summaryrefslogtreecommitdiff
path: root/utils/TableGen/DAGISelEmitter.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'utils/TableGen/DAGISelEmitter.cpp')
-rw-r--r--utils/TableGen/DAGISelEmitter.cpp2131
1 files changed, 2131 insertions, 0 deletions
diff --git a/utils/TableGen/DAGISelEmitter.cpp b/utils/TableGen/DAGISelEmitter.cpp
new file mode 100644
index 0000000000000..0e2e61596f69c
--- /dev/null
+++ b/utils/TableGen/DAGISelEmitter.cpp
@@ -0,0 +1,2131 @@
+//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tablegen backend emits a DAG instruction selector.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DAGISelEmitter.h"
+#include "Record.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Streams.h"
+#include <algorithm>
+#include <deque>
+using namespace llvm;
+
+namespace {
+ cl::opt<bool>
+ GenDebug("gen-debug", cl::desc("Generate debug code"),
+ cl::init(false));
+}
+
+//===----------------------------------------------------------------------===//
+// DAGISelEmitter Helper methods
+//
+
+/// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
+/// ComplexPattern.
+static bool NodeIsComplexPattern(TreePatternNode *N) {
+ return (N->isLeaf() &&
+ dynamic_cast<DefInit*>(N->getLeafValue()) &&
+ static_cast<DefInit*>(N->getLeafValue())->getDef()->
+ isSubClassOf("ComplexPattern"));
+}
+
+/// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
+/// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
+static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
+ CodeGenDAGPatterns &CGP) {
+ if (N->isLeaf() &&
+ dynamic_cast<DefInit*>(N->getLeafValue()) &&
+ static_cast<DefInit*>(N->getLeafValue())->getDef()->
+ isSubClassOf("ComplexPattern")) {
+ return &CGP.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
+ ->getDef());
+ }
+ return NULL;
+}
+
+/// getPatternSize - Return the 'size' of this pattern. We want to match large
+/// patterns before small ones. This is used to determine the size of a
+/// pattern.
+static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
+ assert((EMVT::isExtIntegerInVTs(P->getExtTypes()) ||
+ EMVT::isExtFloatingPointInVTs(P->getExtTypes()) ||
+ P->getExtTypeNum(0) == MVT::isVoid ||
+ P->getExtTypeNum(0) == MVT::Flag ||
+ P->getExtTypeNum(0) == MVT::iPTR ||
+ P->getExtTypeNum(0) == MVT::iPTRAny) &&
+ "Not a valid pattern node to size!");
+ unsigned Size = 3; // The node itself.
+ // If the root node is a ConstantSDNode, increases its size.
+ // e.g. (set R32:$dst, 0).
+ if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
+ Size += 2;
+
+ // FIXME: This is a hack to statically increase the priority of patterns
+ // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
+ // Later we can allow complexity / cost for each pattern to be (optionally)
+ // specified. To get best possible pattern match we'll need to dynamically
+ // calculate the complexity of all patterns a dag can potentially map to.
+ const ComplexPattern *AM = NodeGetComplexPattern(P, CGP);
+ if (AM)
+ Size += AM->getNumOperands() * 3;
+
+ // If this node has some predicate function that must match, it adds to the
+ // complexity of this node.
+ if (!P->getPredicateFns().empty())
+ ++Size;
+
+ // Count children in the count if they are also nodes.
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = P->getChild(i);
+ if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
+ Size += getPatternSize(Child, CGP);
+ else if (Child->isLeaf()) {
+ if (dynamic_cast<IntInit*>(Child->getLeafValue()))
+ Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
+ else if (NodeIsComplexPattern(Child))
+ Size += getPatternSize(Child, CGP);
+ else if (!Child->getPredicateFns().empty())
+ ++Size;
+ }
+ }
+
+ return Size;
+}
+
+/// getResultPatternCost - Compute the number of instructions for this pattern.
+/// This is a temporary hack. We should really include the instruction
+/// latencies in this calculation.
+static unsigned getResultPatternCost(TreePatternNode *P,
+ CodeGenDAGPatterns &CGP) {
+ if (P->isLeaf()) return 0;
+
+ unsigned Cost = 0;
+ Record *Op = P->getOperator();
+ if (Op->isSubClassOf("Instruction")) {
+ Cost++;
+ CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
+ if (II.usesCustomDAGSchedInserter)
+ Cost += 10;
+ }
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
+ Cost += getResultPatternCost(P->getChild(i), CGP);
+ return Cost;
+}
+
+/// getResultPatternCodeSize - Compute the code size of instructions for this
+/// pattern.
+static unsigned getResultPatternSize(TreePatternNode *P,
+ CodeGenDAGPatterns &CGP) {
+ if (P->isLeaf()) return 0;
+
+ unsigned Cost = 0;
+ Record *Op = P->getOperator();
+ if (Op->isSubClassOf("Instruction")) {
+ Cost += Op->getValueAsInt("CodeSize");
+ }
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
+ Cost += getResultPatternSize(P->getChild(i), CGP);
+ return Cost;
+}
+
+// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
+// In particular, we want to match maximal patterns first and lowest cost within
+// a particular complexity first.
+struct PatternSortingPredicate {
+ PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
+ CodeGenDAGPatterns &CGP;
+
+ typedef std::pair<unsigned, std::string> CodeLine;
+ typedef std::vector<CodeLine> CodeList;
+ typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList;
+
+ bool operator()(const std::pair<const PatternToMatch*, CodeList> &LHSPair,
+ const std::pair<const PatternToMatch*, CodeList> &RHSPair) {
+ const PatternToMatch *LHS = LHSPair.first;
+ const PatternToMatch *RHS = RHSPair.first;
+
+ unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP);
+ unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP);
+ LHSSize += LHS->getAddedComplexity();
+ RHSSize += RHS->getAddedComplexity();
+ if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
+ if (LHSSize < RHSSize) return false;
+
+ // If the patterns have equal complexity, compare generated instruction cost
+ unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
+ unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
+ if (LHSCost < RHSCost) return true;
+ if (LHSCost > RHSCost) return false;
+
+ return getResultPatternSize(LHS->getDstPattern(), CGP) <
+ getResultPatternSize(RHS->getDstPattern(), CGP);
+ }
+};
+
+/// getRegisterValueType - Look up and return the ValueType of the specified
+/// register. If the register is a member of multiple register classes which
+/// have different associated types, return MVT::Other.
+static MVT::SimpleValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
+ bool FoundRC = false;
+ MVT::SimpleValueType VT = MVT::Other;
+ const std::vector<CodeGenRegisterClass> &RCs = T.getRegisterClasses();
+ std::vector<CodeGenRegisterClass>::const_iterator RC;
+ std::vector<Record*>::const_iterator Element;
+
+ for (RC = RCs.begin() ; RC != RCs.end() ; RC++) {
+ Element = find((*RC).Elements.begin(), (*RC).Elements.end(), R);
+ if (Element != (*RC).Elements.end()) {
+ if (!FoundRC) {
+ FoundRC = true;
+ VT = (*RC).getValueTypeNum(0);
+ } else {
+ // In multiple RC's
+ if (VT != (*RC).getValueTypeNum(0)) {
+ // Types of the RC's do not agree. Return MVT::Other. The
+ // target is responsible for handling this.
+ return MVT::Other;
+ }
+ }
+ }
+ }
+ return VT;
+}
+
+
+/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
+/// type information from it.
+static void RemoveAllTypes(TreePatternNode *N) {
+ N->removeTypes();
+ if (!N->isLeaf())
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ RemoveAllTypes(N->getChild(i));
+}
+
+/// NodeHasProperty - return true if TreePatternNode has the specified
+/// property.
+static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
+ CodeGenDAGPatterns &CGP) {
+ if (N->isLeaf()) {
+ const ComplexPattern *CP = NodeGetComplexPattern(N, CGP);
+ if (CP)
+ return CP->hasProperty(Property);
+ return false;
+ }
+ Record *Operator = N->getOperator();
+ if (!Operator->isSubClassOf("SDNode")) return false;
+
+ return CGP.getSDNodeInfo(Operator).hasProperty(Property);
+}
+
+static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
+ CodeGenDAGPatterns &CGP) {
+ if (NodeHasProperty(N, Property, CGP))
+ return true;
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ if (PatternHasProperty(Child, Property, CGP))
+ return true;
+ }
+
+ return false;
+}
+
+static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
+ return CGP.getSDNodeInfo(Op).getEnumName();
+}
+
+static
+bool DisablePatternForFastISel(TreePatternNode *N, CodeGenDAGPatterns &CGP) {
+ bool isStore = !N->isLeaf() &&
+ getOpcodeName(N->getOperator(), CGP) == "ISD::STORE";
+ if (!isStore && NodeHasProperty(N, SDNPHasChain, CGP))
+ return false;
+
+ bool HasChain = false;
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ if (PatternHasProperty(Child, SDNPHasChain, CGP)) {
+ HasChain = true;
+ break;
+ }
+ }
+ return HasChain;
+}
+
+//===----------------------------------------------------------------------===//
+// Node Transformation emitter implementation.
+//
+void DAGISelEmitter::EmitNodeTransforms(std::ostream &OS) {
+ // Walk the pattern fragments, adding them to a map, which sorts them by
+ // name.
+ typedef std::map<std::string, CodeGenDAGPatterns::NodeXForm> NXsByNameTy;
+ NXsByNameTy NXsByName;
+
+ for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end();
+ I != E; ++I)
+ NXsByName.insert(std::make_pair(I->first->getName(), I->second));
+
+ OS << "\n// Node transformations.\n";
+
+ for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end();
+ I != E; ++I) {
+ Record *SDNode = I->second.first;
+ std::string Code = I->second.second;
+
+ if (Code.empty()) continue; // Empty code? Skip it.
+
+ std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName();
+ const char *C2 = ClassName == "SDNode" ? "N" : "inN";
+
+ OS << "inline SDValue Transform_" << I->first << "(SDNode *" << C2
+ << ") {\n";
+ if (ClassName != "SDNode")
+ OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
+ OS << Code << "\n}\n";
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Predicate emitter implementation.
+//
+
+void DAGISelEmitter::EmitPredicateFunctions(std::ostream &OS) {
+ OS << "\n// Predicate functions.\n";
+
+ // Walk the pattern fragments, adding them to a map, which sorts them by
+ // name.
+ typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy;
+ PFsByNameTy PFsByName;
+
+ for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end();
+ I != E; ++I)
+ PFsByName.insert(std::make_pair(I->first->getName(), *I));
+
+
+ for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end();
+ I != E; ++I) {
+ Record *PatFragRecord = I->second.first;// Record that derives from PatFrag.
+ TreePattern *P = I->second.second;
+
+ // If there is a code init for this fragment, emit the predicate code.
+ std::string Code = PatFragRecord->getValueAsCode("Predicate");
+ if (Code.empty()) continue;
+
+ if (P->getOnlyTree()->isLeaf())
+ OS << "inline bool Predicate_" << PatFragRecord->getName()
+ << "(SDNode *N) {\n";
+ else {
+ std::string ClassName =
+ CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
+ const char *C2 = ClassName == "SDNode" ? "N" : "inN";
+
+ OS << "inline bool Predicate_" << PatFragRecord->getName()
+ << "(SDNode *" << C2 << ") {\n";
+ if (ClassName != "SDNode")
+ OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
+ }
+ OS << Code << "\n}\n";
+ }
+
+ OS << "\n\n";
+}
+
+
+//===----------------------------------------------------------------------===//
+// PatternCodeEmitter implementation.
+//
+class PatternCodeEmitter {
+private:
+ CodeGenDAGPatterns &CGP;
+
+ // Predicates.
+ std::string PredicateCheck;
+ // Pattern cost.
+ unsigned Cost;
+ // Instruction selector pattern.
+ TreePatternNode *Pattern;
+ // Matched instruction.
+ TreePatternNode *Instruction;
+
+ // Node to name mapping
+ std::map<std::string, std::string> VariableMap;
+ // Node to operator mapping
+ std::map<std::string, Record*> OperatorMap;
+ // Name of the folded node which produces a flag.
+ std::pair<std::string, unsigned> FoldedFlag;
+ // Names of all the folded nodes which produce chains.
+ std::vector<std::pair<std::string, unsigned> > FoldedChains;
+ // Original input chain(s).
+ std::vector<std::pair<std::string, std::string> > OrigChains;
+ std::set<std::string> Duplicates;
+
+ /// LSI - Load/Store information.
+ /// Save loads/stores matched by a pattern, and generate a MemOperandSDNode
+ /// for each memory access. This facilitates the use of AliasAnalysis in
+ /// the backend.
+ std::vector<std::string> LSI;
+
+ /// GeneratedCode - This is the buffer that we emit code to. The first int
+ /// indicates whether this is an exit predicate (something that should be
+ /// tested, and if true, the match fails) [when 1], or normal code to emit
+ /// [when 0], or initialization code to emit [when 2].
+ std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
+ /// GeneratedDecl - This is the set of all SDValue declarations needed for
+ /// the set of patterns for each top-level opcode.
+ std::set<std::string> &GeneratedDecl;
+ /// TargetOpcodes - The target specific opcodes used by the resulting
+ /// instructions.
+ std::vector<std::string> &TargetOpcodes;
+ std::vector<std::string> &TargetVTs;
+ /// OutputIsVariadic - Records whether the instruction output pattern uses
+ /// variable_ops. This requires that the Emit function be passed an
+ /// additional argument to indicate where the input varargs operands
+ /// begin.
+ bool &OutputIsVariadic;
+ /// NumInputRootOps - Records the number of operands the root node of the
+ /// input pattern has. This information is used in the generated code to
+ /// pass to Emit functions when variable_ops processing is needed.
+ unsigned &NumInputRootOps;
+
+ std::string ChainName;
+ unsigned TmpNo;
+ unsigned OpcNo;
+ unsigned VTNo;
+
+ void emitCheck(const std::string &S) {
+ if (!S.empty())
+ GeneratedCode.push_back(std::make_pair(1, S));
+ }
+ void emitCode(const std::string &S) {
+ if (!S.empty())
+ GeneratedCode.push_back(std::make_pair(0, S));
+ }
+ void emitInit(const std::string &S) {
+ if (!S.empty())
+ GeneratedCode.push_back(std::make_pair(2, S));
+ }
+ void emitDecl(const std::string &S) {
+ assert(!S.empty() && "Invalid declaration");
+ GeneratedDecl.insert(S);
+ }
+ void emitOpcode(const std::string &Opc) {
+ TargetOpcodes.push_back(Opc);
+ OpcNo++;
+ }
+ void emitVT(const std::string &VT) {
+ TargetVTs.push_back(VT);
+ VTNo++;
+ }
+public:
+ PatternCodeEmitter(CodeGenDAGPatterns &cgp, std::string predcheck,
+ TreePatternNode *pattern, TreePatternNode *instr,
+ std::vector<std::pair<unsigned, std::string> > &gc,
+ std::set<std::string> &gd,
+ std::vector<std::string> &to,
+ std::vector<std::string> &tv,
+ bool &oiv,
+ unsigned &niro)
+ : CGP(cgp), PredicateCheck(predcheck), Pattern(pattern), Instruction(instr),
+ GeneratedCode(gc), GeneratedDecl(gd),
+ TargetOpcodes(to), TargetVTs(tv),
+ OutputIsVariadic(oiv), NumInputRootOps(niro),
+ TmpNo(0), OpcNo(0), VTNo(0) {}
+
+ /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
+ /// if the match fails. At this point, we already know that the opcode for N
+ /// matches, and the SDNode for the result has the RootName specified name.
+ void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
+ const std::string &RootName, const std::string &ChainSuffix,
+ bool &FoundChain) {
+
+ // Save loads/stores matched by a pattern.
+ if (!N->isLeaf() && N->getName().empty()) {
+ if (NodeHasProperty(N, SDNPMemOperand, CGP))
+ LSI.push_back(RootName);
+ }
+
+ bool isRoot = (P == NULL);
+ // Emit instruction predicates. Each predicate is just a string for now.
+ if (isRoot) {
+ // Record input varargs info.
+ NumInputRootOps = N->getNumChildren();
+
+ if (DisablePatternForFastISel(N, CGP))
+ emitCheck("OptLevel != CodeGenOpt::None");
+
+ emitCheck(PredicateCheck);
+ }
+
+ if (N->isLeaf()) {
+ if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
+ emitCheck("cast<ConstantSDNode>(" + RootName +
+ ")->getSExtValue() == INT64_C(" +
+ itostr(II->getValue()) + ")");
+ return;
+ } else if (!NodeIsComplexPattern(N)) {
+ assert(0 && "Cannot match this as a leaf value!");
+ abort();
+ }
+ }
+
+ // If this node has a name associated with it, capture it in VariableMap. If
+ // we already saw this in the pattern, emit code to verify dagness.
+ if (!N->getName().empty()) {
+ std::string &VarMapEntry = VariableMap[N->getName()];
+ if (VarMapEntry.empty()) {
+ VarMapEntry = RootName;
+ } else {
+ // If we get here, this is a second reference to a specific name. Since
+ // we already have checked that the first reference is valid, we don't
+ // have to recursively match it, just check that it's the same as the
+ // previously named thing.
+ emitCheck(VarMapEntry + " == " + RootName);
+ return;
+ }
+
+ if (!N->isLeaf())
+ OperatorMap[N->getName()] = N->getOperator();
+ }
+
+
+ // Emit code to load the child nodes and match their contents recursively.
+ unsigned OpNo = 0;
+ bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP);
+ bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP);
+ bool EmittedUseCheck = false;
+ if (HasChain) {
+ if (NodeHasChain)
+ OpNo = 1;
+ if (!isRoot) {
+ // Multiple uses of actual result?
+ emitCheck(RootName + ".hasOneUse()");
+ EmittedUseCheck = true;
+ if (NodeHasChain) {
+ // If the immediate use can somehow reach this node through another
+ // path, then can't fold it either or it will create a cycle.
+ // e.g. In the following diagram, XX can reach ld through YY. If
+ // ld is folded into XX, then YY is both a predecessor and a successor
+ // of XX.
+ //
+ // [ld]
+ // ^ ^
+ // | |
+ // / \---
+ // / [YY]
+ // | ^
+ // [XX]-------|
+ bool NeedCheck = P != Pattern;
+ if (!NeedCheck) {
+ const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator());
+ NeedCheck =
+ P->getOperator() == CGP.get_intrinsic_void_sdnode() ||
+ P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
+ P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
+ PInfo.getNumOperands() > 1 ||
+ PInfo.hasProperty(SDNPHasChain) ||
+ PInfo.hasProperty(SDNPInFlag) ||
+ PInfo.hasProperty(SDNPOptInFlag);
+ }
+
+ if (NeedCheck) {
+ std::string ParentName(RootName.begin(), RootName.end()-1);
+ emitCheck("IsLegalAndProfitableToFold(" + RootName +
+ ".getNode(), " + ParentName + ".getNode(), N.getNode())");
+ }
+ }
+ }
+
+ if (NodeHasChain) {
+ if (FoundChain) {
+ emitCheck("(" + ChainName + ".getNode() == " + RootName + ".getNode() || "
+ "IsChainCompatible(" + ChainName + ".getNode(), " +
+ RootName + ".getNode()))");
+ OrigChains.push_back(std::make_pair(ChainName, RootName));
+ } else
+ FoundChain = true;
+ ChainName = "Chain" + ChainSuffix;
+ emitInit("SDValue " + ChainName + " = " + RootName +
+ ".getOperand(0);");
+ }
+ }
+
+ // Don't fold any node which reads or writes a flag and has multiple uses.
+ // FIXME: We really need to separate the concepts of flag and "glue". Those
+ // real flag results, e.g. X86CMP output, can have multiple uses.
+ // FIXME: If the optional incoming flag does not exist. Then it is ok to
+ // fold it.
+ if (!isRoot &&
+ (PatternHasProperty(N, SDNPInFlag, CGP) ||
+ PatternHasProperty(N, SDNPOptInFlag, CGP) ||
+ PatternHasProperty(N, SDNPOutFlag, CGP))) {
+ if (!EmittedUseCheck) {
+ // Multiple uses of actual result?
+ emitCheck(RootName + ".hasOneUse()");
+ }
+ }
+
+ // If there are node predicates for this, emit the calls.
+ for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i)
+ emitCheck(N->getPredicateFns()[i] + "(" + RootName + ".getNode())");
+
+ // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
+ // a constant without a predicate fn that has more that one bit set, handle
+ // this as a special case. This is usually for targets that have special
+ // handling of certain large constants (e.g. alpha with it's 8/16/32-bit
+ // handling stuff). Using these instructions is often far more efficient
+ // than materializing the constant. Unfortunately, both the instcombiner
+ // and the dag combiner can often infer that bits are dead, and thus drop
+ // them from the mask in the dag. For example, it might turn 'AND X, 255'
+ // into 'AND X, 254' if it knows the low bit is set. Emit code that checks
+ // to handle this.
+ if (!N->isLeaf() &&
+ (N->getOperator()->getName() == "and" ||
+ N->getOperator()->getName() == "or") &&
+ N->getChild(1)->isLeaf() &&
+ N->getChild(1)->getPredicateFns().empty()) {
+ if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
+ if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
+ emitInit("SDValue " + RootName + "0" + " = " +
+ RootName + ".getOperand(" + utostr(0) + ");");
+ emitInit("SDValue " + RootName + "1" + " = " +
+ RootName + ".getOperand(" + utostr(1) + ");");
+
+ unsigned NTmp = TmpNo++;
+ emitCode("ConstantSDNode *Tmp" + utostr(NTmp) +
+ " = dyn_cast<ConstantSDNode>(" + RootName + "1);");
+ emitCheck("Tmp" + utostr(NTmp));
+ const char *MaskPredicate = N->getOperator()->getName() == "or"
+ ? "CheckOrMask(" : "CheckAndMask(";
+ emitCheck(MaskPredicate + RootName + "0, Tmp" + utostr(NTmp) +
+ ", INT64_C(" + itostr(II->getValue()) + "))");
+
+ EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), RootName,
+ ChainSuffix + utostr(0), FoundChain);
+ return;
+ }
+ }
+ }
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
+ emitInit("SDValue " + RootName + utostr(OpNo) + " = " +
+ RootName + ".getOperand(" +utostr(OpNo) + ");");
+
+ EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), RootName,
+ ChainSuffix + utostr(OpNo), FoundChain);
+ }
+
+ // Handle cases when root is a complex pattern.
+ const ComplexPattern *CP;
+ if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
+ std::string Fn = CP->getSelectFunc();
+ unsigned NumOps = CP->getNumOperands();
+ for (unsigned i = 0; i < NumOps; ++i) {
+ emitDecl("CPTmp" + RootName + "_" + utostr(i));
+ emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";");
+ }
+ if (CP->hasProperty(SDNPHasChain)) {
+ emitDecl("CPInChain");
+ emitDecl("Chain" + ChainSuffix);
+ emitCode("SDValue CPInChain;");
+ emitCode("SDValue Chain" + ChainSuffix + ";");
+ }
+
+ std::string Code = Fn + "(" + RootName + ", " + RootName;
+ for (unsigned i = 0; i < NumOps; i++)
+ Code += ", CPTmp" + RootName + "_" + utostr(i);
+ if (CP->hasProperty(SDNPHasChain)) {
+ ChainName = "Chain" + ChainSuffix;
+ Code += ", CPInChain, Chain" + ChainSuffix;
+ }
+ emitCheck(Code + ")");
+ }
+ }
+
+ void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
+ const std::string &RootName,
+ const std::string &ParentRootName,
+ const std::string &ChainSuffix, bool &FoundChain) {
+ if (!Child->isLeaf()) {
+ // If it's not a leaf, recursively match.
+ const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator());
+ emitCheck(RootName + ".getOpcode() == " +
+ CInfo.getEnumName());
+ EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
+ bool HasChain = false;
+ if (NodeHasProperty(Child, SDNPHasChain, CGP)) {
+ HasChain = true;
+ FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
+ }
+ if (NodeHasProperty(Child, SDNPOutFlag, CGP)) {
+ assert(FoldedFlag.first == "" && FoldedFlag.second == 0 &&
+ "Pattern folded multiple nodes which produce flags?");
+ FoldedFlag = std::make_pair(RootName,
+ CInfo.getNumResults() + (unsigned)HasChain);
+ }
+ } else {
+ // If this child has a name associated with it, capture it in VarMap. If
+ // we already saw this in the pattern, emit code to verify dagness.
+ if (!Child->getName().empty()) {
+ std::string &VarMapEntry = VariableMap[Child->getName()];
+ if (VarMapEntry.empty()) {
+ VarMapEntry = RootName;
+ } else {
+ // If we get here, this is a second reference to a specific name.
+ // Since we already have checked that the first reference is valid,
+ // we don't have to recursively match it, just check that it's the
+ // same as the previously named thing.
+ emitCheck(VarMapEntry + " == " + RootName);
+ Duplicates.insert(RootName);
+ return;
+ }
+ }
+
+ // Handle leaves of various types.
+ if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
+ Record *LeafRec = DI->getDef();
+ if (LeafRec->isSubClassOf("RegisterClass") ||
+ LeafRec->getName() == "ptr_rc") {
+ // Handle register references. Nothing to do here.
+ } else if (LeafRec->isSubClassOf("Register")) {
+ // Handle register references.
+ } else if (LeafRec->isSubClassOf("ComplexPattern")) {
+ // Handle complex pattern.
+ const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP);
+ std::string Fn = CP->getSelectFunc();
+ unsigned NumOps = CP->getNumOperands();
+ for (unsigned i = 0; i < NumOps; ++i) {
+ emitDecl("CPTmp" + RootName + "_" + utostr(i));
+ emitCode("SDValue CPTmp" + RootName + "_" + utostr(i) + ";");
+ }
+ if (CP->hasProperty(SDNPHasChain)) {
+ const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator());
+ FoldedChains.push_back(std::make_pair("CPInChain",
+ PInfo.getNumResults()));
+ ChainName = "Chain" + ChainSuffix;
+ emitDecl("CPInChain");
+ emitDecl(ChainName);
+ emitCode("SDValue CPInChain;");
+ emitCode("SDValue " + ChainName + ";");
+ }
+
+ std::string Code = Fn + "(";
+ if (CP->hasAttribute(CPAttrParentAsRoot)) {
+ Code += ParentRootName + ", ";
+ } else {
+ Code += "N, ";
+ }
+ if (CP->hasProperty(SDNPHasChain)) {
+ std::string ParentName(RootName.begin(), RootName.end()-1);
+ Code += ParentName + ", ";
+ }
+ Code += RootName;
+ for (unsigned i = 0; i < NumOps; i++)
+ Code += ", CPTmp" + RootName + "_" + utostr(i);
+ if (CP->hasProperty(SDNPHasChain))
+ Code += ", CPInChain, Chain" + ChainSuffix;
+ emitCheck(Code + ")");
+ } else if (LeafRec->getName() == "srcvalue") {
+ // Place holder for SRCVALUE nodes. Nothing to do here.
+ } else if (LeafRec->isSubClassOf("ValueType")) {
+ // Make sure this is the specified value type.
+ emitCheck("cast<VTSDNode>(" + RootName +
+ ")->getVT() == MVT::" + LeafRec->getName());
+ } else if (LeafRec->isSubClassOf("CondCode")) {
+ // Make sure this is the specified cond code.
+ emitCheck("cast<CondCodeSDNode>(" + RootName +
+ ")->get() == ISD::" + LeafRec->getName());
+ } else {
+#ifndef NDEBUG
+ Child->dump();
+ cerr << " ";
+#endif
+ assert(0 && "Unknown leaf type!");
+ }
+
+ // If there are node predicates for this, emit the calls.
+ for (unsigned i = 0, e = Child->getPredicateFns().size(); i != e; ++i)
+ emitCheck(Child->getPredicateFns()[i] + "(" + RootName +
+ ".getNode())");
+ } else if (IntInit *II =
+ dynamic_cast<IntInit*>(Child->getLeafValue())) {
+ unsigned NTmp = TmpNo++;
+ emitCode("ConstantSDNode *Tmp"+ utostr(NTmp) +
+ " = dyn_cast<ConstantSDNode>("+
+ RootName + ");");
+ emitCheck("Tmp" + utostr(NTmp));
+ unsigned CTmp = TmpNo++;
+ emitCode("int64_t CN"+ utostr(CTmp) +
+ " = Tmp" + utostr(NTmp) + "->getSExtValue();");
+ emitCheck("CN" + utostr(CTmp) + " == "
+ "INT64_C(" +itostr(II->getValue()) + ")");
+ } else {
+#ifndef NDEBUG
+ Child->dump();
+#endif
+ assert(0 && "Unknown leaf type!");
+ }
+ }
+ }
+
+ /// EmitResultCode - Emit the action for a pattern. Now that it has matched
+ /// we actually have to build a DAG!
+ std::vector<std::string>
+ EmitResultCode(TreePatternNode *N, std::vector<Record*> DstRegs,
+ bool InFlagDecled, bool ResNodeDecled,
+ bool LikeLeaf = false, bool isRoot = false) {
+ // List of arguments of getTargetNode() or SelectNodeTo().
+ std::vector<std::string> NodeOps;
+ // This is something selected from the pattern we matched.
+ if (!N->getName().empty()) {
+ const std::string &VarName = N->getName();
+ std::string Val = VariableMap[VarName];
+ bool ModifiedVal = false;
+ if (Val.empty()) {
+ cerr << "Variable '" << VarName << " referenced but not defined "
+ << "and not caught earlier!\n";
+ abort();
+ }
+ if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
+ // Already selected this operand, just return the tmpval.
+ NodeOps.push_back(Val);
+ return NodeOps;
+ }
+
+ const ComplexPattern *CP;
+ unsigned ResNo = TmpNo++;
+ if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
+ assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
+ std::string CastType;
+ std::string TmpVar = "Tmp" + utostr(ResNo);
+ switch (N->getTypeNum(0)) {
+ default:
+ cerr << "Cannot handle " << getEnumName(N->getTypeNum(0))
+ << " type as an immediate constant. Aborting\n";
+ abort();
+ case MVT::i1: CastType = "bool"; break;
+ case MVT::i8: CastType = "unsigned char"; break;
+ case MVT::i16: CastType = "unsigned short"; break;
+ case MVT::i32: CastType = "unsigned"; break;
+ case MVT::i64: CastType = "uint64_t"; break;
+ }
+ emitCode("SDValue " + TmpVar +
+ " = CurDAG->getTargetConstant(((" + CastType +
+ ") cast<ConstantSDNode>(" + Val + ")->getZExtValue()), " +
+ getEnumName(N->getTypeNum(0)) + ");");
+ // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
+ // value if used multiple times by this pattern result.
+ Val = TmpVar;
+ ModifiedVal = true;
+ NodeOps.push_back(Val);
+ } else if (!N->isLeaf() && N->getOperator()->getName() == "fpimm") {
+ assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
+ std::string TmpVar = "Tmp" + utostr(ResNo);
+ emitCode("SDValue " + TmpVar +
+ " = CurDAG->getTargetConstantFP(*cast<ConstantFPSDNode>(" +
+ Val + ")->getConstantFPValue(), cast<ConstantFPSDNode>(" +
+ Val + ")->getValueType(0));");
+ // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
+ // value if used multiple times by this pattern result.
+ Val = TmpVar;
+ ModifiedVal = true;
+ NodeOps.push_back(Val);
+ } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
+ Record *Op = OperatorMap[N->getName()];
+ // Transform ExternalSymbol to TargetExternalSymbol
+ if (Op && Op->getName() == "externalsym") {
+ std::string TmpVar = "Tmp"+utostr(ResNo);
+ emitCode("SDValue " + TmpVar + " = CurDAG->getTarget"
+ "ExternalSymbol(cast<ExternalSymbolSDNode>(" +
+ Val + ")->getSymbol(), " +
+ getEnumName(N->getTypeNum(0)) + ");");
+ // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
+ // this value if used multiple times by this pattern result.
+ Val = TmpVar;
+ ModifiedVal = true;
+ }
+ NodeOps.push_back(Val);
+ } else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr"
+ || N->getOperator()->getName() == "tglobaltlsaddr")) {
+ Record *Op = OperatorMap[N->getName()];
+ // Transform GlobalAddress to TargetGlobalAddress
+ if (Op && (Op->getName() == "globaladdr" ||
+ Op->getName() == "globaltlsaddr")) {
+ std::string TmpVar = "Tmp" + utostr(ResNo);
+ emitCode("SDValue " + TmpVar + " = CurDAG->getTarget"
+ "GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
+ ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
+ ");");
+ // Add Tmp<ResNo> to VariableMap, so that we don't multiply select
+ // this value if used multiple times by this pattern result.
+ Val = TmpVar;
+ ModifiedVal = true;
+ }
+ NodeOps.push_back(Val);
+ } else if (!N->isLeaf()
+ && (N->getOperator()->getName() == "texternalsym"
+ || N->getOperator()->getName() == "tconstpool")) {
+ // Do not rewrite the variable name, since we don't generate a new
+ // temporary.
+ NodeOps.push_back(Val);
+ } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
+ for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
+ NodeOps.push_back("CPTmp" + Val + "_" + utostr(i));
+ }
+ } else {
+ // This node, probably wrapped in a SDNodeXForm, behaves like a leaf
+ // node even if it isn't one. Don't select it.
+ if (!LikeLeaf) {
+ if (isRoot && N->isLeaf()) {
+ emitCode("ReplaceUses(N, " + Val + ");");
+ emitCode("return NULL;");
+ }
+ }
+ NodeOps.push_back(Val);
+ }
+
+ if (ModifiedVal) {
+ VariableMap[VarName] = Val;
+ }
+ return NodeOps;
+ }
+ if (N->isLeaf()) {
+ // If this is an explicit register reference, handle it.
+ if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
+ unsigned ResNo = TmpNo++;
+ if (DI->getDef()->isSubClassOf("Register")) {
+ emitCode("SDValue Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
+ getQualifiedName(DI->getDef()) + ", " +
+ getEnumName(N->getTypeNum(0)) + ");");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ return NodeOps;
+ } else if (DI->getDef()->getName() == "zero_reg") {
+ emitCode("SDValue Tmp" + utostr(ResNo) +
+ " = CurDAG->getRegister(0, " +
+ getEnumName(N->getTypeNum(0)) + ");");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ return NodeOps;
+ } else if (DI->getDef()->isSubClassOf("RegisterClass")) {
+ // Handle a reference to a register class. This is used
+ // in COPY_TO_SUBREG instructions.
+ emitCode("SDValue Tmp" + utostr(ResNo) +
+ " = CurDAG->getTargetConstant(" +
+ getQualifiedName(DI->getDef()) + "RegClassID, " +
+ "MVT::i32);");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ return NodeOps;
+ }
+ } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
+ unsigned ResNo = TmpNo++;
+ assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
+ emitCode("SDValue Tmp" + utostr(ResNo) +
+ " = CurDAG->getTargetConstant(0x" + itohexstr(II->getValue()) +
+ "ULL, " + getEnumName(N->getTypeNum(0)) + ");");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ return NodeOps;
+ }
+
+#ifndef NDEBUG
+ N->dump();
+#endif
+ assert(0 && "Unknown leaf type!");
+ return NodeOps;
+ }
+
+ Record *Op = N->getOperator();
+ if (Op->isSubClassOf("Instruction")) {
+ const CodeGenTarget &CGT = CGP.getTargetInfo();
+ CodeGenInstruction &II = CGT.getInstruction(Op->getName());
+ const DAGInstruction &Inst = CGP.getInstruction(Op);
+ const TreePattern *InstPat = Inst.getPattern();
+ // FIXME: Assume actual pattern comes before "implicit".
+ TreePatternNode *InstPatNode =
+ isRoot ? (InstPat ? InstPat->getTree(0) : Pattern)
+ : (InstPat ? InstPat->getTree(0) : NULL);
+ if (InstPatNode && !InstPatNode->isLeaf() &&
+ InstPatNode->getOperator()->getName() == "set") {
+ InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
+ }
+ bool IsVariadic = isRoot && II.isVariadic;
+ // FIXME: fix how we deal with physical register operands.
+ bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
+ bool HasImpResults = isRoot && DstRegs.size() > 0;
+ bool NodeHasOptInFlag = isRoot &&
+ PatternHasProperty(Pattern, SDNPOptInFlag, CGP);
+ bool NodeHasInFlag = isRoot &&
+ PatternHasProperty(Pattern, SDNPInFlag, CGP);
+ bool NodeHasOutFlag = isRoot &&
+ PatternHasProperty(Pattern, SDNPOutFlag, CGP);
+ bool NodeHasChain = InstPatNode &&
+ PatternHasProperty(InstPatNode, SDNPHasChain, CGP);
+ bool InputHasChain = isRoot &&
+ NodeHasProperty(Pattern, SDNPHasChain, CGP);
+ unsigned NumResults = Inst.getNumResults();
+ unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0;
+
+ // Record output varargs info.
+ OutputIsVariadic = IsVariadic;
+
+ if (NodeHasOptInFlag) {
+ emitCode("bool HasInFlag = "
+ "(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
+ }
+ if (IsVariadic)
+ emitCode("SmallVector<SDValue, 8> Ops" + utostr(OpcNo) + ";");
+
+ // How many results is this pattern expected to produce?
+ unsigned NumPatResults = 0;
+ for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
+ MVT::SimpleValueType VT = Pattern->getTypeNum(i);
+ if (VT != MVT::isVoid && VT != MVT::Flag)
+ NumPatResults++;
+ }
+
+ if (OrigChains.size() > 0) {
+ // The original input chain is being ignored. If it is not just
+ // pointing to the op that's being folded, we should create a
+ // TokenFactor with it and the chain of the folded op as the new chain.
+ // We could potentially be doing multiple levels of folding, in that
+ // case, the TokenFactor can have more operands.
+ emitCode("SmallVector<SDValue, 8> InChains;");
+ for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
+ emitCode("if (" + OrigChains[i].first + ".getNode() != " +
+ OrigChains[i].second + ".getNode()) {");
+ emitCode(" InChains.push_back(" + OrigChains[i].first + ");");
+ emitCode("}");
+ }
+ emitCode("InChains.push_back(" + ChainName + ");");
+ emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, "
+ "N.getDebugLoc(), MVT::Other, "
+ "&InChains[0], InChains.size());");
+ if (GenDebug) {
+ emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"yellow\");");
+ emitCode("CurDAG->setSubgraphColor(" + ChainName +".getNode(), \"black\");");
+ }
+ }
+
+ // Loop over all of the operands of the instruction pattern, emitting code
+ // to fill them all in. The node 'N' usually has number children equal to
+ // the number of input operands of the instruction. However, in cases
+ // where there are predicate operands for an instruction, we need to fill
+ // in the 'execute always' values. Match up the node operands to the
+ // instruction operands to do this.
+ std::vector<std::string> AllOps;
+ for (unsigned ChildNo = 0, InstOpNo = NumResults;
+ InstOpNo != II.OperandList.size(); ++InstOpNo) {
+ std::vector<std::string> Ops;
+
+ // Determine what to emit for this operand.
+ Record *OperandNode = II.OperandList[InstOpNo].Rec;
+ if ((OperandNode->isSubClassOf("PredicateOperand") ||
+ OperandNode->isSubClassOf("OptionalDefOperand")) &&
+ !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
+ // This is a predicate or optional def operand; emit the
+ // 'default ops' operands.
+ const DAGDefaultOperand &DefaultOp =
+ CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
+ for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) {
+ Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs,
+ InFlagDecled, ResNodeDecled);
+ AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
+ }
+ } else {
+ // Otherwise this is a normal operand or a predicate operand without
+ // 'execute always'; emit it.
+ Ops = EmitResultCode(N->getChild(ChildNo), DstRegs,
+ InFlagDecled, ResNodeDecled);
+ AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
+ ++ChildNo;
+ }
+ }
+
+ // Emit all the chain and CopyToReg stuff.
+ bool ChainEmitted = NodeHasChain;
+ if (NodeHasInFlag || HasImpInputs)
+ EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
+ InFlagDecled, ResNodeDecled, true);
+ if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
+ if (!InFlagDecled) {
+ emitCode("SDValue InFlag(0, 0);");
+ InFlagDecled = true;
+ }
+ if (NodeHasOptInFlag) {
+ emitCode("if (HasInFlag) {");
+ emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
+ emitCode("}");
+ }
+ }
+
+ unsigned ResNo = TmpNo++;
+
+ unsigned OpsNo = OpcNo;
+ std::string CodePrefix;
+ bool ChainAssignmentNeeded = NodeHasChain && !isRoot;
+ std::deque<std::string> After;
+ std::string NodeName;
+ if (!isRoot) {
+ NodeName = "Tmp" + utostr(ResNo);
+ CodePrefix = "SDValue " + NodeName + "(";
+ } else {
+ NodeName = "ResNode";
+ if (!ResNodeDecled) {
+ CodePrefix = "SDNode *" + NodeName + " = ";
+ ResNodeDecled = true;
+ } else
+ CodePrefix = NodeName + " = ";
+ }
+
+ std::string Code = "Opc" + utostr(OpcNo);
+
+ if (!isRoot || (InputHasChain && !NodeHasChain))
+ // For call to "getTargetNode()".
+ Code += ", N.getDebugLoc()";
+
+ emitOpcode(II.Namespace + "::" + II.TheDef->getName());
+
+ // Output order: results, chain, flags
+ // Result types.
+ if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
+ Code += ", VT" + utostr(VTNo);
+ emitVT(getEnumName(N->getTypeNum(0)));
+ }
+ // Add types for implicit results in physical registers, scheduler will
+ // care of adding copyfromreg nodes.
+ for (unsigned i = 0; i < NumDstRegs; i++) {
+ Record *RR = DstRegs[i];
+ if (RR->isSubClassOf("Register")) {
+ MVT::SimpleValueType RVT = getRegisterValueType(RR, CGT);
+ Code += ", " + getEnumName(RVT);
+ }
+ }
+ if (NodeHasChain)
+ Code += ", MVT::Other";
+ if (NodeHasOutFlag)
+ Code += ", MVT::Flag";
+
+ // Inputs.
+ if (IsVariadic) {
+ for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
+ emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
+ AllOps.clear();
+
+ // Figure out whether any operands at the end of the op list are not
+ // part of the variable section.
+ std::string EndAdjust;
+ if (NodeHasInFlag || HasImpInputs)
+ EndAdjust = "-1"; // Always has one flag.
+ else if (NodeHasOptInFlag)
+ EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
+
+ emitCode("for (unsigned i = NumInputRootOps + " + utostr(NodeHasChain) +
+ ", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
+
+ emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
+ emitCode("}");
+ }
+
+ // Generate MemOperandSDNodes nodes for each memory accesses covered by
+ // this pattern.
+ if (II.mayLoad | II.mayStore) {
+ std::vector<std::string>::const_iterator mi, mie;
+ for (mi = LSI.begin(), mie = LSI.end(); mi != mie; ++mi) {
+ std::string LSIName = "LSI_" + *mi;
+ emitCode("SDValue " + LSIName + " = "
+ "CurDAG->getMemOperand(cast<MemSDNode>(" +
+ *mi + ")->getMemOperand());");
+ if (GenDebug) {
+ emitCode("CurDAG->setSubgraphColor(" + LSIName +".getNode(), \"yellow\");");
+ emitCode("CurDAG->setSubgraphColor(" + LSIName +".getNode(), \"black\");");
+ }
+ if (IsVariadic)
+ emitCode("Ops" + utostr(OpsNo) + ".push_back(" + LSIName + ");");
+ else
+ AllOps.push_back(LSIName);
+ }
+ }
+
+ if (NodeHasChain) {
+ if (IsVariadic)
+ emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
+ else
+ AllOps.push_back(ChainName);
+ }
+
+ if (IsVariadic) {
+ if (NodeHasInFlag || HasImpInputs)
+ emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
+ else if (NodeHasOptInFlag) {
+ emitCode("if (HasInFlag)");
+ emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
+ }
+ Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
+ ".size()";
+ } else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
+ AllOps.push_back("InFlag");
+
+ unsigned NumOps = AllOps.size();
+ if (NumOps) {
+ if (!NodeHasOptInFlag && NumOps < 4) {
+ for (unsigned i = 0; i != NumOps; ++i)
+ Code += ", " + AllOps[i];
+ } else {
+ std::string OpsCode = "SDValue Ops" + utostr(OpsNo) + "[] = { ";
+ for (unsigned i = 0; i != NumOps; ++i) {
+ OpsCode += AllOps[i];
+ if (i != NumOps-1)
+ OpsCode += ", ";
+ }
+ emitCode(OpsCode + " };");
+ Code += ", Ops" + utostr(OpsNo) + ", ";
+ if (NodeHasOptInFlag) {
+ Code += "HasInFlag ? ";
+ Code += utostr(NumOps) + " : " + utostr(NumOps-1);
+ } else
+ Code += utostr(NumOps);
+ }
+ }
+
+ if (!isRoot)
+ Code += "), 0";
+
+ std::vector<std::string> ReplaceFroms;
+ std::vector<std::string> ReplaceTos;
+ if (!isRoot) {
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ } else {
+
+ if (NodeHasOutFlag) {
+ if (!InFlagDecled) {
+ After.push_back("SDValue InFlag(ResNode, " +
+ utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) +
+ ");");
+ InFlagDecled = true;
+ } else
+ After.push_back("InFlag = SDValue(ResNode, " +
+ utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) +
+ ");");
+ }
+
+ for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) {
+ ReplaceFroms.push_back("SDValue(" +
+ FoldedChains[j].first + ".getNode(), " +
+ utostr(FoldedChains[j].second) +
+ ")");
+ ReplaceTos.push_back("SDValue(ResNode, " +
+ utostr(NumResults+NumDstRegs) + ")");
+ }
+
+ if (NodeHasOutFlag) {
+ if (FoldedFlag.first != "") {
+ ReplaceFroms.push_back("SDValue(" + FoldedFlag.first + ".getNode(), " +
+ utostr(FoldedFlag.second) + ")");
+ ReplaceTos.push_back("InFlag");
+ } else {
+ assert(NodeHasProperty(Pattern, SDNPOutFlag, CGP));
+ ReplaceFroms.push_back("SDValue(N.getNode(), " +
+ utostr(NumPatResults + (unsigned)InputHasChain)
+ + ")");
+ ReplaceTos.push_back("InFlag");
+ }
+ }
+
+ if (!ReplaceFroms.empty() && InputHasChain) {
+ ReplaceFroms.push_back("SDValue(N.getNode(), " +
+ utostr(NumPatResults) + ")");
+ ReplaceTos.push_back("SDValue(" + ChainName + ".getNode(), " +
+ ChainName + ".getResNo()" + ")");
+ ChainAssignmentNeeded |= NodeHasChain;
+ }
+
+ // User does not expect the instruction would produce a chain!
+ if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
+ ;
+ } else if (InputHasChain && !NodeHasChain) {
+ // One of the inner node produces a chain.
+ if (NodeHasOutFlag) {
+ ReplaceFroms.push_back("SDValue(N.getNode(), " +
+ utostr(NumPatResults+1) +
+ ")");
+ ReplaceTos.push_back("SDValue(ResNode, N.getResNo()-1)");
+ }
+ ReplaceFroms.push_back("SDValue(N.getNode(), " +
+ utostr(NumPatResults) + ")");
+ ReplaceTos.push_back(ChainName);
+ }
+ }
+
+ if (ChainAssignmentNeeded) {
+ // Remember which op produces the chain.
+ std::string ChainAssign;
+ if (!isRoot)
+ ChainAssign = ChainName + " = SDValue(" + NodeName +
+ ".getNode(), " + utostr(NumResults+NumDstRegs) + ");";
+ else
+ ChainAssign = ChainName + " = SDValue(" + NodeName +
+ ", " + utostr(NumResults+NumDstRegs) + ");";
+
+ After.push_front(ChainAssign);
+ }
+
+ if (ReplaceFroms.size() == 1) {
+ After.push_back("ReplaceUses(" + ReplaceFroms[0] + ", " +
+ ReplaceTos[0] + ");");
+ } else if (!ReplaceFroms.empty()) {
+ After.push_back("const SDValue Froms[] = {");
+ for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i)
+ After.push_back(" " + ReplaceFroms[i] + (i + 1 != e ? "," : ""));
+ After.push_back("};");
+ After.push_back("const SDValue Tos[] = {");
+ for (unsigned i = 0, e = ReplaceFroms.size(); i != e; ++i)
+ After.push_back(" " + ReplaceTos[i] + (i + 1 != e ? "," : ""));
+ After.push_back("};");
+ After.push_back("ReplaceUses(Froms, Tos, " +
+ itostr(ReplaceFroms.size()) + ");");
+ }
+
+ // We prefer to use SelectNodeTo since it avoids allocation when
+ // possible and it avoids CSE map recalculation for the node's
+ // users, however it's tricky to use in a non-root context.
+ //
+ // We also don't use if the pattern replacement is being used to
+ // jettison a chain result, since morphing the node in place
+ // would leave users of the chain dangling.
+ //
+ if (!isRoot || (InputHasChain && !NodeHasChain)) {
+ Code = "CurDAG->getTargetNode(" + Code;
+ } else {
+ Code = "CurDAG->SelectNodeTo(N.getNode(), " + Code;
+ }
+ if (isRoot) {
+ if (After.empty())
+ CodePrefix = "return ";
+ else
+ After.push_back("return ResNode;");
+ }
+
+ emitCode(CodePrefix + Code + ");");
+
+ if (GenDebug) {
+ if (!isRoot) {
+ emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"yellow\");");
+ emitCode("CurDAG->setSubgraphColor(" + NodeName +".getNode(), \"black\");");
+ }
+ else {
+ emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"yellow\");");
+ emitCode("CurDAG->setSubgraphColor(" + NodeName +", \"black\");");
+ }
+ }
+
+ for (unsigned i = 0, e = After.size(); i != e; ++i)
+ emitCode(After[i]);
+
+ return NodeOps;
+ }
+ if (Op->isSubClassOf("SDNodeXForm")) {
+ assert(N->getNumChildren() == 1 && "node xform should have one child!");
+ // PatLeaf node - the operand may or may not be a leaf node. But it should
+ // behave like one.
+ std::vector<std::string> Ops =
+ EmitResultCode(N->getChild(0), DstRegs, InFlagDecled,
+ ResNodeDecled, true);
+ unsigned ResNo = TmpNo++;
+ emitCode("SDValue Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
+ + "(" + Ops.back() + ".getNode());");
+ NodeOps.push_back("Tmp" + utostr(ResNo));
+ if (isRoot)
+ emitCode("return Tmp" + utostr(ResNo) + ".getNode();");
+ return NodeOps;
+ }
+
+ N->dump();
+ cerr << "\n";
+ throw std::string("Unknown node in result pattern!");
+ }
+
+ /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
+ /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
+ /// 'Pat' may be missing types. If we find an unresolved type to add a check
+ /// for, this returns true otherwise false if Pat has all types.
+ bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
+ const std::string &Prefix, bool isRoot = false) {
+ // Did we find one?
+ if (Pat->getExtTypes() != Other->getExtTypes()) {
+ // Move a type over from 'other' to 'pat'.
+ Pat->setTypes(Other->getExtTypes());
+ // The top level node type is checked outside of the select function.
+ if (!isRoot)
+ emitCheck(Prefix + ".getNode()->getValueType(0) == " +
+ getName(Pat->getTypeNum(0)));
+ return true;
+ }
+
+ unsigned OpNo =
+ (unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP);
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
+ if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
+ Prefix + utostr(OpNo)))
+ return true;
+ return false;
+ }
+
+private:
+ /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
+ /// being built.
+ void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
+ bool &ChainEmitted, bool &InFlagDecled,
+ bool &ResNodeDecled, bool isRoot = false) {
+ const CodeGenTarget &T = CGP.getTargetInfo();
+ unsigned OpNo =
+ (unsigned) NodeHasProperty(N, SDNPHasChain, CGP);
+ bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP);
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
+ TreePatternNode *Child = N->getChild(i);
+ if (!Child->isLeaf()) {
+ EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
+ InFlagDecled, ResNodeDecled);
+ } else {
+ if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
+ if (!Child->getName().empty()) {
+ std::string Name = RootName + utostr(OpNo);
+ if (Duplicates.find(Name) != Duplicates.end())
+ // A duplicate! Do not emit a copy for this node.
+ continue;
+ }
+
+ Record *RR = DI->getDef();
+ if (RR->isSubClassOf("Register")) {
+ MVT::SimpleValueType RVT = getRegisterValueType(RR, T);
+ if (RVT == MVT::Flag) {
+ if (!InFlagDecled) {
+ emitCode("SDValue InFlag = " + RootName + utostr(OpNo) + ";");
+ InFlagDecled = true;
+ } else
+ emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
+ } else {
+ if (!ChainEmitted) {
+ emitCode("SDValue Chain = CurDAG->getEntryNode();");
+ ChainName = "Chain";
+ ChainEmitted = true;
+ }
+ if (!InFlagDecled) {
+ emitCode("SDValue InFlag(0, 0);");
+ InFlagDecled = true;
+ }
+ std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
+ emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
+ ", " + RootName + ".getDebugLoc()" +
+ ", " + getQualifiedName(RR) +
+ ", " + RootName + utostr(OpNo) + ", InFlag).getNode();");
+ ResNodeDecled = true;
+ emitCode(ChainName + " = SDValue(ResNode, 0);");
+ emitCode("InFlag = SDValue(ResNode, 1);");
+ }
+ }
+ }
+ }
+ }
+
+ if (HasInFlag) {
+ if (!InFlagDecled) {
+ emitCode("SDValue InFlag = " + RootName +
+ ".getOperand(" + utostr(OpNo) + ");");
+ InFlagDecled = true;
+ } else
+ emitCode("InFlag = " + RootName +
+ ".getOperand(" + utostr(OpNo) + ");");
+ }
+ }
+};
+
+/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
+/// stream to match the pattern, and generate the code for the match if it
+/// succeeds. Returns true if the pattern is not guaranteed to match.
+void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern,
+ std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
+ std::set<std::string> &GeneratedDecl,
+ std::vector<std::string> &TargetOpcodes,
+ std::vector<std::string> &TargetVTs,
+ bool &OutputIsVariadic,
+ unsigned &NumInputRootOps) {
+ OutputIsVariadic = false;
+ NumInputRootOps = 0;
+
+ PatternCodeEmitter Emitter(CGP, Pattern.getPredicateCheck(),
+ Pattern.getSrcPattern(), Pattern.getDstPattern(),
+ GeneratedCode, GeneratedDecl,
+ TargetOpcodes, TargetVTs,
+ OutputIsVariadic, NumInputRootOps);
+
+ // Emit the matcher, capturing named arguments in VariableMap.
+ bool FoundChain = false;
+ Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
+
+ // TP - Get *SOME* tree pattern, we don't care which.
+ TreePattern &TP = *CGP.pf_begin()->second;
+
+ // At this point, we know that we structurally match the pattern, but the
+ // types of the nodes may not match. Figure out the fewest number of type
+ // comparisons we need to emit. For example, if there is only one integer
+ // type supported by a target, there should be no type comparisons at all for
+ // integer patterns!
+ //
+ // To figure out the fewest number of type checks needed, clone the pattern,
+ // remove the types, then perform type inference on the pattern as a whole.
+ // If there are unresolved types, emit an explicit check for those types,
+ // apply the type to the tree, then rerun type inference. Iterate until all
+ // types are resolved.
+ //
+ TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
+ RemoveAllTypes(Pat);
+
+ do {
+ // Resolve/propagate as many types as possible.
+ try {
+ bool MadeChange = true;
+ while (MadeChange)
+ MadeChange = Pat->ApplyTypeConstraints(TP,
+ true/*Ignore reg constraints*/);
+ } catch (...) {
+ assert(0 && "Error: could not find consistent types for something we"
+ " already decided was ok!");
+ abort();
+ }
+
+ // Insert a check for an unresolved type and add it to the tree. If we find
+ // an unresolved type to add a check for, this returns true and we iterate,
+ // otherwise we are done.
+ } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
+
+ Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(),
+ false, false, false, true);
+ delete Pat;
+}
+
+/// EraseCodeLine - Erase one code line from all of the patterns. If removing
+/// a line causes any of them to be empty, remove them and return true when
+/// done.
+static bool EraseCodeLine(std::vector<std::pair<const PatternToMatch*,
+ std::vector<std::pair<unsigned, std::string> > > >
+ &Patterns) {
+ bool ErasedPatterns = false;
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ Patterns[i].second.pop_back();
+ if (Patterns[i].second.empty()) {
+ Patterns.erase(Patterns.begin()+i);
+ --i; --e;
+ ErasedPatterns = true;
+ }
+ }
+ return ErasedPatterns;
+}
+
+/// EmitPatterns - Emit code for at least one pattern, but try to group common
+/// code together between the patterns.
+void DAGISelEmitter::EmitPatterns(std::vector<std::pair<const PatternToMatch*,
+ std::vector<std::pair<unsigned, std::string> > > >
+ &Patterns, unsigned Indent,
+ std::ostream &OS) {
+ typedef std::pair<unsigned, std::string> CodeLine;
+ typedef std::vector<CodeLine> CodeList;
+ typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList;
+
+ if (Patterns.empty()) return;
+
+ // Figure out how many patterns share the next code line. Explicitly copy
+ // FirstCodeLine so that we don't invalidate a reference when changing
+ // Patterns.
+ const CodeLine FirstCodeLine = Patterns.back().second.back();
+ unsigned LastMatch = Patterns.size()-1;
+ while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
+ --LastMatch;
+
+ // If not all patterns share this line, split the list into two pieces. The
+ // first chunk will use this line, the second chunk won't.
+ if (LastMatch != 0) {
+ PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
+ PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
+
+ // FIXME: Emit braces?
+ if (Shared.size() == 1) {
+ const PatternToMatch &Pattern = *Shared.back().first;
+ OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
+ Pattern.getSrcPattern()->print(OS);
+ OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
+ Pattern.getDstPattern()->print(OS);
+ OS << "\n";
+ unsigned AddedComplexity = Pattern.getAddedComplexity();
+ OS << std::string(Indent, ' ') << "// Pattern complexity = "
+ << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
+ << " cost = "
+ << getResultPatternCost(Pattern.getDstPattern(), CGP)
+ << " size = "
+ << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
+ }
+ if (FirstCodeLine.first != 1) {
+ OS << std::string(Indent, ' ') << "{\n";
+ Indent += 2;
+ }
+ EmitPatterns(Shared, Indent, OS);
+ if (FirstCodeLine.first != 1) {
+ Indent -= 2;
+ OS << std::string(Indent, ' ') << "}\n";
+ }
+
+ if (Other.size() == 1) {
+ const PatternToMatch &Pattern = *Other.back().first;
+ OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
+ Pattern.getSrcPattern()->print(OS);
+ OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
+ Pattern.getDstPattern()->print(OS);
+ OS << "\n";
+ unsigned AddedComplexity = Pattern.getAddedComplexity();
+ OS << std::string(Indent, ' ') << "// Pattern complexity = "
+ << getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
+ << " cost = "
+ << getResultPatternCost(Pattern.getDstPattern(), CGP)
+ << " size = "
+ << getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
+ }
+ EmitPatterns(Other, Indent, OS);
+ return;
+ }
+
+ // Remove this code from all of the patterns that share it.
+ bool ErasedPatterns = EraseCodeLine(Patterns);
+
+ bool isPredicate = FirstCodeLine.first == 1;
+
+ // Otherwise, every pattern in the list has this line. Emit it.
+ if (!isPredicate) {
+ // Normal code.
+ OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
+ } else {
+ OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
+
+ // If the next code line is another predicate, and if all of the pattern
+ // in this group share the same next line, emit it inline now. Do this
+ // until we run out of common predicates.
+ while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
+ // Check that all of the patterns in Patterns end with the same predicate.
+ bool AllEndWithSamePredicate = true;
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
+ if (Patterns[i].second.back() != Patterns.back().second.back()) {
+ AllEndWithSamePredicate = false;
+ break;
+ }
+ // If all of the predicates aren't the same, we can't share them.
+ if (!AllEndWithSamePredicate) break;
+
+ // Otherwise we can. Emit it shared now.
+ OS << " &&\n" << std::string(Indent+4, ' ')
+ << Patterns.back().second.back().second;
+ ErasedPatterns = EraseCodeLine(Patterns);
+ }
+
+ OS << ") {\n";
+ Indent += 2;
+ }
+
+ EmitPatterns(Patterns, Indent, OS);
+
+ if (isPredicate)
+ OS << std::string(Indent-2, ' ') << "}\n";
+}
+
+static std::string getLegalCName(std::string OpName) {
+ std::string::size_type pos = OpName.find("::");
+ if (pos != std::string::npos)
+ OpName.replace(pos, 2, "_");
+ return OpName;
+}
+
+void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
+ const CodeGenTarget &Target = CGP.getTargetInfo();
+
+ // Get the namespace to insert instructions into.
+ std::string InstNS = Target.getInstNamespace();
+ if (!InstNS.empty()) InstNS += "::";
+
+ // Group the patterns by their top-level opcodes.
+ std::map<std::string, std::vector<const PatternToMatch*> > PatternsByOpcode;
+ // All unique target node emission functions.
+ std::map<std::string, unsigned> EmitFunctions;
+ for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
+ E = CGP.ptm_end(); I != E; ++I) {
+ const PatternToMatch &Pattern = *I;
+
+ TreePatternNode *Node = Pattern.getSrcPattern();
+ if (!Node->isLeaf()) {
+ PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)].
+ push_back(&Pattern);
+ } else {
+ const ComplexPattern *CP;
+ if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
+ PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)].
+ push_back(&Pattern);
+ } else if ((CP = NodeGetComplexPattern(Node, CGP))) {
+ std::vector<Record*> OpNodes = CP->getRootNodes();
+ for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
+ PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)]
+ .insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(),
+ &Pattern);
+ }
+ } else {
+ cerr << "Unrecognized opcode '";
+ Node->dump();
+ cerr << "' on tree pattern '";
+ cerr << Pattern.getDstPattern()->getOperator()->getName() << "'!\n";
+ exit(1);
+ }
+ }
+ }
+
+ // For each opcode, there might be multiple select functions, one per
+ // ValueType of the node (or its first operand if it doesn't produce a
+ // non-chain result.
+ std::map<std::string, std::vector<std::string> > OpcodeVTMap;
+
+ // Emit one Select_* method for each top-level opcode. We do this instead of
+ // emitting one giant switch statement to support compilers where this will
+ // result in the recursive functions taking less stack space.
+ for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
+ PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
+ PBOI != E; ++PBOI) {
+ const std::string &OpName = PBOI->first;
+ std::vector<const PatternToMatch*> &PatternsOfOp = PBOI->second;
+ assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
+
+ // Split them into groups by type.
+ std::map<MVT::SimpleValueType,
+ std::vector<const PatternToMatch*> > PatternsByType;
+ for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
+ const PatternToMatch *Pat = PatternsOfOp[i];
+ TreePatternNode *SrcPat = Pat->getSrcPattern();
+ PatternsByType[SrcPat->getTypeNum(0)].push_back(Pat);
+ }
+
+ for (std::map<MVT::SimpleValueType,
+ std::vector<const PatternToMatch*> >::iterator
+ II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
+ ++II) {
+ MVT::SimpleValueType OpVT = II->first;
+ std::vector<const PatternToMatch*> &Patterns = II->second;
+ typedef std::pair<unsigned, std::string> CodeLine;
+ typedef std::vector<CodeLine> CodeList;
+ typedef CodeList::iterator CodeListI;
+
+ std::vector<std::pair<const PatternToMatch*, CodeList> > CodeForPatterns;
+ std::vector<std::vector<std::string> > PatternOpcodes;
+ std::vector<std::vector<std::string> > PatternVTs;
+ std::vector<std::set<std::string> > PatternDecls;
+ std::vector<bool> OutputIsVariadicFlags;
+ std::vector<unsigned> NumInputRootOpsCounts;
+ for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
+ CodeList GeneratedCode;
+ std::set<std::string> GeneratedDecl;
+ std::vector<std::string> TargetOpcodes;
+ std::vector<std::string> TargetVTs;
+ bool OutputIsVariadic;
+ unsigned NumInputRootOps;
+ GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
+ TargetOpcodes, TargetVTs,
+ OutputIsVariadic, NumInputRootOps);
+ CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
+ PatternDecls.push_back(GeneratedDecl);
+ PatternOpcodes.push_back(TargetOpcodes);
+ PatternVTs.push_back(TargetVTs);
+ OutputIsVariadicFlags.push_back(OutputIsVariadic);
+ NumInputRootOpsCounts.push_back(NumInputRootOps);
+ }
+
+ // Factor target node emission code (emitted by EmitResultCode) into
+ // separate functions. Uniquing and share them among all instruction
+ // selection routines.
+ for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
+ CodeList &GeneratedCode = CodeForPatterns[i].second;
+ std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
+ std::vector<std::string> &TargetVTs = PatternVTs[i];
+ std::set<std::string> Decls = PatternDecls[i];
+ bool OutputIsVariadic = OutputIsVariadicFlags[i];
+ unsigned NumInputRootOps = NumInputRootOpsCounts[i];
+ std::vector<std::string> AddedInits;
+ int CodeSize = (int)GeneratedCode.size();
+ int LastPred = -1;
+ for (int j = CodeSize-1; j >= 0; --j) {
+ if (LastPred == -1 && GeneratedCode[j].first == 1)
+ LastPred = j;
+ else if (LastPred != -1 && GeneratedCode[j].first == 2)
+ AddedInits.push_back(GeneratedCode[j].second);
+ }
+
+ std::string CalleeCode = "(const SDValue &N";
+ std::string CallerCode = "(N";
+ for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
+ CalleeCode += ", unsigned Opc" + utostr(j);
+ CallerCode += ", " + TargetOpcodes[j];
+ }
+ for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
+ CalleeCode += ", MVT VT" + utostr(j);
+ CallerCode += ", " + TargetVTs[j];
+ }
+ for (std::set<std::string>::iterator
+ I = Decls.begin(), E = Decls.end(); I != E; ++I) {
+ std::string Name = *I;
+ CalleeCode += ", SDValue &" + Name;
+ CallerCode += ", " + Name;
+ }
+
+ if (OutputIsVariadic) {
+ CalleeCode += ", unsigned NumInputRootOps";
+ CallerCode += ", " + utostr(NumInputRootOps);
+ }
+
+ CallerCode += ");";
+ CalleeCode += ") ";
+ // Prevent emission routines from being inlined to reduce selection
+ // routines stack frame sizes.
+ CalleeCode += "DISABLE_INLINE ";
+ CalleeCode += "{\n";
+
+ for (std::vector<std::string>::const_reverse_iterator
+ I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
+ CalleeCode += " " + *I + "\n";
+
+ for (int j = LastPred+1; j < CodeSize; ++j)
+ CalleeCode += " " + GeneratedCode[j].second + "\n";
+ for (int j = LastPred+1; j < CodeSize; ++j)
+ GeneratedCode.pop_back();
+ CalleeCode += "}\n";
+
+ // Uniquing the emission routines.
+ unsigned EmitFuncNum;
+ std::map<std::string, unsigned>::iterator EFI =
+ EmitFunctions.find(CalleeCode);
+ if (EFI != EmitFunctions.end()) {
+ EmitFuncNum = EFI->second;
+ } else {
+ EmitFuncNum = EmitFunctions.size();
+ EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
+ OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
+ }
+
+ // Replace the emission code within selection routines with calls to the
+ // emission functions.
+ if (GenDebug) {
+ GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N.getNode(), \"red\");"));
+ }
+ CallerCode = "SDNode *Result = Emit_" + utostr(EmitFuncNum) + CallerCode;
+ GeneratedCode.push_back(std::make_pair(3, CallerCode));
+ if (GenDebug) {
+ GeneratedCode.push_back(std::make_pair(0, "if(Result) {"));
+ GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"yellow\");"));
+ GeneratedCode.push_back(std::make_pair(0, " CurDAG->setSubgraphColor(Result, \"black\");"));
+ GeneratedCode.push_back(std::make_pair(0, "}"));
+ //GeneratedCode.push_back(std::make_pair(0, "CurDAG->setSubgraphColor(N.getNode(), \"black\");"));
+ }
+ GeneratedCode.push_back(std::make_pair(0, "return Result;"));
+ }
+
+ // Print function.
+ std::string OpVTStr;
+ if (OpVT == MVT::iPTR) {
+ OpVTStr = "_iPTR";
+ } else if (OpVT == MVT::iPTRAny) {
+ OpVTStr = "_iPTRAny";
+ } else if (OpVT == MVT::isVoid) {
+ // Nodes with a void result actually have a first result type of either
+ // Other (a chain) or Flag. Since there is no one-to-one mapping from
+ // void to this case, we handle it specially here.
+ } else {
+ OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::'
+ }
+ std::map<std::string, std::vector<std::string> >::iterator OpVTI =
+ OpcodeVTMap.find(OpName);
+ if (OpVTI == OpcodeVTMap.end()) {
+ std::vector<std::string> VTSet;
+ VTSet.push_back(OpVTStr);
+ OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
+ } else
+ OpVTI->second.push_back(OpVTStr);
+
+ // We want to emit all of the matching code now. However, we want to emit
+ // the matches in order of minimal cost. Sort the patterns so the least
+ // cost one is at the start.
+ std::stable_sort(CodeForPatterns.begin(), CodeForPatterns.end(),
+ PatternSortingPredicate(CGP));
+
+ // Scan the code to see if all of the patterns are reachable and if it is
+ // possible that the last one might not match.
+ bool mightNotMatch = true;
+ for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
+ CodeList &GeneratedCode = CodeForPatterns[i].second;
+ mightNotMatch = false;
+
+ for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
+ if (GeneratedCode[j].first == 1) { // predicate.
+ mightNotMatch = true;
+ break;
+ }
+ }
+
+ // If this pattern definitely matches, and if it isn't the last one, the
+ // patterns after it CANNOT ever match. Error out.
+ if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
+ cerr << "Pattern '";
+ CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream());
+ cerr << "' is impossible to select!\n";
+ exit(1);
+ }
+ }
+
+ // Loop through and reverse all of the CodeList vectors, as we will be
+ // accessing them from their logical front, but accessing the end of a
+ // vector is more efficient.
+ for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
+ CodeList &GeneratedCode = CodeForPatterns[i].second;
+ std::reverse(GeneratedCode.begin(), GeneratedCode.end());
+ }
+
+ // Next, reverse the list of patterns itself for the same reason.
+ std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
+
+ OS << "SDNode *Select_" << getLegalCName(OpName)
+ << OpVTStr << "(const SDValue &N) {\n";
+
+ // Emit all of the patterns now, grouped together to share code.
+ EmitPatterns(CodeForPatterns, 2, OS);
+
+ // If the last pattern has predicates (which could fail) emit code to
+ // catch the case where nothing handles a pattern.
+ if (mightNotMatch) {
+ OS << "\n";
+ if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
+ OpName != "ISD::INTRINSIC_WO_CHAIN" &&
+ OpName != "ISD::INTRINSIC_VOID")
+ OS << " CannotYetSelect(N);\n";
+ else
+ OS << " CannotYetSelectIntrinsic(N);\n";
+
+ OS << " return NULL;\n";
+ }
+ OS << "}\n\n";
+ }
+ }
+
+ // Emit boilerplate.
+ OS << "SDNode *Select_INLINEASM(SDValue N) {\n"
+ << " std::vector<SDValue> Ops(N.getNode()->op_begin(), N.getNode()->op_end());\n"
+ << " SelectInlineAsmMemoryOperands(Ops);\n\n"
+
+ << " std::vector<MVT> VTs;\n"
+ << " VTs.push_back(MVT::Other);\n"
+ << " VTs.push_back(MVT::Flag);\n"
+ << " SDValue New = CurDAG->getNode(ISD::INLINEASM, N.getDebugLoc(), "
+ "VTs, &Ops[0], Ops.size());\n"
+ << " return New.getNode();\n"
+ << "}\n\n";
+
+ OS << "SDNode *Select_UNDEF(const SDValue &N) {\n"
+ << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::IMPLICIT_DEF,\n"
+ << " N.getValueType());\n"
+ << "}\n\n";
+
+ OS << "SDNode *Select_DBG_LABEL(const SDValue &N) {\n"
+ << " SDValue Chain = N.getOperand(0);\n"
+ << " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n"
+ << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
+ << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DBG_LABEL,\n"
+ << " MVT::Other, Tmp, Chain);\n"
+ << "}\n\n";
+
+ OS << "SDNode *Select_EH_LABEL(const SDValue &N) {\n"
+ << " SDValue Chain = N.getOperand(0);\n"
+ << " unsigned C = cast<LabelSDNode>(N)->getLabelID();\n"
+ << " SDValue Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
+ << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::EH_LABEL,\n"
+ << " MVT::Other, Tmp, Chain);\n"
+ << "}\n\n";
+
+ OS << "SDNode *Select_DECLARE(const SDValue &N) {\n"
+ << " SDValue Chain = N.getOperand(0);\n"
+ << " SDValue N1 = N.getOperand(1);\n"
+ << " SDValue N2 = N.getOperand(2);\n"
+ << " if (!isa<FrameIndexSDNode>(N1) || !isa<GlobalAddressSDNode>(N2)) {\n"
+ << " CannotYetSelect(N);\n"
+ << " }\n"
+ << " int FI = cast<FrameIndexSDNode>(N1)->getIndex();\n"
+ << " GlobalValue *GV = cast<GlobalAddressSDNode>(N2)->getGlobal();\n"
+ << " SDValue Tmp1 = "
+ << "CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());\n"
+ << " SDValue Tmp2 = "
+ << "CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());\n"
+ << " return CurDAG->SelectNodeTo(N.getNode(), TargetInstrInfo::DECLARE,\n"
+ << " MVT::Other, Tmp1, Tmp2, Chain);\n"
+ << "}\n\n";
+
+ OS << "// The main instruction selector code.\n"
+ << "SDNode *SelectCode(SDValue N) {\n"
+ << " MVT::SimpleValueType NVT = N.getNode()->getValueType(0).getSimpleVT();\n"
+ << " switch (N.getOpcode()) {\n"
+ << " default:\n"
+ << " assert(!N.isMachineOpcode() && \"Node already selected!\");\n"
+ << " break;\n"
+ << " case ISD::EntryToken: // These nodes remain the same.\n"
+ << " case ISD::MEMOPERAND:\n"
+ << " case ISD::BasicBlock:\n"
+ << " case ISD::Register:\n"
+ << " case ISD::HANDLENODE:\n"
+ << " case ISD::TargetConstant:\n"
+ << " case ISD::TargetConstantFP:\n"
+ << " case ISD::TargetConstantPool:\n"
+ << " case ISD::TargetFrameIndex:\n"
+ << " case ISD::TargetExternalSymbol:\n"
+ << " case ISD::TargetJumpTable:\n"
+ << " case ISD::TargetGlobalTLSAddress:\n"
+ << " case ISD::TargetGlobalAddress:\n"
+ << " case ISD::TokenFactor:\n"
+ << " case ISD::CopyFromReg:\n"
+ << " case ISD::CopyToReg: {\n"
+ << " return NULL;\n"
+ << " }\n"
+ << " case ISD::AssertSext:\n"
+ << " case ISD::AssertZext: {\n"
+ << " ReplaceUses(N, N.getOperand(0));\n"
+ << " return NULL;\n"
+ << " }\n"
+ << " case ISD::INLINEASM: return Select_INLINEASM(N);\n"
+ << " case ISD::DBG_LABEL: return Select_DBG_LABEL(N);\n"
+ << " case ISD::EH_LABEL: return Select_EH_LABEL(N);\n"
+ << " case ISD::DECLARE: return Select_DECLARE(N);\n"
+ << " case ISD::UNDEF: return Select_UNDEF(N);\n";
+
+ // Loop over all of the case statements, emiting a call to each method we
+ // emitted above.
+ for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
+ PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
+ PBOI != E; ++PBOI) {
+ const std::string &OpName = PBOI->first;
+ // Potentially multiple versions of select for this opcode. One for each
+ // ValueType of the node (or its first true operand if it doesn't produce a
+ // result.
+ std::map<std::string, std::vector<std::string> >::iterator OpVTI =
+ OpcodeVTMap.find(OpName);
+ std::vector<std::string> &OpVTs = OpVTI->second;
+ OS << " case " << OpName << ": {\n";
+ // If we have only one variant and it's the default, elide the
+ // switch. Marginally faster, and makes MSVC happier.
+ if (OpVTs.size()==1 && OpVTs[0].empty()) {
+ OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
+ OS << " break;\n";
+ OS << " }\n";
+ continue;
+ }
+ // Keep track of whether we see a pattern that has an iPtr result.
+ bool HasPtrPattern = false;
+ bool HasDefaultPattern = false;
+
+ OS << " switch (NVT) {\n";
+ for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
+ std::string &VTStr = OpVTs[i];
+ if (VTStr.empty()) {
+ HasDefaultPattern = true;
+ continue;
+ }
+
+ // If this is a match on iPTR: don't emit it directly, we need special
+ // code.
+ if (VTStr == "_iPTR") {
+ HasPtrPattern = true;
+ continue;
+ }
+ OS << " case MVT::" << VTStr.substr(1) << ":\n"
+ << " return Select_" << getLegalCName(OpName)
+ << VTStr << "(N);\n";
+ }
+ OS << " default:\n";
+
+ // If there is an iPTR result version of this pattern, emit it here.
+ if (HasPtrPattern) {
+ OS << " if (TLI.getPointerTy() == NVT)\n";
+ OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
+ }
+ if (HasDefaultPattern) {
+ OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
+ }
+ OS << " break;\n";
+ OS << " }\n";
+ OS << " break;\n";
+ OS << " }\n";
+ }
+
+ OS << " } // end of big switch.\n\n"
+ << " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
+ << " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
+ << " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
+ << " CannotYetSelect(N);\n"
+ << " } else {\n"
+ << " CannotYetSelectIntrinsic(N);\n"
+ << " }\n"
+ << " return NULL;\n"
+ << "}\n\n";
+
+ OS << "void CannotYetSelect(SDValue N) DISABLE_INLINE {\n"
+ << " cerr << \"Cannot yet select: \";\n"
+ << " N.getNode()->dump(CurDAG);\n"
+ << " cerr << '\\n';\n"
+ << " abort();\n"
+ << "}\n\n";
+
+ OS << "void CannotYetSelectIntrinsic(SDValue N) DISABLE_INLINE {\n"
+ << " cerr << \"Cannot yet select: \";\n"
+ << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
+ << "N.getOperand(0).getValueType() == MVT::Other))->getZExtValue();\n"
+ << " cerr << \"intrinsic %\"<< "
+ << "Intrinsic::getName((Intrinsic::ID)iid);\n"
+ << " cerr << '\\n';\n"
+ << " abort();\n"
+ << "}\n\n";
+}
+
+void DAGISelEmitter::run(std::ostream &OS) {
+ EmitSourceFileHeader("DAG Instruction Selector for the " +
+ CGP.getTargetInfo().getName() + " target", OS);
+
+ OS << "// *** NOTE: This file is #included into the middle of the target\n"
+ << "// *** instruction selector class. These functions are really "
+ << "methods.\n\n";
+
+ OS << "// Include standard, target-independent definitions and methods used\n"
+ << "// by the instruction selector.\n";
+ OS << "#include \"llvm/CodeGen/DAGISelHeader.h\"\n\n";
+
+ EmitNodeTransforms(OS);
+ EmitPredicateFunctions(OS);
+
+ DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
+ for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
+ I != E; ++I) {
+ DOUT << "PATTERN: "; DEBUG(I->getSrcPattern()->dump());
+ DOUT << "\nRESULT: "; DEBUG(I->getDstPattern()->dump());
+ DOUT << "\n";
+ }
+
+ // At this point, we have full information about the 'Patterns' we need to
+ // parse, both implicitly from instructions as well as from explicit pattern
+ // definitions. Emit the resultant instruction selector.
+ EmitInstructionSelector(OS);
+
+}