//===- OptimizationDiagnosticInfo.h - Optimization Diagnostic ---*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Optimization diagnostic interfaces. It's packaged as an analysis pass so // that by using this service passes become dependent on BFI as well. BFI is // used to compute the "hotness" of the diagnostic message. //===----------------------------------------------------------------------===// #ifndef LLVM_IR_OPTIMIZATIONDIAGNOSTICINFO_H #define LLVM_IR_OPTIMIZATIONDIAGNOSTICINFO_H #include "llvm/ADT/Optional.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/Function.h" #include "llvm/IR/PassManager.h" #include "llvm/Pass.h" namespace llvm { class DebugLoc; class LLVMContext; class Loop; class Pass; class Twine; class Value; /// The optimization diagnostic interface. /// /// It allows reporting when optimizations are performed and when they are not /// along with the reasons for it. Hotness information of the corresponding /// code region can be included in the remark if DiagnosticHotnessRequested is /// enabled in the LLVM context. class OptimizationRemarkEmitter { public: OptimizationRemarkEmitter(Function *F, BlockFrequencyInfo *BFI) : F(F), BFI(BFI) {} /// \brief This variant can be used to generate ORE on demand (without the /// analysis pass). /// /// Note that this ctor has a very different cost depending on whether /// F->getContext().getDiagnosticHotnessRequested() is on or not. If it's off /// the operation is free. /// /// Whereas if DiagnosticHotnessRequested is on, it is fairly expensive /// operation since BFI and all its required analyses are computed. This is /// for example useful for CGSCC passes that can't use function analyses /// passes in the old PM. OptimizationRemarkEmitter(Function *F); OptimizationRemarkEmitter(OptimizationRemarkEmitter &&Arg) : F(Arg.F), BFI(Arg.BFI) {} OptimizationRemarkEmitter &operator=(OptimizationRemarkEmitter &&RHS) { F = RHS.F; BFI = RHS.BFI; return *this; } /// The new interface to emit remarks. void emit(DiagnosticInfoOptimizationBase &OptDiag); /// Emit an optimization-applied message. /// /// \p PassName is the name of the pass emitting the message. If -Rpass= is /// given and \p PassName matches the regular expression in -Rpass, then the /// remark will be emitted. \p Fn is the function triggering the remark, \p /// DLoc is the debug location where the diagnostic is generated. \p V is the /// IR Value that identifies the code region. \p Msg is the message string to /// use. void emitOptimizationRemark(const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg); /// \brief Same as above but derives the IR Value for the code region and the /// debug location from the Loop parameter \p L. void emitOptimizationRemark(const char *PassName, Loop *L, const Twine &Msg); /// \brief Same as above but derives the debug location and the code region /// from the debug location and the basic block of \p Inst, respectively. void emitOptimizationRemark(const char *PassName, Instruction *Inst, const Twine &Msg) { emitOptimizationRemark(PassName, Inst->getDebugLoc(), Inst->getParent(), Msg); } /// Emit an optimization-missed message. /// /// \p PassName is the name of the pass emitting the message. If /// -Rpass-missed= is given and the name matches the regular expression in /// -Rpass, then the remark will be emitted. \p DLoc is the debug location /// where the diagnostic is generated. \p V is the IR Value that identifies /// the code region. \p Msg is the message string to use. If \p IsVerbose is /// true, the message is considered verbose and will only be emitted when /// verbose output is turned on. void emitOptimizationRemarkMissed(const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg, bool IsVerbose = false); /// \brief Same as above but derives the IR Value for the code region and the /// debug location from the Loop parameter \p L. void emitOptimizationRemarkMissed(const char *PassName, Loop *L, const Twine &Msg, bool IsVerbose = false); /// \brief Same as above but derives the debug location and the code region /// from the debug location and the basic block of \p Inst, respectively. void emitOptimizationRemarkMissed(const char *PassName, Instruction *Inst, const Twine &Msg, bool IsVerbose = false) { emitOptimizationRemarkMissed(PassName, Inst->getDebugLoc(), Inst->getParent(), Msg, IsVerbose); } /// Emit an optimization analysis remark message. /// /// \p PassName is the name of the pass emitting the message. If /// -Rpass-analysis= is given and \p PassName matches the regular expression /// in -Rpass, then the remark will be emitted. \p DLoc is the debug location /// where the diagnostic is generated. \p V is the IR Value that identifies /// the code region. \p Msg is the message string to use. If \p IsVerbose is /// true, the message is considered verbose and will only be emitted when /// verbose output is turned on. void emitOptimizationRemarkAnalysis(const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg, bool IsVerbose = false); /// \brief Same as above but derives the IR Value for the code region and the /// debug location from the Loop parameter \p L. void emitOptimizationRemarkAnalysis(const char *PassName, Loop *L, const Twine &Msg, bool IsVerbose = false); /// \brief Same as above but derives the debug location and the code region /// from the debug location and the basic block of \p Inst, respectively. void emitOptimizationRemarkAnalysis(const char *PassName, Instruction *Inst, const Twine &Msg, bool IsVerbose = false) { emitOptimizationRemarkAnalysis(PassName, Inst->getDebugLoc(), Inst->getParent(), Msg, IsVerbose); } /// \brief This variant allows specifying what should be emitted for missed /// and analysis remarks in one call. /// /// \p PassName is the name of the pass emitting the message. If /// -Rpass-missed= is given and \p PassName matches the regular expression, \p /// MsgForMissedRemark is emitted. /// /// If -Rpass-analysis= is given and \p PassName matches the regular /// expression, \p MsgForAnalysisRemark is emitted. /// /// The debug location and the code region is derived from \p Inst. If \p /// IsVerbose is true, the message is considered verbose and will only be /// emitted when verbose output is turned on. void emitOptimizationRemarkMissedAndAnalysis( const char *PassName, Instruction *Inst, const Twine &MsgForMissedRemark, const Twine &MsgForAnalysisRemark, bool IsVerbose = false) { emitOptimizationRemarkAnalysis(PassName, Inst, MsgForAnalysisRemark, IsVerbose); emitOptimizationRemarkMissed(PassName, Inst, MsgForMissedRemark, IsVerbose); } /// \brief Emit an optimization analysis remark related to floating-point /// non-commutativity. /// /// \p PassName is the name of the pass emitting the message. If /// -Rpass-analysis= is given and \p PassName matches the regular expression /// in -Rpass, then the remark will be emitted. \p Fn is the function /// triggering the remark, \p DLoc is the debug location where the diagnostic /// is generated.\p V is the IR Value that identifies the code region. \p Msg /// is the message string to use. void emitOptimizationRemarkAnalysisFPCommute(const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg); /// \brief Emit an optimization analysis remark related to pointer aliasing. /// /// \p PassName is the name of the pass emitting the message. If /// -Rpass-analysis= is given and \p PassName matches the regular expression /// in -Rpass, then the remark will be emitted. \p Fn is the function /// triggering the remark, \p DLoc is the debug location where the diagnostic /// is generated.\p V is the IR Value that identifies the code region. \p Msg /// is the message string to use. void emitOptimizationRemarkAnalysisAliasing(const char *PassName, const DebugLoc &DLoc, const Value *V, const Twine &Msg); /// \brief Same as above but derives the IR Value for the code region and the /// debug location from the Loop parameter \p L. void emitOptimizationRemarkAnalysisAliasing(const char *PassName, Loop *L, const Twine &Msg); /// \brief Whether we allow for extra compile-time budget to perform more /// analysis to produce fewer false positives. /// /// This is useful when reporting missed optimizations. In this case we can /// use the extra analysis (1) to filter trivial false positives or (2) to /// provide more context so that non-trivial false positives can be quickly /// detected by the user. bool allowExtraAnalysis() const { // For now, only allow this with -fsave-optimization-record since the -Rpass // options are handled in the front-end. return F->getContext().getDiagnosticsOutputFile(); } private: Function *F; BlockFrequencyInfo *BFI; /// If we generate BFI on demand, we need to free it when ORE is freed. std::unique_ptr OwnedBFI; /// Compute hotness from IR value (currently assumed to be a block) if PGO is /// available. Optional computeHotness(const Value *V); /// Similar but use value from \p OptDiag and update hotness there. void computeHotness(DiagnosticInfoOptimizationBase &OptDiag); /// \brief Only allow verbose messages if we know we're filtering by hotness /// (BFI is only set in this case). bool shouldEmitVerbose() { return BFI != nullptr; } OptimizationRemarkEmitter(const OptimizationRemarkEmitter &) = delete; void operator=(const OptimizationRemarkEmitter &) = delete; }; /// \brief Add a small namespace to avoid name clashes with the classes used in /// the streaming interface. We want these to be short for better /// write/readability. namespace ore { using NV = DiagnosticInfoOptimizationBase::Argument; using setIsVerbose = DiagnosticInfoOptimizationBase::setIsVerbose; using setExtraArgs = DiagnosticInfoOptimizationBase::setExtraArgs; } /// OptimizationRemarkEmitter legacy analysis pass /// /// Note that this pass shouldn't generally be marked as preserved by other /// passes. It's holding onto BFI, so if the pass does not preserve BFI, BFI /// could be freed. class OptimizationRemarkEmitterWrapperPass : public FunctionPass { std::unique_ptr ORE; public: OptimizationRemarkEmitterWrapperPass(); bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override; OptimizationRemarkEmitter &getORE() { assert(ORE && "pass not run yet"); return *ORE; } static char ID; }; class OptimizationRemarkEmitterAnalysis : public AnalysisInfoMixin { friend AnalysisInfoMixin; static AnalysisKey Key; public: /// \brief Provide the result typedef for this analysis pass. typedef OptimizationRemarkEmitter Result; /// \brief Run the analysis pass over a function and produce BFI. Result run(Function &F, FunctionAnalysisManager &AM); }; } #endif // LLVM_IR_OPTIMIZATIONDIAGNOSTICINFO_H