summaryrefslogtreecommitdiff
path: root/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll
diff options
context:
space:
mode:
Diffstat (limited to 'test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll')
-rw-r--r--test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll429
1 files changed, 429 insertions, 0 deletions
diff --git a/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll b/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll
new file mode 100644
index 0000000000000..75a71b444283f
--- /dev/null
+++ b/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll
@@ -0,0 +1,429 @@
+; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s -check-prefix=LAA
+; RUN: opt -passes='require<aa>,require<scalar-evolution>,require<aa>,loop(print-access-info)' -aa-pipeline='basic-aa' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=LAA
+; RUN: opt -loop-versioning -S < %s | FileCheck %s -check-prefix=LV
+
+target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
+
+; For this loop:
+; unsigned index = 0;
+; for (int i = 0; i < n; i++) {
+; A[2 * index] = A[2 * index] + B[i];
+; index++;
+; }
+;
+; SCEV is unable to prove that A[2 * i] does not overflow.
+;
+; Analyzing the IR does not help us because the GEPs are not
+; affine AddRecExprs. However, we can turn them into AddRecExprs
+; using SCEV Predicates.
+;
+; Once we have an affine expression we need to add an additional NUSW
+; to check that the pointers don't wrap since the GEPs are not
+; inbound.
+
+; LAA-LABEL: f1
+; LAA: Memory dependences are safe{{$}}
+; LAA: SCEV assumptions:
+; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw>
+; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
+
+; The expression for %mul_ext as analyzed by SCEV is
+; (zext i32 {0,+,2}<%for.body> to i64)
+; We have added the nusw flag to turn this expression into the SCEV expression:
+; i64 {0,+,2}<%for.body>
+
+; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
+; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64)) + %a)
+; LAA-NEXT: --> {%a,+,4}<%for.body>
+
+
+; LV-LABEL: f1
+; LV-LABEL: for.body.lver.check
+
+; LV: [[BETrunc:%[^ ]*]] = trunc i64 [[BE:%[^ ]*]] to i32
+; LV-NEXT: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc]])
+; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
+; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
+; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]]
+; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]]
+; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], 0
+; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], 0
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]]
+; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
+; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
+; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
+
+; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
+
+; LV-NEXT: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]])
+; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
+; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
+; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 %a2, [[OFMulResult1]]
+; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 %a2, [[OFMulResult1]]
+; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], %a2
+; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], %a2
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]]
+; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
+
+; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
+; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
+define void @f1(i16* noalias %a,
+ i16* noalias %b, i64 %N) {
+entry:
+ br label %for.body
+
+for.body: ; preds = %for.body, %entry
+ %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
+ %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
+
+ %mul = mul i32 %ind1, 2
+ %mul_ext = zext i32 %mul to i64
+
+ %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
+ %loadA = load i16, i16* %arrayidxA, align 2
+
+ %arrayidxB = getelementptr i16, i16* %b, i64 %ind
+ %loadB = load i16, i16* %arrayidxB, align 2
+
+ %add = mul i16 %loadA, %loadB
+
+ store i16 %add, i16* %arrayidxA, align 2
+
+ %inc = add nuw nsw i64 %ind, 1
+ %inc1 = add i32 %ind1, 1
+
+ %exitcond = icmp eq i64 %inc, %N
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end: ; preds = %for.body
+ ret void
+}
+
+; For this loop:
+; unsigned index = n;
+; for (int i = 0; i < n; i++) {
+; A[2 * index] = A[2 * index] + B[i];
+; index--;
+; }
+;
+; the SCEV expression for 2 * index is not an AddRecExpr
+; (and implictly not affine). However, we are able to make assumptions
+; that will turn the expression into an affine one and continue the
+; analysis.
+;
+; Once we have an affine expression we need to add an additional NUSW
+; to check that the pointers don't wrap since the GEPs are not
+; inbounds.
+;
+; This loop has a negative stride for A, and the nusw flag is required in
+; order to properly extend the increment from i32 -4 to i64 -4.
+
+; LAA-LABEL: f2
+; LAA: Memory dependences are safe{{$}}
+; LAA: SCEV assumptions:
+; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw>
+; LAA-NEXT: {((2 * (zext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw>
+
+; The expression for %mul_ext as analyzed by SCEV is
+; (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
+; We have added the nusw flag to turn this expression into the following SCEV:
+; i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
+
+; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
+; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)) + %a)
+; LAA-NEXT: --> {((2 * (zext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body>
+
+; LV-LABEL: f2
+; LV-LABEL: for.body.lver.check
+
+; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
+; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
+; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
+; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
+; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
+; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], [[Start]]
+; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], [[Start]]
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
+; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
+; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
+; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
+
+; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
+
+; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]])
+; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
+; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
+; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
+; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
+; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
+; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
+; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
+
+; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
+; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
+define void @f2(i16* noalias %a,
+ i16* noalias %b, i64 %N) {
+entry:
+ %TruncN = trunc i64 %N to i32
+ br label %for.body
+
+for.body: ; preds = %for.body, %entry
+ %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
+ %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
+
+ %mul = mul i32 %ind1, 2
+ %mul_ext = zext i32 %mul to i64
+
+ %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
+ %loadA = load i16, i16* %arrayidxA, align 2
+
+ %arrayidxB = getelementptr i16, i16* %b, i64 %ind
+ %loadB = load i16, i16* %arrayidxB, align 2
+
+ %add = mul i16 %loadA, %loadB
+
+ store i16 %add, i16* %arrayidxA, align 2
+
+ %inc = add nuw nsw i64 %ind, 1
+ %dec = sub i32 %ind1, 1
+
+ %exitcond = icmp eq i64 %inc, %N
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end: ; preds = %for.body
+ ret void
+}
+
+; We replicate the tests above, but this time sign extend 2 * index instead
+; of zero extending it.
+
+; LAA-LABEL: f3
+; LAA: Memory dependences are safe{{$}}
+; LAA: SCEV assumptions:
+; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw>
+; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw>
+
+; The expression for %mul_ext as analyzed by SCEV is
+; i64 (sext i32 {0,+,2}<%for.body> to i64)
+; We have added the nssw flag to turn this expression into the following SCEV:
+; i64 {0,+,2}<%for.body>
+
+; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
+; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64)) + %a)
+; LAA-NEXT: --> {%a,+,4}<%for.body>
+
+; LV-LABEL: f3
+; LV-LABEL: for.body.lver.check
+
+; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
+; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
+; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
+; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]]
+; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]]
+; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], 0
+; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], 0
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]]
+; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
+; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
+; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
+
+; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
+
+; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
+; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
+; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
+; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 %a2, [[OFMulResult1]]
+; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 %a2, [[OFMulResult1]]
+; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], %a2
+; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], %a2
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]]
+; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
+
+; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
+; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
+define void @f3(i16* noalias %a,
+ i16* noalias %b, i64 %N) {
+entry:
+ br label %for.body
+
+for.body: ; preds = %for.body, %entry
+ %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
+ %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ]
+
+ %mul = mul i32 %ind1, 2
+ %mul_ext = sext i32 %mul to i64
+
+ %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
+ %loadA = load i16, i16* %arrayidxA, align 2
+
+ %arrayidxB = getelementptr i16, i16* %b, i64 %ind
+ %loadB = load i16, i16* %arrayidxB, align 2
+
+ %add = mul i16 %loadA, %loadB
+
+ store i16 %add, i16* %arrayidxA, align 2
+
+ %inc = add nuw nsw i64 %ind, 1
+ %inc1 = add i32 %ind1, 1
+
+ %exitcond = icmp eq i64 %inc, %N
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end: ; preds = %for.body
+ ret void
+}
+
+; LAA-LABEL: f4
+; LAA: Memory dependences are safe{{$}}
+; LAA: SCEV assumptions:
+; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
+; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw>
+
+; The expression for %mul_ext as analyzed by SCEV is
+; i64 (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)
+; We have added the nssw flag to turn this expression into the following SCEV:
+; i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body>
+
+; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext:
+; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)) + %a)
+; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body>
+
+; LV-LABEL: f4
+; LV-LABEL: for.body.lver.check
+
+; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
+; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
+; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
+; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
+; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
+; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]]
+; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]]
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
+; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
+; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
+; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
+
+; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
+
+; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
+; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
+; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
+; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
+; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
+; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
+; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
+; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
+
+; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
+; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
+define void @f4(i16* noalias %a,
+ i16* noalias %b, i64 %N) {
+entry:
+ %TruncN = trunc i64 %N to i32
+ br label %for.body
+
+for.body: ; preds = %for.body, %entry
+ %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
+ %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
+
+ %mul = mul i32 %ind1, 2
+ %mul_ext = sext i32 %mul to i64
+
+ %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext
+ %loadA = load i16, i16* %arrayidxA, align 2
+
+ %arrayidxB = getelementptr i16, i16* %b, i64 %ind
+ %loadB = load i16, i16* %arrayidxB, align 2
+
+ %add = mul i16 %loadA, %loadB
+
+ store i16 %add, i16* %arrayidxA, align 2
+
+ %inc = add nuw nsw i64 %ind, 1
+ %dec = sub i32 %ind1, 1
+
+ %exitcond = icmp eq i64 %inc, %N
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end: ; preds = %for.body
+ ret void
+}
+
+; The following function is similar to the one above, but has the GEP
+; to pointer %A inbounds. The index %mul doesn't have the nsw flag.
+; This means that the SCEV expression for %mul can wrap and we need
+; a SCEV predicate to continue analysis.
+;
+; We can still analyze this by adding the required no wrap SCEV predicates.
+
+; LAA-LABEL: f5
+; LAA: Memory dependences are safe{{$}}
+; LAA: SCEV assumptions:
+; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw>
+; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw>
+
+; LAA: [PSE] %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul:
+; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)<nsw>
+; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body>
+
+; LV-LABEL: f5
+; LV-LABEL: for.body.lver.check
+; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]])
+; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0
+; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1
+; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]]
+; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]]
+; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]]
+; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]]
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]]
+; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295
+; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]]
+; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]]
+
+; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]]
+
+; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]])
+; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0
+; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1
+; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]]
+; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]]
+; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]]
+; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]]
+; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]]
+; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]]
+
+; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]]
+; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph
+define void @f5(i16* noalias %a,
+ i16* noalias %b, i64 %N) {
+entry:
+ %TruncN = trunc i64 %N to i32
+ br label %for.body
+
+for.body: ; preds = %for.body, %entry
+ %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ]
+ %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ]
+
+ %mul = mul i32 %ind1, 2
+
+ %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul
+ %loadA = load i16, i16* %arrayidxA, align 2
+
+ %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind
+ %loadB = load i16, i16* %arrayidxB, align 2
+
+ %add = mul i16 %loadA, %loadB
+
+ store i16 %add, i16* %arrayidxA, align 2
+
+ %inc = add nuw nsw i64 %ind, 1
+ %dec = sub i32 %ind1, 1
+
+ %exitcond = icmp eq i64 %inc, %N
+ br i1 %exitcond, label %for.end, label %for.body
+
+for.end: ; preds = %for.body
+ ret void
+}