//===- ELFYAML.h - ELF YAMLIO implementation --------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file declares classes for handling the YAML representation /// of ELF. /// //===----------------------------------------------------------------------===// #ifndef LLVM_OBJECTYAML_ELFYAML_H #define LLVM_OBJECTYAML_ELFYAML_H #include "llvm/ADT/StringRef.h" #include "llvm/ObjectYAML/YAML.h" #include "llvm/Support/YAMLTraits.h" #include #include #include namespace llvm { namespace ELFYAML { // These types are invariant across 32/64-bit ELF, so for simplicity just // directly give them their exact sizes. We don't need to worry about // endianness because these are just the types in the YAMLIO structures, // and are appropriately converted to the necessary endianness when // reading/generating binary object files. // The naming of these types is intended to be ELF_PREFIX, where PREFIX is // the common prefix of the respective constants. E.g. ELF_EM corresponds // to the `e_machine` constants, like `EM_X86_64`. // In the future, these would probably be better suited by C++11 enum // class's with appropriate fixed underlying type. LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_ET) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_EM) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFCLASS) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFDATA) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_ELFOSABI) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_EF) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_DYNTAG) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_PF) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_SHT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, ELF_REL) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_RSS) // Just use 64, since it can hold 32-bit values too. LLVM_YAML_STRONG_TYPEDEF(uint64_t, ELF_SHF) LLVM_YAML_STRONG_TYPEDEF(uint16_t, ELF_SHN) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STB) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STT) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STV) LLVM_YAML_STRONG_TYPEDEF(uint8_t, ELF_STO) LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_AFL_REG) LLVM_YAML_STRONG_TYPEDEF(uint8_t, MIPS_ABI_FP) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_EXT) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_ASE) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_AFL_FLAGS1) LLVM_YAML_STRONG_TYPEDEF(uint32_t, MIPS_ISA) // For now, hardcode 64 bits everywhere that 32 or 64 would be needed // since 64-bit can hold 32-bit values too. struct FileHeader { ELF_ELFCLASS Class; ELF_ELFDATA Data; ELF_ELFOSABI OSABI; llvm::yaml::Hex8 ABIVersion; ELF_ET Type; ELF_EM Machine; ELF_EF Flags; llvm::yaml::Hex64 Entry; Optional SHEntSize; Optional SHOffset; Optional SHNum; Optional SHStrNdx; }; struct SectionName { StringRef Section; }; struct ProgramHeader { ELF_PT Type; ELF_PF Flags; llvm::yaml::Hex64 VAddr; llvm::yaml::Hex64 PAddr; Optional Align; Optional FileSize; Optional MemSize; Optional Offset; std::vector Sections; }; struct Symbol { StringRef Name; Optional NameIndex; ELF_STT Type; StringRef Section; Optional Index; ELF_STB Binding; llvm::yaml::Hex64 Value; llvm::yaml::Hex64 Size; uint8_t Other; }; struct SectionOrType { StringRef sectionNameOrType; }; struct DynamicEntry { ELF_DYNTAG Tag; llvm::yaml::Hex64 Val; }; struct Section { enum class SectionKind { Dynamic, Group, RawContent, Relocation, NoBits, Verdef, Verneed, Symver, MipsABIFlags }; SectionKind Kind; StringRef Name; ELF_SHT Type; Optional Flags; llvm::yaml::Hex64 Address; StringRef Link; llvm::yaml::Hex64 AddressAlign; Optional EntSize; // This can be used to override the sh_offset field. It does not place the // section data at the offset specified. Useful for creating invalid objects. Optional ShOffset; // This can be used to override the sh_size field. It does not affect the // content written. Optional ShSize; Section(SectionKind Kind) : Kind(Kind) {} virtual ~Section(); }; struct DynamicSection : Section { std::vector Entries; Optional Content; DynamicSection() : Section(SectionKind::Dynamic) {} static bool classof(const Section *S) { return S->Kind == SectionKind::Dynamic; } }; struct RawContentSection : Section { Optional Content; Optional Size; Optional Info; RawContentSection() : Section(SectionKind::RawContent) {} static bool classof(const Section *S) { return S->Kind == SectionKind::RawContent; } }; struct NoBitsSection : Section { llvm::yaml::Hex64 Size; NoBitsSection() : Section(SectionKind::NoBits) {} static bool classof(const Section *S) { return S->Kind == SectionKind::NoBits; } }; struct VernauxEntry { uint32_t Hash; uint16_t Flags; uint16_t Other; StringRef Name; }; struct VerneedEntry { uint16_t Version; StringRef File; std::vector AuxV; }; struct VerneedSection : Section { std::vector VerneedV; llvm::yaml::Hex64 Info; VerneedSection() : Section(SectionKind::Verneed) {} static bool classof(const Section *S) { return S->Kind == SectionKind::Verneed; } }; struct SymverSection : Section { std::vector Entries; SymverSection() : Section(SectionKind::Symver) {} static bool classof(const Section *S) { return S->Kind == SectionKind::Symver; } }; struct VerdefEntry { uint16_t Version; uint16_t Flags; uint16_t VersionNdx; uint32_t Hash; std::vector VerNames; }; struct VerdefSection : Section { std::vector Entries; llvm::yaml::Hex64 Info; VerdefSection() : Section(SectionKind::Verdef) {} static bool classof(const Section *S) { return S->Kind == SectionKind::Verdef; } }; struct Group : Section { // Members of a group contain a flag and a list of section indices // that are part of the group. std::vector Members; StringRef Signature; /* Info */ Group() : Section(SectionKind::Group) {} static bool classof(const Section *S) { return S->Kind == SectionKind::Group; } }; struct Relocation { llvm::yaml::Hex64 Offset; int64_t Addend; ELF_REL Type; Optional Symbol; }; struct RelocationSection : Section { std::vector Relocations; StringRef RelocatableSec; /* Info */ RelocationSection() : Section(SectionKind::Relocation) {} static bool classof(const Section *S) { return S->Kind == SectionKind::Relocation; } }; // Represents .MIPS.abiflags section struct MipsABIFlags : Section { llvm::yaml::Hex16 Version; MIPS_ISA ISALevel; llvm::yaml::Hex8 ISARevision; MIPS_AFL_REG GPRSize; MIPS_AFL_REG CPR1Size; MIPS_AFL_REG CPR2Size; MIPS_ABI_FP FpABI; MIPS_AFL_EXT ISAExtension; MIPS_AFL_ASE ASEs; MIPS_AFL_FLAGS1 Flags1; llvm::yaml::Hex32 Flags2; MipsABIFlags() : Section(SectionKind::MipsABIFlags) {} static bool classof(const Section *S) { return S->Kind == SectionKind::MipsABIFlags; } }; struct Object { FileHeader Header; std::vector ProgramHeaders; std::vector> Sections; // Although in reality the symbols reside in a section, it is a lot // cleaner and nicer if we read them from the YAML as a separate // top-level key, which automatically ensures that invariants like there // being a single SHT_SYMTAB section are upheld. std::vector Symbols; std::vector DynamicSymbols; }; } // end namespace ELFYAML } // end namespace llvm LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::DynamicEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::ProgramHeader) LLVM_YAML_IS_SEQUENCE_VECTOR(std::unique_ptr) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Symbol) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerdefEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VernauxEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::VerneedEntry) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::Relocation) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionOrType) LLVM_YAML_IS_SEQUENCE_VECTOR(llvm::ELFYAML::SectionName) namespace llvm { namespace yaml { template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_ET &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_PT &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_EM &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_ELFCLASS &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_ELFDATA &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_ELFOSABI &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::ELF_EF &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::ELF_PF &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_SHT &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::ELF_SHF &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_SHN &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_STB &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_STT &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_STV &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::ELF_STO &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_REL &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_DYNTAG &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::ELF_RSS &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::MIPS_AFL_REG &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::MIPS_ABI_FP &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::MIPS_AFL_EXT &Value); }; template <> struct ScalarEnumerationTraits { static void enumeration(IO &IO, ELFYAML::MIPS_ISA &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::MIPS_AFL_ASE &Value); }; template <> struct ScalarBitSetTraits { static void bitset(IO &IO, ELFYAML::MIPS_AFL_FLAGS1 &Value); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::FileHeader &FileHdr); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::ProgramHeader &FileHdr); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::Symbol &Symbol); static StringRef validate(IO &IO, ELFYAML::Symbol &Symbol); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::DynamicEntry &Rel); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::VerdefEntry &E); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::VerneedEntry &E); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::VernauxEntry &E); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::Relocation &Rel); }; template <> struct MappingTraits> { static void mapping(IO &IO, std::unique_ptr &Section); static StringRef validate(IO &io, std::unique_ptr &Section); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::Object &Object); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::SectionOrType §ionOrType); }; template <> struct MappingTraits { static void mapping(IO &IO, ELFYAML::SectionName §ionName); }; } // end namespace yaml } // end namespace llvm #endif // LLVM_OBJECTYAML_ELFYAML_H