+ ctx->count.c32[0] += (input_len >> 29);
+
+ } else {
+ buf_limit = 128;
+
+ /* compute number of bytes mod 128 */
+ buf_index = (ctx->count.c64[1] >> 3) & 0x7F;
+
+ /* update number of bits */
+ if ((ctx->count.c64[1] += (input_len << 3)) < (input_len << 3))
+ ctx->count.c64[0]++;
+
+ ctx->count.c64[0] += (input_len >> 29);
+ }
+
+ buf_len = buf_limit - buf_index;
+
+ /* transform as many times as possible */
+ i = 0;
+ if (input_len >= buf_len) {
+
+ /*
+ * general optimization:
+ *
+ * only do initial bcopy() and SHA2Transform() if
+ * buf_index != 0. if buf_index == 0, we're just
+ * wasting our time doing the bcopy() since there
+ * wasn't any data left over from a previous call to
+ * SHA2Update().
+ */
+ if (buf_index) {
+ bcopy(input, &ctx->buf_un.buf8[buf_index], buf_len);
+ if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE)
+ SHA256Transform(ctx, ctx->buf_un.buf8);
+ else
+ SHA512Transform(ctx, ctx->buf_un.buf8);
+
+ i = buf_len;
+ }
+
+#if !defined(__amd64) || !defined(_KERNEL)
+ if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
+ for (; i + buf_limit - 1 < input_len; i += buf_limit) {
+ SHA256Transform(ctx, &input[i]);
+ }
+ } else {
+ for (; i + buf_limit - 1 < input_len; i += buf_limit) {
+ SHA512Transform(ctx, &input[i]);
+ }
+ }
+
+#else
+ uint32_t block_count;
+ if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
+ block_count = (input_len - i) >> 6;
+ if (block_count > 0) {
+ SHA256TransformBlocks(ctx, &input[i],
+ block_count);
+ i += block_count << 6;
+ }
+ } else {
+ block_count = (input_len - i) >> 7;
+ if (block_count > 0) {
+ SHA512TransformBlocks(ctx, &input[i],
+ block_count);
+ i += block_count << 7;
+ }
+ }
+#endif /* !__amd64 || !_KERNEL */
+
+ /*
+ * general optimization:
+ *
+ * if i and input_len are the same, return now instead
+ * of calling bcopy(), since the bcopy() in this case
+ * will be an expensive noop.
+ */
+
+ if (input_len == i)
+ return;
+
+ buf_index = 0;
+ }
+
+ /* buffer remaining input */
+ bcopy(&input[i], &ctx->buf_un.buf8[buf_index], input_len - i);
+}
+
+
+/*
+ * SHA2Final()
+ *
+ * purpose: ends an sha2 digest operation, finalizing the message digest and
+ * zeroing the context.
+ * input: uchar_t * : a buffer to store the digest
+ * : The function actually uses void* because many
+ * : callers pass things other than uchar_t here.
+ * SHA2_CTX * : the context to finalize, save, and zero
+ * output: void
+ */
+
+void
+SHA2Final(void *digest, SHA2_CTX *ctx)
+{
+ uint8_t bitcount_be[sizeof (ctx->count.c32)];
+ uint8_t bitcount_be64[sizeof (ctx->count.c64)];
+ uint32_t index;
+ uint32_t algotype = ctx->algotype;
+
+ if (algotype <= SHA256_HMAC_GEN_MECH_INFO_TYPE) {
+ index = (ctx->count.c32[1] >> 3) & 0x3f;
+ Encode(bitcount_be, ctx->count.c32, sizeof (bitcount_be));
+ SHA2Update(ctx, PADDING, ((index < 56) ? 56 : 120) - index);
+ SHA2Update(ctx, bitcount_be, sizeof (bitcount_be));
+ Encode(digest, ctx->state.s32, sizeof (ctx->state.s32));
+ } else {
+ index = (ctx->count.c64[1] >> 3) & 0x7f;
+ Encode64(bitcount_be64, ctx->count.c64,
+ sizeof (bitcount_be64));
+ SHA2Update(ctx, PADDING, ((index < 112) ? 112 : 240) - index);
+ SHA2Update(ctx, bitcount_be64, sizeof (bitcount_be64));
+ if (algotype <= SHA384_HMAC_GEN_MECH_INFO_TYPE) {
+ ctx->state.s64[6] = ctx->state.s64[7] = 0;
+ Encode64(digest, ctx->state.s64,
+ sizeof (uint64_t) * 6);
+ } else if (algotype == SHA512_224_MECH_INFO_TYPE) {
+ uint8_t last[sizeof (uint64_t)];
+ /*
+ * Since SHA-512/224 doesn't align well to 64-bit
+ * boundaries, we must do the encoding in three steps:
+ * 1) encode the three 64-bit words that fit neatly
+ * 2) encode the last 64-bit word to a temp buffer
+ * 3) chop out the lower 32-bits from the temp buffer
+ * and append them to the digest
+ */
+ Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 3);
+ Encode64(last, &ctx->state.s64[3], sizeof (uint64_t));
+ bcopy(last, (uint8_t *)digest + 24, 4);
+ } else if (algotype == SHA512_256_MECH_INFO_TYPE) {
+ Encode64(digest, ctx->state.s64, sizeof (uint64_t) * 4);
+ } else {
+ Encode64(digest, ctx->state.s64,
+ sizeof (ctx->state.s64));
+ }
+ }
+
+ /* zeroize sensitive information */
+ bzero(ctx, sizeof (*ctx));
+}
+
+#ifdef _KERNEL
+EXPORT_SYMBOL(SHA2Init);
+EXPORT_SYMBOL(SHA2Update);
+EXPORT_SYMBOL(SHA2Final);
+#endif