//===-- llvm/CodeGen/GlobalISel/LegalizationArtifactCombiner.h -----*- C++ -*-// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // This file contains some helper functions which try to cleanup artifacts // such as G_TRUNCs/G_[ZSA]EXTENDS that were created during legalization to make // the types match. This file also contains some combines of merges that happens // at the end of the legalization. //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/Legalizer.h" #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h" #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" #include "llvm/CodeGen/GlobalISel/Utils.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "legalizer" using namespace llvm::MIPatternMatch; namespace llvm { class LegalizationArtifactCombiner { MachineIRBuilder &Builder; MachineRegisterInfo &MRI; const LegalizerInfo &LI; static bool isArtifactCast(unsigned Opc) { switch (Opc) { case TargetOpcode::G_TRUNC: case TargetOpcode::G_SEXT: case TargetOpcode::G_ZEXT: case TargetOpcode::G_ANYEXT: return true; default: return false; } } public: LegalizationArtifactCombiner(MachineIRBuilder &B, MachineRegisterInfo &MRI, const LegalizerInfo &LI) : Builder(B), MRI(MRI), LI(LI) {} bool tryCombineAnyExt(MachineInstr &MI, SmallVectorImpl &DeadInsts) { assert(MI.getOpcode() == TargetOpcode::G_ANYEXT); Builder.setInstr(MI); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg()); // aext(trunc x) - > aext/copy/trunc x Register TruncSrc; if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) { LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;); Builder.buildAnyExtOrTrunc(DstReg, TruncSrc); markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts); return true; } // aext([asz]ext x) -> [asz]ext x Register ExtSrc; MachineInstr *ExtMI; if (mi_match(SrcReg, MRI, m_all_of(m_MInstr(ExtMI), m_any_of(m_GAnyExt(m_Reg(ExtSrc)), m_GSExt(m_Reg(ExtSrc)), m_GZExt(m_Reg(ExtSrc)))))) { Builder.buildInstr(ExtMI->getOpcode(), {DstReg}, {ExtSrc}); markInstAndDefDead(MI, *ExtMI, DeadInsts); return true; } // Try to fold aext(g_constant) when the larger constant type is legal. // Can't use MIPattern because we don't have a specific constant in mind. auto *SrcMI = MRI.getVRegDef(SrcReg); if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) { const LLT &DstTy = MRI.getType(DstReg); if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) { auto &CstVal = SrcMI->getOperand(1); Builder.buildConstant( DstReg, CstVal.getCImm()->getValue().sext(DstTy.getSizeInBits())); markInstAndDefDead(MI, *SrcMI, DeadInsts); return true; } } return tryFoldImplicitDef(MI, DeadInsts); } bool tryCombineZExt(MachineInstr &MI, SmallVectorImpl &DeadInsts) { assert(MI.getOpcode() == TargetOpcode::G_ZEXT); Builder.setInstr(MI); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg()); // zext(trunc x) - > and (aext/copy/trunc x), mask Register TruncSrc; if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) { LLT DstTy = MRI.getType(DstReg); if (isInstUnsupported({TargetOpcode::G_AND, {DstTy}}) || isConstantUnsupported(DstTy)) return false; LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;); LLT SrcTy = MRI.getType(SrcReg); APInt Mask = APInt::getAllOnesValue(SrcTy.getScalarSizeInBits()); auto MIBMask = Builder.buildConstant(DstTy, Mask.getZExtValue()); Builder.buildAnd(DstReg, Builder.buildAnyExtOrTrunc(DstTy, TruncSrc), MIBMask); markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts); return true; } // Try to fold zext(g_constant) when the larger constant type is legal. // Can't use MIPattern because we don't have a specific constant in mind. auto *SrcMI = MRI.getVRegDef(SrcReg); if (SrcMI->getOpcode() == TargetOpcode::G_CONSTANT) { const LLT &DstTy = MRI.getType(DstReg); if (isInstLegal({TargetOpcode::G_CONSTANT, {DstTy}})) { auto &CstVal = SrcMI->getOperand(1); Builder.buildConstant( DstReg, CstVal.getCImm()->getValue().zext(DstTy.getSizeInBits())); markInstAndDefDead(MI, *SrcMI, DeadInsts); return true; } } return tryFoldImplicitDef(MI, DeadInsts); } bool tryCombineSExt(MachineInstr &MI, SmallVectorImpl &DeadInsts) { assert(MI.getOpcode() == TargetOpcode::G_SEXT); Builder.setInstr(MI); Register DstReg = MI.getOperand(0).getReg(); Register SrcReg = lookThroughCopyInstrs(MI.getOperand(1).getReg()); // sext(trunc x) - > (sext_inreg (aext/copy/trunc x), c) Register TruncSrc; if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) { LLT DstTy = MRI.getType(DstReg); if (isInstUnsupported({TargetOpcode::G_SEXT_INREG, {DstTy}})) return false; LLVM_DEBUG(dbgs() << ".. Combine MI: " << MI;); LLT SrcTy = MRI.getType(SrcReg); uint64_t SizeInBits = SrcTy.getScalarSizeInBits(); Builder.buildInstr( TargetOpcode::G_SEXT_INREG, {DstReg}, {Builder.buildAnyExtOrTrunc(DstTy, TruncSrc), SizeInBits}); markInstAndDefDead(MI, *MRI.getVRegDef(SrcReg), DeadInsts); return true; } return tryFoldImplicitDef(MI, DeadInsts); } /// Try to fold G_[ASZ]EXT (G_IMPLICIT_DEF). bool tryFoldImplicitDef(MachineInstr &MI, SmallVectorImpl &DeadInsts) { unsigned Opcode = MI.getOpcode(); assert(Opcode == TargetOpcode::G_ANYEXT || Opcode == TargetOpcode::G_ZEXT || Opcode == TargetOpcode::G_SEXT); if (MachineInstr *DefMI = getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), MRI)) { Builder.setInstr(MI); Register DstReg = MI.getOperand(0).getReg(); LLT DstTy = MRI.getType(DstReg); if (Opcode == TargetOpcode::G_ANYEXT) { // G_ANYEXT (G_IMPLICIT_DEF) -> G_IMPLICIT_DEF if (isInstUnsupported({TargetOpcode::G_IMPLICIT_DEF, {DstTy}})) return false; LLVM_DEBUG(dbgs() << ".. Combine G_ANYEXT(G_IMPLICIT_DEF): " << MI;); Builder.buildInstr(TargetOpcode::G_IMPLICIT_DEF, {DstReg}, {}); } else { // G_[SZ]EXT (G_IMPLICIT_DEF) -> G_CONSTANT 0 because the top // bits will be 0 for G_ZEXT and 0/1 for the G_SEXT. if (isConstantUnsupported(DstTy)) return false; LLVM_DEBUG(dbgs() << ".. Combine G_[SZ]EXT(G_IMPLICIT_DEF): " << MI;); Builder.buildConstant(DstReg, 0); } markInstAndDefDead(MI, *DefMI, DeadInsts); return true; } return false; } static unsigned canFoldMergeOpcode(unsigned MergeOp, unsigned ConvertOp, LLT OpTy, LLT DestTy) { if (OpTy.isVector() && DestTy.isVector()) return MergeOp == TargetOpcode::G_CONCAT_VECTORS; if (OpTy.isVector() && !DestTy.isVector()) { if (MergeOp == TargetOpcode::G_BUILD_VECTOR) return true; if (MergeOp == TargetOpcode::G_CONCAT_VECTORS) { if (ConvertOp == 0) return true; const unsigned OpEltSize = OpTy.getElementType().getSizeInBits(); // Don't handle scalarization with a cast that isn't in the same // direction as the vector cast. This could be handled, but it would // require more intermediate unmerges. if (ConvertOp == TargetOpcode::G_TRUNC) return DestTy.getSizeInBits() <= OpEltSize; return DestTy.getSizeInBits() >= OpEltSize; } return false; } return MergeOp == TargetOpcode::G_MERGE_VALUES; } bool tryCombineMerges(MachineInstr &MI, SmallVectorImpl &DeadInsts) { assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES); unsigned NumDefs = MI.getNumOperands() - 1; MachineInstr *SrcDef = getDefIgnoringCopies(MI.getOperand(NumDefs).getReg(), MRI); if (!SrcDef) return false; LLT OpTy = MRI.getType(MI.getOperand(NumDefs).getReg()); LLT DestTy = MRI.getType(MI.getOperand(0).getReg()); MachineInstr *MergeI = SrcDef; unsigned ConvertOp = 0; // Handle intermediate conversions unsigned SrcOp = SrcDef->getOpcode(); if (isArtifactCast(SrcOp)) { ConvertOp = SrcOp; MergeI = getDefIgnoringCopies(SrcDef->getOperand(1).getReg(), MRI); } if (!MergeI || !canFoldMergeOpcode(MergeI->getOpcode(), ConvertOp, OpTy, DestTy)) return false; const unsigned NumMergeRegs = MergeI->getNumOperands() - 1; if (NumMergeRegs < NumDefs) { if (NumDefs % NumMergeRegs != 0) return false; Builder.setInstr(MI); // Transform to UNMERGEs, for example // %1 = G_MERGE_VALUES %4, %5 // %9, %10, %11, %12 = G_UNMERGE_VALUES %1 // to // %9, %10 = G_UNMERGE_VALUES %4 // %11, %12 = G_UNMERGE_VALUES %5 const unsigned NewNumDefs = NumDefs / NumMergeRegs; for (unsigned Idx = 0; Idx < NumMergeRegs; ++Idx) { SmallVector DstRegs; for (unsigned j = 0, DefIdx = Idx * NewNumDefs; j < NewNumDefs; ++j, ++DefIdx) DstRegs.push_back(MI.getOperand(DefIdx).getReg()); if (ConvertOp) { SmallVector TmpRegs; // This is a vector that is being scalarized and casted. Extract to // the element type, and do the conversion on the scalars. LLT MergeEltTy = MRI.getType(MergeI->getOperand(0).getReg()).getElementType(); for (unsigned j = 0; j < NumMergeRegs; ++j) TmpRegs.push_back(MRI.createGenericVirtualRegister(MergeEltTy)); Builder.buildUnmerge(TmpRegs, MergeI->getOperand(Idx + 1).getReg()); for (unsigned j = 0; j < NumMergeRegs; ++j) Builder.buildInstr(ConvertOp, {DstRegs[j]}, {TmpRegs[j]}); } else { Builder.buildUnmerge(DstRegs, MergeI->getOperand(Idx + 1).getReg()); } } } else if (NumMergeRegs > NumDefs) { if (ConvertOp != 0 || NumMergeRegs % NumDefs != 0) return false; Builder.setInstr(MI); // Transform to MERGEs // %6 = G_MERGE_VALUES %17, %18, %19, %20 // %7, %8 = G_UNMERGE_VALUES %6 // to // %7 = G_MERGE_VALUES %17, %18 // %8 = G_MERGE_VALUES %19, %20 const unsigned NumRegs = NumMergeRegs / NumDefs; for (unsigned DefIdx = 0; DefIdx < NumDefs; ++DefIdx) { SmallVector Regs; for (unsigned j = 0, Idx = NumRegs * DefIdx + 1; j < NumRegs; ++j, ++Idx) Regs.push_back(MergeI->getOperand(Idx).getReg()); Builder.buildMerge(MI.getOperand(DefIdx).getReg(), Regs); } } else { LLT MergeSrcTy = MRI.getType(MergeI->getOperand(1).getReg()); if (ConvertOp) { Builder.setInstr(MI); for (unsigned Idx = 0; Idx < NumDefs; ++Idx) { Register MergeSrc = MergeI->getOperand(Idx + 1).getReg(); Builder.buildInstr(ConvertOp, {MI.getOperand(Idx).getReg()}, {MergeSrc}); } markInstAndDefDead(MI, *MergeI, DeadInsts); return true; } // FIXME: is a COPY appropriate if the types mismatch? We know both // registers are allocatable by now. if (DestTy != MergeSrcTy) return false; for (unsigned Idx = 0; Idx < NumDefs; ++Idx) MRI.replaceRegWith(MI.getOperand(Idx).getReg(), MergeI->getOperand(Idx + 1).getReg()); } markInstAndDefDead(MI, *MergeI, DeadInsts); return true; } static bool isMergeLikeOpcode(unsigned Opc) { switch (Opc) { case TargetOpcode::G_MERGE_VALUES: case TargetOpcode::G_BUILD_VECTOR: case TargetOpcode::G_CONCAT_VECTORS: return true; default: return false; } } bool tryCombineExtract(MachineInstr &MI, SmallVectorImpl &DeadInsts) { assert(MI.getOpcode() == TargetOpcode::G_EXTRACT); // Try to use the source registers from a G_MERGE_VALUES // // %2 = G_MERGE_VALUES %0, %1 // %3 = G_EXTRACT %2, N // => // // for N < %2.getSizeInBits() / 2 // %3 = G_EXTRACT %0, N // // for N >= %2.getSizeInBits() / 2 // %3 = G_EXTRACT %1, (N - %0.getSizeInBits() unsigned Src = lookThroughCopyInstrs(MI.getOperand(1).getReg()); MachineInstr *MergeI = MRI.getVRegDef(Src); if (!MergeI || !isMergeLikeOpcode(MergeI->getOpcode())) return false; LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); LLT SrcTy = MRI.getType(Src); // TODO: Do we need to check if the resulting extract is supported? unsigned ExtractDstSize = DstTy.getSizeInBits(); unsigned Offset = MI.getOperand(2).getImm(); unsigned NumMergeSrcs = MergeI->getNumOperands() - 1; unsigned MergeSrcSize = SrcTy.getSizeInBits() / NumMergeSrcs; unsigned MergeSrcIdx = Offset / MergeSrcSize; // Compute the offset of the last bit the extract needs. unsigned EndMergeSrcIdx = (Offset + ExtractDstSize - 1) / MergeSrcSize; // Can't handle the case where the extract spans multiple inputs. if (MergeSrcIdx != EndMergeSrcIdx) return false; // TODO: We could modify MI in place in most cases. Builder.setInstr(MI); Builder.buildExtract( MI.getOperand(0).getReg(), MergeI->getOperand(MergeSrcIdx + 1).getReg(), Offset - MergeSrcIdx * MergeSrcSize); markInstAndDefDead(MI, *MergeI, DeadInsts); return true; } /// Try to combine away MI. /// Returns true if it combined away the MI. /// Adds instructions that are dead as a result of the combine /// into DeadInsts, which can include MI. bool tryCombineInstruction(MachineInstr &MI, SmallVectorImpl &DeadInsts, GISelObserverWrapper &WrapperObserver) { // This might be a recursive call, and we might have DeadInsts already // populated. To avoid bad things happening later with multiple vreg defs // etc, process the dead instructions now if any. if (!DeadInsts.empty()) deleteMarkedDeadInsts(DeadInsts, WrapperObserver); switch (MI.getOpcode()) { default: return false; case TargetOpcode::G_ANYEXT: return tryCombineAnyExt(MI, DeadInsts); case TargetOpcode::G_ZEXT: return tryCombineZExt(MI, DeadInsts); case TargetOpcode::G_SEXT: return tryCombineSExt(MI, DeadInsts); case TargetOpcode::G_UNMERGE_VALUES: return tryCombineMerges(MI, DeadInsts); case TargetOpcode::G_EXTRACT: return tryCombineExtract(MI, DeadInsts); case TargetOpcode::G_TRUNC: { bool Changed = false; for (auto &Use : MRI.use_instructions(MI.getOperand(0).getReg())) Changed |= tryCombineInstruction(Use, DeadInsts, WrapperObserver); return Changed; } } } private: static unsigned getArtifactSrcReg(const MachineInstr &MI) { switch (MI.getOpcode()) { case TargetOpcode::COPY: case TargetOpcode::G_TRUNC: case TargetOpcode::G_ZEXT: case TargetOpcode::G_ANYEXT: case TargetOpcode::G_SEXT: case TargetOpcode::G_UNMERGE_VALUES: return MI.getOperand(MI.getNumOperands() - 1).getReg(); case TargetOpcode::G_EXTRACT: return MI.getOperand(1).getReg(); default: llvm_unreachable("Not a legalization artifact happen"); } } /// Mark MI as dead. If a def of one of MI's operands, DefMI, would also be /// dead due to MI being killed, then mark DefMI as dead too. /// Some of the combines (extends(trunc)), try to walk through redundant /// copies in between the extends and the truncs, and this attempts to collect /// the in between copies if they're dead. void markInstAndDefDead(MachineInstr &MI, MachineInstr &DefMI, SmallVectorImpl &DeadInsts) { DeadInsts.push_back(&MI); // Collect all the copy instructions that are made dead, due to deleting // this instruction. Collect all of them until the Trunc(DefMI). // Eg, // %1(s1) = G_TRUNC %0(s32) // %2(s1) = COPY %1(s1) // %3(s1) = COPY %2(s1) // %4(s32) = G_ANYEXT %3(s1) // In this case, we would have replaced %4 with a copy of %0, // and as a result, %3, %2, %1 are dead. MachineInstr *PrevMI = &MI; while (PrevMI != &DefMI) { unsigned PrevRegSrc = getArtifactSrcReg(*PrevMI); MachineInstr *TmpDef = MRI.getVRegDef(PrevRegSrc); if (MRI.hasOneUse(PrevRegSrc)) { if (TmpDef != &DefMI) { assert((TmpDef->getOpcode() == TargetOpcode::COPY || isArtifactCast(TmpDef->getOpcode())) && "Expecting copy or artifact cast here"); DeadInsts.push_back(TmpDef); } } else break; PrevMI = TmpDef; } if (PrevMI == &DefMI && MRI.hasOneUse(DefMI.getOperand(0).getReg())) DeadInsts.push_back(&DefMI); } /// Erase the dead instructions in the list and call the observer hooks. /// Normally the Legalizer will deal with erasing instructions that have been /// marked dead. However, for the trunc(ext(x)) cases we can end up trying to /// process instructions which have been marked dead, but otherwise break the /// MIR by introducing multiple vreg defs. For those cases, allow the combines /// to explicitly delete the instructions before we run into trouble. void deleteMarkedDeadInsts(SmallVectorImpl &DeadInsts, GISelObserverWrapper &WrapperObserver) { for (auto *DeadMI : DeadInsts) { LLVM_DEBUG(dbgs() << *DeadMI << "Is dead, eagerly deleting\n"); WrapperObserver.erasingInstr(*DeadMI); DeadMI->eraseFromParentAndMarkDBGValuesForRemoval(); } DeadInsts.clear(); } /// Checks if the target legalizer info has specified anything about the /// instruction, or if unsupported. bool isInstUnsupported(const LegalityQuery &Query) const { using namespace LegalizeActions; auto Step = LI.getAction(Query); return Step.Action == Unsupported || Step.Action == NotFound; } bool isInstLegal(const LegalityQuery &Query) const { return LI.getAction(Query).Action == LegalizeActions::Legal; } bool isConstantUnsupported(LLT Ty) const { if (!Ty.isVector()) return isInstUnsupported({TargetOpcode::G_CONSTANT, {Ty}}); LLT EltTy = Ty.getElementType(); return isInstUnsupported({TargetOpcode::G_CONSTANT, {EltTy}}) || isInstUnsupported({TargetOpcode::G_BUILD_VECTOR, {Ty, EltTy}}); } /// Looks through copy instructions and returns the actual /// source register. unsigned lookThroughCopyInstrs(Register Reg) { Register TmpReg; while (mi_match(Reg, MRI, m_Copy(m_Reg(TmpReg)))) { if (MRI.getType(TmpReg).isValid()) Reg = TmpReg; else break; } return Reg; } }; } // namespace llvm