//===-LTO.h - LLVM Link Time Optimizer ------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file declares functions and classes used to support LTO. It is intended // to be used both by LTO classes as well as by clients (gold-plugin) that // don't utilize the LTO code generator interfaces. // //===----------------------------------------------------------------------===// #ifndef LLVM_LTO_LTO_H #define LLVM_LTO_LTO_H #include "llvm/ADT/MapVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringSet.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/IR/DiagnosticInfo.h" #include "llvm/IR/ModuleSummaryIndex.h" #include "llvm/LTO/Config.h" #include "llvm/Linker/IRMover.h" #include "llvm/Object/IRObjectFile.h" #include "llvm/Support/thread.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Transforms/IPO/FunctionImport.h" namespace llvm { class BitcodeModule; class Error; class LLVMContext; class MemoryBufferRef; class Module; class Target; class raw_pwrite_stream; /// Resolve Weak and LinkOnce values in the \p Index. Linkage changes recorded /// in the index and the ThinLTO backends must apply the changes to the Module /// via thinLTOResolveWeakForLinkerModule. /// /// This is done for correctness (if value exported, ensure we always /// emit a copy), and compile-time optimization (allow drop of duplicates). void thinLTOResolveWeakForLinkerInIndex( ModuleSummaryIndex &Index, function_ref isPrevailing, function_ref recordNewLinkage); /// Update the linkages in the given \p Index to mark exported values /// as external and non-exported values as internal. The ThinLTO backends /// must apply the changes to the Module via thinLTOInternalizeModule. void thinLTOInternalizeAndPromoteInIndex( ModuleSummaryIndex &Index, function_ref isExported); namespace lto { /// Given the original \p Path to an output file, replace any path /// prefix matching \p OldPrefix with \p NewPrefix. Also, create the /// resulting directory if it does not yet exist. std::string getThinLTOOutputFile(const std::string &Path, const std::string &OldPrefix, const std::string &NewPrefix); class LTO; struct SymbolResolution; class ThinBackendProc; /// An input file. This is a wrapper for ModuleSymbolTable that exposes only the /// information that an LTO client should need in order to do symbol resolution. class InputFile { // FIXME: Remove LTO class friendship once we have bitcode symbol tables. friend LTO; InputFile() = default; // FIXME: Remove the LLVMContext once we have bitcode symbol tables. LLVMContext Ctx; struct InputModule; std::vector Mods; ModuleSymbolTable SymTab; std::vector Comdats; DenseMap ComdatMap; public: ~InputFile(); /// Create an InputFile. static Expected> create(MemoryBufferRef Object); class symbol_iterator; /// This is a wrapper for ArrayRef::iterator that /// exposes only the information that an LTO client should need in order to do /// symbol resolution. /// /// This object is ephemeral; it is only valid as long as an iterator obtained /// from symbols() refers to it. class Symbol { friend symbol_iterator; friend LTO; ArrayRef::iterator I; const ModuleSymbolTable &SymTab; const InputFile *File; uint32_t Flags; SmallString<64> Name; bool shouldSkip() { return !(Flags & object::BasicSymbolRef::SF_Global) || (Flags & object::BasicSymbolRef::SF_FormatSpecific); } void skip() { ArrayRef::iterator E = SymTab.symbols().end(); while (I != E) { Flags = SymTab.getSymbolFlags(*I); if (!shouldSkip()) break; ++I; } if (I == E) return; Name.clear(); { raw_svector_ostream OS(Name); SymTab.printSymbolName(OS, *I); } } bool isGV() const { return I->is(); } GlobalValue *getGV() const { return I->get(); } public: Symbol(ArrayRef::iterator I, const ModuleSymbolTable &SymTab, const InputFile *File) : I(I), SymTab(SymTab), File(File) { skip(); } /// Returns the mangled name of the global. StringRef getName() const { return Name; } uint32_t getFlags() const { return Flags; } GlobalValue::VisibilityTypes getVisibility() const { if (isGV()) return getGV()->getVisibility(); return GlobalValue::DefaultVisibility; } bool canBeOmittedFromSymbolTable() const { return isGV() && llvm::canBeOmittedFromSymbolTable(getGV()); } bool isTLS() const { // FIXME: Expose a thread-local flag for module asm symbols. return isGV() && getGV()->isThreadLocal(); } // Returns the index of the comdat this symbol is in or -1 if the symbol // is not in a comdat. // FIXME: We have to return Expected because aliases point to an // arbitrary ConstantExpr and that might not actually be a constant. That // means we might not be able to find what an alias is aliased to and // so find its comdat. Expected getComdatIndex() const; uint64_t getCommonSize() const { assert(Flags & object::BasicSymbolRef::SF_Common); if (!isGV()) return 0; return getGV()->getParent()->getDataLayout().getTypeAllocSize( getGV()->getType()->getElementType()); } unsigned getCommonAlignment() const { assert(Flags & object::BasicSymbolRef::SF_Common); if (!isGV()) return 0; return getGV()->getAlignment(); } }; class symbol_iterator { Symbol Sym; public: symbol_iterator(ArrayRef::iterator I, const ModuleSymbolTable &SymTab, const InputFile *File) : Sym(I, SymTab, File) {} symbol_iterator &operator++() { ++Sym.I; Sym.skip(); return *this; } symbol_iterator operator++(int) { symbol_iterator I = *this; ++*this; return I; } const Symbol &operator*() const { return Sym; } const Symbol *operator->() const { return &Sym; } bool operator!=(const symbol_iterator &Other) const { return Sym.I != Other.Sym.I; } }; /// A range over the symbols in this InputFile. iterator_range symbols() { return llvm::make_range( symbol_iterator(SymTab.symbols().begin(), SymTab, this), symbol_iterator(SymTab.symbols().end(), SymTab, this)); } /// Returns the path to the InputFile. StringRef getName() const; /// Returns the source file path specified at compile time. StringRef getSourceFileName() const; // Returns a table with all the comdats used by this file. ArrayRef getComdatTable() const { return Comdats; } private: iterator_range module_symbols(InputModule &IM); }; /// This class wraps an output stream for a native object. Most clients should /// just be able to return an instance of this base class from the stream /// callback, but if a client needs to perform some action after the stream is /// written to, that can be done by deriving from this class and overriding the /// destructor. class NativeObjectStream { public: NativeObjectStream(std::unique_ptr OS) : OS(std::move(OS)) {} std::unique_ptr OS; virtual ~NativeObjectStream() = default; }; /// This type defines the callback to add a native object that is generated on /// the fly. /// /// Stream callbacks must be thread safe. typedef std::function(unsigned Task)> AddStreamFn; /// This is the type of a native object cache. To request an item from the /// cache, pass a unique string as the Key. For hits, the cached file will be /// added to the link and this function will return AddStreamFn(). For misses, /// the cache will return a stream callback which must be called at most once to /// produce content for the stream. The native object stream produced by the /// stream callback will add the file to the link after the stream is written /// to. /// /// Clients generally look like this: /// /// if (AddStreamFn AddStream = Cache(Task, Key)) /// ProduceContent(AddStream); typedef std::function NativeObjectCache; /// A ThinBackend defines what happens after the thin-link phase during ThinLTO. /// The details of this type definition aren't important; clients can only /// create a ThinBackend using one of the create*ThinBackend() functions below. typedef std::function( Config &C, ModuleSummaryIndex &CombinedIndex, StringMap &ModuleToDefinedGVSummaries, AddStreamFn AddStream, NativeObjectCache Cache)> ThinBackend; /// This ThinBackend runs the individual backend jobs in-process. ThinBackend createInProcessThinBackend(unsigned ParallelismLevel); /// This ThinBackend writes individual module indexes to files, instead of /// running the individual backend jobs. This backend is for distributed builds /// where separate processes will invoke the real backends. /// /// To find the path to write the index to, the backend checks if the path has a /// prefix of OldPrefix; if so, it replaces that prefix with NewPrefix. It then /// appends ".thinlto.bc" and writes the index to that path. If /// ShouldEmitImportsFiles is true it also writes a list of imported files to a /// similar path with ".imports" appended instead. ThinBackend createWriteIndexesThinBackend(std::string OldPrefix, std::string NewPrefix, bool ShouldEmitImportsFiles, std::string LinkedObjectsFile); /// This class implements a resolution-based interface to LLVM's LTO /// functionality. It supports regular LTO, parallel LTO code generation and /// ThinLTO. You can use it from a linker in the following way: /// - Set hooks and code generation options (see lto::Config struct defined in /// Config.h), and use the lto::Config object to create an lto::LTO object. /// - Create lto::InputFile objects using lto::InputFile::create(), then use /// the symbols() function to enumerate its symbols and compute a resolution /// for each symbol (see SymbolResolution below). /// - After the linker has visited each input file (and each regular object /// file) and computed a resolution for each symbol, take each lto::InputFile /// and pass it and an array of symbol resolutions to the add() function. /// - Call the getMaxTasks() function to get an upper bound on the number of /// native object files that LTO may add to the link. /// - Call the run() function. This function will use the supplied AddStream /// and Cache functions to add up to getMaxTasks() native object files to /// the link. class LTO { friend InputFile; public: /// Create an LTO object. A default constructed LTO object has a reasonable /// production configuration, but you can customize it by passing arguments to /// this constructor. /// FIXME: We do currently require the DiagHandler field to be set in Conf. /// Until that is fixed, a Config argument is required. LTO(Config Conf, ThinBackend Backend = nullptr, unsigned ParallelCodeGenParallelismLevel = 1); ~LTO(); /// Add an input file to the LTO link, using the provided symbol resolutions. /// The symbol resolutions must appear in the enumeration order given by /// InputFile::symbols(). Error add(std::unique_ptr Obj, ArrayRef Res); /// Returns an upper bound on the number of tasks that the client may expect. /// This may only be called after all IR object files have been added. For a /// full description of tasks see LTOBackend.h. unsigned getMaxTasks() const; /// Runs the LTO pipeline. This function calls the supplied AddStream /// function to add native object files to the link. /// /// The Cache parameter is optional. If supplied, it will be used to cache /// native object files and add them to the link. /// /// The client will receive at most one callback (via either AddStream or /// Cache) for each task identifier. Error run(AddStreamFn AddStream, NativeObjectCache Cache = nullptr); private: Config Conf; struct RegularLTOState { RegularLTOState(unsigned ParallelCodeGenParallelismLevel, Config &Conf); struct CommonResolution { uint64_t Size = 0; unsigned Align = 0; /// Record if at least one instance of the common was marked as prevailing bool Prevailing = false; }; std::map Commons; unsigned ParallelCodeGenParallelismLevel; LTOLLVMContext Ctx; bool HasModule = false; std::unique_ptr CombinedModule; std::unique_ptr Mover; } RegularLTO; struct ThinLTOState { ThinLTOState(ThinBackend Backend); ThinBackend Backend; ModuleSummaryIndex CombinedIndex; MapVector ModuleMap; DenseMap PrevailingModuleForGUID; } ThinLTO; // The global resolution for a particular (mangled) symbol name. This is in // particular necessary to track whether each symbol can be internalized. // Because any input file may introduce a new cross-partition reference, we // cannot make any final internalization decisions until all input files have // been added and the client has called run(). During run() we apply // internalization decisions either directly to the module (for regular LTO) // or to the combined index (for ThinLTO). struct GlobalResolution { /// The unmangled name of the global. std::string IRName; /// Keep track if the symbol is visible outside of ThinLTO (i.e. in /// either a regular object or the regular LTO partition). bool VisibleOutsideThinLTO = false; bool UnnamedAddr = true; /// This field keeps track of the partition number of this global. The /// regular LTO object is partition 0, while each ThinLTO object has its own /// partition number from 1 onwards. /// /// Any global that is defined or used by more than one partition, or that /// is referenced externally, may not be internalized. /// /// Partitions generally have a one-to-one correspondence with tasks, except /// that we use partition 0 for all parallel LTO code generation partitions. /// Any partitioning of the combined LTO object is done internally by the /// LTO backend. unsigned Partition = Unknown; /// Special partition numbers. enum : unsigned { /// A partition number has not yet been assigned to this global. Unknown = -1u, /// This global is either used by more than one partition or has an /// external reference, and therefore cannot be internalized. External = -2u, /// The RegularLTO partition RegularLTO = 0, }; }; // Global mapping from mangled symbol names to resolutions. StringMap GlobalResolutions; void addSymbolToGlobalRes(SmallPtrSet &Used, const InputFile::Symbol &Sym, SymbolResolution Res, unsigned Partition); // These functions take a range of symbol resolutions [ResI, ResE) and consume // the resolutions used by a single input module by incrementing ResI. After // these functions return, [ResI, ResE) will refer to the resolution range for // the remaining modules in the InputFile. Error addModule(InputFile &Input, InputFile::InputModule &IM, const SymbolResolution *&ResI, const SymbolResolution *ResE); Error addRegularLTO(BitcodeModule BM, const SymbolResolution *&ResI, const SymbolResolution *ResE); Error addThinLTO(BitcodeModule BM, Module &M, iterator_range Syms, const SymbolResolution *&ResI, const SymbolResolution *ResE); Error runRegularLTO(AddStreamFn AddStream); Error runThinLTO(AddStreamFn AddStream, NativeObjectCache Cache, bool HasRegularLTO); mutable bool CalledGetMaxTasks = false; }; /// The resolution for a symbol. The linker must provide a SymbolResolution for /// each global symbol based on its internal resolution of that symbol. struct SymbolResolution { SymbolResolution() : Prevailing(0), FinalDefinitionInLinkageUnit(0), VisibleToRegularObj(0) { } /// The linker has chosen this definition of the symbol. unsigned Prevailing : 1; /// The definition of this symbol is unpreemptable at runtime and is known to /// be in this linkage unit. unsigned FinalDefinitionInLinkageUnit : 1; /// The definition of this symbol is visible outside of the LTO unit. unsigned VisibleToRegularObj : 1; }; } // namespace lto } // namespace llvm #endif