diff options
Diffstat (limited to 'module/os/linux/spl/spl-generic.c')
-rw-r--r-- | module/os/linux/spl/spl-generic.c | 844 |
1 files changed, 844 insertions, 0 deletions
diff --git a/module/os/linux/spl/spl-generic.c b/module/os/linux/spl/spl-generic.c new file mode 100644 index 0000000000000..820fb86c3c7d2 --- /dev/null +++ b/module/os/linux/spl/spl-generic.c @@ -0,0 +1,844 @@ +/* + * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. + * Copyright (C) 2007 The Regents of the University of California. + * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). + * Written by Brian Behlendorf <behlendorf1@llnl.gov>. + * UCRL-CODE-235197 + * + * This file is part of the SPL, Solaris Porting Layer. + * For details, see <http://zfsonlinux.org/>. + * + * The SPL is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or (at your + * option) any later version. + * + * The SPL is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with the SPL. If not, see <http://www.gnu.org/licenses/>. + * + * Solaris Porting Layer (SPL) Generic Implementation. + */ + +#include <sys/sysmacros.h> +#include <sys/systeminfo.h> +#include <sys/vmsystm.h> +#include <sys/kmem.h> +#include <sys/kmem_cache.h> +#include <sys/vmem.h> +#include <sys/mutex.h> +#include <sys/rwlock.h> +#include <sys/taskq.h> +#include <sys/tsd.h> +#include <sys/zmod.h> +#include <sys/debug.h> +#include <sys/proc.h> +#include <sys/kstat.h> +#include <sys/file.h> +#include <sys/sunddi.h> +#include <linux/ctype.h> +#include <sys/disp.h> +#include <sys/random.h> +#include <sys/strings.h> +#include <linux/kmod.h> +#include "zfs_gitrev.h" +#include <linux/mod_compat.h> +#include <sys/cred.h> +#include <sys/vnode.h> + +char spl_gitrev[64] = ZFS_META_GITREV; + +/* BEGIN CSTYLED */ +unsigned long spl_hostid = 0; +EXPORT_SYMBOL(spl_hostid); +/* BEGIN CSTYLED */ +module_param(spl_hostid, ulong, 0644); +MODULE_PARM_DESC(spl_hostid, "The system hostid."); +/* END CSTYLED */ + +proc_t p0; +EXPORT_SYMBOL(p0); + +/* + * Xorshift Pseudo Random Number Generator based on work by Sebastiano Vigna + * + * "Further scramblings of Marsaglia's xorshift generators" + * http://vigna.di.unimi.it/ftp/papers/xorshiftplus.pdf + * + * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose + * is to provide bytes containing random numbers. It is mapped to /dev/urandom + * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's + * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so + * we can implement it using a fast PRNG that we seed using Linux' actual + * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU + * with an independent seed so that all calls to random_get_pseudo_bytes() are + * free of atomic instructions. + * + * A consequence of using a fast PRNG is that using random_get_pseudo_bytes() + * to generate words larger than 128 bits will paradoxically be limited to + * `2^128 - 1` possibilities. This is because we have a sequence of `2^128 - 1` + * 128-bit words and selecting the first will implicitly select the second. If + * a caller finds this behavior undesirable, random_get_bytes() should be used + * instead. + * + * XXX: Linux interrupt handlers that trigger within the critical section + * formed by `s[1] = xp[1];` and `xp[0] = s[0];` and call this function will + * see the same numbers. Nothing in the code currently calls this in an + * interrupt handler, so this is considered to be okay. If that becomes a + * problem, we could create a set of per-cpu variables for interrupt handlers + * and use them when in_interrupt() from linux/preempt_mask.h evaluates to + * true. + */ +void __percpu *spl_pseudo_entropy; + +/* + * spl_rand_next()/spl_rand_jump() are copied from the following CC-0 licensed + * file: + * + * http://xorshift.di.unimi.it/xorshift128plus.c + */ + +static inline uint64_t +spl_rand_next(uint64_t *s) +{ + uint64_t s1 = s[0]; + const uint64_t s0 = s[1]; + s[0] = s0; + s1 ^= s1 << 23; // a + s[1] = s1 ^ s0 ^ (s1 >> 18) ^ (s0 >> 5); // b, c + return (s[1] + s0); +} + +static inline void +spl_rand_jump(uint64_t *s) +{ + static const uint64_t JUMP[] = + { 0x8a5cd789635d2dff, 0x121fd2155c472f96 }; + + uint64_t s0 = 0; + uint64_t s1 = 0; + int i, b; + for (i = 0; i < sizeof (JUMP) / sizeof (*JUMP); i++) + for (b = 0; b < 64; b++) { + if (JUMP[i] & 1ULL << b) { + s0 ^= s[0]; + s1 ^= s[1]; + } + (void) spl_rand_next(s); + } + + s[0] = s0; + s[1] = s1; +} + +int +random_get_pseudo_bytes(uint8_t *ptr, size_t len) +{ + uint64_t *xp, s[2]; + + ASSERT(ptr); + + xp = get_cpu_ptr(spl_pseudo_entropy); + + s[0] = xp[0]; + s[1] = xp[1]; + + while (len) { + union { + uint64_t ui64; + uint8_t byte[sizeof (uint64_t)]; + }entropy; + int i = MIN(len, sizeof (uint64_t)); + + len -= i; + entropy.ui64 = spl_rand_next(s); + + while (i--) + *ptr++ = entropy.byte[i]; + } + + xp[0] = s[0]; + xp[1] = s[1]; + + put_cpu_ptr(spl_pseudo_entropy); + + return (0); +} + + +EXPORT_SYMBOL(random_get_pseudo_bytes); + +#if BITS_PER_LONG == 32 + +/* + * Support 64/64 => 64 division on a 32-bit platform. While the kernel + * provides a div64_u64() function for this we do not use it because the + * implementation is flawed. There are cases which return incorrect + * results as late as linux-2.6.35. Until this is fixed upstream the + * spl must provide its own implementation. + * + * This implementation is a slightly modified version of the algorithm + * proposed by the book 'Hacker's Delight'. The original source can be + * found here and is available for use without restriction. + * + * http://www.hackersdelight.org/HDcode/newCode/divDouble.c + */ + +/* + * Calculate number of leading of zeros for a 64-bit value. + */ +static int +nlz64(uint64_t x) +{ + register int n = 0; + + if (x == 0) + return (64); + + if (x <= 0x00000000FFFFFFFFULL) { n = n + 32; x = x << 32; } + if (x <= 0x0000FFFFFFFFFFFFULL) { n = n + 16; x = x << 16; } + if (x <= 0x00FFFFFFFFFFFFFFULL) { n = n + 8; x = x << 8; } + if (x <= 0x0FFFFFFFFFFFFFFFULL) { n = n + 4; x = x << 4; } + if (x <= 0x3FFFFFFFFFFFFFFFULL) { n = n + 2; x = x << 2; } + if (x <= 0x7FFFFFFFFFFFFFFFULL) { n = n + 1; } + + return (n); +} + +/* + * Newer kernels have a div_u64() function but we define our own + * to simplify portability between kernel versions. + */ +static inline uint64_t +__div_u64(uint64_t u, uint32_t v) +{ + (void) do_div(u, v); + return (u); +} + +/* + * Turn off missing prototypes warning for these functions. They are + * replacements for libgcc-provided functions and will never be called + * directly. + */ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wmissing-prototypes" + +/* + * Implementation of 64-bit unsigned division for 32-bit machines. + * + * First the procedure takes care of the case in which the divisor is a + * 32-bit quantity. There are two subcases: (1) If the left half of the + * dividend is less than the divisor, one execution of do_div() is all that + * is required (overflow is not possible). (2) Otherwise it does two + * divisions, using the grade school method. + */ +uint64_t +__udivdi3(uint64_t u, uint64_t v) +{ + uint64_t u0, u1, v1, q0, q1, k; + int n; + + if (v >> 32 == 0) { // If v < 2**32: + if (u >> 32 < v) { // If u/v cannot overflow, + return (__div_u64(u, v)); // just do one division. + } else { // If u/v would overflow: + u1 = u >> 32; // Break u into two halves. + u0 = u & 0xFFFFFFFF; + q1 = __div_u64(u1, v); // First quotient digit. + k = u1 - q1 * v; // First remainder, < v. + u0 += (k << 32); + q0 = __div_u64(u0, v); // Seconds quotient digit. + return ((q1 << 32) + q0); + } + } else { // If v >= 2**32: + n = nlz64(v); // 0 <= n <= 31. + v1 = (v << n) >> 32; // Normalize divisor, MSB is 1. + u1 = u >> 1; // To ensure no overflow. + q1 = __div_u64(u1, v1); // Get quotient from + q0 = (q1 << n) >> 31; // Undo normalization and + // division of u by 2. + if (q0 != 0) // Make q0 correct or + q0 = q0 - 1; // too small by 1. + if ((u - q0 * v) >= v) + q0 = q0 + 1; // Now q0 is correct. + + return (q0); + } +} +EXPORT_SYMBOL(__udivdi3); + +/* BEGIN CSTYLED */ +#ifndef abs64 +#define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; }) +#endif +/* END CSTYLED */ + +/* + * Implementation of 64-bit signed division for 32-bit machines. + */ +int64_t +__divdi3(int64_t u, int64_t v) +{ + int64_t q, t; + // cppcheck-suppress shiftTooManyBitsSigned + q = __udivdi3(abs64(u), abs64(v)); + // cppcheck-suppress shiftTooManyBitsSigned + t = (u ^ v) >> 63; // If u, v have different + return ((q ^ t) - t); // signs, negate q. +} +EXPORT_SYMBOL(__divdi3); + +/* + * Implementation of 64-bit unsigned modulo for 32-bit machines. + */ +uint64_t +__umoddi3(uint64_t dividend, uint64_t divisor) +{ + return (dividend - (divisor * __udivdi3(dividend, divisor))); +} +EXPORT_SYMBOL(__umoddi3); + +/* 64-bit signed modulo for 32-bit machines. */ +int64_t +__moddi3(int64_t n, int64_t d) +{ + int64_t q; + boolean_t nn = B_FALSE; + + if (n < 0) { + nn = B_TRUE; + n = -n; + } + if (d < 0) + d = -d; + + q = __umoddi3(n, d); + + return (nn ? -q : q); +} +EXPORT_SYMBOL(__moddi3); + +/* + * Implementation of 64-bit unsigned division/modulo for 32-bit machines. + */ +uint64_t +__udivmoddi4(uint64_t n, uint64_t d, uint64_t *r) +{ + uint64_t q = __udivdi3(n, d); + if (r) + *r = n - d * q; + return (q); +} +EXPORT_SYMBOL(__udivmoddi4); + +/* + * Implementation of 64-bit signed division/modulo for 32-bit machines. + */ +int64_t +__divmoddi4(int64_t n, int64_t d, int64_t *r) +{ + int64_t q, rr; + boolean_t nn = B_FALSE; + boolean_t nd = B_FALSE; + if (n < 0) { + nn = B_TRUE; + n = -n; + } + if (d < 0) { + nd = B_TRUE; + d = -d; + } + + q = __udivmoddi4(n, d, (uint64_t *)&rr); + + if (nn != nd) + q = -q; + if (nn) + rr = -rr; + if (r) + *r = rr; + return (q); +} +EXPORT_SYMBOL(__divmoddi4); + +#if defined(__arm) || defined(__arm__) +/* + * Implementation of 64-bit (un)signed division for 32-bit arm machines. + * + * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned) + * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1}, + * and the remainder in {r2, r3}. The return type is specifically left + * set to 'void' to ensure the compiler does not overwrite these registers + * during the return. All results are in registers as per ABI + */ +void +__aeabi_uldivmod(uint64_t u, uint64_t v) +{ + uint64_t res; + uint64_t mod; + + res = __udivdi3(u, v); + mod = __umoddi3(u, v); + { + register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); + register uint32_t r1 asm("r1") = (res >> 32); + register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); + register uint32_t r3 asm("r3") = (mod >> 32); + + /* BEGIN CSTYLED */ + asm volatile("" + : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */ + : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ + /* END CSTYLED */ + + return; /* r0; */ + } +} +EXPORT_SYMBOL(__aeabi_uldivmod); + +void +__aeabi_ldivmod(int64_t u, int64_t v) +{ + int64_t res; + uint64_t mod; + + res = __divdi3(u, v); + mod = __umoddi3(u, v); + { + register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF); + register uint32_t r1 asm("r1") = (res >> 32); + register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF); + register uint32_t r3 asm("r3") = (mod >> 32); + + /* BEGIN CSTYLED */ + asm volatile("" + : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */ + : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */ + /* END CSTYLED */ + + return; /* r0; */ + } +} +EXPORT_SYMBOL(__aeabi_ldivmod); +#endif /* __arm || __arm__ */ + +#pragma GCC diagnostic pop + +#endif /* BITS_PER_LONG */ + +/* + * NOTE: The strtoxx behavior is solely based on my reading of the Solaris + * ddi_strtol(9F) man page. I have not verified the behavior of these + * functions against their Solaris counterparts. It is possible that I + * may have misinterpreted the man page or the man page is incorrect. + */ +int ddi_strtoul(const char *, char **, int, unsigned long *); +int ddi_strtol(const char *, char **, int, long *); +int ddi_strtoull(const char *, char **, int, unsigned long long *); +int ddi_strtoll(const char *, char **, int, long long *); + +#define define_ddi_strtoux(type, valtype) \ +int ddi_strtou##type(const char *str, char **endptr, \ + int base, valtype *result) \ +{ \ + valtype last_value, value = 0; \ + char *ptr = (char *)str; \ + int flag = 1, digit; \ + \ + if (strlen(ptr) == 0) \ + return (EINVAL); \ + \ + /* Auto-detect base based on prefix */ \ + if (!base) { \ + if (str[0] == '0') { \ + if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \ + base = 16; /* hex */ \ + ptr += 2; \ + } else if (str[1] >= '0' && str[1] < 8) { \ + base = 8; /* octal */ \ + ptr += 1; \ + } else { \ + return (EINVAL); \ + } \ + } else { \ + base = 10; /* decimal */ \ + } \ + } \ + \ + while (1) { \ + if (isdigit(*ptr)) \ + digit = *ptr - '0'; \ + else if (isalpha(*ptr)) \ + digit = tolower(*ptr) - 'a' + 10; \ + else \ + break; \ + \ + if (digit >= base) \ + break; \ + \ + last_value = value; \ + value = value * base + digit; \ + if (last_value > value) /* Overflow */ \ + return (ERANGE); \ + \ + flag = 1; \ + ptr++; \ + } \ + \ + if (flag) \ + *result = value; \ + \ + if (endptr) \ + *endptr = (char *)(flag ? ptr : str); \ + \ + return (0); \ +} \ + +#define define_ddi_strtox(type, valtype) \ +int ddi_strto##type(const char *str, char **endptr, \ + int base, valtype *result) \ +{ \ + int rc; \ + \ + if (*str == '-') { \ + rc = ddi_strtou##type(str + 1, endptr, base, result); \ + if (!rc) { \ + if (*endptr == str + 1) \ + *endptr = (char *)str; \ + else \ + *result = -*result; \ + } \ + } else { \ + rc = ddi_strtou##type(str, endptr, base, result); \ + } \ + \ + return (rc); \ +} + +define_ddi_strtoux(l, unsigned long) +define_ddi_strtox(l, long) +define_ddi_strtoux(ll, unsigned long long) +define_ddi_strtox(ll, long long) + +EXPORT_SYMBOL(ddi_strtoul); +EXPORT_SYMBOL(ddi_strtol); +EXPORT_SYMBOL(ddi_strtoll); +EXPORT_SYMBOL(ddi_strtoull); + +int +ddi_copyin(const void *from, void *to, size_t len, int flags) +{ + /* Fake ioctl() issued by kernel, 'from' is a kernel address */ + if (flags & FKIOCTL) { + memcpy(to, from, len); + return (0); + } + + return (copyin(from, to, len)); +} +EXPORT_SYMBOL(ddi_copyin); + +int +ddi_copyout(const void *from, void *to, size_t len, int flags) +{ + /* Fake ioctl() issued by kernel, 'from' is a kernel address */ + if (flags & FKIOCTL) { + memcpy(to, from, len); + return (0); + } + + return (copyout(from, to, len)); +} +EXPORT_SYMBOL(ddi_copyout); + +static ssize_t +spl_kernel_read(struct file *file, void *buf, size_t count, loff_t *pos) +{ +#if defined(HAVE_KERNEL_READ_PPOS) + return (kernel_read(file, buf, count, pos)); +#else + mm_segment_t saved_fs; + ssize_t ret; + + saved_fs = get_fs(); + set_fs(KERNEL_DS); + + ret = vfs_read(file, (void __user *)buf, count, pos); + + set_fs(saved_fs); + + return (ret); +#endif +} + +static int +spl_getattr(struct file *filp, struct kstat *stat) +{ + int rc; + + ASSERT(filp); + ASSERT(stat); + +#if defined(HAVE_4ARGS_VFS_GETATTR) + rc = vfs_getattr(&filp->f_path, stat, STATX_BASIC_STATS, + AT_STATX_SYNC_AS_STAT); +#elif defined(HAVE_2ARGS_VFS_GETATTR) + rc = vfs_getattr(&filp->f_path, stat); +#else + rc = vfs_getattr(filp->f_path.mnt, filp->f_dentry, stat); +#endif + if (rc) + return (-rc); + + return (0); +} + +/* + * Read the unique system identifier from the /etc/hostid file. + * + * The behavior of /usr/bin/hostid on Linux systems with the + * regular eglibc and coreutils is: + * + * 1. Generate the value if the /etc/hostid file does not exist + * or if the /etc/hostid file is less than four bytes in size. + * + * 2. If the /etc/hostid file is at least 4 bytes, then return + * the first four bytes [0..3] in native endian order. + * + * 3. Always ignore bytes [4..] if they exist in the file. + * + * Only the first four bytes are significant, even on systems that + * have a 64-bit word size. + * + * See: + * + * eglibc: sysdeps/unix/sysv/linux/gethostid.c + * coreutils: src/hostid.c + * + * Notes: + * + * The /etc/hostid file on Solaris is a text file that often reads: + * + * # DO NOT EDIT + * "0123456789" + * + * Directly copying this file to Linux results in a constant + * hostid of 4f442023 because the default comment constitutes + * the first four bytes of the file. + * + */ + +char *spl_hostid_path = HW_HOSTID_PATH; +module_param(spl_hostid_path, charp, 0444); +MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)"); + +static int +hostid_read(uint32_t *hostid) +{ + uint64_t size; + uint32_t value = 0; + int error; + loff_t off; + struct file *filp; + struct kstat stat; + + filp = filp_open(spl_hostid_path, 0, 0); + + if (IS_ERR(filp)) + return (ENOENT); + + error = spl_getattr(filp, &stat); + if (error) { + filp_close(filp, 0); + return (error); + } + size = stat.size; + if (size < sizeof (HW_HOSTID_MASK)) { + filp_close(filp, 0); + return (EINVAL); + } + + off = 0; + /* + * Read directly into the variable like eglibc does. + * Short reads are okay; native behavior is preserved. + */ + error = spl_kernel_read(filp, &value, sizeof (value), &off); + if (error < 0) { + filp_close(filp, 0); + return (EIO); + } + + /* Mask down to 32 bits like coreutils does. */ + *hostid = (value & HW_HOSTID_MASK); + filp_close(filp, 0); + + return (0); +} + +/* + * Return the system hostid. Preferentially use the spl_hostid module option + * when set, otherwise use the value in the /etc/hostid file. + */ +uint32_t +zone_get_hostid(void *zone) +{ + uint32_t hostid; + + ASSERT3P(zone, ==, NULL); + + if (spl_hostid != 0) + return ((uint32_t)(spl_hostid & HW_HOSTID_MASK)); + + if (hostid_read(&hostid) == 0) + return (hostid); + + return (0); +} +EXPORT_SYMBOL(zone_get_hostid); + +static int +spl_kvmem_init(void) +{ + int rc = 0; + + rc = spl_kmem_init(); + if (rc) + return (rc); + + rc = spl_vmem_init(); + if (rc) { + spl_kmem_fini(); + return (rc); + } + + return (rc); +} + +/* + * We initialize the random number generator with 128 bits of entropy from the + * system random number generator. In the improbable case that we have a zero + * seed, we fallback to the system jiffies, unless it is also zero, in which + * situation we use a preprogrammed seed. We step forward by 2^64 iterations to + * initialize each of the per-cpu seeds so that the sequences generated on each + * CPU are guaranteed to never overlap in practice. + */ +static void __init +spl_random_init(void) +{ + uint64_t s[2]; + int i = 0; + + spl_pseudo_entropy = __alloc_percpu(2 * sizeof (uint64_t), + sizeof (uint64_t)); + + get_random_bytes(s, sizeof (s)); + + if (s[0] == 0 && s[1] == 0) { + if (jiffies != 0) { + s[0] = jiffies; + s[1] = ~0 - jiffies; + } else { + (void) memcpy(s, "improbable seed", sizeof (s)); + } + printk("SPL: get_random_bytes() returned 0 " + "when generating random seed. Setting initial seed to " + "0x%016llx%016llx.\n", cpu_to_be64(s[0]), + cpu_to_be64(s[1])); + } + + for_each_possible_cpu(i) { + uint64_t *wordp = per_cpu_ptr(spl_pseudo_entropy, i); + + spl_rand_jump(s); + + wordp[0] = s[0]; + wordp[1] = s[1]; + } +} + +static void +spl_random_fini(void) +{ + free_percpu(spl_pseudo_entropy); +} + +static void +spl_kvmem_fini(void) +{ + spl_vmem_fini(); + spl_kmem_fini(); +} + +static int __init +spl_init(void) +{ + int rc = 0; + + bzero(&p0, sizeof (proc_t)); + spl_random_init(); + + if ((rc = spl_kvmem_init())) + goto out1; + + if ((rc = spl_tsd_init())) + goto out2; + + if ((rc = spl_taskq_init())) + goto out3; + + if ((rc = spl_kmem_cache_init())) + goto out4; + + if ((rc = spl_proc_init())) + goto out5; + + if ((rc = spl_kstat_init())) + goto out6; + + if ((rc = spl_zlib_init())) + goto out7; + + return (rc); + +out7: + spl_kstat_fini(); +out6: + spl_proc_fini(); +out5: + spl_kmem_cache_fini(); +out4: + spl_taskq_fini(); +out3: + spl_tsd_fini(); +out2: + spl_kvmem_fini(); +out1: + return (rc); +} + +static void __exit +spl_fini(void) +{ + spl_zlib_fini(); + spl_kstat_fini(); + spl_proc_fini(); + spl_kmem_cache_fini(); + spl_taskq_fini(); + spl_tsd_fini(); + spl_kvmem_fini(); + spl_random_fini(); +} + +module_init(spl_init); +module_exit(spl_fini); + +ZFS_MODULE_DESCRIPTION("Solaris Porting Layer"); +ZFS_MODULE_AUTHOR(ZFS_META_AUTHOR); +ZFS_MODULE_LICENSE("GPL"); +ZFS_MODULE_VERSION(ZFS_META_VERSION "-" ZFS_META_RELEASE); |