diff options
Diffstat (limited to 'utils/TableGen/DAGISelEmitter.cpp')
-rw-r--r-- | utils/TableGen/DAGISelEmitter.cpp | 2131 |
1 files changed, 2131 insertions, 0 deletions
diff --git a/utils/TableGen/DAGISelEmitter.cpp b/utils/TableGen/DAGISelEmitter.cpp new file mode 100644 index 0000000000000..0e2e61596f69c --- /dev/null +++ b/utils/TableGen/DAGISelEmitter.cpp @@ -0,0 +1,2131 @@ +//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This tablegen backend emits a DAG instruction selector. +// +//===----------------------------------------------------------------------===// + +#include "DAGISelEmitter.h" +#include "Record.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Streams.h" +#include <algorithm> +#include <deque> +using namespace llvm; + +namespace { + cl::opt<bool> + GenDebug("gen-debug", cl::desc("Generate debug code"), + cl::init(false)); +} + +//===----------------------------------------------------------------------===// +// DAGISelEmitter Helper methods +// + +/// NodeIsComplexPattern - return true if N is a leaf node and a subclass of +/// ComplexPattern. +static bool NodeIsComplexPattern(TreePatternNode *N) { + return (N->isLeaf() && + dynamic_cast<DefInit*>(N->getLeafValue()) && + static_cast<DefInit*>(N->getLeafValue())->getDef()-> + isSubClassOf("ComplexPattern")); +} + +/// NodeGetComplexPattern - return the pointer to the ComplexPattern if N +/// is a leaf node and a subclass of ComplexPattern, else it returns NULL. +static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, + CodeGenDAGPatterns &CGP) { + if (N->isLeaf() && + dynamic_cast<DefInit*>(N->getLeafValue()) && + static_cast<DefInit*>(N->getLeafValue())->getDef()-> + isSubClassOf("ComplexPattern")) { + return &CGP.getComplexPattern(static_cast<DefInit*>(N->getLeafValue()) + ->getDef()); + } + return NULL; +} + +/// getPatternSize - Return the 'size' of this pattern. We want to match large +/// patterns before small ones. This is used to determine the size of a +/// pattern. +static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) { + assert((EMVT::isExtIntegerInVTs(P->getExtTypes()) || + EMVT::isExtFloatingPointInVTs(P->getExtTypes()) || + P->getExtTypeNum(0) == MVT::isVoid || + P->getExtTypeNum(0) == MVT::Flag || + P->getExtTypeNum(0) == MVT::iPTR || + P->getExtTypeNum(0) == MVT::iPTRAny) && + "Not a valid pattern node to size!"); + unsigned Size = 3; // The node itself. + // If the root node is a ConstantSDNode, increases its size. + // e.g. (set R32:$dst, 0). + if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) + Size += 2; + + // FIXME: This is a hack to statically increase the priority of patterns + // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. + // Later we can allow complexity / cost for each pattern to be (optionally) + // specified. To get best possible pattern match we'll need to dynamically + // calculate the complexity of all patterns a dag can potentially map to. + const ComplexPattern *AM = NodeGetComplexPattern(P, CGP); + if (AM) + Size += AM->getNumOperands() * 3; + + // If this node has some predicate function that must match, it adds to the + // complexity of this node. + if (!P->getPredicateFns().empty()) + ++Size; + + // Count children in the count if they are also nodes. + for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = P->getChild(i); + if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) + Size += getPatternSize(Child, CGP); + else if (Child->isLeaf()) { + if (dynamic_cast<IntInit*>(Child->getLeafValue())) + Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). + else if (NodeIsComplexPattern(Child)) + Size += getPatternSize(Child, CGP); + else if (!Child->getPredicateFns().empty()) + ++Size; + } + } + + return Size; +} + +/// getResultPatternCost - Compute the number of instructions for this pattern. +/// This is a temporary hack. We should really include the instruction +/// latencies in this calculation. +static unsigned getResultPatternCost(TreePatternNode *P, + CodeGenDAGPatterns &CGP) { + if (P->isLeaf()) return 0; + + unsigned Cost = 0; + Record *Op = P->getOperator(); + if (Op->isSubClassOf("Instruction")) { + Cost++; + CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName()); + if (II.usesCustomDAGSchedInserter) + Cost += 10; + } + for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) + Cost += getResultPatternCost(P->getChild(i), CGP); + return Cost; +} + +/// getResultPatternCodeSize - Compute the code size of instructions for this +/// pattern. +static unsigned getResultPatternSize(TreePatternNode *P, + CodeGenDAGPatterns &CGP) { + if (P->isLeaf()) return 0; + + unsigned Cost = 0; + Record *Op = P->getOperator(); + if (Op->isSubClassOf("Instruction")) { + Cost += Op->getValueAsInt("CodeSize"); + } + for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) + Cost += getResultPatternSize(P->getChild(i), CGP); + return Cost; +} + +// PatternSortingPredicate - return true if we prefer to match LHS before RHS. +// In particular, we want to match maximal patterns first and lowest cost within +// a particular complexity first. +struct PatternSortingPredicate { + PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {} + CodeGenDAGPatterns &CGP; + + typedef std::pair<unsigned, std::string> CodeLine; + typedef std::vector<CodeLine> CodeList; + typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList; + + bool operator()(const std::pair<const PatternToMatch*, CodeList> &LHSPair, + const std::pair<const PatternToMatch*, CodeList> &RHSPair) { + const PatternToMatch *LHS = LHSPair.first; + const PatternToMatch *RHS = RHSPair.first; + + unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP); + unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP); + LHSSize += LHS->getAddedComplexity(); + RHSSize += RHS->getAddedComplexity(); + if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost + if (LHSSize < RHSSize) return false; + + // If the patterns have equal complexity, compare generated instruction cost + unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP); + unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP); + if (LHSCost < RHSCost) return true; + if (LHSCost > RHSCost) return false; + + return getResultPatternSize(LHS->getDstPattern(), CGP) < + getResultPatternSize(RHS->getDstPattern(), CGP); + } +}; + +/// getRegisterValueType - Look up and return the ValueType of the specified +/// register. If the register is a member of multiple register classes which +/// have different associated types, return MVT::Other. +static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { + bool FoundRC = false; + MVT::SimpleValueType VT = MVT::Other; + const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses(); + std::vector<CodeGenRegisterClass>::const_iterator RC; + std::vector<Record*>::const_iterator Element; + + for (RC = RCs.begin() ; RC != RCs.end() ; RC++) { + Element = find((*RC).Elements.begin(), (*RC).Elements.end(), R); + if (Element != (*RC).Elements.end()) { + if (!FoundRC) { + FoundRC = true; + VT = (*RC).getValueTypeNum(0); + } else { + // In multiple RC's + if (VT != (*RC).getValueTypeNum(0)) { + // Types of the RC's do not agree. Return MVT::Other. The + // target is responsible for handling this. + return MVT::Other; + } + } + } + } + return VT; +} + + +/// RemoveAllTypes - A quick recursive walk over a pattern which removes all +/// type information from it. +static void RemoveAllTypes(TreePatternNode *N) { + N->removeTypes(); + if (!N->isLeaf()) + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) + RemoveAllTypes(N->getChild(i)); +} + +/// NodeHasProperty - return true if TreePatternNode has the specified +/// property. +static bool NodeHasProperty(TreePatternNode *N, SDNP Property, + CodeGenDAGPatterns &CGP) { + if (N->isLeaf()) { + const ComplexPattern *CP = NodeGetComplexPattern(N, CGP); + if (CP) + return CP->hasProperty(Property); + return false; + } + Record *Operator = N->getOperator(); + if (!Operator->isSubClassOf("SDNode")) return false; + + return CGP.getSDNodeInfo(Operator).hasProperty(Property); +} + +static bool PatternHasProperty(TreePatternNode *N, SDNP Property, + CodeGenDAGPatterns &CGP) { + if (NodeHasProperty(N, Property, CGP)) + return true; + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = N->getChild(i); + if (PatternHasProperty(Child, Property, CGP)) + return true; + } + + return false; +} + +static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) { + return CGP.getSDNodeInfo(Op).getEnumName(); +} + +static +bool DisablePatternForFastISel(TreePatternNode *N, CodeGenDAGPatterns &CGP) { + bool isStore = !N->isLeaf() && + getOpcodeName(N->getOperator(), CGP) == "ISD::STORE"; + if (!isStore && NodeHasProperty(N, SDNPHasChain, CGP)) + return false; + + bool HasChain = false; + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { + TreePatternNode *Child = N->getChild(i); + if (PatternHasProperty(Child, SDNPHasChain, CGP)) { + HasChain = true; + break; + } + } + return HasChain; +} + +//===----------------------------------------------------------------------===// +// Node Transformation emitter implementation. +// +void DAGISelEmitter::EmitNodeTransforms(std::ostream &OS) { + // Walk the pattern fragments, adding them to a map, which sorts them by + // name. + typedef std::map<std::string, CodeGenDAGPatterns::NodeXForm> NXsByNameTy; + NXsByNameTy NXsByName; + + for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end(); + I != E; ++I) + NXsByName.insert(std::make_pair(I->first->getName(), I->second)); + + OS << "\n// Node transformations.\n"; + + for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end(); + I != E; ++I) { + Record *SDNode = I->second.first; + std::string Code = I->second.second; + + if (Code.empty()) continue; // Empty code? Skip it. + + std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName(); + const char *C2 = ClassName == "SDNode" ? "N" : "inN"; + + OS << "inline SDValue Transform_" << I->first << "(SDNode *" << C2 + << ") {\n"; + if (ClassName != "SDNode") + OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; + OS << Code << "\n}\n"; + } +} + +//===----------------------------------------------------------------------===// +// Predicate emitter implementation. +// + +void DAGISelEmitter::EmitPredicateFunctions(std::ostream &OS) { + OS << "\n// Predicate functions.\n"; + + // Walk the pattern fragments, adding them to a map, which sorts them by + // name. + typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy; + PFsByNameTy PFsByName; + + for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end(); + I != E; ++I) + PFsByName.insert(std::make_pair(I->first->getName(), *I)); + + + for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end(); + I != E; ++I) { + Record *PatFragRecord = I->second.first;// Record that derives from PatFrag. + TreePattern *P = I->second.second; + + // If there is a code init for this fragment, emit the predicate code. + std::string Code = PatFragRecord->getValueAsCode("Predicate"); + if (Code.empty()) continue; + + if (P->getOnlyTree()->isLeaf()) + OS << "inline bool Predicate_" << PatFragRecord->getName() + << "(SDNode *N) {\n"; + else { + std::string ClassName = + CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); + const char *C2 = ClassName == "SDNode" ? "N" : "inN"; + + OS << "inline bool Predicate_" << PatFragRecord->getName() + << "(SDNode *" << C2 << ") {\n"; + if (ClassName != "SDNode") + OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; + } + OS << Code << "\n}\n"; + } + + OS << "\n\n"; +} + + +//===----------------------------------------------------------------------===// +// PatternCodeEmitter implementation. +// +class PatternCodeEmitter { +private: + CodeGenDAGPatterns &CGP; + + // Predicates. + std::string PredicateCheck; + // Pattern cost. + unsigned Cost; + // Instruction selector pattern. + TreePatternNode *Pattern; + // Matched instruction. + TreePatternNode *Instruction; + + // Node to name mapping + std::map<std::string, std::string> VariableMap; + // Node to operator mapping + std::map<std::string, Record*> OperatorMap; + // Name of the folded node which produces a flag. + std::pair<std::string, unsigned> FoldedFlag; + // Names of all the folded nodes which produce chains. + std::vector<std::pair<std::string, unsigned> > FoldedChains; + // Original input chain(s). + std::vector<std::pair<std::string, std::string> > OrigChains; + std::set<std::string> Duplicates; + + /// LSI - Load/Store information. + /// Save loads/stores matched by a pattern, and generate a MemOperandSDNode + /// for each memory access. This facilitates the use of AliasAnalysis in + /// the backend. + std::vector<std::string> LSI; + + /// GeneratedCode - This is the buffer that we emit code to. The first int + /// indicates whether this is an exit predicate (something that should be + /// tested, and if true, the match fails) [when 1], or normal code to emit + /// [when 0], or initialization code to emit [when 2]. + std::vector<std::pair<unsigned, std::string> > &GeneratedCode; + /// GeneratedDecl - This is the set of all SDValue declarations needed for + /// the set of patterns for each top-level opcode. + std::set<std::string> &GeneratedDecl; + /// TargetOpcodes - The target specific opcodes used by the resulting + /// instructions. + std::vector<std::string> &TargetOpcodes; + std::vector<std::string> &TargetVTs; + /// OutputIsVariadic - Records whether the instruction output pattern uses + /// variable_ops. This requires that the Emit function be passed an + /// additional argument to indicate where the input varargs operands + /// begin. + bool &OutputIsVariadic; + /// NumInputRootOps - Records the number of operands the root node of the + /// input pattern has. This information is used in the generated code to + /// pass to Emit functions when variable_ops processing is needed. + unsigned &NumInputRootOps; + + std::string ChainName; + unsigned TmpNo; + unsigned OpcNo; + unsigned VTNo; + + void emitCheck(const std::string &S) { + if (!S.empty()) + GeneratedCode.push_back(std::make_pair(1, S)); + } + void emitCode(const std::string &S) { + if (!S.empty()) + GeneratedCode.push_back(std::make_pair(0, S)); + } + void emitInit(const std::string &S) { + if (!S.empty()) + GeneratedCode.push_back(std::make_pair(2, S)); + } + void emitDecl(const std::string &S) { + assert(!S.empty() && "Invalid declaration"); + GeneratedDecl.insert(S); + } + void emitOpcode(const std::string &Opc) { + TargetOpcodes.push_back(Opc); + OpcNo++; + } + void emitVT(const std::string &VT) { + TargetVTs.push_back(VT); + VTNo++; + } +public: + PatternCodeEmitter(CodeGenDAGPatterns &cgp, std::string predcheck, + TreePatternNode *pattern, TreePatternNode *instr, + std::vector<std::pair<unsigned, std::string> > &gc, + std::set<std::string> &gd, + std::vector<std::string> &to, + std::vector<std::string> &tv, + bool &oiv, + unsigned &niro) + : CGP(cgp), PredicateCheck(predcheck), Pattern(pattern), Instruction(instr), + GeneratedCode(gc), GeneratedDecl(gd), + TargetOpcodes(to), TargetVTs(tv), + OutputIsVariadic(oiv), NumInputRootOps(niro), + TmpNo(0), OpcNo(0), VTNo(0) {} + + /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo + /// if the match fails. At this point, we already know that the opcode for N + /// matches, and the SDNode for the result has the RootName specified name. + void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, + const std::string &RootName, const std::string &ChainSuffix, + bool &FoundChain) { + + // Save loads/stores matched by a pattern. + if (!N->isLeaf() && N->getName().empty()) { + if (NodeHasProperty(N, SDNPMemOperand, CGP)) + LSI.push_back(RootName); + } + + bool isRoot = (P == NULL); + // Emit instruction predicates. Each predicate is just a string for now. + if (isRoot) { + // Record input varargs info. + NumInputRootOps = N->getNumChildren(); + + if (DisablePatternForFastISel(N, CGP)) + emitCheck("OptLevel != CodeGenOpt::None"); + + emitCheck(PredicateCheck); + } + + if (N->isLeaf()) { + if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { + emitCheck("cast<ConstantSDNode>(" + RootName + + ")->getSExtValue() == INT64_C(" + + itostr(II->getValue()) + ")"); + return; + } else if (!NodeIsComplexPattern(N)) { + assert(0 && "Cannot match this as a leaf value!"); + abort(); + } + } + + // If this node has a name associated with it, capture it in VariableMap. If + // we already saw this in the pattern, emit code to verify dagness. + if (!N->getName().empty()) { + std::string &VarMapEntry = VariableMap[N->getName()]; + if (VarMapEntry.empty()) { + VarMapEntry = RootName; + } else { + // If we get here, this is a second reference to a specific name. Since + // we already have checked that the first reference is valid, we don't + // have to recursively match it, just check that it's the same as the + // previously named thing. + emitCheck(VarMapEntry + " == " + RootName); + return; + } + + if (!N->isLeaf()) + OperatorMap[N->getName()] = N->getOperator(); + } + + + // Emit code to load the child nodes and match their contents recursively. + unsigned OpNo = 0; + bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP); + bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP); + bool EmittedUseCheck = false; + if (HasChain) { + if (NodeHasChain) + OpNo = 1; + if (!isRoot) { + // Multiple uses of actual result? + emitCheck(RootName + ".hasOneUse()"); + EmittedUseCheck = true; + if (NodeHasChain) { + // If the immediate use can somehow reach this node through another + // path, then can't fold it either or it will create a cycle. + // e.g. In the following diagram, XX can reach ld through YY. If + // ld is folded into XX, then YY is both a predecessor and a successor + // of XX. + // + // [ld] + // ^ ^ + // | | + // / \--- + // / [YY] + // | ^ + // [XX]-------| + bool NeedCheck = P != Pattern; + if (!NeedCheck) { + const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator()); + NeedCheck = + P->getOperator() == CGP.get_intrinsic_void_sdnode() || + P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || + P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || + PInfo.getNumOperands() > 1 || + PInfo.hasProperty(SDNPHasChain) || + PInfo.hasProperty(SDNPInFlag) || + PInfo.hasProperty(SDNPOptInFlag); + } + + if (NeedCheck) { + std::string ParentName(RootName.begin(), RootName.end()-1); + emitCheck("IsLegalAndProfitableToFold(" + RootName + + ".getNode(), " + ParentName + ".getNode(), N.getNode())"); + } + } + } + + if (NodeHasChain) { + if (FoundChain) { + emitCheck("(" + ChainName + ".getNode() == " + RootName + ".getNode() || " + "IsChainCompatible(" + ChainName + ".getNode(), " + + RootName + ".getNode()))"); + OrigChains.push_back(std::make_pair(ChainName, RootName)); + } else + FoundChain = true; + ChainName = "Chain" + ChainSuffix; + emitInit("SDValue " + ChainName + " = " + RootName + + ".getOperand(0);"); + } + } + + // Don't fold any node which reads or writes a flag and has multiple uses. + // FIXME: We really need to separate the concepts of flag and "glue". Those + // real flag results, e.g. X86CMP output, can have multiple uses. + // FIXME: If the optional incoming flag does not exist. Then it is ok to + // fold it. + if (!isRoot && + (PatternHasProperty(N, SDNPInFlag, CGP) || + PatternHasProperty(N, SDNPOptInFlag, CGP) || + PatternHasProperty(N, SDNPOutFlag, CGP))) { + if (!EmittedUseCheck) { + // Multiple uses of actual result? + emitCheck(RootName + ".hasOneUse()"); + } + } + + // If there are node predicates for this, emit the calls. + for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) + emitCheck(N->getPredicateFns()[i] + "(" + RootName + ".getNode())"); + + // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is + // a constant without a predicate fn that has more that one bit set, handle + // this as a special case. This is usually for targets that have special + // handling of certain large constants (e.g. alpha with it's 8/16/32-bit + // handling stuff). Using these instructions is often far more efficient + // than materializing the constant. Unfortunately, both the instcombiner + // and the dag combiner can often infer that bits are dead, and thus drop + // them from the mask in the dag. For example, it might turn 'AND X, 255' + // into 'AND X, 254' if it knows the low bit is set. Emit code that checks + // to handle this. + if (!N->isLeaf() && + (N->getOperator()->getName() == "and" || + N->getOperator()->getName() == "or") && + N->getChild(1)->isLeaf() && + N->getChild(1)->getPredicateFns().empty()) { + if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) { + if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. + emitInit("SDValue " + RootName + "0" + " = " + + RootName + ".getOperand(" + utostr(0) + ");"); + emitInit("SDValue " + RootName + "1" + " = " + + RootName + ".getOperand(" + utostr(1) + ");"); + + unsigned NTmp = TmpNo++; + emitCode("ConstantSDNode *Tmp" + utostr(NTmp) + + " = dyn_cast<ConstantSDNode>(" + RootName + "1);"); + emitCheck("Tmp" + utostr(NTmp)); + const char *MaskPredicate = N->getOperator()->getName() == "or" + ? "CheckOrMask(" : "CheckAndMask("; + emitCheck(MaskPredicate + RootName + "0, Tmp" + utostr(NTmp) + + ", INT64_C(" + itostr(II->getValue()) + "))"); + + EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), RootName, + ChainSuffix + utostr(0), FoundChain); + return; + } + } + } + + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { + emitInit("SDValue " + RootName + utostr(OpNo) + " = " + + RootName + ".getOperand(" +utostr(OpNo) + ");"); + + EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), RootName, + ChainSuffix + utostr(OpNo), FoundChain); + } + + // Handle cases when root is a complex pattern. + const ComplexPattern *CP; + if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) { + std::string Fn = CP->getSelectFunc(); + unsigned NumOps = CP->getNumOperands(); + for (unsigned i = 0; i < NumOps; ++i) { + emitDecl("CPTmp" + RootName + "_" + utostr(i)); + emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";"); + } + if (CP->hasProperty(SDNPHasChain)) { + emitDecl("CPInChain"); + emitDecl("Chain" + ChainSuffix); + emitCode("SDValue CPInChain;"); + emitCode("SDValue Chain" + ChainSuffix + ";"); + } + + std::string Code = Fn + "(" + RootName + ", " + RootName; + for (unsigned i = 0; i < NumOps; i++) + Code += ", CPTmp" + RootName + "_" + utostr(i); + if (CP->hasProperty(SDNPHasChain)) { + ChainName = "Chain" + ChainSuffix; + Code += ", CPInChain, Chain" + ChainSuffix; + } + emitCheck(Code + ")"); + } + } + + void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent, + const std::string &RootName, + const std::string &ParentRootName, + const std::string &ChainSuffix, bool &FoundChain) { + if (!Child->isLeaf()) { + // If it's not a leaf, recursively match. + const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator()); + emitCheck(RootName + ".getOpcode() == " + + CInfo.getEnumName()); + EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain); + bool HasChain = false; + if (NodeHasProperty(Child, SDNPHasChain, CGP)) { + HasChain = true; + FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults())); + } + if (NodeHasProperty(Child, SDNPOutFlag, CGP)) { + assert(FoldedFlag.first == "" && FoldedFlag.second == 0 && + "Pattern folded multiple nodes which produce flags?"); + FoldedFlag = std::make_pair(RootName, + CInfo.getNumResults() + (unsigned)HasChain); + } + } else { + // If this child has a name associated with it, capture it in VarMap. If + // we already saw this in the pattern, emit code to verify dagness. + if (!Child->getName().empty()) { + std::string &VarMapEntry = VariableMap[Child->getName()]; + if (VarMapEntry.empty()) { + VarMapEntry = RootName; + } else { + // If we get here, this is a second reference to a specific name. + // Since we already have checked that the first reference is valid, + // we don't have to recursively match it, just check that it's the + // same as the previously named thing. + emitCheck(VarMapEntry + " == " + RootName); + Duplicates.insert(RootName); + return; + } + } + + // Handle leaves of various types. + if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { + Record *LeafRec = DI->getDef(); + if (LeafRec->isSubClassOf("RegisterClass") || + LeafRec->getName() == "ptr_rc") { + // Handle register references. Nothing to do here. + } else if (LeafRec->isSubClassOf("Register")) { + // Handle register references. + } else if (LeafRec->isSubClassOf("ComplexPattern")) { + // Handle complex pattern. + const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP); + std::string Fn = CP->getSelectFunc(); + unsigned NumOps = CP->getNumOperands(); + for (unsigned i = 0; i < NumOps; ++i) { + emitDecl("CPTmp" + RootName + "_" + utostr(i)); + emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";"); + } + if (CP->hasProperty(SDNPHasChain)) { + const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator()); + FoldedChains.push_back(std::make_pair("CPInChain", + PInfo.getNumResults())); + ChainName = "Chain" + ChainSuffix; + emitDecl("CPInChain"); + emitDecl(ChainName); + emitCode("SDValue CPInChain;"); + emitCode("SDValue " + ChainName + ";"); + } + + std::string Code = Fn + "("; + if (CP->hasAttribute(CPAttrParentAsRoot)) { + Code += ParentRootName + ", "; + } else { + Code += "N, "; + } + if (CP->hasProperty(SDNPHasChain)) { + std::string ParentName(RootName.begin(), RootName.end()-1); + Code += ParentName + ", "; + } + Code += RootName; + for (unsigned i = 0; i < NumOps; i++) + Code += ", CPTmp" + RootName + "_" + utostr(i); + if (CP->hasProperty(SDNPHasChain)) + Code += ", CPInChain, Chain" + ChainSuffix; + emitCheck(Code + ")"); + } else if (LeafRec->getName() == "srcvalue") { + // Place holder for SRCVALUE nodes. Nothing to do here. + } else if (LeafRec->isSubClassOf("ValueType")) { + // Make sure this is the specified value type. + emitCheck("cast<VTSDNode>(" + RootName + + ")->getVT() == MVT::" + LeafRec->getName()); + } else if (LeafRec->isSubClassOf("CondCode")) { + // Make sure this is the specified cond code. + emitCheck("cast<CondCodeSDNode>(" + RootName + + ")->get() == ISD::" + LeafRec->getName()); + } else { +#ifndef NDEBUG + Child->dump(); + cerr << " "; +#endif + assert(0 && "Unknown leaf type!"); + } + + // If there are node predicates for this, emit the calls. + for (unsigned i = 0, e = Child->getPredicateFns().size(); i != e; ++i) + emitCheck(Child->getPredicateFns()[i] + "(" + RootName + + ".getNode())"); + } else if (IntInit *II = + dynamic_cast<IntInit*>(Child->getLeafValue())) { + unsigned NTmp = TmpNo++; + emitCode("ConstantSDNode *Tmp"+ utostr(NTmp) + + " = dyn_cast<ConstantSDNode>("+ + RootName + ");"); + emitCheck("Tmp" + utostr(NTmp)); + unsigned CTmp = TmpNo++; + emitCode("int64_t CN"+ utostr(CTmp) + + " = Tmp" + utostr(NTmp) + "->getSExtValue();"); + emitCheck("CN" + utostr(CTmp) + " == " + "INT64_C(" +itostr(II->getValue()) + ")"); + } else { +#ifndef NDEBUG + Child->dump(); +#endif + assert(0 && "Unknown leaf type!"); + } + } + } + + /// EmitResultCode - Emit the action for a pattern. Now that it has matched + /// we actually have to build a DAG! + std::vector<std::string> + EmitResultCode(TreePatternNode *N, std::vector<Record*> DstRegs, + bool InFlagDecled, bool ResNodeDecled, + bool LikeLeaf = false, bool isRoot = false) { + // List of arguments of getTargetNode() or SelectNodeTo(). + std::vector<std::string> NodeOps; + // This is something selected from the pattern we matched. + if (!N->getName().empty()) { + const std::string &VarName = N->getName(); + std::string Val = VariableMap[VarName]; + bool ModifiedVal = false; + if (Val.empty()) { + cerr << "Variable '" << VarName << " referenced but not defined " + << "and not caught earlier!\n"; + abort(); + } + if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { + // Already selected this operand, just return the tmpval. + NodeOps.push_back(Val); + return NodeOps; + } + + const ComplexPattern *CP; + unsigned ResNo = TmpNo++; + if (!N->isLeaf() && N->getOperator()->getName() == "imm") { + assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); + std::string CastType; + std::string TmpVar = "Tmp" + utostr(ResNo); + switch (N->getTypeNum(0)) { + default: + cerr << "Cannot handle " << getEnumName(N->getTypeNum(0)) + << " type as an immediate constant. Aborting\n"; + abort(); + case MVT::i1: CastType = "bool"; break; + case MVT::i8: CastType = "unsigned char"; break; + case MVT::i16: CastType = "unsigned short"; break; + case MVT::i32: CastType = "unsigned"; break; + case MVT::i64: CastType = "uint64_t"; break; + } + emitCode("SDValue " + TmpVar + + " = CurDAG->getTargetConstant(((" + CastType + + ") cast<ConstantSDNode>(" + Val + ")->getZExtValue()), " + + getEnumName(N->getTypeNum(0)) + ");"); + // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this + // value if used multiple times by this pattern result. + Val = TmpVar; + ModifiedVal = true; + NodeOps.push_back(Val); + } else if (!N->isLeaf() && N->getOperator()->getName() == "fpimm") { + assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); + std::string TmpVar = "Tmp" + utostr(ResNo); + emitCode("SDValue " + TmpVar + + " = CurDAG->getTargetConstantFP(*cast<ConstantFPSDNode>(" + + Val + ")->getConstantFPValue(), cast<ConstantFPSDNode>(" + + Val + ")->getValueType(0));"); + // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this + // value if used multiple times by this pattern result. + Val = TmpVar; + ModifiedVal = true; + NodeOps.push_back(Val); + } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ + Record *Op = OperatorMap[N->getName()]; + // Transform ExternalSymbol to TargetExternalSymbol + if (Op && Op->getName() == "externalsym") { + std::string TmpVar = "Tmp"+utostr(ResNo); + emitCode("SDValue " + TmpVar + " = CurDAG->getTarget" + "ExternalSymbol(cast<ExternalSymbolSDNode>(" + + Val + ")->getSymbol(), " + + getEnumName(N->getTypeNum(0)) + ");"); + // Add Tmp<ResNo> to VariableMap, so that we don't multiply select + // this value if used multiple times by this pattern result. + Val = TmpVar; + ModifiedVal = true; + } + NodeOps.push_back(Val); + } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr" + || N->getOperator()->getName() == "tglobaltlsaddr")) { + Record *Op = OperatorMap[N->getName()]; + // Transform GlobalAddress to TargetGlobalAddress + if (Op && (Op->getName() == "globaladdr" || + Op->getName() == "globaltlsaddr")) { + std::string TmpVar = "Tmp" + utostr(ResNo); + emitCode("SDValue " + TmpVar + " = CurDAG->getTarget" + "GlobalAddress(cast<GlobalAddressSDNode>(" + Val + + ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + + ");"); + // Add Tmp<ResNo> to VariableMap, so that we don't multiply select + // this value if used multiple times by this pattern result. + Val = TmpVar; + ModifiedVal = true; + } + NodeOps.push_back(Val); + } else if (!N->isLeaf() + && (N->getOperator()->getName() == "texternalsym" + || N->getOperator()->getName() == "tconstpool")) { + // Do not rewrite the variable name, since we don't generate a new + // temporary. + NodeOps.push_back(Val); + } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) { + for (unsigned i = 0; i < CP->getNumOperands(); ++i) { + NodeOps.push_back("CPTmp" + Val + "_" + utostr(i)); + } + } else { + // This node, probably wrapped in a SDNodeXForm, behaves like a leaf + // node even if it isn't one. Don't select it. + if (!LikeLeaf) { + if (isRoot && N->isLeaf()) { + emitCode("ReplaceUses(N, " + Val + ");"); + emitCode("return NULL;"); + } + } + NodeOps.push_back(Val); + } + + if (ModifiedVal) { + VariableMap[VarName] = Val; + } + return NodeOps; + } + if (N->isLeaf()) { + // If this is an explicit register reference, handle it. + if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { + unsigned ResNo = TmpNo++; + if (DI->getDef()->isSubClassOf("Register")) { + emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + + getQualifiedName(DI->getDef()) + ", " + + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + return NodeOps; + } else if (DI->getDef()->getName() == "zero_reg") { + emitCode("SDValue Tmp" + utostr(ResNo) + + " = CurDAG->getRegister(0, " + + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + return NodeOps; + } else if (DI->getDef()->isSubClassOf("RegisterClass")) { + // Handle a reference to a register class. This is used + // in COPY_TO_SUBREG instructions. + emitCode("SDValue Tmp" + utostr(ResNo) + + " = CurDAG->getTargetConstant(" + + getQualifiedName(DI->getDef()) + "RegClassID, " + + "MVT::i32);"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + return NodeOps; + } + } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { + unsigned ResNo = TmpNo++; + assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); + emitCode("SDValue Tmp" + utostr(ResNo) + + " = CurDAG->getTargetConstant(0x" + itohexstr(II->getValue()) + + "ULL, " + getEnumName(N->getTypeNum(0)) + ");"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + return NodeOps; + } + +#ifndef NDEBUG + N->dump(); +#endif + assert(0 && "Unknown leaf type!"); + return NodeOps; + } + + Record *Op = N->getOperator(); + if (Op->isSubClassOf("Instruction")) { + const CodeGenTarget &CGT = CGP.getTargetInfo(); + CodeGenInstruction &II = CGT.getInstruction(Op->getName()); + const DAGInstruction &Inst = CGP.getInstruction(Op); + const TreePattern *InstPat = Inst.getPattern(); + // FIXME: Assume actual pattern comes before "implicit". + TreePatternNode *InstPatNode = + isRoot ? (InstPat ? InstPat->getTree(0) : Pattern) + : (InstPat ? InstPat->getTree(0) : NULL); + if (InstPatNode && !InstPatNode->isLeaf() && + InstPatNode->getOperator()->getName() == "set") { + InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); + } + bool IsVariadic = isRoot && II.isVariadic; + // FIXME: fix how we deal with physical register operands. + bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0; + bool HasImpResults = isRoot && DstRegs.size() > 0; + bool NodeHasOptInFlag = isRoot && + PatternHasProperty(Pattern, SDNPOptInFlag, CGP); + bool NodeHasInFlag = isRoot && + PatternHasProperty(Pattern, SDNPInFlag, CGP); + bool NodeHasOutFlag = isRoot && + PatternHasProperty(Pattern, SDNPOutFlag, CGP); + bool NodeHasChain = InstPatNode && + PatternHasProperty(InstPatNode, SDNPHasChain, CGP); + bool InputHasChain = isRoot && + NodeHasProperty(Pattern, SDNPHasChain, CGP); + unsigned NumResults = Inst.getNumResults(); + unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0; + + // Record output varargs info. + OutputIsVariadic = IsVariadic; + + if (NodeHasOptInFlag) { + emitCode("bool HasInFlag = " + "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);"); + } + if (IsVariadic) + emitCode("SmallVector<SDValue, 8> Ops" + utostr(OpcNo) + ";"); + + // How many results is this pattern expected to produce? + unsigned NumPatResults = 0; + for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { + MVT::SimpleValueType VT = Pattern->getTypeNum(i); + if (VT != MVT::isVoid && VT != MVT::Flag) + NumPatResults++; + } + + if (OrigChains.size() > 0) { + // The original input chain is being ignored. If it is not just + // pointing to the op that's being folded, we should create a + // TokenFactor with it and the chain of the folded op as the new chain. + // We could potentially be doing multiple levels of folding, in that + // case, the TokenFactor can have more operands. + emitCode("SmallVector<SDValue, 8> InChains;"); + for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) { + emitCode("if (" + OrigChains[i].first + ".getNode() != " + + OrigChains[i].second + ".getNode()) {"); + emitCode(" InChains.push_back(" + OrigChains[i].first + ");"); + emitCode("}"); + } + emitCode("InChains.push_back(" + ChainName + ");"); + emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, " + "N.getDebugLoc(), MVT::Other, " + "&InChains[0], InChains.size());"); + if (GenDebug) { + emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"yellow\");"); + emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"black\");"); + } + } + + // Loop over all of the operands of the instruction pattern, emitting code + // to fill them all in. The node 'N' usually has number children equal to + // the number of input operands of the instruction. However, in cases + // where there are predicate operands for an instruction, we need to fill + // in the 'execute always' values. Match up the node operands to the + // instruction operands to do this. + std::vector<std::string> AllOps; + for (unsigned ChildNo = 0, InstOpNo = NumResults; + InstOpNo != II.OperandList.size(); ++InstOpNo) { + std::vector<std::string> Ops; + + // Determine what to emit for this operand. + Record *OperandNode = II.OperandList[InstOpNo].Rec; + if ((OperandNode->isSubClassOf("PredicateOperand") || + OperandNode->isSubClassOf("OptionalDefOperand")) && + !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { + // This is a predicate or optional def operand; emit the + // 'default ops' operands. + const DAGDefaultOperand &DefaultOp = + CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec); + for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) { + Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs, + InFlagDecled, ResNodeDecled); + AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); + } + } else { + // Otherwise this is a normal operand or a predicate operand without + // 'execute always'; emit it. + Ops = EmitResultCode(N->getChild(ChildNo), DstRegs, + InFlagDecled, ResNodeDecled); + AllOps.insert(AllOps.end(), Ops.begin(), Ops.end()); + ++ChildNo; + } + } + + // Emit all the chain and CopyToReg stuff. + bool ChainEmitted = NodeHasChain; + if (NodeHasInFlag || HasImpInputs) + EmitInFlagSelectCode(Pattern, "N", ChainEmitted, + InFlagDecled, ResNodeDecled, true); + if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) { + if (!InFlagDecled) { + emitCode("SDValue InFlag(0, 0);"); + InFlagDecled = true; + } + if (NodeHasOptInFlag) { + emitCode("if (HasInFlag) {"); + emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);"); + emitCode("}"); + } + } + + unsigned ResNo = TmpNo++; + + unsigned OpsNo = OpcNo; + std::string CodePrefix; + bool ChainAssignmentNeeded = NodeHasChain && !isRoot; + std::deque<std::string> After; + std::string NodeName; + if (!isRoot) { + NodeName = "Tmp" + utostr(ResNo); + CodePrefix = "SDValue " + NodeName + "("; + } else { + NodeName = "ResNode"; + if (!ResNodeDecled) { + CodePrefix = "SDNode *" + NodeName + " = "; + ResNodeDecled = true; + } else + CodePrefix = NodeName + " = "; + } + + std::string Code = "Opc" + utostr(OpcNo); + + if (!isRoot || (InputHasChain && !NodeHasChain)) + // For call to "getTargetNode()". + Code += ", N.getDebugLoc()"; + + emitOpcode(II.Namespace + "::" + II.TheDef->getName()); + + // Output order: results, chain, flags + // Result types. + if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) { + Code += ", VT" + utostr(VTNo); + emitVT(getEnumName(N->getTypeNum(0))); + } + // Add types for implicit results in physical registers, scheduler will + // care of adding copyfromreg nodes. + for (unsigned i = 0; i < NumDstRegs; i++) { + Record *RR = DstRegs[i]; + if (RR->isSubClassOf("Register")) { + MVT::SimpleValueType RVT = getRegisterValueType(RR, CGT); + Code += ", " + getEnumName(RVT); + } + } + if (NodeHasChain) + Code += ", MVT::Other"; + if (NodeHasOutFlag) + Code += ", MVT::Flag"; + + // Inputs. + if (IsVariadic) { + for (unsigned i = 0, e = AllOps.size(); i != e; ++i) + emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");"); + AllOps.clear(); + + // Figure out whether any operands at the end of the op list are not + // part of the variable section. + std::string EndAdjust; + if (NodeHasInFlag || HasImpInputs) + EndAdjust = "-1"; // Always has one flag. + else if (NodeHasOptInFlag) + EndAdjust = "-(HasInFlag?1:0)"; // May have a flag. + + emitCode("for (unsigned i = NumInputRootOps + " + utostr(NodeHasChain) + + ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {"); + + emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));"); + emitCode("}"); + } + + // Generate MemOperandSDNodes nodes for each memory accesses covered by + // this pattern. + if (II.mayLoad | II.mayStore) { + std::vector<std::string>::const_iterator mi, mie; + for (mi = LSI.begin(), mie = LSI.end(); mi != mie; ++mi) { + std::string LSIName = "LSI_" + *mi; + emitCode("SDValue " + LSIName + " = " + "CurDAG->getMemOperand(cast<MemSDNode>(" + + *mi + ")->getMemOperand());"); + if (GenDebug) { + emitCode("CurDAG->setSubgraphColor(" + LSIName +".getNode(), \"yellow\");"); + emitCode("CurDAG->setSubgraphColor(" + LSIName +".getNode(), \"black\");"); + } + if (IsVariadic) + emitCode("Ops" + utostr(OpsNo) + ".push_back(" + LSIName + ");"); + else + AllOps.push_back(LSIName); + } + } + + if (NodeHasChain) { + if (IsVariadic) + emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");"); + else + AllOps.push_back(ChainName); + } + + if (IsVariadic) { + if (NodeHasInFlag || HasImpInputs) + emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);"); + else if (NodeHasOptInFlag) { + emitCode("if (HasInFlag)"); + emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);"); + } + Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) + + ".size()"; + } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs) + AllOps.push_back("InFlag"); + + unsigned NumOps = AllOps.size(); + if (NumOps) { + if (!NodeHasOptInFlag && NumOps < 4) { + for (unsigned i = 0; i != NumOps; ++i) + Code += ", " + AllOps[i]; + } else { + std::string OpsCode = "SDValue Ops" + utostr(OpsNo) + "[] = { "; + for (unsigned i = 0; i != NumOps; ++i) { + OpsCode += AllOps[i]; + if (i != NumOps-1) + OpsCode += ", "; + } + emitCode(OpsCode + " };"); + Code += ", Ops" + utostr(OpsNo) + ", "; + if (NodeHasOptInFlag) { + Code += "HasInFlag ? "; + Code += utostr(NumOps) + " : " + utostr(NumOps-1); + } else + Code += utostr(NumOps); + } + } + + if (!isRoot) + Code += "), 0"; + + std::vector<std::string> ReplaceFroms; + std::vector<std::string> ReplaceTos; + if (!isRoot) { + NodeOps.push_back("Tmp" + utostr(ResNo)); + } else { + + if (NodeHasOutFlag) { + if (!InFlagDecled) { + After.push_back("SDValue InFlag(ResNode, " + + utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + + ");"); + InFlagDecled = true; + } else + After.push_back("InFlag = SDValue(ResNode, " + + utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + + ");"); + } + + for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) { + ReplaceFroms.push_back("SDValue(" + + FoldedChains[j].first + ".getNode(), " + + utostr(FoldedChains[j].second) + + ")"); + ReplaceTos.push_back("SDValue(ResNode, " + + utostr(NumResults+NumDstRegs) + ")"); + } + + if (NodeHasOutFlag) { + if (FoldedFlag.first != "") { + ReplaceFroms.push_back("SDValue(" + FoldedFlag.first + ".getNode(), " + + utostr(FoldedFlag.second) + ")"); + ReplaceTos.push_back("InFlag"); + } else { + assert(NodeHasProperty(Pattern, SDNPOutFlag, CGP)); + ReplaceFroms.push_back("SDValue(N.getNode(), " + + utostr(NumPatResults + (unsigned)InputHasChain) + + ")"); + ReplaceTos.push_back("InFlag"); + } + } + + if (!ReplaceFroms.empty() && InputHasChain) { + ReplaceFroms.push_back("SDValue(N.getNode(), " + + utostr(NumPatResults) + ")"); + ReplaceTos.push_back("SDValue(" + ChainName + ".getNode(), " + + ChainName + ".getResNo()" + ")"); + ChainAssignmentNeeded |= NodeHasChain; + } + + // User does not expect the instruction would produce a chain! + if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) { + ; + } else if (InputHasChain && !NodeHasChain) { + // One of the inner node produces a chain. + if (NodeHasOutFlag) { + ReplaceFroms.push_back("SDValue(N.getNode(), " + + utostr(NumPatResults+1) + + ")"); + ReplaceTos.push_back("SDValue(ResNode, N.getResNo()-1)"); + } + ReplaceFroms.push_back("SDValue(N.getNode(), " + + utostr(NumPatResults) + ")"); + ReplaceTos.push_back(ChainName); + } + } + + if (ChainAssignmentNeeded) { + // Remember which op produces the chain. + std::string ChainAssign; + if (!isRoot) + ChainAssign = ChainName + " = SDValue(" + NodeName + + ".getNode(), " + utostr(NumResults+NumDstRegs) + ");"; + else + ChainAssign = ChainName + " = SDValue(" + NodeName + + ", " + utostr(NumResults+NumDstRegs) + ");"; + + After.push_front(ChainAssign); + } + + if (ReplaceFroms.size() == 1) { + After.push_back("ReplaceUses(" + ReplaceFroms[0] + ", " + + ReplaceTos[0] + ");"); + } else if (!ReplaceFroms.empty()) { + After.push_back("const SDValue Froms[] = {"); + for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) + After.push_back(" " + ReplaceFroms[i] + (i + 1 != e ? "," : "")); + After.push_back("};"); + After.push_back("const SDValue Tos[] = {"); + for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i) + After.push_back(" " + ReplaceTos[i] + (i + 1 != e ? "," : "")); + After.push_back("};"); + After.push_back("ReplaceUses(Froms, Tos, " + + itostr(ReplaceFroms.size()) + ");"); + } + + // We prefer to use SelectNodeTo since it avoids allocation when + // possible and it avoids CSE map recalculation for the node's + // users, however it's tricky to use in a non-root context. + // + // We also don't use if the pattern replacement is being used to + // jettison a chain result, since morphing the node in place + // would leave users of the chain dangling. + // + if (!isRoot || (InputHasChain && !NodeHasChain)) { + Code = "CurDAG->getTargetNode(" + Code; + } else { + Code = "CurDAG->SelectNodeTo(N.getNode(), " + Code; + } + if (isRoot) { + if (After.empty()) + CodePrefix = "return "; + else + After.push_back("return ResNode;"); + } + + emitCode(CodePrefix + Code + ");"); + + if (GenDebug) { + if (!isRoot) { + emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"yellow\");"); + emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"black\");"); + } + else { + emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"yellow\");"); + emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"black\");"); + } + } + + for (unsigned i = 0, e = After.size(); i != e; ++i) + emitCode(After[i]); + + return NodeOps; + } + if (Op->isSubClassOf("SDNodeXForm")) { + assert(N->getNumChildren() == 1 && "node xform should have one child!"); + // PatLeaf node - the operand may or may not be a leaf node. But it should + // behave like one. + std::vector<std::string> Ops = + EmitResultCode(N->getChild(0), DstRegs, InFlagDecled, + ResNodeDecled, true); + unsigned ResNo = TmpNo++; + emitCode("SDValue Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() + + "(" + Ops.back() + ".getNode());"); + NodeOps.push_back("Tmp" + utostr(ResNo)); + if (isRoot) + emitCode("return Tmp" + utostr(ResNo) + ".getNode();"); + return NodeOps; + } + + N->dump(); + cerr << "\n"; + throw std::string("Unknown node in result pattern!"); + } + + /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' + /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that + /// 'Pat' may be missing types. If we find an unresolved type to add a check + /// for, this returns true otherwise false if Pat has all types. + bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, + const std::string &Prefix, bool isRoot = false) { + // Did we find one? + if (Pat->getExtTypes() != Other->getExtTypes()) { + // Move a type over from 'other' to 'pat'. + Pat->setTypes(Other->getExtTypes()); + // The top level node type is checked outside of the select function. + if (!isRoot) + emitCheck(Prefix + ".getNode()->getValueType(0) == " + + getName(Pat->getTypeNum(0))); + return true; + } + + unsigned OpNo = + (unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP); + for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) + if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), + Prefix + utostr(OpNo))) + return true; + return false; + } + +private: + /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is + /// being built. + void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, + bool &ChainEmitted, bool &InFlagDecled, + bool &ResNodeDecled, bool isRoot = false) { + const CodeGenTarget &T = CGP.getTargetInfo(); + unsigned OpNo = + (unsigned) NodeHasProperty(N, SDNPHasChain, CGP); + bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP); + for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { + TreePatternNode *Child = N->getChild(i); + if (!Child->isLeaf()) { + EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted, + InFlagDecled, ResNodeDecled); + } else { + if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { + if (!Child->getName().empty()) { + std::string Name = RootName + utostr(OpNo); + if (Duplicates.find(Name) != Duplicates.end()) + // A duplicate! Do not emit a copy for this node. + continue; + } + + Record *RR = DI->getDef(); + if (RR->isSubClassOf("Register")) { + MVT::SimpleValueType RVT = getRegisterValueType(RR, T); + if (RVT == MVT::Flag) { + if (!InFlagDecled) { + emitCode("SDValue InFlag = " + RootName + utostr(OpNo) + ";"); + InFlagDecled = true; + } else + emitCode("InFlag = " + RootName + utostr(OpNo) + ";"); + } else { + if (!ChainEmitted) { + emitCode("SDValue Chain = CurDAG->getEntryNode();"); + ChainName = "Chain"; + ChainEmitted = true; + } + if (!InFlagDecled) { + emitCode("SDValue InFlag(0, 0);"); + InFlagDecled = true; + } + std::string Decl = (!ResNodeDecled) ? "SDNode *" : ""; + emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName + + ", " + RootName + ".getDebugLoc()" + + ", " + getQualifiedName(RR) + + ", " + RootName + utostr(OpNo) + ", InFlag).getNode();"); + ResNodeDecled = true; + emitCode(ChainName + " = SDValue(ResNode, 0);"); + emitCode("InFlag = SDValue(ResNode, 1);"); + } + } + } + } + } + + if (HasInFlag) { + if (!InFlagDecled) { + emitCode("SDValue InFlag = " + RootName + + ".getOperand(" + utostr(OpNo) + ");"); + InFlagDecled = true; + } else + emitCode("InFlag = " + RootName + + ".getOperand(" + utostr(OpNo) + ");"); + } + } +}; + +/// EmitCodeForPattern - Given a pattern to match, emit code to the specified +/// stream to match the pattern, and generate the code for the match if it +/// succeeds. Returns true if the pattern is not guaranteed to match. +void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern, + std::vector<std::pair<unsigned, std::string> > &GeneratedCode, + std::set<std::string> &GeneratedDecl, + std::vector<std::string> &TargetOpcodes, + std::vector<std::string> &TargetVTs, + bool &OutputIsVariadic, + unsigned &NumInputRootOps) { + OutputIsVariadic = false; + NumInputRootOps = 0; + + PatternCodeEmitter Emitter(CGP, Pattern.getPredicateCheck(), + Pattern.getSrcPattern(), Pattern.getDstPattern(), + GeneratedCode, GeneratedDecl, + TargetOpcodes, TargetVTs, + OutputIsVariadic, NumInputRootOps); + + // Emit the matcher, capturing named arguments in VariableMap. + bool FoundChain = false; + Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain); + + // TP - Get *SOME* tree pattern, we don't care which. + TreePattern &TP = *CGP.pf_begin()->second; + + // At this point, we know that we structurally match the pattern, but the + // types of the nodes may not match. Figure out the fewest number of type + // comparisons we need to emit. For example, if there is only one integer + // type supported by a target, there should be no type comparisons at all for + // integer patterns! + // + // To figure out the fewest number of type checks needed, clone the pattern, + // remove the types, then perform type inference on the pattern as a whole. + // If there are unresolved types, emit an explicit check for those types, + // apply the type to the tree, then rerun type inference. Iterate until all + // types are resolved. + // + TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); + RemoveAllTypes(Pat); + + do { + // Resolve/propagate as many types as possible. + try { + bool MadeChange = true; + while (MadeChange) + MadeChange = Pat->ApplyTypeConstraints(TP, + true/*Ignore reg constraints*/); + } catch (...) { + assert(0 && "Error: could not find consistent types for something we" + " already decided was ok!"); + abort(); + } + + // Insert a check for an unresolved type and add it to the tree. If we find + // an unresolved type to add a check for, this returns true and we iterate, + // otherwise we are done. + } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true)); + + Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(), + false, false, false, true); + delete Pat; +} + +/// EraseCodeLine - Erase one code line from all of the patterns. If removing +/// a line causes any of them to be empty, remove them and return true when +/// done. +static bool EraseCodeLine(std::vector<std::pair<const PatternToMatch*, + std::vector<std::pair<unsigned, std::string> > > > + &Patterns) { + bool ErasedPatterns = false; + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { + Patterns[i].second.pop_back(); + if (Patterns[i].second.empty()) { + Patterns.erase(Patterns.begin()+i); + --i; --e; + ErasedPatterns = true; + } + } + return ErasedPatterns; +} + +/// EmitPatterns - Emit code for at least one pattern, but try to group common +/// code together between the patterns. +void DAGISelEmitter::EmitPatterns(std::vector<std::pair<const PatternToMatch*, + std::vector<std::pair<unsigned, std::string> > > > + &Patterns, unsigned Indent, + std::ostream &OS) { + typedef std::pair<unsigned, std::string> CodeLine; + typedef std::vector<CodeLine> CodeList; + typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList; + + if (Patterns.empty()) return; + + // Figure out how many patterns share the next code line. Explicitly copy + // FirstCodeLine so that we don't invalidate a reference when changing + // Patterns. + const CodeLine FirstCodeLine = Patterns.back().second.back(); + unsigned LastMatch = Patterns.size()-1; + while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) + --LastMatch; + + // If not all patterns share this line, split the list into two pieces. The + // first chunk will use this line, the second chunk won't. + if (LastMatch != 0) { + PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); + PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); + + // FIXME: Emit braces? + if (Shared.size() == 1) { + const PatternToMatch &Pattern = *Shared.back().first; + OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; + Pattern.getSrcPattern()->print(OS); + OS << "\n" << std::string(Indent, ' ') << "// Emits: "; + Pattern.getDstPattern()->print(OS); + OS << "\n"; + unsigned AddedComplexity = Pattern.getAddedComplexity(); + OS << std::string(Indent, ' ') << "// Pattern complexity = " + << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity + << " cost = " + << getResultPatternCost(Pattern.getDstPattern(), CGP) + << " size = " + << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n"; + } + if (FirstCodeLine.first != 1) { + OS << std::string(Indent, ' ') << "{\n"; + Indent += 2; + } + EmitPatterns(Shared, Indent, OS); + if (FirstCodeLine.first != 1) { + Indent -= 2; + OS << std::string(Indent, ' ') << "}\n"; + } + + if (Other.size() == 1) { + const PatternToMatch &Pattern = *Other.back().first; + OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; + Pattern.getSrcPattern()->print(OS); + OS << "\n" << std::string(Indent, ' ') << "// Emits: "; + Pattern.getDstPattern()->print(OS); + OS << "\n"; + unsigned AddedComplexity = Pattern.getAddedComplexity(); + OS << std::string(Indent, ' ') << "// Pattern complexity = " + << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity + << " cost = " + << getResultPatternCost(Pattern.getDstPattern(), CGP) + << " size = " + << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n"; + } + EmitPatterns(Other, Indent, OS); + return; + } + + // Remove this code from all of the patterns that share it. + bool ErasedPatterns = EraseCodeLine(Patterns); + + bool isPredicate = FirstCodeLine.first == 1; + + // Otherwise, every pattern in the list has this line. Emit it. + if (!isPredicate) { + // Normal code. + OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; + } else { + OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; + + // If the next code line is another predicate, and if all of the pattern + // in this group share the same next line, emit it inline now. Do this + // until we run out of common predicates. + while (!ErasedPatterns && Patterns.back().second.back().first == 1) { + // Check that all of the patterns in Patterns end with the same predicate. + bool AllEndWithSamePredicate = true; + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) + if (Patterns[i].second.back() != Patterns.back().second.back()) { + AllEndWithSamePredicate = false; + break; + } + // If all of the predicates aren't the same, we can't share them. + if (!AllEndWithSamePredicate) break; + + // Otherwise we can. Emit it shared now. + OS << " &&\n" << std::string(Indent+4, ' ') + << Patterns.back().second.back().second; + ErasedPatterns = EraseCodeLine(Patterns); + } + + OS << ") {\n"; + Indent += 2; + } + + EmitPatterns(Patterns, Indent, OS); + + if (isPredicate) + OS << std::string(Indent-2, ' ') << "}\n"; +} + +static std::string getLegalCName(std::string OpName) { + std::string::size_type pos = OpName.find("::"); + if (pos != std::string::npos) + OpName.replace(pos, 2, "_"); + return OpName; +} + +void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { + const CodeGenTarget &Target = CGP.getTargetInfo(); + + // Get the namespace to insert instructions into. + std::string InstNS = Target.getInstNamespace(); + if (!InstNS.empty()) InstNS += "::"; + + // Group the patterns by their top-level opcodes. + std::map<std::string, std::vector<const PatternToMatch*> > PatternsByOpcode; + // All unique target node emission functions. + std::map<std::string, unsigned> EmitFunctions; + for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), + E = CGP.ptm_end(); I != E; ++I) { + const PatternToMatch &Pattern = *I; + + TreePatternNode *Node = Pattern.getSrcPattern(); + if (!Node->isLeaf()) { + PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)]. + push_back(&Pattern); + } else { + const ComplexPattern *CP; + if (dynamic_cast<IntInit*>(Node->getLeafValue())) { + PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)]. + push_back(&Pattern); + } else if ((CP = NodeGetComplexPattern(Node, CGP))) { + std::vector<Record*> OpNodes = CP->getRootNodes(); + for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { + PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)] + .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(), + &Pattern); + } + } else { + cerr << "Unrecognized opcode '"; + Node->dump(); + cerr << "' on tree pattern '"; + cerr << Pattern.getDstPattern()->getOperator()->getName() << "'!\n"; + exit(1); + } + } + } + + // For each opcode, there might be multiple select functions, one per + // ValueType of the node (or its first operand if it doesn't produce a + // non-chain result. + std::map<std::string, std::vector<std::string> > OpcodeVTMap; + + // Emit one Select_* method for each top-level opcode. We do this instead of + // emitting one giant switch statement to support compilers where this will + // result in the recursive functions taking less stack space. + for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator + PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); + PBOI != E; ++PBOI) { + const std::string &OpName = PBOI->first; + std::vector<const PatternToMatch*> &PatternsOfOp = PBOI->second; + assert(!PatternsOfOp.empty() && "No patterns but map has entry?"); + + // Split them into groups by type. + std::map<MVT::SimpleValueType, + std::vector<const PatternToMatch*> > PatternsByType; + for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) { + const PatternToMatch *Pat = PatternsOfOp[i]; + TreePatternNode *SrcPat = Pat->getSrcPattern(); + PatternsByType[SrcPat->getTypeNum(0)].push_back(Pat); + } + + for (std::map<MVT::SimpleValueType, + std::vector<const PatternToMatch*> >::iterator + II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE; + ++II) { + MVT::SimpleValueType OpVT = II->first; + std::vector<const PatternToMatch*> &Patterns = II->second; + typedef std::pair<unsigned, std::string> CodeLine; + typedef std::vector<CodeLine> CodeList; + typedef CodeList::iterator CodeListI; + + std::vector<std::pair<const PatternToMatch*, CodeList> > CodeForPatterns; + std::vector<std::vector<std::string> > PatternOpcodes; + std::vector<std::vector<std::string> > PatternVTs; + std::vector<std::set<std::string> > PatternDecls; + std::vector<bool> OutputIsVariadicFlags; + std::vector<unsigned> NumInputRootOpsCounts; + for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { + CodeList GeneratedCode; + std::set<std::string> GeneratedDecl; + std::vector<std::string> TargetOpcodes; + std::vector<std::string> TargetVTs; + bool OutputIsVariadic; + unsigned NumInputRootOps; + GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, + TargetOpcodes, TargetVTs, + OutputIsVariadic, NumInputRootOps); + CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); + PatternDecls.push_back(GeneratedDecl); + PatternOpcodes.push_back(TargetOpcodes); + PatternVTs.push_back(TargetVTs); + OutputIsVariadicFlags.push_back(OutputIsVariadic); + NumInputRootOpsCounts.push_back(NumInputRootOps); + } + + // Factor target node emission code (emitted by EmitResultCode) into + // separate functions. Uniquing and share them among all instruction + // selection routines. + for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { + CodeList &GeneratedCode = CodeForPatterns[i].second; + std::vector<std::string> &TargetOpcodes = PatternOpcodes[i]; + std::vector<std::string> &TargetVTs = PatternVTs[i]; + std::set<std::string> Decls = PatternDecls[i]; + bool OutputIsVariadic = OutputIsVariadicFlags[i]; + unsigned NumInputRootOps = NumInputRootOpsCounts[i]; + std::vector<std::string> AddedInits; + int CodeSize = (int)GeneratedCode.size(); + int LastPred = -1; + for (int j = CodeSize-1; j >= 0; --j) { + if (LastPred == -1 && GeneratedCode[j].first == 1) + LastPred = j; + else if (LastPred != -1 && GeneratedCode[j].first == 2) + AddedInits.push_back(GeneratedCode[j].second); + } + + std::string CalleeCode = "(const SDValue &N"; + std::string CallerCode = "(N"; + for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) { + CalleeCode += ", unsigned Opc" + utostr(j); + CallerCode += ", " + TargetOpcodes[j]; + } + for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) { + CalleeCode += ", MVT VT" + utostr(j); + CallerCode += ", " + TargetVTs[j]; + } + for (std::set<std::string>::iterator + I = Decls.begin(), E = Decls.end(); I != E; ++I) { + std::string Name = *I; + CalleeCode += ", SDValue &" + Name; + CallerCode += ", " + Name; + } + + if (OutputIsVariadic) { + CalleeCode += ", unsigned NumInputRootOps"; + CallerCode += ", " + utostr(NumInputRootOps); + } + + CallerCode += ");"; + CalleeCode += ") "; + // Prevent emission routines from being inlined to reduce selection + // routines stack frame sizes. + CalleeCode += "DISABLE_INLINE "; + CalleeCode += "{\n"; + + for (std::vector<std::string>::const_reverse_iterator + I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I) + CalleeCode += " " + *I + "\n"; + + for (int j = LastPred+1; j < CodeSize; ++j) + CalleeCode += " " + GeneratedCode[j].second + "\n"; + for (int j = LastPred+1; j < CodeSize; ++j) + GeneratedCode.pop_back(); + CalleeCode += "}\n"; + + // Uniquing the emission routines. + unsigned EmitFuncNum; + std::map<std::string, unsigned>::iterator EFI = + EmitFunctions.find(CalleeCode); + if (EFI != EmitFunctions.end()) { + EmitFuncNum = EFI->second; + } else { + EmitFuncNum = EmitFunctions.size(); + EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum)); + OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode; + } + + // Replace the emission code within selection routines with calls to the + // emission functions. + if (GenDebug) { + GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N.getNode(), \"red\");")); + } + CallerCode = "SDNode *Result = Emit_" + utostr(EmitFuncNum) + CallerCode; + GeneratedCode.push_back(std::make_pair(3, CallerCode)); + if (GenDebug) { + GeneratedCode.push_back(std::make_pair(0, "if(Result) {")); + GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"yellow\");")); + GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"black\");")); + GeneratedCode.push_back(std::make_pair(0, "}")); + //GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N.getNode(), \"black\");")); + } + GeneratedCode.push_back(std::make_pair(0, "return Result;")); + } + + // Print function. + std::string OpVTStr; + if (OpVT == MVT::iPTR) { + OpVTStr = "_iPTR"; + } else if (OpVT == MVT::iPTRAny) { + OpVTStr = "_iPTRAny"; + } else if (OpVT == MVT::isVoid) { + // Nodes with a void result actually have a first result type of either + // Other (a chain) or Flag. Since there is no one-to-one mapping from + // void to this case, we handle it specially here. + } else { + OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::' + } + std::map<std::string, std::vector<std::string> >::iterator OpVTI = + OpcodeVTMap.find(OpName); + if (OpVTI == OpcodeVTMap.end()) { + std::vector<std::string> VTSet; + VTSet.push_back(OpVTStr); + OpcodeVTMap.insert(std::make_pair(OpName, VTSet)); + } else + OpVTI->second.push_back(OpVTStr); + + // We want to emit all of the matching code now. However, we want to emit + // the matches in order of minimal cost. Sort the patterns so the least + // cost one is at the start. + std::stable_sort(CodeForPatterns.begin(), CodeForPatterns.end(), + PatternSortingPredicate(CGP)); + + // Scan the code to see if all of the patterns are reachable and if it is + // possible that the last one might not match. + bool mightNotMatch = true; + for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { + CodeList &GeneratedCode = CodeForPatterns[i].second; + mightNotMatch = false; + + for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { + if (GeneratedCode[j].first == 1) { // predicate. + mightNotMatch = true; + break; + } + } + + // If this pattern definitely matches, and if it isn't the last one, the + // patterns after it CANNOT ever match. Error out. + if (mightNotMatch == false && i != CodeForPatterns.size()-1) { + cerr << "Pattern '"; + CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream()); + cerr << "' is impossible to select!\n"; + exit(1); + } + } + + // Loop through and reverse all of the CodeList vectors, as we will be + // accessing them from their logical front, but accessing the end of a + // vector is more efficient. + for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { + CodeList &GeneratedCode = CodeForPatterns[i].second; + std::reverse(GeneratedCode.begin(), GeneratedCode.end()); + } + + // Next, reverse the list of patterns itself for the same reason. + std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); + + OS << "SDNode *Select_" << getLegalCName(OpName) + << OpVTStr << "(const SDValue &N) {\n"; + + // Emit all of the patterns now, grouped together to share code. + EmitPatterns(CodeForPatterns, 2, OS); + + // If the last pattern has predicates (which could fail) emit code to + // catch the case where nothing handles a pattern. + if (mightNotMatch) { + OS << "\n"; + if (OpName != "ISD::INTRINSIC_W_CHAIN" && + OpName != "ISD::INTRINSIC_WO_CHAIN" && + OpName != "ISD::INTRINSIC_VOID") + OS << " CannotYetSelect(N);\n"; + else + OS << " CannotYetSelectIntrinsic(N);\n"; + + OS << " return NULL;\n"; + } + OS << "}\n\n"; + } + } + + // Emit boilerplate. + OS << "SDNode *Select_INLINEASM(SDValue N) {\n" + << " std::vector<SDValue> Ops(N.getNode()->op_begin(), N.getNode()->op_end());\n" + << " SelectInlineAsmMemoryOperands(Ops);\n\n" + + << " std::vector<MVT> VTs;\n" + << " VTs.push_back(MVT::Other);\n" + << " VTs.push_back(MVT::Flag);\n" + << " SDValue New = CurDAG->getNode(ISD::INLINEASM, N.getDebugLoc(), " + "VTs, &Ops[0], Ops.size());\n" + << " return New.getNode();\n" + << "}\n\n"; + + OS << "SDNode *Select_UNDEF(const SDValue &N) {\n" + << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::IMPLICIT_DEF,\n" + << " N.getValueType());\n" + << "}\n\n"; + + OS << "SDNode *Select_DBG_LABEL(const SDValue &N) {\n" + << " SDValue Chain = N.getOperand(0);\n" + << " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n" + << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" + << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DBG_LABEL,\n" + << " MVT::Other, Tmp, Chain);\n" + << "}\n\n"; + + OS << "SDNode *Select_EH_LABEL(const SDValue &N) {\n" + << " SDValue Chain = N.getOperand(0);\n" + << " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n" + << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n" + << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EH_LABEL,\n" + << " MVT::Other, Tmp, Chain);\n" + << "}\n\n"; + + OS << "SDNode *Select_DECLARE(const SDValue &N) {\n" + << " SDValue Chain = N.getOperand(0);\n" + << " SDValue N1 = N.getOperand(1);\n" + << " SDValue N2 = N.getOperand(2);\n" + << " if (!isa<FrameIndexSDNode>(N1) || !isa<GlobalAddressSDNode>(N2)) {\n" + << " CannotYetSelect(N);\n" + << " }\n" + << " int FI = cast<FrameIndexSDNode>(N1)->getIndex();\n" + << " GlobalValue *GV = cast<GlobalAddressSDNode>(N2)->getGlobal();\n" + << " SDValue Tmp1 = " + << "CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());\n" + << " SDValue Tmp2 = " + << "CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());\n" + << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DECLARE,\n" + << " MVT::Other, Tmp1, Tmp2, Chain);\n" + << "}\n\n"; + + OS << "// The main instruction selector code.\n" + << "SDNode *SelectCode(SDValue N) {\n" + << " MVT::SimpleValueType NVT = N.getNode()->getValueType(0).getSimpleVT();\n" + << " switch (N.getOpcode()) {\n" + << " default:\n" + << " assert(!N.isMachineOpcode() && \"Node already selected!\");\n" + << " break;\n" + << " case ISD::EntryToken: // These nodes remain the same.\n" + << " case ISD::MEMOPERAND:\n" + << " case ISD::BasicBlock:\n" + << " case ISD::Register:\n" + << " case ISD::HANDLENODE:\n" + << " case ISD::TargetConstant:\n" + << " case ISD::TargetConstantFP:\n" + << " case ISD::TargetConstantPool:\n" + << " case ISD::TargetFrameIndex:\n" + << " case ISD::TargetExternalSymbol:\n" + << " case ISD::TargetJumpTable:\n" + << " case ISD::TargetGlobalTLSAddress:\n" + << " case ISD::TargetGlobalAddress:\n" + << " case ISD::TokenFactor:\n" + << " case ISD::CopyFromReg:\n" + << " case ISD::CopyToReg: {\n" + << " return NULL;\n" + << " }\n" + << " case ISD::AssertSext:\n" + << " case ISD::AssertZext: {\n" + << " ReplaceUses(N, N.getOperand(0));\n" + << " return NULL;\n" + << " }\n" + << " case ISD::INLINEASM: return Select_INLINEASM(N);\n" + << " case ISD::DBG_LABEL: return Select_DBG_LABEL(N);\n" + << " case ISD::EH_LABEL: return Select_EH_LABEL(N);\n" + << " case ISD::DECLARE: return Select_DECLARE(N);\n" + << " case ISD::UNDEF: return Select_UNDEF(N);\n"; + + // Loop over all of the case statements, emiting a call to each method we + // emitted above. + for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator + PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end(); + PBOI != E; ++PBOI) { + const std::string &OpName = PBOI->first; + // Potentially multiple versions of select for this opcode. One for each + // ValueType of the node (or its first true operand if it doesn't produce a + // result. + std::map<std::string, std::vector<std::string> >::iterator OpVTI = + OpcodeVTMap.find(OpName); + std::vector<std::string> &OpVTs = OpVTI->second; + OS << " case " << OpName << ": {\n"; + // If we have only one variant and it's the default, elide the + // switch. Marginally faster, and makes MSVC happier. + if (OpVTs.size()==1 && OpVTs[0].empty()) { + OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; + OS << " break;\n"; + OS << " }\n"; + continue; + } + // Keep track of whether we see a pattern that has an iPtr result. + bool HasPtrPattern = false; + bool HasDefaultPattern = false; + + OS << " switch (NVT) {\n"; + for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) { + std::string &VTStr = OpVTs[i]; + if (VTStr.empty()) { + HasDefaultPattern = true; + continue; + } + + // If this is a match on iPTR: don't emit it directly, we need special + // code. + if (VTStr == "_iPTR") { + HasPtrPattern = true; + continue; + } + OS << " case MVT::" << VTStr.substr(1) << ":\n" + << " return Select_" << getLegalCName(OpName) + << VTStr << "(N);\n"; + } + OS << " default:\n"; + + // If there is an iPTR result version of this pattern, emit it here. + if (HasPtrPattern) { + OS << " if (TLI.getPointerTy() == NVT)\n"; + OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n"; + } + if (HasDefaultPattern) { + OS << " return Select_" << getLegalCName(OpName) << "(N);\n"; + } + OS << " break;\n"; + OS << " }\n"; + OS << " break;\n"; + OS << " }\n"; + } + + OS << " } // end of big switch.\n\n" + << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" + << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" + << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n" + << " CannotYetSelect(N);\n" + << " } else {\n" + << " CannotYetSelectIntrinsic(N);\n" + << " }\n" + << " return NULL;\n" + << "}\n\n"; + + OS << "void CannotYetSelect(SDValue N) DISABLE_INLINE {\n" + << " cerr << \"Cannot yet select: \";\n" + << " N.getNode()->dump(CurDAG);\n" + << " cerr << '\\n';\n" + << " abort();\n" + << "}\n\n"; + + OS << "void CannotYetSelectIntrinsic(SDValue N) DISABLE_INLINE {\n" + << " cerr << \"Cannot yet select: \";\n" + << " unsigned iid = cast<ConstantSDNode>(N.getOperand(" + << "N.getOperand(0).getValueType() == MVT::Other))->getZExtValue();\n" + << " cerr << \"intrinsic %\"<< " + << "Intrinsic::getName((Intrinsic::ID)iid);\n" + << " cerr << '\\n';\n" + << " abort();\n" + << "}\n\n"; +} + +void DAGISelEmitter::run(std::ostream &OS) { + EmitSourceFileHeader("DAG Instruction Selector for the " + + CGP.getTargetInfo().getName() + " target", OS); + + OS << "// *** NOTE: This file is #included into the middle of the target\n" + << "// *** instruction selector class. These functions are really " + << "methods.\n\n"; + + OS << "// Include standard, target-independent definitions and methods used\n" + << "// by the instruction selector.\n"; + OS << "#include \"llvm/CodeGen/DAGISelHeader.h\"\n\n"; + + EmitNodeTransforms(OS); + EmitPredicateFunctions(OS); + + DOUT << "\n\nALL PATTERNS TO MATCH:\n\n"; + for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end(); + I != E; ++I) { + DOUT << "PATTERN: "; DEBUG(I->getSrcPattern()->dump()); + DOUT << "\nRESULT: "; DEBUG(I->getDstPattern()->dump()); + DOUT << "\n"; + } + + // At this point, we have full information about the 'Patterns' we need to + // parse, both implicitly from instructions as well as from explicit pattern + // definitions. Emit the resultant instruction selector. + EmitInstructionSelector(OS); + +} |