diff options
Diffstat (limited to 'tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp')
-rw-r--r-- | tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp | 2162 |
1 files changed, 2162 insertions, 0 deletions
diff --git a/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp b/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp new file mode 100644 index 0000000000000..2eac47b045c3c --- /dev/null +++ b/tools/debugserver/source/MacOSX/arm/DNBArchImpl.cpp @@ -0,0 +1,2162 @@ +//===-- DNBArchImpl.cpp -----------------------------------------*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Created by Greg Clayton on 6/25/07. +// +//===----------------------------------------------------------------------===// + +#if defined (__arm__) || defined (__arm64__) || defined (__aarch64__) + +#include "MacOSX/arm/DNBArchImpl.h" +#include "MacOSX/MachProcess.h" +#include "MacOSX/MachThread.h" +#include "DNBBreakpoint.h" +#include "DNBLog.h" +#include "DNBRegisterInfo.h" +#include "DNB.h" +#include "ARM_ehframe_Registers.h" +#include "ARM_DWARF_Registers.h" + +#include <inttypes.h> +#include <sys/sysctl.h> + +// BCR address match type +#define BCR_M_IMVA_MATCH ((uint32_t)(0u << 21)) +#define BCR_M_CONTEXT_ID_MATCH ((uint32_t)(1u << 21)) +#define BCR_M_IMVA_MISMATCH ((uint32_t)(2u << 21)) +#define BCR_M_RESERVED ((uint32_t)(3u << 21)) + +// Link a BVR/BCR or WVR/WCR pair to another +#define E_ENABLE_LINKING ((uint32_t)(1u << 20)) + +// Byte Address Select +#define BAS_IMVA_PLUS_0 ((uint32_t)(1u << 5)) +#define BAS_IMVA_PLUS_1 ((uint32_t)(1u << 6)) +#define BAS_IMVA_PLUS_2 ((uint32_t)(1u << 7)) +#define BAS_IMVA_PLUS_3 ((uint32_t)(1u << 8)) +#define BAS_IMVA_0_1 ((uint32_t)(3u << 5)) +#define BAS_IMVA_2_3 ((uint32_t)(3u << 7)) +#define BAS_IMVA_ALL ((uint32_t)(0xfu << 5)) + +// Break only in privileged or user mode +#define S_RSVD ((uint32_t)(0u << 1)) +#define S_PRIV ((uint32_t)(1u << 1)) +#define S_USER ((uint32_t)(2u << 1)) +#define S_PRIV_USER ((S_PRIV) | (S_USER)) + +#define BCR_ENABLE ((uint32_t)(1u)) +#define WCR_ENABLE ((uint32_t)(1u)) + +// Watchpoint load/store +#define WCR_LOAD ((uint32_t)(1u << 3)) +#define WCR_STORE ((uint32_t)(1u << 4)) + +// Definitions for the Debug Status and Control Register fields: +// [5:2] => Method of debug entry +//#define WATCHPOINT_OCCURRED ((uint32_t)(2u)) +// I'm seeing this, instead. +#define WATCHPOINT_OCCURRED ((uint32_t)(10u)) + +// 0xE120BE70 +static const uint8_t g_arm_breakpoint_opcode[] = { 0x70, 0xBE, 0x20, 0xE1 }; +static const uint8_t g_thumb_breakpoint_opcode[] = { 0x70, 0xBE }; + +// A watchpoint may need to be implemented using two watchpoint registers. +// e.g. watching an 8-byte region when the device can only watch 4-bytes. +// +// This stores the lo->hi mappings. It's safe to initialize to all 0's +// since hi > lo and therefore LoHi[i] cannot be 0. +static uint32_t LoHi[16] = { 0 }; + +// ARM constants used during decoding +#define REG_RD 0 +#define LDM_REGLIST 1 +#define PC_REG 15 +#define PC_REGLIST_BIT 0x8000 + +// ARM conditions +#define COND_EQ 0x0 +#define COND_NE 0x1 +#define COND_CS 0x2 +#define COND_HS 0x2 +#define COND_CC 0x3 +#define COND_LO 0x3 +#define COND_MI 0x4 +#define COND_PL 0x5 +#define COND_VS 0x6 +#define COND_VC 0x7 +#define COND_HI 0x8 +#define COND_LS 0x9 +#define COND_GE 0xA +#define COND_LT 0xB +#define COND_GT 0xC +#define COND_LE 0xD +#define COND_AL 0xE +#define COND_UNCOND 0xF + +#define MASK_CPSR_T (1u << 5) +#define MASK_CPSR_J (1u << 24) + +#define MNEMONIC_STRING_SIZE 32 +#define OPERAND_STRING_SIZE 128 + +// Returns true if the first 16 bit opcode of a thumb instruction indicates +// the instruction will be a 32 bit thumb opcode +static bool +IsThumb32Opcode (uint16_t opcode) +{ + if (((opcode & 0xE000) == 0xE000) && (opcode & 0x1800)) + return true; + return false; +} + +void +DNBArchMachARM::Initialize() +{ + DNBArchPluginInfo arch_plugin_info = + { + CPU_TYPE_ARM, + DNBArchMachARM::Create, + DNBArchMachARM::GetRegisterSetInfo, + DNBArchMachARM::SoftwareBreakpointOpcode + }; + + // Register this arch plug-in with the main protocol class + DNBArchProtocol::RegisterArchPlugin (arch_plugin_info); +} + + +DNBArchProtocol * +DNBArchMachARM::Create (MachThread *thread) +{ + DNBArchMachARM *obj = new DNBArchMachARM (thread); + return obj; +} + +const uint8_t * +DNBArchMachARM::SoftwareBreakpointOpcode (nub_size_t byte_size) +{ + switch (byte_size) + { + case 2: return g_thumb_breakpoint_opcode; + case 4: return g_arm_breakpoint_opcode; + } + return NULL; +} + +uint32_t +DNBArchMachARM::GetCPUType() +{ + return CPU_TYPE_ARM; +} + +uint64_t +DNBArchMachARM::GetPC(uint64_t failValue) +{ + // Get program counter + if (GetGPRState(false) == KERN_SUCCESS) + return m_state.context.gpr.__pc; + return failValue; +} + +kern_return_t +DNBArchMachARM::SetPC(uint64_t value) +{ + // Get program counter + kern_return_t err = GetGPRState(false); + if (err == KERN_SUCCESS) + { + m_state.context.gpr.__pc = (uint32_t) value; + err = SetGPRState(); + } + return err == KERN_SUCCESS; +} + +uint64_t +DNBArchMachARM::GetSP(uint64_t failValue) +{ + // Get stack pointer + if (GetGPRState(false) == KERN_SUCCESS) + return m_state.context.gpr.__sp; + return failValue; +} + +kern_return_t +DNBArchMachARM::GetGPRState(bool force) +{ + int set = e_regSetGPR; + // Check if we have valid cached registers + if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) + return KERN_SUCCESS; + + // Read the registers from our thread + mach_msg_type_number_t count = ARM_THREAD_STATE_COUNT; + kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, &count); + uint32_t *r = &m_state.context.gpr.__r[0]; + DNBLogThreadedIf(LOG_THREAD, "thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count = %u) regs r0=%8.8x r1=%8.8x r2=%8.8x r3=%8.8x r4=%8.8x r5=%8.8x r6=%8.8x r7=%8.8x r8=%8.8x r9=%8.8x r10=%8.8x r11=%8.8x s12=%8.8x sp=%8.8x lr=%8.8x pc=%8.8x cpsr=%8.8x", + m_thread->MachPortNumber(), + ARM_THREAD_STATE, + ARM_THREAD_STATE_COUNT, + kret, + count, + r[0], + r[1], + r[2], + r[3], + r[4], + r[5], + r[6], + r[7], + r[8], + r[9], + r[10], + r[11], + r[12], + r[13], + r[14], + r[15], + r[16]); + m_state.SetError(set, Read, kret); + return kret; +} + +kern_return_t +DNBArchMachARM::GetVFPState(bool force) +{ + int set = e_regSetVFP; + // Check if we have valid cached registers + if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) + return KERN_SUCCESS; + + kern_return_t kret; + +#if defined (__arm64__) || defined (__aarch64__) + // Read the registers from our thread + mach_msg_type_number_t count = ARM_NEON_STATE_COUNT; + kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_NEON_STATE, (thread_state_t)&m_state.context.vfp, &count); + if (DNBLogEnabledForAny (LOG_THREAD)) + { + DNBLogThreaded("thread_get_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs" + "\n q0 = 0x%16.16llx%16.16llx" + "\n q1 = 0x%16.16llx%16.16llx" + "\n q2 = 0x%16.16llx%16.16llx" + "\n q3 = 0x%16.16llx%16.16llx" + "\n q4 = 0x%16.16llx%16.16llx" + "\n q5 = 0x%16.16llx%16.16llx" + "\n q6 = 0x%16.16llx%16.16llx" + "\n q7 = 0x%16.16llx%16.16llx" + "\n q8 = 0x%16.16llx%16.16llx" + "\n q9 = 0x%16.16llx%16.16llx" + "\n q10 = 0x%16.16llx%16.16llx" + "\n q11 = 0x%16.16llx%16.16llx" + "\n q12 = 0x%16.16llx%16.16llx" + "\n q13 = 0x%16.16llx%16.16llx" + "\n q14 = 0x%16.16llx%16.16llx" + "\n q15 = 0x%16.16llx%16.16llx" + "\n fpsr = 0x%8.8x" + "\n fpcr = 0x%8.8x\n\n", + m_thread->MachPortNumber(), + ARM_NEON_STATE, + ARM_NEON_STATE_COUNT, + kret, + count, + ((uint64_t *)&m_state.context.vfp.__v[0])[0] , ((uint64_t *)&m_state.context.vfp.__v[0])[1], + ((uint64_t *)&m_state.context.vfp.__v[1])[0] , ((uint64_t *)&m_state.context.vfp.__v[1])[1], + ((uint64_t *)&m_state.context.vfp.__v[2])[0] , ((uint64_t *)&m_state.context.vfp.__v[2])[1], + ((uint64_t *)&m_state.context.vfp.__v[3])[0] , ((uint64_t *)&m_state.context.vfp.__v[3])[1], + ((uint64_t *)&m_state.context.vfp.__v[4])[0] , ((uint64_t *)&m_state.context.vfp.__v[4])[1], + ((uint64_t *)&m_state.context.vfp.__v[5])[0] , ((uint64_t *)&m_state.context.vfp.__v[5])[1], + ((uint64_t *)&m_state.context.vfp.__v[6])[0] , ((uint64_t *)&m_state.context.vfp.__v[6])[1], + ((uint64_t *)&m_state.context.vfp.__v[7])[0] , ((uint64_t *)&m_state.context.vfp.__v[7])[1], + ((uint64_t *)&m_state.context.vfp.__v[8])[0] , ((uint64_t *)&m_state.context.vfp.__v[8])[1], + ((uint64_t *)&m_state.context.vfp.__v[9])[0] , ((uint64_t *)&m_state.context.vfp.__v[9])[1], + ((uint64_t *)&m_state.context.vfp.__v[10])[0], ((uint64_t *)&m_state.context.vfp.__v[10])[1], + ((uint64_t *)&m_state.context.vfp.__v[11])[0], ((uint64_t *)&m_state.context.vfp.__v[11])[1], + ((uint64_t *)&m_state.context.vfp.__v[12])[0], ((uint64_t *)&m_state.context.vfp.__v[12])[1], + ((uint64_t *)&m_state.context.vfp.__v[13])[0], ((uint64_t *)&m_state.context.vfp.__v[13])[1], + ((uint64_t *)&m_state.context.vfp.__v[14])[0], ((uint64_t *)&m_state.context.vfp.__v[14])[1], + ((uint64_t *)&m_state.context.vfp.__v[15])[0], ((uint64_t *)&m_state.context.vfp.__v[15])[1], + m_state.context.vfp.__fpsr, + m_state.context.vfp.__fpcr); + + } +#else + // Read the registers from our thread + mach_msg_type_number_t count = ARM_VFP_STATE_COUNT; + kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, &count); + + if (DNBLogEnabledForAny (LOG_THREAD)) + { + uint32_t *r = &m_state.context.vfp.__r[0]; + DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)", + m_thread->MachPortNumber(), + ARM_THREAD_STATE, + ARM_THREAD_STATE_COUNT, + kret, + count); + DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x s5=%8.8x s6=%8.8x s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]); + DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]); + DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]); + DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]); + DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]); + DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]); + DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]); + DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]); + } + +#endif + m_state.SetError(set, Read, kret); + return kret; +} + +kern_return_t +DNBArchMachARM::GetEXCState(bool force) +{ + int set = e_regSetEXC; + // Check if we have valid cached registers + if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) + return KERN_SUCCESS; + + // Read the registers from our thread + mach_msg_type_number_t count = ARM_EXCEPTION_STATE_COUNT; + kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, &count); + m_state.SetError(set, Read, kret); + return kret; +} + +static void +DumpDBGState(const DNBArchMachARM::DBG& dbg) +{ + uint32_t i = 0; + for (i=0; i<16; i++) + { + DNBLogThreadedIf(LOG_STEP, "BVR%-2u/BCR%-2u = { 0x%8.8x, 0x%8.8x } WVR%-2u/WCR%-2u = { 0x%8.8x, 0x%8.8x }", + i, i, dbg.__bvr[i], dbg.__bcr[i], + i, i, dbg.__wvr[i], dbg.__wcr[i]); + } +} + +kern_return_t +DNBArchMachARM::GetDBGState(bool force) +{ + int set = e_regSetDBG; + + // Check if we have valid cached registers + if (!force && m_state.GetError(set, Read) == KERN_SUCCESS) + return KERN_SUCCESS; + + // Read the registers from our thread +#if defined (ARM_DEBUG_STATE32) && (defined (__arm64__) || defined (__aarch64__)) + mach_msg_type_number_t count = ARM_DEBUG_STATE32_COUNT; + kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE32, (thread_state_t)&m_state.dbg, &count); +#else + mach_msg_type_number_t count = ARM_DEBUG_STATE_COUNT; + kern_return_t kret = ::thread_get_state(m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, &count); +#endif + m_state.SetError(set, Read, kret); + + return kret; +} + +kern_return_t +DNBArchMachARM::SetGPRState() +{ + int set = e_regSetGPR; + kern_return_t kret = ::thread_set_state(m_thread->MachPortNumber(), ARM_THREAD_STATE, (thread_state_t)&m_state.context.gpr, ARM_THREAD_STATE_COUNT); + m_state.SetError(set, Write, kret); // Set the current write error for this register set + m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently + return kret; // Return the error code +} + +kern_return_t +DNBArchMachARM::SetVFPState() +{ + int set = e_regSetVFP; + kern_return_t kret; + mach_msg_type_number_t count; + +#if defined (__arm64__) || defined (__aarch64__) + count = ARM_NEON_STATE_COUNT; + kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_NEON_STATE, (thread_state_t)&m_state.context.vfp, count); +#else + count = ARM_VFP_STATE_COUNT; + kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_VFP_STATE, (thread_state_t)&m_state.context.vfp, count); +#endif + +#if defined (__arm64__) || defined (__aarch64__) + if (DNBLogEnabledForAny (LOG_THREAD)) + { + DNBLogThreaded("thread_set_state(0x%4.4x, %u, &vfp, %u) => 0x%8.8x (count = %u) regs" + "\n q0 = 0x%16.16llx%16.16llx" + "\n q1 = 0x%16.16llx%16.16llx" + "\n q2 = 0x%16.16llx%16.16llx" + "\n q3 = 0x%16.16llx%16.16llx" + "\n q4 = 0x%16.16llx%16.16llx" + "\n q5 = 0x%16.16llx%16.16llx" + "\n q6 = 0x%16.16llx%16.16llx" + "\n q7 = 0x%16.16llx%16.16llx" + "\n q8 = 0x%16.16llx%16.16llx" + "\n q9 = 0x%16.16llx%16.16llx" + "\n q10 = 0x%16.16llx%16.16llx" + "\n q11 = 0x%16.16llx%16.16llx" + "\n q12 = 0x%16.16llx%16.16llx" + "\n q13 = 0x%16.16llx%16.16llx" + "\n q14 = 0x%16.16llx%16.16llx" + "\n q15 = 0x%16.16llx%16.16llx" + "\n fpsr = 0x%8.8x" + "\n fpcr = 0x%8.8x\n\n", + m_thread->MachPortNumber(), + ARM_NEON_STATE, + ARM_NEON_STATE_COUNT, + kret, + count, + ((uint64_t *)&m_state.context.vfp.__v[0])[0] , ((uint64_t *)&m_state.context.vfp.__v[0])[1], + ((uint64_t *)&m_state.context.vfp.__v[1])[0] , ((uint64_t *)&m_state.context.vfp.__v[1])[1], + ((uint64_t *)&m_state.context.vfp.__v[2])[0] , ((uint64_t *)&m_state.context.vfp.__v[2])[1], + ((uint64_t *)&m_state.context.vfp.__v[3])[0] , ((uint64_t *)&m_state.context.vfp.__v[3])[1], + ((uint64_t *)&m_state.context.vfp.__v[4])[0] , ((uint64_t *)&m_state.context.vfp.__v[4])[1], + ((uint64_t *)&m_state.context.vfp.__v[5])[0] , ((uint64_t *)&m_state.context.vfp.__v[5])[1], + ((uint64_t *)&m_state.context.vfp.__v[6])[0] , ((uint64_t *)&m_state.context.vfp.__v[6])[1], + ((uint64_t *)&m_state.context.vfp.__v[7])[0] , ((uint64_t *)&m_state.context.vfp.__v[7])[1], + ((uint64_t *)&m_state.context.vfp.__v[8])[0] , ((uint64_t *)&m_state.context.vfp.__v[8])[1], + ((uint64_t *)&m_state.context.vfp.__v[9])[0] , ((uint64_t *)&m_state.context.vfp.__v[9])[1], + ((uint64_t *)&m_state.context.vfp.__v[10])[0], ((uint64_t *)&m_state.context.vfp.__v[10])[1], + ((uint64_t *)&m_state.context.vfp.__v[11])[0], ((uint64_t *)&m_state.context.vfp.__v[11])[1], + ((uint64_t *)&m_state.context.vfp.__v[12])[0], ((uint64_t *)&m_state.context.vfp.__v[12])[1], + ((uint64_t *)&m_state.context.vfp.__v[13])[0], ((uint64_t *)&m_state.context.vfp.__v[13])[1], + ((uint64_t *)&m_state.context.vfp.__v[14])[0], ((uint64_t *)&m_state.context.vfp.__v[14])[1], + ((uint64_t *)&m_state.context.vfp.__v[15])[0], ((uint64_t *)&m_state.context.vfp.__v[15])[1], + m_state.context.vfp.__fpsr, + m_state.context.vfp.__fpcr); + } +#else + if (DNBLogEnabledForAny (LOG_THREAD)) + { + uint32_t *r = &m_state.context.vfp.__r[0]; + DNBLogThreaded ("thread_get_state(0x%4.4x, %u, &gpr, %u) => 0x%8.8x (count => %u)", + m_thread->MachPortNumber(), + ARM_THREAD_STATE, + ARM_THREAD_STATE_COUNT, + kret, + count); + DNBLogThreaded(" s0=%8.8x s1=%8.8x s2=%8.8x s3=%8.8x s4=%8.8x s5=%8.8x s6=%8.8x s7=%8.8x",r[ 0],r[ 1],r[ 2],r[ 3],r[ 4],r[ 5],r[ 6],r[ 7]); + DNBLogThreaded(" s8=%8.8x s9=%8.8x s10=%8.8x s11=%8.8x s12=%8.8x s13=%8.8x s14=%8.8x s15=%8.8x",r[ 8],r[ 9],r[10],r[11],r[12],r[13],r[14],r[15]); + DNBLogThreaded(" s16=%8.8x s17=%8.8x s18=%8.8x s19=%8.8x s20=%8.8x s21=%8.8x s22=%8.8x s23=%8.8x",r[16],r[17],r[18],r[19],r[20],r[21],r[22],r[23]); + DNBLogThreaded(" s24=%8.8x s25=%8.8x s26=%8.8x s27=%8.8x s28=%8.8x s29=%8.8x s30=%8.8x s31=%8.8x",r[24],r[25],r[26],r[27],r[28],r[29],r[30],r[31]); + DNBLogThreaded(" s32=%8.8x s33=%8.8x s34=%8.8x s35=%8.8x s36=%8.8x s37=%8.8x s38=%8.8x s39=%8.8x",r[32],r[33],r[34],r[35],r[36],r[37],r[38],r[39]); + DNBLogThreaded(" s40=%8.8x s41=%8.8x s42=%8.8x s43=%8.8x s44=%8.8x s45=%8.8x s46=%8.8x s47=%8.8x",r[40],r[41],r[42],r[43],r[44],r[45],r[46],r[47]); + DNBLogThreaded(" s48=%8.8x s49=%8.8x s50=%8.8x s51=%8.8x s52=%8.8x s53=%8.8x s54=%8.8x s55=%8.8x",r[48],r[49],r[50],r[51],r[52],r[53],r[54],r[55]); + DNBLogThreaded(" s56=%8.8x s57=%8.8x s58=%8.8x s59=%8.8x s60=%8.8x s61=%8.8x s62=%8.8x s63=%8.8x fpscr=%8.8x",r[56],r[57],r[58],r[59],r[60],r[61],r[62],r[63],r[64]); + } +#endif + + m_state.SetError(set, Write, kret); // Set the current write error for this register set + m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently + return kret; // Return the error code +} + +kern_return_t +DNBArchMachARM::SetEXCState() +{ + int set = e_regSetEXC; + kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_EXCEPTION_STATE, (thread_state_t)&m_state.context.exc, ARM_EXCEPTION_STATE_COUNT); + m_state.SetError(set, Write, kret); // Set the current write error for this register set + m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently + return kret; // Return the error code +} + +kern_return_t +DNBArchMachARM::SetDBGState(bool also_set_on_task) +{ + int set = e_regSetDBG; +#if defined (ARM_DEBUG_STATE32) && (defined (__arm64__) || defined (__aarch64__)) + kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE32, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT); + if (also_set_on_task) + { + kern_return_t task_kret = ::task_set_state (m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE32, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE32_COUNT); + if (task_kret != KERN_SUCCESS) + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to set debug control register state: 0x%8.8x.", kret); + } +#else + kern_return_t kret = ::thread_set_state (m_thread->MachPortNumber(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT); + if (also_set_on_task) + { + kern_return_t task_kret = ::task_set_state (m_thread->Process()->Task().TaskPort(), ARM_DEBUG_STATE, (thread_state_t)&m_state.dbg, ARM_DEBUG_STATE_COUNT); + if (task_kret != KERN_SUCCESS) + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::SetDBGState failed to set debug control register state: 0x%8.8x.", kret); + } +#endif + + m_state.SetError(set, Write, kret); // Set the current write error for this register set + m_state.InvalidateRegisterSetState(set); // Invalidate the current register state in case registers are read back differently + return kret; // Return the error code +} + +void +DNBArchMachARM::ThreadWillResume() +{ + // Do we need to step this thread? If so, let the mach thread tell us so. + if (m_thread->IsStepping()) + { + // This is the primary thread, let the arch do anything it needs + if (NumSupportedHardwareBreakpoints() > 0) + { + if (EnableHardwareSingleStep(true) != KERN_SUCCESS) + { + DNBLogThreaded("DNBArchMachARM::ThreadWillResume() failed to enable hardware single step"); + } + } + } + + // Disable the triggered watchpoint temporarily before we resume. + // Plus, we try to enable hardware single step to execute past the instruction which triggered our watchpoint. + if (m_watchpoint_did_occur) + { + if (m_watchpoint_hw_index >= 0) + { + kern_return_t kret = GetDBGState(false); + if (kret == KERN_SUCCESS && !IsWatchpointEnabled(m_state.dbg, m_watchpoint_hw_index)) { + // The watchpoint might have been disabled by the user. We don't need to do anything at all + // to enable hardware single stepping. + m_watchpoint_did_occur = false; + m_watchpoint_hw_index = -1; + return; + } + + DisableHardwareWatchpoint(m_watchpoint_hw_index, false); + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() DisableHardwareWatchpoint(%d) called", + m_watchpoint_hw_index); + + // Enable hardware single step to move past the watchpoint-triggering instruction. + m_watchpoint_resume_single_step_enabled = (EnableHardwareSingleStep(true) == KERN_SUCCESS); + + // If we are not able to enable single step to move past the watchpoint-triggering instruction, + // at least we should reset the two watchpoint member variables so that the next time around + // this callback function is invoked, the enclosing logical branch is skipped. + if (!m_watchpoint_resume_single_step_enabled) { + // Reset the two watchpoint member variables. + m_watchpoint_did_occur = false; + m_watchpoint_hw_index = -1; + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() failed to enable single step"); + } + else + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::ThreadWillResume() succeeded to enable single step"); + } + } +} + +bool +DNBArchMachARM::ThreadDidStop() +{ + bool success = true; + + m_state.InvalidateRegisterSetState (e_regSetALL); + + if (m_watchpoint_resume_single_step_enabled) + { + // Great! We now disable the hardware single step as well as re-enable the hardware watchpoint. + // See also ThreadWillResume(). + if (EnableHardwareSingleStep(false) == KERN_SUCCESS) + { + if (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) + { + ReenableHardwareWatchpoint(m_watchpoint_hw_index); + m_watchpoint_resume_single_step_enabled = false; + m_watchpoint_did_occur = false; + m_watchpoint_hw_index = -1; + } + else + { + DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but (m_watchpoint_did_occur && m_watchpoint_hw_index >= 0) does not hold!"); + } + } + else + { + DNBLogError("internal error detected: m_watchpoint_resume_step_enabled is true but unable to disable single step!"); + } + } + + // Are we stepping a single instruction? + if (GetGPRState(true) == KERN_SUCCESS) + { + // We are single stepping, was this the primary thread? + if (m_thread->IsStepping()) + { + success = EnableHardwareSingleStep(false) == KERN_SUCCESS; + } + else + { + // The MachThread will automatically restore the suspend count + // in ThreadDidStop(), so we don't need to do anything here if + // we weren't the primary thread the last time + } + } + return success; +} + +bool +DNBArchMachARM::NotifyException(MachException::Data& exc) +{ + switch (exc.exc_type) + { + default: + break; + case EXC_BREAKPOINT: + if (exc.exc_data.size() == 2 && exc.exc_data[0] == EXC_ARM_DA_DEBUG) + { + // The data break address is passed as exc_data[1]. + nub_addr_t addr = exc.exc_data[1]; + // Find the hardware index with the side effect of possibly massaging the + // addr to return the starting address as seen from the debugger side. + uint32_t hw_index = GetHardwareWatchpointHit(addr); + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException watchpoint %d was hit on address 0x%llx", hw_index, (uint64_t) addr); + const int num_watchpoints = NumSupportedHardwareWatchpoints (); + for (int i = 0; i < num_watchpoints; i++) + { + if (LoHi[i] != 0 + && LoHi[i] == hw_index + && LoHi[i] != i + && GetWatchpointAddressByIndex (i) != INVALID_NUB_ADDRESS) + { + addr = GetWatchpointAddressByIndex (i); + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::NotifyException It is a linked watchpoint; rewritten to index %d addr 0x%llx", LoHi[i], (uint64_t) addr); + } + } + if (hw_index != INVALID_NUB_HW_INDEX) + { + m_watchpoint_did_occur = true; + m_watchpoint_hw_index = hw_index; + exc.exc_data[1] = addr; + // Piggyback the hw_index in the exc.data. + exc.exc_data.push_back(hw_index); + } + + return true; + } + break; + } + return false; +} + +bool +DNBArchMachARM::StepNotComplete () +{ + if (m_hw_single_chained_step_addr != INVALID_NUB_ADDRESS) + { + kern_return_t kret = KERN_INVALID_ARGUMENT; + kret = GetGPRState(false); + if (kret == KERN_SUCCESS) + { + if (m_state.context.gpr.__pc == m_hw_single_chained_step_addr) + { + DNBLogThreadedIf(LOG_STEP, "Need to step some more at 0x%8.8llx", (uint64_t) m_hw_single_chained_step_addr); + return true; + } + } + } + + m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS; + return false; +} + +// Set the single step bit in the processor status register. +kern_return_t +DNBArchMachARM::EnableHardwareSingleStep (bool enable) +{ + DNBError err; + DNBLogThreadedIf(LOG_STEP, "%s( enable = %d )", __FUNCTION__, enable); + + err = GetGPRState(false); + + if (err.Fail()) + { + err.LogThreaded("%s: failed to read the GPR registers", __FUNCTION__); + return err.Error(); + } + + err = GetDBGState(false); + + if (err.Fail()) + { + err.LogThreaded("%s: failed to read the DBG registers", __FUNCTION__); + return err.Error(); + } + +// The use of __arm64__ here is not ideal. If debugserver is running on +// an armv8 device, regardless of whether it was built for arch arm or arch arm64, +// it needs to use the MDSCR_EL1 SS bit to single instruction step. + +#if defined (__arm64__) || defined (__aarch64__) + if (enable) + { + DNBLogThreadedIf(LOG_STEP, "%s: Setting MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc); + m_state.dbg.__mdscr_el1 |= 1; // Set bit 0 (single step, SS) in the MDSCR_EL1. + } + else + { + DNBLogThreadedIf(LOG_STEP, "%s: Clearing MDSCR_EL1 Single Step bit at pc 0x%llx", __FUNCTION__, (uint64_t) m_state.context.gpr.__pc); + m_state.dbg.__mdscr_el1 &= ~(1ULL); // Clear bit 0 (single step, SS) in the MDSCR_EL1. + } +#else + const uint32_t i = 0; + if (enable) + { + m_hw_single_chained_step_addr = INVALID_NUB_ADDRESS; + + // Save our previous state + m_dbg_save = m_state.dbg; + // Set a breakpoint that will stop when the PC doesn't match the current one! + m_state.dbg.__bvr[i] = m_state.context.gpr.__pc & 0xFFFFFFFCu; // Set the current PC as the breakpoint address + m_state.dbg.__bcr[i] = BCR_M_IMVA_MISMATCH | // Stop on address mismatch + S_USER | // Stop only in user mode + BCR_ENABLE; // Enable this breakpoint + if (m_state.context.gpr.__cpsr & 0x20) + { + // Thumb breakpoint + if (m_state.context.gpr.__pc & 2) + m_state.dbg.__bcr[i] |= BAS_IMVA_2_3; + else + m_state.dbg.__bcr[i] |= BAS_IMVA_0_1; + + uint16_t opcode; + if (sizeof(opcode) == m_thread->Process()->Task().ReadMemory(m_state.context.gpr.__pc, sizeof(opcode), &opcode)) + { + if (IsThumb32Opcode(opcode)) + { + // 32 bit thumb opcode... + if (m_state.context.gpr.__pc & 2) + { + // We can't take care of a 32 bit thumb instruction single step + // with just IVA mismatching. We will need to chain an extra + // hardware single step in order to complete this single step... + m_hw_single_chained_step_addr = m_state.context.gpr.__pc + 2; + } + else + { + // Extend the number of bits to ignore for the mismatch + m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; + } + } + } + } + else + { + // ARM breakpoint + m_state.dbg.__bcr[i] |= BAS_IMVA_ALL; // Stop when any address bits change + } + + DNBLogThreadedIf(LOG_STEP, "%s: BVR%u=0x%8.8x BCR%u=0x%8.8x", __FUNCTION__, i, m_state.dbg.__bvr[i], i, m_state.dbg.__bcr[i]); + + for (uint32_t j=i+1; j<16; ++j) + { + // Disable all others + m_state.dbg.__bvr[j] = 0; + m_state.dbg.__bcr[j] = 0; + } + } + else + { + // Just restore the state we had before we did single stepping + m_state.dbg = m_dbg_save; + } +#endif + + return SetDBGState(false); +} + +// return 1 if bit "BIT" is set in "value" +static inline uint32_t bit(uint32_t value, uint32_t bit) +{ + return (value >> bit) & 1u; +} + +// return the bitfield "value[msbit:lsbit]". +static inline uint32_t bits(uint32_t value, uint32_t msbit, uint32_t lsbit) +{ + assert(msbit >= lsbit); + uint32_t shift_left = sizeof(value) * 8 - 1 - msbit; + value <<= shift_left; // shift anything above the msbit off of the unsigned edge + value >>= (shift_left + lsbit); // shift it back again down to the lsbit (including undoing any shift from above) + return value; // return our result +} + +bool +DNBArchMachARM::ConditionPassed(uint8_t condition, uint32_t cpsr) +{ + uint32_t cpsr_n = bit(cpsr, 31); // Negative condition code flag + uint32_t cpsr_z = bit(cpsr, 30); // Zero condition code flag + uint32_t cpsr_c = bit(cpsr, 29); // Carry condition code flag + uint32_t cpsr_v = bit(cpsr, 28); // Overflow condition code flag + + switch (condition) { + case COND_EQ: // (0x0) + if (cpsr_z == 1) return true; + break; + case COND_NE: // (0x1) + if (cpsr_z == 0) return true; + break; + case COND_CS: // (0x2) + if (cpsr_c == 1) return true; + break; + case COND_CC: // (0x3) + if (cpsr_c == 0) return true; + break; + case COND_MI: // (0x4) + if (cpsr_n == 1) return true; + break; + case COND_PL: // (0x5) + if (cpsr_n == 0) return true; + break; + case COND_VS: // (0x6) + if (cpsr_v == 1) return true; + break; + case COND_VC: // (0x7) + if (cpsr_v == 0) return true; + break; + case COND_HI: // (0x8) + if ((cpsr_c == 1) && (cpsr_z == 0)) return true; + break; + case COND_LS: // (0x9) + if ((cpsr_c == 0) || (cpsr_z == 1)) return true; + break; + case COND_GE: // (0xA) + if (cpsr_n == cpsr_v) return true; + break; + case COND_LT: // (0xB) + if (cpsr_n != cpsr_v) return true; + break; + case COND_GT: // (0xC) + if ((cpsr_z == 0) && (cpsr_n == cpsr_v)) return true; + break; + case COND_LE: // (0xD) + if ((cpsr_z == 1) || (cpsr_n != cpsr_v)) return true; + break; + default: + return true; + break; + } + + return false; +} + +uint32_t +DNBArchMachARM::NumSupportedHardwareBreakpoints() +{ + // Set the init value to something that will let us know that we need to + // autodetect how many breakpoints are supported dynamically... + static uint32_t g_num_supported_hw_breakpoints = UINT_MAX; + if (g_num_supported_hw_breakpoints == UINT_MAX) + { + // Set this to zero in case we can't tell if there are any HW breakpoints + g_num_supported_hw_breakpoints = 0; + + size_t len; + uint32_t n = 0; + len = sizeof (n); + if (::sysctlbyname("hw.optional.breakpoint", &n, &len, NULL, 0) == 0) + { + g_num_supported_hw_breakpoints = n; + DNBLogThreadedIf(LOG_THREAD, "hw.optional.breakpoint=%u", n); + } + else + { +#if !defined (__arm64__) && !defined (__aarch64__) + // Read the DBGDIDR to get the number of available hardware breakpoints + // However, in some of our current armv7 processors, hardware + // breakpoints/watchpoints were not properly connected. So detect those + // cases using a field in a sysctl. For now we are using "hw.cpusubtype" + // field to distinguish CPU architectures. This is a hack until we can + // get <rdar://problem/6372672> fixed, at which point we will switch to + // using a different sysctl string that will tell us how many BRPs + // are available to us directly without having to read DBGDIDR. + uint32_t register_DBGDIDR; + + asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); + uint32_t numBRPs = bits(register_DBGDIDR, 27, 24); + // Zero is reserved for the BRP count, so don't increment it if it is zero + if (numBRPs > 0) + numBRPs++; + DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number BRP pairs = %u)", register_DBGDIDR, numBRPs); + + if (numBRPs > 0) + { + uint32_t cpusubtype; + len = sizeof(cpusubtype); + // TODO: remove this hack and change to using hw.optional.xx when implmented + if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) + { + DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=%d", cpusubtype); + if (cpusubtype == CPU_SUBTYPE_ARM_V7) + DNBLogThreadedIf(LOG_THREAD, "Hardware breakpoints disabled for armv7 (rdar://problem/6372672)"); + else + g_num_supported_hw_breakpoints = numBRPs; + } + } +#endif + } + } + return g_num_supported_hw_breakpoints; +} + + +uint32_t +DNBArchMachARM::NumSupportedHardwareWatchpoints() +{ + // Set the init value to something that will let us know that we need to + // autodetect how many watchpoints are supported dynamically... + static uint32_t g_num_supported_hw_watchpoints = UINT_MAX; + if (g_num_supported_hw_watchpoints == UINT_MAX) + { + // Set this to zero in case we can't tell if there are any HW breakpoints + g_num_supported_hw_watchpoints = 0; + + + size_t len; + uint32_t n = 0; + len = sizeof (n); + if (::sysctlbyname("hw.optional.watchpoint", &n, &len, NULL, 0) == 0) + { + g_num_supported_hw_watchpoints = n; + DNBLogThreadedIf(LOG_THREAD, "hw.optional.watchpoint=%u", n); + } + else + { +#if !defined (__arm64__) && !defined (__aarch64__) + // Read the DBGDIDR to get the number of available hardware breakpoints + // However, in some of our current armv7 processors, hardware + // breakpoints/watchpoints were not properly connected. So detect those + // cases using a field in a sysctl. For now we are using "hw.cpusubtype" + // field to distinguish CPU architectures. This is a hack until we can + // get <rdar://problem/6372672> fixed, at which point we will switch to + // using a different sysctl string that will tell us how many WRPs + // are available to us directly without having to read DBGDIDR. + + uint32_t register_DBGDIDR; + asm("mrc p14, 0, %0, c0, c0, 0" : "=r" (register_DBGDIDR)); + uint32_t numWRPs = bits(register_DBGDIDR, 31, 28) + 1; + DNBLogThreadedIf(LOG_THREAD, "DBGDIDR=0x%8.8x (number WRP pairs = %u)", register_DBGDIDR, numWRPs); + + if (numWRPs > 0) + { + uint32_t cpusubtype; + size_t len; + len = sizeof(cpusubtype); + // TODO: remove this hack and change to using hw.optional.xx when implmented + if (::sysctlbyname("hw.cpusubtype", &cpusubtype, &len, NULL, 0) == 0) + { + DNBLogThreadedIf(LOG_THREAD, "hw.cpusubtype=0x%d", cpusubtype); + + if (cpusubtype == CPU_SUBTYPE_ARM_V7) + DNBLogThreadedIf(LOG_THREAD, "Hardware watchpoints disabled for armv7 (rdar://problem/6372672)"); + else + g_num_supported_hw_watchpoints = numWRPs; + } + } +#endif + } + } + return g_num_supported_hw_watchpoints; +} + + +uint32_t +DNBArchMachARM::EnableHardwareBreakpoint (nub_addr_t addr, nub_size_t size) +{ + // Make sure our address isn't bogus + if (addr & 1) + return INVALID_NUB_HW_INDEX; + + kern_return_t kret = GetDBGState(false); + + if (kret == KERN_SUCCESS) + { + const uint32_t num_hw_breakpoints = NumSupportedHardwareBreakpoints(); + uint32_t i; + for (i=0; i<num_hw_breakpoints; ++i) + { + if ((m_state.dbg.__bcr[i] & BCR_ENABLE) == 0) + break; // We found an available hw breakpoint slot (in i) + } + + // See if we found an available hw breakpoint slot above + if (i < num_hw_breakpoints) + { + // Make sure bits 1:0 are clear in our address + m_state.dbg.__bvr[i] = addr & ~((nub_addr_t)3); + + if (size == 2 || addr & 2) + { + uint32_t byte_addr_select = (addr & 2) ? BAS_IMVA_2_3 : BAS_IMVA_0_1; + + // We have a thumb breakpoint + // We have an ARM breakpoint + m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch + byte_addr_select | // Set the correct byte address select so we only trigger on the correct opcode + S_USER | // Which modes should this breakpoint stop in? + BCR_ENABLE; // Enable this hardware breakpoint + DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (Thumb)", + (uint64_t)addr, + (uint64_t)size, + i, + i, + m_state.dbg.__bvr[i], + m_state.dbg.__bcr[i]); + } + else if (size == 4) + { + // We have an ARM breakpoint + m_state.dbg.__bcr[i] = BCR_M_IMVA_MATCH | // Stop on address mismatch + BAS_IMVA_ALL | // Stop on any of the four bytes following the IMVA + S_USER | // Which modes should this breakpoint stop in? + BCR_ENABLE; // Enable this hardware breakpoint + DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint( addr = 0x%8.8llx, size = %llu ) - BVR%u/BCR%u = 0x%8.8x / 0x%8.8x (ARM)", + (uint64_t)addr, + (uint64_t)size, + i, + i, + m_state.dbg.__bvr[i], + m_state.dbg.__bcr[i]); + } + + kret = SetDBGState(false); + DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint() SetDBGState() => 0x%8.8x.", kret); + + if (kret == KERN_SUCCESS) + return i; + } + else + { + DNBLogThreadedIf (LOG_BREAKPOINTS, "DNBArchMachARM::EnableHardwareBreakpoint(addr = 0x%8.8llx, size = %llu) => all hardware breakpoint resources are being used.", (uint64_t)addr, (uint64_t)size); + } + } + + return INVALID_NUB_HW_INDEX; +} + +bool +DNBArchMachARM::DisableHardwareBreakpoint (uint32_t hw_index) +{ + kern_return_t kret = GetDBGState(false); + + const uint32_t num_hw_points = NumSupportedHardwareBreakpoints(); + if (kret == KERN_SUCCESS) + { + if (hw_index < num_hw_points) + { + m_state.dbg.__bcr[hw_index] = 0; + DNBLogThreadedIf(LOG_BREAKPOINTS, "DNBArchMachARM::SetHardwareBreakpoint( %u ) - BVR%u = 0x%8.8x BCR%u = 0x%8.8x", + hw_index, + hw_index, + m_state.dbg.__bvr[hw_index], + hw_index, + m_state.dbg.__bcr[hw_index]); + + kret = SetDBGState(false); + + if (kret == KERN_SUCCESS) + return true; + } + } + return false; +} + +// ARM v7 watchpoints may be either word-size or double-word-size. +// It's implementation defined which they can handle. It looks like on an +// armv8 device, armv7 processes can watch dwords. But on a genuine armv7 +// device I tried, only word watchpoints are supported. + +#if defined (__arm64__) || defined (__aarch64__) +#define WATCHPOINTS_ARE_DWORD 1 +#else +#undef WATCHPOINTS_ARE_DWORD +#endif + +uint32_t +DNBArchMachARM::EnableHardwareWatchpoint (nub_addr_t addr, nub_size_t size, bool read, bool write, bool also_set_on_task) +{ + + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu, read = %u, write = %u)", (uint64_t)addr, size, read, write); + + const uint32_t num_hw_watchpoints = NumSupportedHardwareWatchpoints(); + + // Can't watch zero bytes + if (size == 0) + return INVALID_NUB_HW_INDEX; + + // We must watch for either read or write + if (read == false && write == false) + return INVALID_NUB_HW_INDEX; + + // Otherwise, can't watch more than 8 bytes per WVR/WCR pair + if (size > 8) + return INVALID_NUB_HW_INDEX; + + // Treat arm watchpoints as having an 8-byte alignment requirement. You can put a watchpoint on a 4-byte + // offset address but you can only watch 4 bytes with that watchpoint. + + // arm watchpoints on an 8-byte (double word) aligned addr can watch any bytes in that + // 8-byte long region of memory. They can watch the 1st byte, the 2nd byte, 3rd byte, etc, or any + // combination therein by setting the bits in the BAS [12:5] (Byte Address Select) field of + // the DBGWCRn_EL1 reg for the watchpoint. + + // If the MASK [28:24] bits in the DBGWCRn_EL1 allow a single watchpoint to monitor a larger region + // of memory (16 bytes, 32 bytes, or 2GB) but the Byte Address Select bitfield then selects a larger + // range of bytes, instead of individual bytes. See the ARMv8 Debug Architecture manual for details. + // This implementation does not currently use the MASK bits; the largest single region watched by a single + // watchpoint right now is 8-bytes. + +#if defined (WATCHPOINTS_ARE_DWORD) + nub_addr_t aligned_wp_address = addr & ~0x7; + uint32_t addr_dword_offset = addr & 0x7; + const int max_watchpoint_size = 8; +#else + nub_addr_t aligned_wp_address = addr & ~0x3; + uint32_t addr_dword_offset = addr & 0x3; + const int max_watchpoint_size = 4; +#endif + + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint aligned_wp_address is 0x%llx and addr_dword_offset is 0x%x", (uint64_t)aligned_wp_address, addr_dword_offset); + + // Do we need to split up this logical watchpoint into two hardware watchpoint + // registers? + // e.g. a watchpoint of length 4 on address 6. We need do this with + // one watchpoint on address 0 with bytes 6 & 7 being monitored + // one watchpoint on address 8 with bytes 0, 1, 2, 3 being monitored + + if (addr_dword_offset + size > max_watchpoint_size) + { + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(addr = 0x%8.8llx, size = %zu) needs two hardware watchpoints slots to monitor", (uint64_t)addr, size); + int low_watchpoint_size = max_watchpoint_size - addr_dword_offset; + int high_watchpoint_size = addr_dword_offset + size - max_watchpoint_size; + + uint32_t lo = EnableHardwareWatchpoint(addr, low_watchpoint_size, read, write, also_set_on_task); + if (lo == INVALID_NUB_HW_INDEX) + return INVALID_NUB_HW_INDEX; + uint32_t hi = EnableHardwareWatchpoint (aligned_wp_address + max_watchpoint_size, high_watchpoint_size, read, write, also_set_on_task); + if (hi == INVALID_NUB_HW_INDEX) + { + DisableHardwareWatchpoint (lo, also_set_on_task); + return INVALID_NUB_HW_INDEX; + } + // Tag this lo->hi mapping in our database. + LoHi[lo] = hi; + return lo; + } + + // At this point + // 1 aligned_wp_address is the requested address rounded down to 8-byte alignment + // 2 addr_dword_offset is the offset into that double word (8-byte) region that we are watching + // 3 size is the number of bytes within that 8-byte region that we are watching + + // Set the Byte Address Selects bits DBGWCRn_EL1 bits [12:5] based on the above. + // The bit shift and negation operation will give us 0b11 for 2, 0b1111 for 4, etc, up to 0b11111111 for 8. + // then we shift those bits left by the offset into this dword that we are interested in. + // e.g. if we are watching bytes 4,5,6,7 in a dword we want a BAS of 0b11110000. + uint32_t byte_address_select = ((1 << size) - 1) << addr_dword_offset; + + // Read the debug state + kern_return_t kret = GetDBGState(true); + + if (kret == KERN_SUCCESS) + { + // Check to make sure we have the needed hardware support + uint32_t i = 0; + + for (i=0; i<num_hw_watchpoints; ++i) + { + if ((m_state.dbg.__wcr[i] & WCR_ENABLE) == 0) + break; // We found an available hw watchpoint slot (in i) + } + + // See if we found an available hw watchpoint slot above + if (i < num_hw_watchpoints) + { + //DumpDBGState(m_state.dbg); + + // Clear any previous LoHi joined-watchpoint that may have been in use + LoHi[i] = 0; + + // shift our Byte Address Select bits up to the correct bit range for the DBGWCRn_EL1 + byte_address_select = byte_address_select << 5; + + // Make sure bits 1:0 are clear in our address + m_state.dbg.__wvr[i] = aligned_wp_address; // DVA (Data Virtual Address) + m_state.dbg.__wcr[i] = byte_address_select | // Which bytes that follow the DVA that we will watch + S_USER | // Stop only in user mode + (read ? WCR_LOAD : 0) | // Stop on read access? + (write ? WCR_STORE : 0) | // Stop on write access? + WCR_ENABLE; // Enable this watchpoint; + + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() adding watchpoint on address 0x%llx with control register value 0x%x", (uint64_t) m_state.dbg.__wvr[i], (uint32_t) m_state.dbg.__wcr[i]); + + // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here. + + kret = SetDBGState(also_set_on_task); + //DumpDBGState(m_state.dbg); + + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint() SetDBGState() => 0x%8.8x.", kret); + + if (kret == KERN_SUCCESS) + return i; + } + else + { + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint(): All hardware resources (%u) are in use.", num_hw_watchpoints); + } + } + return INVALID_NUB_HW_INDEX; +} + +bool +DNBArchMachARM::ReenableHardwareWatchpoint (uint32_t hw_index) +{ + // If this logical watchpoint # is actually implemented using + // two hardware watchpoint registers, re-enable both of them. + + if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) + { + return ReenableHardwareWatchpoint_helper (hw_index) && ReenableHardwareWatchpoint_helper (LoHi[hw_index]); + } + else + { + return ReenableHardwareWatchpoint_helper (hw_index); + } +} + +bool +DNBArchMachARM::ReenableHardwareWatchpoint_helper (uint32_t hw_index) +{ + kern_return_t kret = GetDBGState(false); + if (kret != KERN_SUCCESS) + return false; + const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); + if (hw_index >= num_hw_points) + return false; + + m_state.dbg.__wvr[hw_index] = m_disabled_watchpoints[hw_index].addr; + m_state.dbg.__wcr[hw_index] = m_disabled_watchpoints[hw_index].control; + + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::EnableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx", + hw_index, + hw_index, + (uint64_t) m_state.dbg.__wvr[hw_index], + hw_index, + (uint64_t) m_state.dbg.__wcr[hw_index]); + + // The kernel will set the MDE_ENABLE bit in the MDSCR_EL1 for us automatically, don't need to do it here. + + kret = SetDBGState(false); + + return (kret == KERN_SUCCESS); +} + +bool +DNBArchMachARM::DisableHardwareWatchpoint (uint32_t hw_index, bool also_set_on_task) +{ + if (hw_index < NumSupportedHardwareWatchpoints() && LoHi[hw_index]) + { + return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task) && DisableHardwareWatchpoint_helper (LoHi[hw_index], also_set_on_task); + } + else + { + return DisableHardwareWatchpoint_helper (hw_index, also_set_on_task); + } +} + +bool +DNBArchMachARM::DisableHardwareWatchpoint_helper (uint32_t hw_index, bool also_set_on_task) +{ + kern_return_t kret = GetDBGState(false); + if (kret != KERN_SUCCESS) + return false; + + const uint32_t num_hw_points = NumSupportedHardwareWatchpoints(); + if (hw_index >= num_hw_points) + return false; + + m_disabled_watchpoints[hw_index].addr = m_state.dbg.__wvr[hw_index]; + m_disabled_watchpoints[hw_index].control = m_state.dbg.__wcr[hw_index]; + + m_state.dbg.__wvr[hw_index] = 0; + m_state.dbg.__wcr[hw_index] = 0; + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::DisableHardwareWatchpoint( %u ) - WVR%u = 0x%8.8llx WCR%u = 0x%8.8llx", + hw_index, + hw_index, + (uint64_t) m_state.dbg.__wvr[hw_index], + hw_index, + (uint64_t) m_state.dbg.__wcr[hw_index]); + + kret = SetDBGState(also_set_on_task); + + return (kret == KERN_SUCCESS); +} + +// Returns -1 if the trailing bit patterns are not one of: +// { 0b???1, 0b??10, 0b?100, 0b1000 }. +static inline +int32_t +LowestBitSet(uint32_t val) +{ + for (unsigned i = 0; i < 4; ++i) { + if (bit(val, i)) + return i; + } + return -1; +} + +// Iterate through the debug registers; return the index of the first watchpoint whose address matches. +// As a side effect, the starting address as understood by the debugger is returned which could be +// different from 'addr' passed as an in/out argument. +uint32_t +DNBArchMachARM::GetHardwareWatchpointHit(nub_addr_t &addr) +{ + // Read the debug state + kern_return_t kret = GetDBGState(true); + //DumpDBGState(m_state.dbg); + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() GetDBGState() => 0x%8.8x.", kret); + DNBLogThreadedIf(LOG_WATCHPOINTS, "DNBArchMachARM::GetHardwareWatchpointHit() addr = 0x%llx", (uint64_t)addr); + + // This is the watchpoint value to match against, i.e., word address. +#if defined (WATCHPOINTS_ARE_DWORD) + nub_addr_t wp_val = addr & ~((nub_addr_t)7); +#else + nub_addr_t wp_val = addr & ~((nub_addr_t)3); +#endif + if (kret == KERN_SUCCESS) + { + DBG &debug_state = m_state.dbg; + uint32_t i, num = NumSupportedHardwareWatchpoints(); + for (i = 0; i < num; ++i) + { + nub_addr_t wp_addr = GetWatchAddress(debug_state, i); + DNBLogThreadedIf(LOG_WATCHPOINTS, + "DNBArchMachARM::GetHardwareWatchpointHit() slot: %u (addr = 0x%llx).", + i, (uint64_t)wp_addr); + if (wp_val == wp_addr) { +#if defined (WATCHPOINTS_ARE_DWORD) + uint32_t byte_mask = bits(debug_state.__wcr[i], 12, 5); +#else + uint32_t byte_mask = bits(debug_state.__wcr[i], 8, 5); +#endif + + // Sanity check the byte_mask, first. + if (LowestBitSet(byte_mask) < 0) + continue; + + // Compute the starting address (from the point of view of the debugger). + addr = wp_addr + LowestBitSet(byte_mask); + return i; + } + } + } + return INVALID_NUB_HW_INDEX; +} + +nub_addr_t +DNBArchMachARM::GetWatchpointAddressByIndex (uint32_t hw_index) +{ + kern_return_t kret = GetDBGState(true); + if (kret != KERN_SUCCESS) + return INVALID_NUB_ADDRESS; + const uint32_t num = NumSupportedHardwareWatchpoints(); + if (hw_index >= num) + return INVALID_NUB_ADDRESS; + if (IsWatchpointEnabled (m_state.dbg, hw_index)) + return GetWatchAddress (m_state.dbg, hw_index); + return INVALID_NUB_ADDRESS; +} + +bool +DNBArchMachARM::IsWatchpointEnabled(const DBG &debug_state, uint32_t hw_index) +{ + // Watchpoint Control Registers, bitfield definitions + // ... + // Bits Value Description + // [0] 0 Watchpoint disabled + // 1 Watchpoint enabled. + return (debug_state.__wcr[hw_index] & 1u); +} + +nub_addr_t +DNBArchMachARM::GetWatchAddress(const DBG &debug_state, uint32_t hw_index) +{ + // Watchpoint Value Registers, bitfield definitions + // Bits Description + // [31:2] Watchpoint value (word address, i.e., 4-byte aligned) + // [1:0] RAZ/SBZP + return bits(debug_state.__wvr[hw_index], 31, 0); +} + +//---------------------------------------------------------------------- +// Register information definitions for 32 bit ARMV7. +//---------------------------------------------------------------------- +enum gpr_regnums +{ + gpr_r0 = 0, + gpr_r1, + gpr_r2, + gpr_r3, + gpr_r4, + gpr_r5, + gpr_r6, + gpr_r7, + gpr_r8, + gpr_r9, + gpr_r10, + gpr_r11, + gpr_r12, + gpr_sp, + gpr_lr, + gpr_pc, + gpr_cpsr +}; + +enum +{ + vfp_s0 = 0, + vfp_s1, + vfp_s2, + vfp_s3, + vfp_s4, + vfp_s5, + vfp_s6, + vfp_s7, + vfp_s8, + vfp_s9, + vfp_s10, + vfp_s11, + vfp_s12, + vfp_s13, + vfp_s14, + vfp_s15, + vfp_s16, + vfp_s17, + vfp_s18, + vfp_s19, + vfp_s20, + vfp_s21, + vfp_s22, + vfp_s23, + vfp_s24, + vfp_s25, + vfp_s26, + vfp_s27, + vfp_s28, + vfp_s29, + vfp_s30, + vfp_s31, + vfp_d0, + vfp_d1, + vfp_d2, + vfp_d3, + vfp_d4, + vfp_d5, + vfp_d6, + vfp_d7, + vfp_d8, + vfp_d9, + vfp_d10, + vfp_d11, + vfp_d12, + vfp_d13, + vfp_d14, + vfp_d15, + vfp_d16, + vfp_d17, + vfp_d18, + vfp_d19, + vfp_d20, + vfp_d21, + vfp_d22, + vfp_d23, + vfp_d24, + vfp_d25, + vfp_d26, + vfp_d27, + vfp_d28, + vfp_d29, + vfp_d30, + vfp_d31, + vfp_q0, + vfp_q1, + vfp_q2, + vfp_q3, + vfp_q4, + vfp_q5, + vfp_q6, + vfp_q7, + vfp_q8, + vfp_q9, + vfp_q10, + vfp_q11, + vfp_q12, + vfp_q13, + vfp_q14, + vfp_q15, +#if defined (__arm64__) || defined (__aarch64__) + vfp_fpsr, + vfp_fpcr, +#else + vfp_fpscr +#endif +}; + +enum +{ + exc_exception, + exc_fsr, + exc_far, +}; + +#define GPR_OFFSET_IDX(idx) (offsetof (DNBArchMachARM::GPR, __r[idx])) +#define GPR_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::GPR, __##reg)) + +#define EXC_OFFSET(reg) (offsetof (DNBArchMachARM::EXC, __##reg) + offsetof (DNBArchMachARM::Context, exc)) + +// These macros will auto define the register name, alt name, register size, +// register offset, encoding, format and native register. This ensures that +// the register state structures are defined correctly and have the correct +// sizes and offsets. +#define DEFINE_GPR_IDX(idx, reg, alt, gen) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_IDX(idx), ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, NULL} +#define DEFINE_GPR_NAME(reg, alt, gen, inval) { e_regSetGPR, gpr_##reg, #reg, alt, Uint, Hex, 4, GPR_OFFSET_NAME(reg), ehframe_##reg, dwarf_##reg, gen, INVALID_NUB_REGNUM, NULL, inval} + +// In case we are debugging to a debug target that the ability to +// change into the protected modes with folded registers (ABT, IRQ, +// FIQ, SYS, USR, etc..), we should invalidate r8-r14 if the CPSR +// gets modified. + +const char * g_invalidate_cpsr[] = { "r8", "r9", "r10", "r11", "r12", "sp", "lr", NULL }; + +// General purpose registers +const DNBRegisterInfo +DNBArchMachARM::g_gpr_registers[] = +{ + DEFINE_GPR_IDX ( 0, r0,"arg1", GENERIC_REGNUM_ARG1 ), + DEFINE_GPR_IDX ( 1, r1,"arg2", GENERIC_REGNUM_ARG2 ), + DEFINE_GPR_IDX ( 2, r2,"arg3", GENERIC_REGNUM_ARG3 ), + DEFINE_GPR_IDX ( 3, r3,"arg4", GENERIC_REGNUM_ARG4 ), + DEFINE_GPR_IDX ( 4, r4, NULL, INVALID_NUB_REGNUM ), + DEFINE_GPR_IDX ( 5, r5, NULL, INVALID_NUB_REGNUM ), + DEFINE_GPR_IDX ( 6, r6, NULL, INVALID_NUB_REGNUM ), + DEFINE_GPR_IDX ( 7, r7, "fp", GENERIC_REGNUM_FP ), + DEFINE_GPR_IDX ( 8, r8, NULL, INVALID_NUB_REGNUM ), + DEFINE_GPR_IDX ( 9, r9, NULL, INVALID_NUB_REGNUM ), + DEFINE_GPR_IDX (10, r10, NULL, INVALID_NUB_REGNUM ), + DEFINE_GPR_IDX (11, r11, NULL, INVALID_NUB_REGNUM ), + DEFINE_GPR_IDX (12, r12, NULL, INVALID_NUB_REGNUM ), + DEFINE_GPR_NAME (sp, "r13", GENERIC_REGNUM_SP, NULL), + DEFINE_GPR_NAME (lr, "r14", GENERIC_REGNUM_RA, NULL), + DEFINE_GPR_NAME (pc, "r15", GENERIC_REGNUM_PC, NULL), + DEFINE_GPR_NAME (cpsr, "flags", GENERIC_REGNUM_FLAGS, g_invalidate_cpsr) +}; + +const char *g_contained_q0 [] { "q0", NULL }; +const char *g_contained_q1 [] { "q1", NULL }; +const char *g_contained_q2 [] { "q2", NULL }; +const char *g_contained_q3 [] { "q3", NULL }; +const char *g_contained_q4 [] { "q4", NULL }; +const char *g_contained_q5 [] { "q5", NULL }; +const char *g_contained_q6 [] { "q6", NULL }; +const char *g_contained_q7 [] { "q7", NULL }; +const char *g_contained_q8 [] { "q8", NULL }; +const char *g_contained_q9 [] { "q9", NULL }; +const char *g_contained_q10[] { "q10", NULL }; +const char *g_contained_q11[] { "q11", NULL }; +const char *g_contained_q12[] { "q12", NULL }; +const char *g_contained_q13[] { "q13", NULL }; +const char *g_contained_q14[] { "q14", NULL }; +const char *g_contained_q15[] { "q15", NULL }; + +const char *g_invalidate_q0[] { "q0", "d0" , "d1" , "s0" , "s1" , "s2" , "s3" , NULL }; +const char *g_invalidate_q1[] { "q1", "d2" , "d3" , "s4" , "s5" , "s6" , "s7" , NULL }; +const char *g_invalidate_q2[] { "q2", "d4" , "d5" , "s8" , "s9" , "s10", "s11", NULL }; +const char *g_invalidate_q3[] { "q3", "d6" , "d7" , "s12", "s13", "s14", "s15", NULL }; +const char *g_invalidate_q4[] { "q4", "d8" , "d9" , "s16", "s17", "s18", "s19", NULL }; +const char *g_invalidate_q5[] { "q5", "d10", "d11", "s20", "s21", "s22", "s23", NULL }; +const char *g_invalidate_q6[] { "q6", "d12", "d13", "s24", "s25", "s26", "s27", NULL }; +const char *g_invalidate_q7[] { "q7", "d14", "d15", "s28", "s29", "s30", "s31", NULL }; +const char *g_invalidate_q8[] { "q8", "d16", "d17", NULL }; +const char *g_invalidate_q9[] { "q9", "d18", "d19", NULL }; +const char *g_invalidate_q10[] { "q10", "d20", "d21", NULL }; +const char *g_invalidate_q11[] { "q11", "d22", "d23", NULL }; +const char *g_invalidate_q12[] { "q12", "d24", "d25", NULL }; +const char *g_invalidate_q13[] { "q13", "d26", "d27", NULL }; +const char *g_invalidate_q14[] { "q14", "d28", "d29", NULL }; +const char *g_invalidate_q15[] { "q15", "d30", "d31", NULL }; + +#define VFP_S_OFFSET_IDX(idx) (((idx) % 4) * 4) // offset into q reg: 0, 4, 8, 12 +#define VFP_D_OFFSET_IDX(idx) (((idx) % 2) * 8) // offset into q reg: 0, 8 +#define VFP_Q_OFFSET_IDX(idx) (VFP_S_OFFSET_IDX ((idx) * 4)) + +#define VFP_OFFSET_NAME(reg) (offsetof (DNBArchMachARM::FPU, __##reg) + offsetof (DNBArchMachARM::Context, vfp)) + +#define FLOAT_FORMAT Float + +#define DEFINE_VFP_S_IDX(idx) e_regSetVFP, vfp_s##idx, "s" #idx, NULL, IEEE754, FLOAT_FORMAT, 4, VFP_S_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_s##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM +#define DEFINE_VFP_D_IDX(idx) e_regSetVFP, vfp_d##idx, "d" #idx, NULL, IEEE754, FLOAT_FORMAT, 8, VFP_D_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_d##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM +#define DEFINE_VFP_Q_IDX(idx) e_regSetVFP, vfp_q##idx, "q" #idx, NULL, Vector, VectorOfUInt8, 16, VFP_Q_OFFSET_IDX(idx), INVALID_NUB_REGNUM, dwarf_q##idx, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM + +// Floating point registers +const DNBRegisterInfo +DNBArchMachARM::g_vfp_registers[] = +{ + { DEFINE_VFP_S_IDX ( 0), g_contained_q0, g_invalidate_q0 }, + { DEFINE_VFP_S_IDX ( 1), g_contained_q0, g_invalidate_q0 }, + { DEFINE_VFP_S_IDX ( 2), g_contained_q0, g_invalidate_q0 }, + { DEFINE_VFP_S_IDX ( 3), g_contained_q0, g_invalidate_q0 }, + { DEFINE_VFP_S_IDX ( 4), g_contained_q1, g_invalidate_q1 }, + { DEFINE_VFP_S_IDX ( 5), g_contained_q1, g_invalidate_q1 }, + { DEFINE_VFP_S_IDX ( 6), g_contained_q1, g_invalidate_q1 }, + { DEFINE_VFP_S_IDX ( 7), g_contained_q1, g_invalidate_q1 }, + { DEFINE_VFP_S_IDX ( 8), g_contained_q2, g_invalidate_q2 }, + { DEFINE_VFP_S_IDX ( 9), g_contained_q2, g_invalidate_q2 }, + { DEFINE_VFP_S_IDX (10), g_contained_q2, g_invalidate_q2 }, + { DEFINE_VFP_S_IDX (11), g_contained_q2, g_invalidate_q2 }, + { DEFINE_VFP_S_IDX (12), g_contained_q3, g_invalidate_q3 }, + { DEFINE_VFP_S_IDX (13), g_contained_q3, g_invalidate_q3 }, + { DEFINE_VFP_S_IDX (14), g_contained_q3, g_invalidate_q3 }, + { DEFINE_VFP_S_IDX (15), g_contained_q3, g_invalidate_q3 }, + { DEFINE_VFP_S_IDX (16), g_contained_q4, g_invalidate_q4 }, + { DEFINE_VFP_S_IDX (17), g_contained_q4, g_invalidate_q4 }, + { DEFINE_VFP_S_IDX (18), g_contained_q4, g_invalidate_q4 }, + { DEFINE_VFP_S_IDX (19), g_contained_q4, g_invalidate_q4 }, + { DEFINE_VFP_S_IDX (20), g_contained_q5, g_invalidate_q5 }, + { DEFINE_VFP_S_IDX (21), g_contained_q5, g_invalidate_q5 }, + { DEFINE_VFP_S_IDX (22), g_contained_q5, g_invalidate_q5 }, + { DEFINE_VFP_S_IDX (23), g_contained_q5, g_invalidate_q5 }, + { DEFINE_VFP_S_IDX (24), g_contained_q6, g_invalidate_q6 }, + { DEFINE_VFP_S_IDX (25), g_contained_q6, g_invalidate_q6 }, + { DEFINE_VFP_S_IDX (26), g_contained_q6, g_invalidate_q6 }, + { DEFINE_VFP_S_IDX (27), g_contained_q6, g_invalidate_q6 }, + { DEFINE_VFP_S_IDX (28), g_contained_q7, g_invalidate_q7 }, + { DEFINE_VFP_S_IDX (29), g_contained_q7, g_invalidate_q7 }, + { DEFINE_VFP_S_IDX (30), g_contained_q7, g_invalidate_q7 }, + { DEFINE_VFP_S_IDX (31), g_contained_q7, g_invalidate_q7 }, + + { DEFINE_VFP_D_IDX (0), g_contained_q0, g_invalidate_q0 }, + { DEFINE_VFP_D_IDX (1), g_contained_q0, g_invalidate_q0 }, + { DEFINE_VFP_D_IDX (2), g_contained_q1, g_invalidate_q1 }, + { DEFINE_VFP_D_IDX (3), g_contained_q1, g_invalidate_q1 }, + { DEFINE_VFP_D_IDX (4), g_contained_q2, g_invalidate_q2 }, + { DEFINE_VFP_D_IDX (5), g_contained_q2, g_invalidate_q2 }, + { DEFINE_VFP_D_IDX (6), g_contained_q3, g_invalidate_q3 }, + { DEFINE_VFP_D_IDX (7), g_contained_q3, g_invalidate_q3 }, + { DEFINE_VFP_D_IDX (8), g_contained_q4, g_invalidate_q4 }, + { DEFINE_VFP_D_IDX (9), g_contained_q4, g_invalidate_q4 }, + { DEFINE_VFP_D_IDX (10), g_contained_q5, g_invalidate_q5 }, + { DEFINE_VFP_D_IDX (11), g_contained_q5, g_invalidate_q5 }, + { DEFINE_VFP_D_IDX (12), g_contained_q6, g_invalidate_q6 }, + { DEFINE_VFP_D_IDX (13), g_contained_q6, g_invalidate_q6 }, + { DEFINE_VFP_D_IDX (14), g_contained_q7, g_invalidate_q7 }, + { DEFINE_VFP_D_IDX (15), g_contained_q7, g_invalidate_q7 }, + { DEFINE_VFP_D_IDX (16), g_contained_q8, g_invalidate_q8 }, + { DEFINE_VFP_D_IDX (17), g_contained_q8, g_invalidate_q8 }, + { DEFINE_VFP_D_IDX (18), g_contained_q9, g_invalidate_q9 }, + { DEFINE_VFP_D_IDX (19), g_contained_q9, g_invalidate_q9 }, + { DEFINE_VFP_D_IDX (20), g_contained_q10, g_invalidate_q10 }, + { DEFINE_VFP_D_IDX (21), g_contained_q10, g_invalidate_q10 }, + { DEFINE_VFP_D_IDX (22), g_contained_q11, g_invalidate_q11 }, + { DEFINE_VFP_D_IDX (23), g_contained_q11, g_invalidate_q11 }, + { DEFINE_VFP_D_IDX (24), g_contained_q12, g_invalidate_q12 }, + { DEFINE_VFP_D_IDX (25), g_contained_q12, g_invalidate_q12 }, + { DEFINE_VFP_D_IDX (26), g_contained_q13, g_invalidate_q13 }, + { DEFINE_VFP_D_IDX (27), g_contained_q13, g_invalidate_q13 }, + { DEFINE_VFP_D_IDX (28), g_contained_q14, g_invalidate_q14 }, + { DEFINE_VFP_D_IDX (29), g_contained_q14, g_invalidate_q14 }, + { DEFINE_VFP_D_IDX (30), g_contained_q15, g_invalidate_q15 }, + { DEFINE_VFP_D_IDX (31), g_contained_q15, g_invalidate_q15 }, + + { DEFINE_VFP_Q_IDX (0), NULL, g_invalidate_q0 }, + { DEFINE_VFP_Q_IDX (1), NULL, g_invalidate_q1 }, + { DEFINE_VFP_Q_IDX (2), NULL, g_invalidate_q2 }, + { DEFINE_VFP_Q_IDX (3), NULL, g_invalidate_q3 }, + { DEFINE_VFP_Q_IDX (4), NULL, g_invalidate_q4 }, + { DEFINE_VFP_Q_IDX (5), NULL, g_invalidate_q5 }, + { DEFINE_VFP_Q_IDX (6), NULL, g_invalidate_q6 }, + { DEFINE_VFP_Q_IDX (7), NULL, g_invalidate_q7 }, + { DEFINE_VFP_Q_IDX (8), NULL, g_invalidate_q8 }, + { DEFINE_VFP_Q_IDX (9), NULL, g_invalidate_q9 }, + { DEFINE_VFP_Q_IDX (10), NULL, g_invalidate_q10 }, + { DEFINE_VFP_Q_IDX (11), NULL, g_invalidate_q11 }, + { DEFINE_VFP_Q_IDX (12), NULL, g_invalidate_q12 }, + { DEFINE_VFP_Q_IDX (13), NULL, g_invalidate_q13 }, + { DEFINE_VFP_Q_IDX (14), NULL, g_invalidate_q14 }, + { DEFINE_VFP_Q_IDX (15), NULL, g_invalidate_q15 }, + +#if defined (__arm64__) || defined (__aarch64__) + { e_regSetVFP, vfp_fpsr, "fpsr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpsr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL }, + { e_regSetVFP, vfp_fpcr, "fpcr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpcr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL } +#else + { e_regSetVFP, vfp_fpscr, "fpscr", NULL, Uint, Hex, 4, VFP_OFFSET_NAME(fpscr), INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, NULL, NULL } +#endif +}; + +// Exception registers + +const DNBRegisterInfo +DNBArchMachARM::g_exc_registers[] = +{ + { e_regSetVFP, exc_exception , "exception" , NULL, Uint, Hex, 4, EXC_OFFSET(exception) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }, + { e_regSetVFP, exc_fsr , "fsr" , NULL, Uint, Hex, 4, EXC_OFFSET(fsr) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM }, + { e_regSetVFP, exc_far , "far" , NULL, Uint, Hex, 4, EXC_OFFSET(far) , INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM, INVALID_NUB_REGNUM } +}; + +// Number of registers in each register set +const size_t DNBArchMachARM::k_num_gpr_registers = sizeof(g_gpr_registers)/sizeof(DNBRegisterInfo); +const size_t DNBArchMachARM::k_num_vfp_registers = sizeof(g_vfp_registers)/sizeof(DNBRegisterInfo); +const size_t DNBArchMachARM::k_num_exc_registers = sizeof(g_exc_registers)/sizeof(DNBRegisterInfo); +const size_t DNBArchMachARM::k_num_all_registers = k_num_gpr_registers + k_num_vfp_registers + k_num_exc_registers; + +//---------------------------------------------------------------------- +// Register set definitions. The first definitions at register set index +// of zero is for all registers, followed by other registers sets. The +// register information for the all register set need not be filled in. +//---------------------------------------------------------------------- +const DNBRegisterSetInfo +DNBArchMachARM::g_reg_sets[] = +{ + { "ARM Registers", NULL, k_num_all_registers }, + { "General Purpose Registers", g_gpr_registers, k_num_gpr_registers }, + { "Floating Point Registers", g_vfp_registers, k_num_vfp_registers }, + { "Exception State Registers", g_exc_registers, k_num_exc_registers } +}; +// Total number of register sets for this architecture +const size_t DNBArchMachARM::k_num_register_sets = sizeof(g_reg_sets)/sizeof(DNBRegisterSetInfo); + + +const DNBRegisterSetInfo * +DNBArchMachARM::GetRegisterSetInfo(nub_size_t *num_reg_sets) +{ + *num_reg_sets = k_num_register_sets; + return g_reg_sets; +} + +bool +DNBArchMachARM::GetRegisterValue(uint32_t set, uint32_t reg, DNBRegisterValue *value) +{ + if (set == REGISTER_SET_GENERIC) + { + switch (reg) + { + case GENERIC_REGNUM_PC: // Program Counter + set = e_regSetGPR; + reg = gpr_pc; + break; + + case GENERIC_REGNUM_SP: // Stack Pointer + set = e_regSetGPR; + reg = gpr_sp; + break; + + case GENERIC_REGNUM_FP: // Frame Pointer + set = e_regSetGPR; + reg = gpr_r7; // is this the right reg? + break; + + case GENERIC_REGNUM_RA: // Return Address + set = e_regSetGPR; + reg = gpr_lr; + break; + + case GENERIC_REGNUM_FLAGS: // Processor flags register + set = e_regSetGPR; + reg = gpr_cpsr; + break; + + default: + return false; + } + } + + if (GetRegisterState(set, false) != KERN_SUCCESS) + return false; + + const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); + if (regInfo) + { + value->info = *regInfo; + switch (set) + { + case e_regSetGPR: + if (reg < k_num_gpr_registers) + { + value->value.uint32 = m_state.context.gpr.__r[reg]; + return true; + } + break; + + case e_regSetVFP: + // "reg" is an index into the floating point register set at this point. + // We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0 + // in the enumerated values for case statement below. + if (reg >= vfp_s0 && reg <= vfp_s31) + { +#if defined (__arm64__) || defined (__aarch64__) + uint32_t *s_reg = ((uint32_t *) &m_state.context.vfp.__v[0]) + (reg - vfp_s0); + memcpy (&value->value.v_uint8, s_reg, 4); +#else + value->value.uint32 = m_state.context.vfp.__r[reg]; +#endif + return true; + } + else if (reg >= vfp_d0 && reg <= vfp_d31) + { +#if defined (__arm64__) || defined (__aarch64__) + uint64_t *d_reg = ((uint64_t *) &m_state.context.vfp.__v[0]) + (reg - vfp_d0); + memcpy (&value->value.v_uint8, d_reg, 8); +#else + uint32_t d_reg_idx = reg - vfp_d0; + uint32_t s_reg_idx = d_reg_idx * 2; + value->value.v_sint32[0] = m_state.context.vfp.__r[s_reg_idx + 0]; + value->value.v_sint32[1] = m_state.context.vfp.__r[s_reg_idx + 1]; +#endif + return true; + } + else if (reg >= vfp_q0 && reg <= vfp_q15) + { +#if defined (__arm64__) || defined (__aarch64__) + memcpy (&value->value.v_uint8, (uint8_t *) &m_state.context.vfp.__v[reg - vfp_q0], 16); +#else + uint32_t s_reg_idx = (reg - vfp_q0) * 4; + memcpy (&value->value.v_uint8, (uint8_t *) &m_state.context.vfp.__r[s_reg_idx], 16); +#endif + return true; + } +#if defined (__arm64__) || defined (__aarch64__) + else if (reg == vfp_fpsr) + { + value->value.uint32 = m_state.context.vfp.__fpsr; + return true; + } + else if (reg == vfp_fpcr) + { + value->value.uint32 = m_state.context.vfp.__fpcr; + return true; + } +#else + else if (reg == vfp_fpscr) + { + value->value.uint32 = m_state.context.vfp.__fpscr; + return true; + } +#endif + break; + + case e_regSetEXC: + if (reg < k_num_exc_registers) + { + value->value.uint32 = (&m_state.context.exc.__exception)[reg]; + return true; + } + break; + } + } + return false; +} + +bool +DNBArchMachARM::SetRegisterValue(uint32_t set, uint32_t reg, const DNBRegisterValue *value) +{ + if (set == REGISTER_SET_GENERIC) + { + switch (reg) + { + case GENERIC_REGNUM_PC: // Program Counter + set = e_regSetGPR; + reg = gpr_pc; + break; + + case GENERIC_REGNUM_SP: // Stack Pointer + set = e_regSetGPR; + reg = gpr_sp; + break; + + case GENERIC_REGNUM_FP: // Frame Pointer + set = e_regSetGPR; + reg = gpr_r7; + break; + + case GENERIC_REGNUM_RA: // Return Address + set = e_regSetGPR; + reg = gpr_lr; + break; + + case GENERIC_REGNUM_FLAGS: // Processor flags register + set = e_regSetGPR; + reg = gpr_cpsr; + break; + + default: + return false; + } + } + + if (GetRegisterState(set, false) != KERN_SUCCESS) + return false; + + bool success = false; + const DNBRegisterInfo *regInfo = m_thread->GetRegisterInfo(set, reg); + if (regInfo) + { + switch (set) + { + case e_regSetGPR: + if (reg < k_num_gpr_registers) + { + m_state.context.gpr.__r[reg] = value->value.uint32; + success = true; + } + break; + + case e_regSetVFP: + // "reg" is an index into the floating point register set at this point. + // We need to translate it up so entry 0 in the fp reg set is the same as vfp_s0 + // in the enumerated values for case statement below. + if (reg >= vfp_s0 && reg <= vfp_s31) + { +#if defined (__arm64__) || defined (__aarch64__) + uint32_t *s_reg = ((uint32_t *) &m_state.context.vfp.__v[0]) + (reg - vfp_s0); + memcpy (s_reg, &value->value.v_uint8, 4); +#else + m_state.context.vfp.__r[reg] = value->value.uint32; +#endif + success = true; + } + else if (reg >= vfp_d0 && reg <= vfp_d31) + { +#if defined (__arm64__) || defined (__aarch64__) + uint64_t *d_reg = ((uint64_t *) &m_state.context.vfp.__v[0]) + (reg - vfp_d0); + memcpy (d_reg, &value->value.v_uint8, 8); +#else + uint32_t d_reg_idx = reg - vfp_d0; + uint32_t s_reg_idx = d_reg_idx * 2; + m_state.context.vfp.__r[s_reg_idx + 0] = value->value.v_sint32[0]; + m_state.context.vfp.__r[s_reg_idx + 1] = value->value.v_sint32[1]; +#endif + success = true; + } + else if (reg >= vfp_q0 && reg <= vfp_q15) + { +#if defined (__arm64__) || defined (__aarch64__) + memcpy ((uint8_t *) &m_state.context.vfp.__v[reg - vfp_q0], &value->value.v_uint8, 16); +#else + uint32_t s_reg_idx = (reg - vfp_q0) * 4; + memcpy ((uint8_t *) &m_state.context.vfp.__r[s_reg_idx], &value->value.v_uint8, 16); +#endif + success = true; + } +#if defined (__arm64__) || defined (__aarch64__) + else if (reg == vfp_fpsr) + { + m_state.context.vfp.__fpsr = value->value.uint32; + success = true; + } + else if (reg == vfp_fpcr) + { + m_state.context.vfp.__fpcr = value->value.uint32; + success = true; + } +#else + else if (reg == vfp_fpscr) + { + m_state.context.vfp.__fpscr = value->value.uint32; + success = true; + } +#endif + break; + + case e_regSetEXC: + if (reg < k_num_exc_registers) + { + (&m_state.context.exc.__exception)[reg] = value->value.uint32; + success = true; + } + break; + } + + } + if (success) + return SetRegisterState(set) == KERN_SUCCESS; + return false; +} + +kern_return_t +DNBArchMachARM::GetRegisterState(int set, bool force) +{ + switch (set) + { + case e_regSetALL: return GetGPRState(force) | + GetVFPState(force) | + GetEXCState(force) | + GetDBGState(force); + case e_regSetGPR: return GetGPRState(force); + case e_regSetVFP: return GetVFPState(force); + case e_regSetEXC: return GetEXCState(force); + case e_regSetDBG: return GetDBGState(force); + default: break; + } + return KERN_INVALID_ARGUMENT; +} + +kern_return_t +DNBArchMachARM::SetRegisterState(int set) +{ + // Make sure we have a valid context to set. + kern_return_t err = GetRegisterState(set, false); + if (err != KERN_SUCCESS) + return err; + + switch (set) + { + case e_regSetALL: return SetGPRState() | + SetVFPState() | + SetEXCState() | + SetDBGState(false); + case e_regSetGPR: return SetGPRState(); + case e_regSetVFP: return SetVFPState(); + case e_regSetEXC: return SetEXCState(); + case e_regSetDBG: return SetDBGState(false); + default: break; + } + return KERN_INVALID_ARGUMENT; +} + +bool +DNBArchMachARM::RegisterSetStateIsValid (int set) const +{ + return m_state.RegsAreValid(set); +} + + +nub_size_t +DNBArchMachARM::GetRegisterContext (void *buf, nub_size_t buf_len) +{ + nub_size_t size = sizeof (m_state.context.gpr) + + sizeof (m_state.context.vfp) + + sizeof (m_state.context.exc); + + if (buf && buf_len) + { + if (size > buf_len) + size = buf_len; + + bool force = false; + if (GetGPRState(force) | GetVFPState(force) | GetEXCState(force)) + return 0; + + // Copy each struct individually to avoid any padding that might be between the structs in m_state.context + uint8_t *p = (uint8_t *)buf; + ::memcpy (p, &m_state.context.gpr, sizeof(m_state.context.gpr)); + p += sizeof(m_state.context.gpr); + ::memcpy (p, &m_state.context.vfp, sizeof(m_state.context.vfp)); + p += sizeof(m_state.context.vfp); + ::memcpy (p, &m_state.context.exc, sizeof(m_state.context.exc)); + p += sizeof(m_state.context.exc); + + size_t bytes_written = p - (uint8_t *)buf; + UNUSED_IF_ASSERT_DISABLED(bytes_written); + assert (bytes_written == size); + + } + DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::GetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size); + // Return the size of the register context even if NULL was passed in + return size; +} + +nub_size_t +DNBArchMachARM::SetRegisterContext (const void *buf, nub_size_t buf_len) +{ + nub_size_t size = sizeof (m_state.context.gpr) + + sizeof (m_state.context.vfp) + + sizeof (m_state.context.exc); + + if (buf == NULL || buf_len == 0) + size = 0; + + if (size) + { + if (size > buf_len) + size = buf_len; + + // Copy each struct individually to avoid any padding that might be between the structs in m_state.context + uint8_t *p = (uint8_t *)buf; + ::memcpy (&m_state.context.gpr, p, sizeof(m_state.context.gpr)); + p += sizeof(m_state.context.gpr); + ::memcpy (&m_state.context.vfp, p, sizeof(m_state.context.vfp)); + p += sizeof(m_state.context.vfp); + ::memcpy (&m_state.context.exc, p, sizeof(m_state.context.exc)); + p += sizeof(m_state.context.exc); + + size_t bytes_written = p - (uint8_t *)buf; + UNUSED_IF_ASSERT_DISABLED(bytes_written); + assert (bytes_written == size); + + if (SetGPRState() | SetVFPState() | SetEXCState()) + return 0; + } + DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SetRegisterContext (buf = %p, len = %llu) => %llu", buf, (uint64_t)buf_len, (uint64_t)size); + return size; +} + + +uint32_t +DNBArchMachARM::SaveRegisterState () +{ + kern_return_t kret = ::thread_abort_safely(m_thread->MachPortNumber()); + DNBLogThreadedIf (LOG_THREAD, "thread = 0x%4.4x calling thread_abort_safely (tid) => %u (SetGPRState() for stop_count = %u)", m_thread->MachPortNumber(), kret, m_thread->Process()->StopCount()); + + // Always re-read the registers because above we call thread_abort_safely(); + bool force = true; + + if ((kret = GetGPRState(force)) != KERN_SUCCESS) + { + DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: GPR regs failed to read: %u ", kret); + } + else if ((kret = GetVFPState(force)) != KERN_SUCCESS) + { + DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::SaveRegisterState () error: %s regs failed to read: %u", "VFP", kret); + } + else + { + const uint32_t save_id = GetNextRegisterStateSaveID (); + m_saved_register_states[save_id] = m_state.context; + return save_id; + } + return UINT32_MAX; +} + +bool +DNBArchMachARM::RestoreRegisterState (uint32_t save_id) +{ + SaveRegisterStates::iterator pos = m_saved_register_states.find(save_id); + if (pos != m_saved_register_states.end()) + { + m_state.context.gpr = pos->second.gpr; + m_state.context.vfp = pos->second.vfp; + kern_return_t kret; + bool success = true; + if ((kret = SetGPRState()) != KERN_SUCCESS) + { + DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::RestoreRegisterState (save_id = %u) error: GPR regs failed to write: %u", save_id, kret); + success = false; + } + else if ((kret = SetVFPState()) != KERN_SUCCESS) + { + DNBLogThreadedIf (LOG_THREAD, "DNBArchMachARM::RestoreRegisterState (save_id = %u) error: %s regs failed to write: %u", save_id, "VFP", kret); + success = false; + } + m_saved_register_states.erase(pos); + return success; + } + return false; +} + + +#endif // #if defined (__arm__) + |