diff options
Diffstat (limited to 'test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll')
-rw-r--r-- | test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll | 429 |
1 files changed, 429 insertions, 0 deletions
diff --git a/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll b/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll new file mode 100644 index 0000000000000..75a71b444283f --- /dev/null +++ b/test/Analysis/LoopAccessAnalysis/wrapping-pointer-versioning.ll @@ -0,0 +1,429 @@ +; RUN: opt -basicaa -loop-accesses -analyze < %s | FileCheck %s -check-prefix=LAA +; RUN: opt -passes='require<aa>,require<scalar-evolution>,require<aa>,loop(print-access-info)' -aa-pipeline='basic-aa' -disable-output < %s 2>&1 | FileCheck %s --check-prefix=LAA +; RUN: opt -loop-versioning -S < %s | FileCheck %s -check-prefix=LV + +target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128" + +; For this loop: +; unsigned index = 0; +; for (int i = 0; i < n; i++) { +; A[2 * index] = A[2 * index] + B[i]; +; index++; +; } +; +; SCEV is unable to prove that A[2 * i] does not overflow. +; +; Analyzing the IR does not help us because the GEPs are not +; affine AddRecExprs. However, we can turn them into AddRecExprs +; using SCEV Predicates. +; +; Once we have an affine expression we need to add an additional NUSW +; to check that the pointers don't wrap since the GEPs are not +; inbound. + +; LAA-LABEL: f1 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nusw> +; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> + +; The expression for %mul_ext as analyzed by SCEV is +; (zext i32 {0,+,2}<%for.body> to i64) +; We have added the nusw flag to turn this expression into the SCEV expression: +; i64 {0,+,2}<%for.body> + +; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: +; LAA-NEXT: ((2 * (zext i32 {0,+,2}<%for.body> to i64)) + %a) +; LAA-NEXT: --> {%a,+,4}<%for.body> + + +; LV-LABEL: f1 +; LV-LABEL: for.body.lver.check + +; LV: [[BETrunc:%[^ ]*]] = trunc i64 [[BE:%[^ ]*]] to i32 +; LV-NEXT: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc]]) +; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 +; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 +; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]] +; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]] +; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], 0 +; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], 0 +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]] +; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 +; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] +; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] + +; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] + +; LV-NEXT: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]]) +; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 +; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 +; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 %a2, [[OFMulResult1]] +; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 %a2, [[OFMulResult1]] +; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], %a2 +; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], %a2 +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]] +; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] + +; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] +; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph +define void @f1(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] + + %mul = mul i32 %ind1, 2 + %mul_ext = zext i32 %mul to i64 + + %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %inc1 = add i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} + +; For this loop: +; unsigned index = n; +; for (int i = 0; i < n; i++) { +; A[2 * index] = A[2 * index] + B[i]; +; index--; +; } +; +; the SCEV expression for 2 * index is not an AddRecExpr +; (and implictly not affine). However, we are able to make assumptions +; that will turn the expression into an affine one and continue the +; analysis. +; +; Once we have an affine expression we need to add an additional NUSW +; to check that the pointers don't wrap since the GEPs are not +; inbounds. +; +; This loop has a negative stride for A, and the nusw flag is required in +; order to properly extend the increment from i32 -4 to i64 -4. + +; LAA-LABEL: f2 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nusw> +; LAA-NEXT: {((2 * (zext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> + +; The expression for %mul_ext as analyzed by SCEV is +; (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) +; We have added the nusw flag to turn this expression into the following SCEV: +; i64 {zext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> + +; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: +; LAA-NEXT: ((2 * (zext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)) + %a) +; LAA-NEXT: --> {((2 * (zext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> + +; LV-LABEL: f2 +; LV-LABEL: for.body.lver.check + +; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) +; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 +; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 +; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] +; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] +; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp ugt i32 [[SubEnd]], [[Start]] +; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp ult i32 [[AddEnd]], [[Start]] +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] +; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 +; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] +; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] + +; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] + +; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE]]) +; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 +; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 +; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] +; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] +; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] +; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] +; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] + +; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] +; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph +define void @f2(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + %TruncN = trunc i64 %N to i32 + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] + + %mul = mul i32 %ind1, 2 + %mul_ext = zext i32 %mul to i64 + + %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %dec = sub i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} + +; We replicate the tests above, but this time sign extend 2 * index instead +; of zero extending it. + +; LAA-LABEL: f3 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {0,+,2}<%for.body> Added Flags: <nssw> +; LAA-NEXT: {%a,+,4}<%for.body> Added Flags: <nusw> + +; The expression for %mul_ext as analyzed by SCEV is +; i64 (sext i32 {0,+,2}<%for.body> to i64) +; We have added the nssw flag to turn this expression into the following SCEV: +; i64 {0,+,2}<%for.body> + +; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: +; LAA-NEXT: ((2 * (sext i32 {0,+,2}<%for.body> to i64)) + %a) +; LAA-NEXT: --> {%a,+,4}<%for.body> + +; LV-LABEL: f3 +; LV-LABEL: for.body.lver.check + +; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) +; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 +; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 +; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 0, [[OFMulResult]] +; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 0, [[OFMulResult]] +; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], 0 +; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], 0 +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg]], i1 [[CmpPos]] +; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 +; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] +; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] + +; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] + +; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) +; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 +; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 +; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 %a2, [[OFMulResult1]] +; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 %a2, [[OFMulResult1]] +; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], %a2 +; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], %a2 +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 false, i1 [[CmpNeg1]], i1 [[CmpPos1]] +; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] + +; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] +; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph +define void @f3(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ 0, %entry ], [ %inc1, %for.body ] + + %mul = mul i32 %ind1, 2 + %mul_ext = sext i32 %mul to i64 + + %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %inc1 = add i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} + +; LAA-LABEL: f4 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> +; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> + +; The expression for %mul_ext as analyzed by SCEV is +; i64 (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64) +; We have added the nssw flag to turn this expression into the following SCEV: +; i64 {sext i32 (2 * (trunc i64 %N to i32)) to i64,+,-2}<%for.body> + +; LAA: [PSE] %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext: +; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64)) + %a) +; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> + +; LV-LABEL: f4 +; LV-LABEL: for.body.lver.check + +; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) +; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 +; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 +; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] +; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] +; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]] +; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]] +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] +; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 +; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] +; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] + +; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] + +; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) +; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 +; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 +; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] +; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] +; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] +; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] +; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] + +; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] +; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph +define void @f4(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + %TruncN = trunc i64 %N to i32 + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] + + %mul = mul i32 %ind1, 2 + %mul_ext = sext i32 %mul to i64 + + %arrayidxA = getelementptr i16, i16* %a, i64 %mul_ext + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %dec = sub i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} + +; The following function is similar to the one above, but has the GEP +; to pointer %A inbounds. The index %mul doesn't have the nsw flag. +; This means that the SCEV expression for %mul can wrap and we need +; a SCEV predicate to continue analysis. +; +; We can still analyze this by adding the required no wrap SCEV predicates. + +; LAA-LABEL: f5 +; LAA: Memory dependences are safe{{$}} +; LAA: SCEV assumptions: +; LAA-NEXT: {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> Added Flags: <nssw> +; LAA-NEXT: {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> Added Flags: <nusw> + +; LAA: [PSE] %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul: +; LAA-NEXT: ((2 * (sext i32 {(2 * (trunc i64 %N to i32)),+,-2}<%for.body> to i64))<nsw> + %a)<nsw> +; LAA-NEXT: --> {((2 * (sext i32 (2 * (trunc i64 %N to i32)) to i64)) + %a),+,-4}<%for.body> + +; LV-LABEL: f5 +; LV-LABEL: for.body.lver.check +; LV: [[OFMul:%[^ ]*]] = call { i32, i1 } @llvm.umul.with.overflow.i32(i32 2, i32 [[BETrunc:%[^ ]*]]) +; LV-NEXT: [[OFMulResult:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 0 +; LV-NEXT: [[OFMulOverflow:%[^ ]*]] = extractvalue { i32, i1 } [[OFMul]], 1 +; LV-NEXT: [[AddEnd:%[^ ]*]] = add i32 [[Start:%[^ ]*]], [[OFMulResult]] +; LV-NEXT: [[SubEnd:%[^ ]*]] = sub i32 [[Start]], [[OFMulResult]] +; LV-NEXT: [[CmpNeg:%[^ ]*]] = icmp sgt i32 [[SubEnd]], [[Start]] +; LV-NEXT: [[CmpPos:%[^ ]*]] = icmp slt i32 [[AddEnd]], [[Start]] +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg]], i1 [[CmpPos]] +; LV-NEXT: [[BECheck:%[^ ]*]] = icmp ugt i64 [[BE]], 4294967295 +; LV-NEXT: [[CheckOr0:%[^ ]*]] = or i1 [[Cmp]], [[BECheck]] +; LV-NEXT: [[PredCheck0:%[^ ]*]] = or i1 [[CheckOr0]], [[OFMulOverflow]] + +; LV-NEXT: [[Or0:%[^ ]*]] = or i1 false, [[PredCheck0]] + +; LV: [[OFMul1:%[^ ]*]] = call { i64, i1 } @llvm.umul.with.overflow.i64(i64 4, i64 [[BE:%[^ ]*]]) +; LV-NEXT: [[OFMulResult1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 0 +; LV-NEXT: [[OFMulOverflow1:%[^ ]*]] = extractvalue { i64, i1 } [[OFMul1]], 1 +; LV-NEXT: [[AddEnd1:%[^ ]*]] = add i64 [[Start:%[^ ]*]], [[OFMulResult1]] +; LV-NEXT: [[SubEnd1:%[^ ]*]] = sub i64 [[Start]], [[OFMulResult1]] +; LV-NEXT: [[CmpNeg1:%[^ ]*]] = icmp ugt i64 [[SubEnd1]], [[Start]] +; LV-NEXT: [[CmpPos1:%[^ ]*]] = icmp ult i64 [[AddEnd1]], [[Start]] +; LV-NEXT: [[Cmp:%[^ ]*]] = select i1 true, i1 [[CmpNeg1]], i1 [[CmpPos1]] +; LV-NEXT: [[PredCheck1:%[^ ]*]] = or i1 [[Cmp]], [[OFMulOverflow1]] + +; LV: [[FinalCheck:%[^ ]*]] = or i1 [[Or0]], [[PredCheck1]] +; LV: br i1 [[FinalCheck]], label %for.body.ph.lver.orig, label %for.body.ph +define void @f5(i16* noalias %a, + i16* noalias %b, i64 %N) { +entry: + %TruncN = trunc i64 %N to i32 + br label %for.body + +for.body: ; preds = %for.body, %entry + %ind = phi i64 [ 0, %entry ], [ %inc, %for.body ] + %ind1 = phi i32 [ %TruncN, %entry ], [ %dec, %for.body ] + + %mul = mul i32 %ind1, 2 + + %arrayidxA = getelementptr inbounds i16, i16* %a, i32 %mul + %loadA = load i16, i16* %arrayidxA, align 2 + + %arrayidxB = getelementptr inbounds i16, i16* %b, i64 %ind + %loadB = load i16, i16* %arrayidxB, align 2 + + %add = mul i16 %loadA, %loadB + + store i16 %add, i16* %arrayidxA, align 2 + + %inc = add nuw nsw i64 %ind, 1 + %dec = sub i32 %ind1, 1 + + %exitcond = icmp eq i64 %inc, %N + br i1 %exitcond, label %for.end, label %for.body + +for.end: ; preds = %for.body + ret void +} |