//===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "NativeProcessLinux.h" // C Includes #include #include #include #include // C++ Includes #include #include #include #include #include // Other libraries and framework includes #include "lldb/Core/EmulateInstruction.h" #include "lldb/Core/ModuleSpec.h" #include "lldb/Core/RegisterValue.h" #include "lldb/Core/State.h" #include "lldb/Host/Host.h" #include "lldb/Host/HostProcess.h" #include "lldb/Host/PseudoTerminal.h" #include "lldb/Host/ThreadLauncher.h" #include "lldb/Host/common/NativeBreakpoint.h" #include "lldb/Host/common/NativeRegisterContext.h" #include "lldb/Host/linux/Ptrace.h" #include "lldb/Host/linux/Uio.h" #include "lldb/Host/posix/ProcessLauncherPosixFork.h" #include "lldb/Symbol/ObjectFile.h" #include "lldb/Target/Process.h" #include "lldb/Target/ProcessLaunchInfo.h" #include "lldb/Target/Target.h" #include "lldb/Utility/LLDBAssert.h" #include "lldb/Utility/Status.h" #include "lldb/Utility/StringExtractor.h" #include "llvm/Support/Errno.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/Threading.h" #include "NativeThreadLinux.h" #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" #include "Procfs.h" #include #include #include #include #include #include // Support hardware breakpoints in case it has not been defined #ifndef TRAP_HWBKPT #define TRAP_HWBKPT 4 #endif using namespace lldb; using namespace lldb_private; using namespace lldb_private::process_linux; using namespace llvm; // Private bits we only need internally. static bool ProcessVmReadvSupported() { static bool is_supported; static llvm::once_flag flag; llvm::call_once(flag, [] { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); uint32_t source = 0x47424742; uint32_t dest = 0; struct iovec local, remote; remote.iov_base = &source; local.iov_base = &dest; remote.iov_len = local.iov_len = sizeof source; // We shall try if cross-process-memory reads work by attempting to read a // value from our own process. ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); is_supported = (res == sizeof(source) && source == dest); if (is_supported) LLDB_LOG(log, "Detected kernel support for process_vm_readv syscall. " "Fast memory reads enabled."); else LLDB_LOG(log, "syscall process_vm_readv failed (error: {0}). Fast memory " "reads disabled.", llvm::sys::StrError()); }); return is_supported; } namespace { void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); if (!log) return; if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); else LLDB_LOG(log, "leaving STDIN as is"); if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); else LLDB_LOG(log, "leaving STDOUT as is"); if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); else LLDB_LOG(log, "leaving STDERR as is"); int i = 0; for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; ++args, ++i) LLDB_LOG(log, "arg {0}: '{1}'", i, *args); } void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { uint8_t *ptr = (uint8_t *)bytes; const uint32_t loop_count = std::min(DEBUG_PTRACE_MAXBYTES, count); for (uint32_t i = 0; i < loop_count; i++) { s.Printf("[%x]", *ptr); ptr++; } } void PtraceDisplayBytes(int &req, void *data, size_t data_size) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); if (!log) return; StreamString buf; switch (req) { case PTRACE_POKETEXT: { DisplayBytes(buf, &data, 8); LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); break; } case PTRACE_POKEDATA: { DisplayBytes(buf, &data, 8); LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); break; } case PTRACE_POKEUSER: { DisplayBytes(buf, &data, 8); LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); break; } case PTRACE_SETREGS: { DisplayBytes(buf, data, data_size); LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); break; } case PTRACE_SETFPREGS: { DisplayBytes(buf, data, data_size); LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); break; } case PTRACE_SETSIGINFO: { DisplayBytes(buf, data, sizeof(siginfo_t)); LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); break; } case PTRACE_SETREGSET: { // Extract iov_base from data, which is a pointer to the struct IOVEC DisplayBytes(buf, *(void **)data, data_size); LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); break; } default: {} } } static constexpr unsigned k_ptrace_word_size = sizeof(void *); static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size"); } // end of anonymous namespace // Simple helper function to ensure flags are enabled on the given file // descriptor. static Status EnsureFDFlags(int fd, int flags) { Status error; int status = fcntl(fd, F_GETFL); if (status == -1) { error.SetErrorToErrno(); return error; } if (fcntl(fd, F_SETFL, status | flags) == -1) { error.SetErrorToErrno(); return error; } return error; } // ----------------------------------------------------------------------------- // Public Static Methods // ----------------------------------------------------------------------------- Status NativeProcessProtocol::Launch( ProcessLaunchInfo &launch_info, NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); Status error; // Verify the working directory is valid if one was specified. FileSpec working_dir{launch_info.GetWorkingDirectory()}; if (working_dir && (!working_dir.ResolvePath() || !llvm::sys::fs::is_directory(working_dir.GetPath()))) { error.SetErrorStringWithFormat("No such file or directory: %s", working_dir.GetCString()); return error; } // Create the NativeProcessLinux in launch mode. native_process_sp.reset(new NativeProcessLinux()); if (!native_process_sp->RegisterNativeDelegate(native_delegate)) { native_process_sp.reset(); error.SetErrorStringWithFormat("failed to register the native delegate"); return error; } error = std::static_pointer_cast(native_process_sp) ->LaunchInferior(mainloop, launch_info); if (error.Fail()) { native_process_sp.reset(); LLDB_LOG(log, "failed to launch process: {0}", error); return error; } launch_info.SetProcessID(native_process_sp->GetID()); return error; } Status NativeProcessProtocol::Attach( lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); LLDB_LOG(log, "pid = {0:x}", pid); // Retrieve the architecture for the running process. ArchSpec process_arch; Status error = ResolveProcessArchitecture(pid, process_arch); if (!error.Success()) return error; std::shared_ptr native_process_linux_sp( new NativeProcessLinux()); if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) { error.SetErrorStringWithFormat("failed to register the native delegate"); return error; } native_process_linux_sp->AttachToInferior(mainloop, pid, error); if (!error.Success()) return error; native_process_sp = native_process_linux_sp; return error; } // ----------------------------------------------------------------------------- // Public Instance Methods // ----------------------------------------------------------------------------- NativeProcessLinux::NativeProcessLinux() : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(), m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(), m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {} void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid, Status &error) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); LLDB_LOG(log, "pid = {0:x}", pid); m_sigchld_handle = mainloop.RegisterSignal( SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); if (!m_sigchld_handle) return; error = ResolveProcessArchitecture(pid, m_arch); if (!error.Success()) return; // Set the architecture to the exe architecture. LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, m_arch.GetArchitectureName()); m_pid = pid; SetState(eStateAttaching); Attach(pid, error); } Status NativeProcessLinux::LaunchInferior(MainLoop &mainloop, ProcessLaunchInfo &launch_info) { Status error; m_sigchld_handle = mainloop.RegisterSignal( SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); if (!m_sigchld_handle) return error; SetState(eStateLaunching); MaybeLogLaunchInfo(launch_info); ::pid_t pid = ProcessLauncherPosixFork().LaunchProcess(launch_info, error).GetProcessId(); if (error.Fail()) return error; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); // Wait for the child process to trap on its call to execve. ::pid_t wpid; int status; if ((wpid = waitpid(pid, &status, 0)) < 0) { error.SetErrorToErrno(); LLDB_LOG(log, "waitpid for inferior failed with %s", error); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, // using eStateInvalid. SetState(StateType::eStateInvalid); return error; } assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) && "Could not sync with inferior process."); LLDB_LOG(log, "inferior started, now in stopped state"); error = SetDefaultPtraceOpts(pid); if (error.Fail()) { LLDB_LOG(log, "failed to set default ptrace options: {0}", error); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For now, // using eStateInvalid. SetState(StateType::eStateInvalid); return error; } // Release the master terminal descriptor and pass it off to the // NativeProcessLinux instance. Similarly stash the inferior pid. m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor(); m_pid = pid; launch_info.SetProcessID(pid); if (m_terminal_fd != -1) { error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); if (error.Fail()) { LLDB_LOG(log, "inferior EnsureFDFlags failed for ensuring terminal " "O_NONBLOCK setting: {0}", error); // Mark the inferior as invalid. // FIXME this could really use a new state - eStateLaunchFailure. For // now, using eStateInvalid. SetState(StateType::eStateInvalid); return error; } } LLDB_LOG(log, "adding pid = {0}", pid); ResolveProcessArchitecture(m_pid, m_arch); NativeThreadLinuxSP thread_sp = AddThread(pid); assert(thread_sp && "AddThread() returned a nullptr thread"); thread_sp->SetStoppedBySignal(SIGSTOP); ThreadWasCreated(*thread_sp); // Let our process instance know the thread has stopped. SetCurrentThreadID(thread_sp->GetID()); SetState(StateType::eStateStopped); if (error.Fail()) LLDB_LOG(log, "inferior launching failed {0}", error); return error; } ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Status &error) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); // Use a map to keep track of the threads which we have attached/need to // attach. Host::TidMap tids_to_attach; if (pid <= 1) { error.SetErrorToGenericError(); error.SetErrorString("Attaching to process 1 is not allowed."); return -1; } while (Host::FindProcessThreads(pid, tids_to_attach)) { for (Host::TidMap::iterator it = tids_to_attach.begin(); it != tids_to_attach.end();) { if (it->second == false) { lldb::tid_t tid = it->first; // Attach to the requested process. // An attach will cause the thread to stop with a SIGSTOP. error = PtraceWrapper(PTRACE_ATTACH, tid); if (error.Fail()) { // No such thread. The thread may have exited. // More error handling may be needed. if (error.GetError() == ESRCH) { it = tids_to_attach.erase(it); continue; } else return -1; } int status; // Need to use __WALL otherwise we receive an error with errno=ECHLD // At this point we should have a thread stopped if waitpid succeeds. if ((status = waitpid(tid, NULL, __WALL)) < 0) { // No such thread. The thread may have exited. // More error handling may be needed. if (errno == ESRCH) { it = tids_to_attach.erase(it); continue; } else { error.SetErrorToErrno(); return -1; } } error = SetDefaultPtraceOpts(tid); if (error.Fail()) return -1; LLDB_LOG(log, "adding tid = {0}", tid); it->second = true; // Create the thread, mark it as stopped. NativeThreadLinuxSP thread_sp(AddThread(static_cast(tid))); assert(thread_sp && "AddThread() returned a nullptr"); // This will notify this is a new thread and tell the system it is // stopped. thread_sp->SetStoppedBySignal(SIGSTOP); ThreadWasCreated(*thread_sp); SetCurrentThreadID(thread_sp->GetID()); } // move the loop forward ++it; } } if (tids_to_attach.size() > 0) { m_pid = pid; // Let our process instance know the thread has stopped. SetState(StateType::eStateStopped); } else { error.SetErrorToGenericError(); error.SetErrorString("No such process."); return -1; } return pid; } Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { long ptrace_opts = 0; // Have the child raise an event on exit. This is used to keep the child in // limbo until it is destroyed. ptrace_opts |= PTRACE_O_TRACEEXIT; // Have the tracer trace threads which spawn in the inferior process. // TODO: if we want to support tracing the inferiors' child, add the // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) ptrace_opts |= PTRACE_O_TRACECLONE; // Have the tracer notify us before execve returns // (needed to disable legacy SIGTRAP generation) ptrace_opts |= PTRACE_O_TRACEEXEC; return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); } // Handles all waitpid events from the inferior process. void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, WaitStatus status) { Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); // Certain activities differ based on whether the pid is the tid of the main // thread. const bool is_main_thread = (pid == GetID()); // Handle when the thread exits. if (exited) { LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, pid, is_main_thread ? "is" : "is not"); // This is a thread that exited. Ensure we're not tracking it anymore. const bool thread_found = StopTrackingThread(pid); if (is_main_thread) { // We only set the exit status and notify the delegate if we haven't // already set the process // state to an exited state. We normally should have received a SIGTRAP | // (PTRACE_EVENT_EXIT << 8) // for the main thread. const bool already_notified = (GetState() == StateType::eStateExited) || (GetState() == StateType::eStateCrashed); if (!already_notified) { LLDB_LOG( log, "tid = {0} handling main thread exit ({1}), expected exit state " "already set but state was {2} instead, setting exit state now", pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", GetState()); // The main thread exited. We're done monitoring. Report to delegate. SetExitStatus(status, true); // Notify delegate that our process has exited. SetState(StateType::eStateExited, true); } else LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); } else { // Do we want to report to the delegate in this case? I think not. If // this was an orderly thread exit, we would already have received the // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an // all-stop then. LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); } return; } siginfo_t info; const auto info_err = GetSignalInfo(pid, &info); auto thread_sp = GetThreadByID(pid); if (!thread_sp) { // Normally, the only situation when we cannot find the thread is if we have // just received a new thread notification. This is indicated by // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); if (info_err.Fail()) { LLDB_LOG(log, "(tid {0}) GetSignalInfo failed ({1}). " "Ingoring this notification.", pid, info_err); return; } LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, info.si_pid); auto thread_sp = AddThread(pid); // Resume the newly created thread. ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); ThreadWasCreated(*thread_sp); return; } // Get details on the signal raised. if (info_err.Success()) { // We have retrieved the signal info. Dispatch appropriately. if (info.si_signo == SIGTRAP) MonitorSIGTRAP(info, *thread_sp); else MonitorSignal(info, *thread_sp, exited); } else { if (info_err.GetError() == EINVAL) { // This is a group stop reception for this tid. // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU // into the tracee, triggering the group-stop mechanism. Normally // receiving these would stop the process, pending a SIGCONT. Simulating // this state in a debugger is hard and is generally not needed (one use // case is debugging background task being managed by a shell). For // general use, it is sufficient to stop the process in a signal-delivery // stop which happens before the group stop. This done by MonitorSignal // and works correctly for all signals. LLDB_LOG(log, "received a group stop for pid {0} tid {1}. Transparent " "handling of group stops not supported, resuming the " "thread.", GetID(), pid); ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER); } else { // ptrace(GETSIGINFO) failed (but not due to group-stop). // A return value of ESRCH means the thread/process is no longer on the // system, so it was killed somehow outside of our control. Either way, // we can't do anything with it anymore. // Stop tracking the metadata for the thread since it's entirely off the // system now. const bool thread_found = StopTrackingThread(pid); LLDB_LOG(log, "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " "status = {3}, main_thread = {4}, thread_found: {5}", info_err, pid, signal, status, is_main_thread, thread_found); if (is_main_thread) { // Notify the delegate - our process is not available but appears to // have been killed outside // our control. Is eStateExited the right exit state in this case? SetExitStatus(status, true); SetState(StateType::eStateExited, true); } else { // This thread was pulled out from underneath us. Anything to do here? // Do we want to do an all stop? LLDB_LOG(log, "pid {0} tid {1} non-main thread exit occurred, didn't " "tell delegate anything since thread disappeared out " "from underneath us", GetID(), pid); } } } } void NativeProcessLinux::WaitForNewThread(::pid_t tid) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); if (new_thread_sp) { // We are already tracking the thread - we got the event on the new thread // (see // MonitorSignal) before this one. We are done. return; } // The thread is not tracked yet, let's wait for it to appear. int status = -1; ::pid_t wait_pid; do { LLDB_LOG(log, "received thread creation event for tid {0}. tid not tracked " "yet, waiting for thread to appear...", tid); wait_pid = waitpid(tid, &status, __WALL); } while (wait_pid == -1 && errno == EINTR); // Since we are waiting on a specific tid, this must be the creation event. // But let's do some checks just in case. if (wait_pid != tid) { LLDB_LOG(log, "waiting for tid {0} failed. Assuming the thread has " "disappeared in the meantime", tid); // The only way I know of this could happen is if the whole process was // SIGKILLed in the mean time. In any case, we can't do anything about that // now. return; } if (WIFEXITED(status)) { LLDB_LOG(log, "waiting for tid {0} returned an 'exited' event. Not " "tracking the thread.", tid); // Also a very improbable event. return; } LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); new_thread_sp = AddThread(tid); ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); ThreadWasCreated(*new_thread_sp); } void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); const bool is_main_thread = (thread.GetID() == GetID()); assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); switch (info.si_code) { // TODO: these two cases are required if we want to support tracing of the // inferiors' children. We'd need this to debug a monitor. // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { // This is the notification on the parent thread which informs us of new // thread // creation. // We don't want to do anything with the parent thread so we just resume it. // In case we // want to implement "break on thread creation" functionality, we would need // to stop // here. unsigned long event_message = 0; if (GetEventMessage(thread.GetID(), &event_message).Fail()) { LLDB_LOG(log, "pid {0} received thread creation event but " "GetEventMessage failed so we don't know the new tid", thread.GetID()); } else WaitForNewThread(event_message); ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); break; } case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { NativeThreadLinuxSP main_thread_sp; LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); // Exec clears any pending notifications. m_pending_notification_tid = LLDB_INVALID_THREAD_ID; // Remove all but the main thread here. Linux fork creates a new process // which only copies the main thread. LLDB_LOG(log, "exec received, stop tracking all but main thread"); for (auto thread_sp : m_threads) { const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); if (is_main_thread) { main_thread_sp = std::static_pointer_cast(thread_sp); LLDB_LOG(log, "found main thread with tid {0}, keeping", main_thread_sp->GetID()); } else { LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", thread_sp->GetID()); } } m_threads.clear(); if (main_thread_sp) { m_threads.push_back(main_thread_sp); SetCurrentThreadID(main_thread_sp->GetID()); main_thread_sp->SetStoppedByExec(); } else { SetCurrentThreadID(LLDB_INVALID_THREAD_ID); LLDB_LOG(log, "pid {0} no main thread found, discarded all threads, " "we're in a no-thread state!", GetID()); } // Tell coordinator about about the "new" (since exec) stopped main thread. ThreadWasCreated(*main_thread_sp); // Let our delegate know we have just exec'd. NotifyDidExec(); // If we have a main thread, indicate we are stopped. assert(main_thread_sp && "exec called during ptraced process but no main " "thread metadata tracked"); // Let the process know we're stopped. StopRunningThreads(main_thread_sp->GetID()); break; } case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { // The inferior process or one of its threads is about to exit. // We don't want to do anything with the thread so we just resume it. In // case we // want to implement "break on thread exit" functionality, we would need to // stop // here. unsigned long data = 0; if (GetEventMessage(thread.GetID(), &data).Fail()) data = -1; LLDB_LOG(log, "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), is_main_thread); if (is_main_thread) SetExitStatus(WaitStatus::Decode(data), true); StateType state = thread.GetState(); if (!StateIsRunningState(state)) { // Due to a kernel bug, we may sometimes get this stop after the inferior // gets a // SIGKILL. This confuses our state tracking logic in ResumeThread(), // since normally, // we should not be receiving any ptrace events while the inferior is // stopped. This // makes sure that the inferior is resumed and exits normally. state = eStateRunning; } ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); break; } case 0: case TRAP_TRACE: // We receive this on single stepping. case TRAP_HWBKPT: // We receive this on watchpoint hit { // If a watchpoint was hit, report it uint32_t wp_index; Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( wp_index, (uintptr_t)info.si_addr); if (error.Fail()) LLDB_LOG(log, "received error while checking for watchpoint hits, pid = " "{0}, error = {1}", thread.GetID(), error); if (wp_index != LLDB_INVALID_INDEX32) { MonitorWatchpoint(thread, wp_index); break; } // If a breakpoint was hit, report it uint32_t bp_index; error = thread.GetRegisterContext()->GetHardwareBreakHitIndex( bp_index, (uintptr_t)info.si_addr); if (error.Fail()) LLDB_LOG(log, "received error while checking for hardware " "breakpoint hits, pid = {0}, error = {1}", thread.GetID(), error); if (bp_index != LLDB_INVALID_INDEX32) { MonitorBreakpoint(thread); break; } // Otherwise, report step over MonitorTrace(thread); break; } case SI_KERNEL: #if defined __mips__ // For mips there is no special signal for watchpoint // So we check for watchpoint in kernel trap { // If a watchpoint was hit, report it uint32_t wp_index; Status error = thread.GetRegisterContext()->GetWatchpointHitIndex( wp_index, LLDB_INVALID_ADDRESS); if (error.Fail()) LLDB_LOG(log, "received error while checking for watchpoint hits, pid = " "{0}, error = {1}", thread.GetID(), error); if (wp_index != LLDB_INVALID_INDEX32) { MonitorWatchpoint(thread, wp_index); break; } } // NO BREAK #endif case TRAP_BRKPT: MonitorBreakpoint(thread); break; case SIGTRAP: case (SIGTRAP | 0x80): LLDB_LOG( log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", info.si_code, GetID(), thread.GetID()); // Ignore these signals until we know more about them. ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); break; default: LLDB_LOG( log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", info.si_code, GetID(), thread.GetID()); llvm_unreachable("Unexpected SIGTRAP code!"); break; } } void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); // This thread is currently stopped. thread.SetStoppedByTrace(); StopRunningThreads(thread.GetID()); } void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { Log *log( GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); // Mark the thread as stopped at breakpoint. thread.SetStoppedByBreakpoint(); Status error = FixupBreakpointPCAsNeeded(thread); if (error.Fail()) LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end()) thread.SetStoppedByTrace(); StopRunningThreads(thread.GetID()); } void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index) { Log *log( GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", thread.GetID(), wp_index); // Mark the thread as stopped at watchpoint. // The address is at (lldb::addr_t)info->si_addr if we need it. thread.SetStoppedByWatchpoint(wp_index); // We need to tell all other running threads before we notify the delegate // about this stop. StopRunningThreads(thread.GetID()); } void NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited) { const int signo = info.si_signo; const bool is_from_llgs = info.si_pid == getpid(); Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); // POSIX says that process behaviour is undefined after it ignores a SIGFPE, // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a // kill(2) or raise(3). Similarly for tgkill(2) on Linux. // // IOW, user generated signals never generate what we consider to be a // "crash". // // Similarly, ACK signals generated by this monitor. // Handle the signal. LLDB_LOG(log, "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " "waitpid pid = {4})", Host::GetSignalAsCString(signo), signo, info.si_code, thread.GetID()); // Check for thread stop notification. if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { // This is a tgkill()-based stop. LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); // Check that we're not already marked with a stop reason. // Note this thread really shouldn't already be marked as stopped - if we // were, that would imply that the kernel signaled us with the thread // stopping which we handled and marked as stopped, and that, without an // intervening resume, we received another stop. It is more likely that we // are missing the marking of a run state somewhere if we find that the // thread was marked as stopped. const StateType thread_state = thread.GetState(); if (!StateIsStoppedState(thread_state, false)) { // An inferior thread has stopped because of a SIGSTOP we have sent it. // Generally, these are not important stops and we don't want to report // them as they are just used to stop other threads when one thread (the // one with the *real* stop reason) hits a breakpoint (watchpoint, // etc...). However, in the case of an asynchronous Interrupt(), this *is* // the real stop reason, so we leave the signal intact if this is the // thread that was chosen as the triggering thread. if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { if (m_pending_notification_tid == thread.GetID()) thread.SetStoppedBySignal(SIGSTOP, &info); else thread.SetStoppedWithNoReason(); SetCurrentThreadID(thread.GetID()); SignalIfAllThreadsStopped(); } else { // We can end up here if stop was initiated by LLGS but by this time a // thread stop has occurred - maybe initiated by another event. Status error = ResumeThread(thread, thread.GetState(), 0); if (error.Fail()) LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), error); } } else { LLDB_LOG(log, "pid {0} tid {1}, thread was already marked as a stopped " "state (state={2}), leaving stop signal as is", GetID(), thread.GetID(), thread_state); SignalIfAllThreadsStopped(); } // Done handling. return; } // Check if debugger should stop at this signal or just ignore it // and resume the inferior. if (m_signals_to_ignore.find(signo) != m_signals_to_ignore.end()) { ResumeThread(thread, thread.GetState(), signo); return; } // This thread is stopped. LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); thread.SetStoppedBySignal(signo, &info); // Send a stop to the debugger after we get all other threads to stop. StopRunningThreads(thread.GetID()); } namespace { struct EmulatorBaton { NativeProcessLinux *m_process; NativeRegisterContext *m_reg_context; // eRegisterKindDWARF -> RegsiterValue std::unordered_map m_register_values; EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) : m_process(process), m_reg_context(reg_context) {} }; } // anonymous namespace static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, const EmulateInstruction::Context &context, lldb::addr_t addr, void *dst, size_t length) { EmulatorBaton *emulator_baton = static_cast(baton); size_t bytes_read; emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); return bytes_read; } static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, const RegisterInfo *reg_info, RegisterValue ®_value) { EmulatorBaton *emulator_baton = static_cast(baton); auto it = emulator_baton->m_register_values.find( reg_info->kinds[eRegisterKindDWARF]); if (it != emulator_baton->m_register_values.end()) { reg_value = it->second; return true; } // The emulator only fill in the dwarf regsiter numbers (and in some case // the generic register numbers). Get the full register info from the // register context based on the dwarf register numbers. const RegisterInfo *full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); Status error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); if (error.Success()) return true; return false; } static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, const EmulateInstruction::Context &context, const RegisterInfo *reg_info, const RegisterValue ®_value) { EmulatorBaton *emulator_baton = static_cast(baton); emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; return true; } static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, const EmulateInstruction::Context &context, lldb::addr_t addr, const void *dst, size_t length) { return length; } static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); } Status NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) { Status error; NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); std::unique_ptr emulator_ap( EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); if (emulator_ap == nullptr) return Status("Instruction emulator not found!"); EmulatorBaton baton(this, register_context_sp.get()); emulator_ap->SetBaton(&baton); emulator_ap->SetReadMemCallback(&ReadMemoryCallback); emulator_ap->SetReadRegCallback(&ReadRegisterCallback); emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); if (!emulator_ap->ReadInstruction()) return Status("Read instruction failed!"); bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); lldb::addr_t next_pc; lldb::addr_t next_flags; if (emulation_result) { assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); next_pc = pc_it->second.GetAsUInt64(); if (flags_it != baton.m_register_values.end()) next_flags = flags_it->second.GetAsUInt64(); else next_flags = ReadFlags(register_context_sp.get()); } else if (pc_it == baton.m_register_values.end()) { // Emulate instruction failed and it haven't changed PC. Advance PC // with the size of the current opcode because the emulation of all // PC modifying instruction should be successful. The failure most // likely caused by a not supported instruction which don't modify PC. next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); next_flags = ReadFlags(register_context_sp.get()); } else { // The instruction emulation failed after it modified the PC. It is an // unknown error where we can't continue because the next instruction is // modifying the PC but we don't know how. return Status("Instruction emulation failed unexpectedly."); } if (m_arch.GetMachine() == llvm::Triple::arm) { if (next_flags & 0x20) { // Thumb mode error = SetSoftwareBreakpoint(next_pc, 2); } else { // Arm mode error = SetSoftwareBreakpoint(next_pc, 4); } } else if (m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) error = SetSoftwareBreakpoint(next_pc, 4); else { // No size hint is given for the next breakpoint error = SetSoftwareBreakpoint(next_pc, 0); } // If setting the breakpoint fails because next_pc is out of // the address space, ignore it and let the debugee segfault. if (error.GetError() == EIO || error.GetError() == EFAULT) { return Status(); } else if (error.Fail()) return error; m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); return Status(); } bool NativeProcessLinux::SupportHardwareSingleStepping() const { if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) return false; return true; } Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); LLDB_LOG(log, "pid {0}", GetID()); bool software_single_step = !SupportHardwareSingleStepping(); if (software_single_step) { for (auto thread_sp : m_threads) { assert(thread_sp && "thread list should not contain NULL threads"); const ResumeAction *const action = resume_actions.GetActionForThread(thread_sp->GetID(), true); if (action == nullptr) continue; if (action->state == eStateStepping) { Status error = SetupSoftwareSingleStepping( static_cast(*thread_sp)); if (error.Fail()) return error; } } } for (auto thread_sp : m_threads) { assert(thread_sp && "thread list should not contain NULL threads"); const ResumeAction *const action = resume_actions.GetActionForThread(thread_sp->GetID(), true); if (action == nullptr) { LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), thread_sp->GetID()); continue; } LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", action->state, GetID(), thread_sp->GetID()); switch (action->state) { case eStateRunning: case eStateStepping: { // Run the thread, possibly feeding it the signal. const int signo = action->signal; ResumeThread(static_cast(*thread_sp), action->state, signo); break; } case eStateSuspended: case eStateStopped: llvm_unreachable("Unexpected state"); default: return Status("NativeProcessLinux::%s (): unexpected state %s specified " "for pid %" PRIu64 ", tid %" PRIu64, __FUNCTION__, StateAsCString(action->state), GetID(), thread_sp->GetID()); } } return Status(); } Status NativeProcessLinux::Halt() { Status error; if (kill(GetID(), SIGSTOP) != 0) error.SetErrorToErrno(); return error; } Status NativeProcessLinux::Detach() { Status error; // Stop monitoring the inferior. m_sigchld_handle.reset(); // Tell ptrace to detach from the process. if (GetID() == LLDB_INVALID_PROCESS_ID) return error; for (auto thread_sp : m_threads) { Status e = Detach(thread_sp->GetID()); if (e.Fail()) error = e; // Save the error, but still attempt to detach from other threads. } return error; } Status NativeProcessLinux::Signal(int signo) { Status error; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, Host::GetSignalAsCString(signo), GetID()); if (kill(GetID(), signo)) error.SetErrorToErrno(); return error; } Status NativeProcessLinux::Interrupt() { // Pick a running thread (or if none, a not-dead stopped thread) as // the chosen thread that will be the stop-reason thread. Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); NativeThreadProtocolSP running_thread_sp; NativeThreadProtocolSP stopped_thread_sp; LLDB_LOG(log, "selecting running thread for interrupt target"); for (auto thread_sp : m_threads) { // The thread shouldn't be null but lets just cover that here. if (!thread_sp) continue; // If we have a running or stepping thread, we'll call that the // target of the interrupt. const auto thread_state = thread_sp->GetState(); if (thread_state == eStateRunning || thread_state == eStateStepping) { running_thread_sp = thread_sp; break; } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { // Remember the first non-dead stopped thread. We'll use that as a backup // if there are no running threads. stopped_thread_sp = thread_sp; } } if (!running_thread_sp && !stopped_thread_sp) { Status error("found no running/stepping or live stopped threads as target " "for interrupt"); LLDB_LOG(log, "skipping due to error: {0}", error); return error; } NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), running_thread_sp ? "running" : "stopped", deferred_signal_thread_sp->GetID()); StopRunningThreads(deferred_signal_thread_sp->GetID()); return Status(); } Status NativeProcessLinux::Kill() { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); LLDB_LOG(log, "pid {0}", GetID()); Status error; switch (m_state) { case StateType::eStateInvalid: case StateType::eStateExited: case StateType::eStateCrashed: case StateType::eStateDetached: case StateType::eStateUnloaded: // Nothing to do - the process is already dead. LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), m_state); return error; case StateType::eStateConnected: case StateType::eStateAttaching: case StateType::eStateLaunching: case StateType::eStateStopped: case StateType::eStateRunning: case StateType::eStateStepping: case StateType::eStateSuspended: // We can try to kill a process in these states. break; } if (kill(GetID(), SIGKILL) != 0) { error.SetErrorToErrno(); return error; } return error; } static Status ParseMemoryRegionInfoFromProcMapsLine(llvm::StringRef &maps_line, MemoryRegionInfo &memory_region_info) { memory_region_info.Clear(); StringExtractor line_extractor(maps_line); // Format: {address_start_hex}-{address_end_hex} perms offset dev inode // pathname // perms: rwxp (letter is present if set, '-' if not, final character is // p=private, s=shared). // Parse out the starting address lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); // Parse out hyphen separating start and end address from range. if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) return Status( "malformed /proc/{pid}/maps entry, missing dash between address range"); // Parse out the ending address lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); // Parse out the space after the address. if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) return Status( "malformed /proc/{pid}/maps entry, missing space after range"); // Save the range. memory_region_info.GetRange().SetRangeBase(start_address); memory_region_info.GetRange().SetRangeEnd(end_address); // Any memory region in /proc/{pid}/maps is by definition mapped into the // process. memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); // Parse out each permission entry. if (line_extractor.GetBytesLeft() < 4) return Status("malformed /proc/{pid}/maps entry, missing some portion of " "permissions"); // Handle read permission. const char read_perm_char = line_extractor.GetChar(); if (read_perm_char == 'r') memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); else if (read_perm_char == '-') memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); else return Status("unexpected /proc/{pid}/maps read permission char"); // Handle write permission. const char write_perm_char = line_extractor.GetChar(); if (write_perm_char == 'w') memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); else if (write_perm_char == '-') memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); else return Status("unexpected /proc/{pid}/maps write permission char"); // Handle execute permission. const char exec_perm_char = line_extractor.GetChar(); if (exec_perm_char == 'x') memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); else if (exec_perm_char == '-') memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); else return Status("unexpected /proc/{pid}/maps exec permission char"); line_extractor.GetChar(); // Read the private bit line_extractor.SkipSpaces(); // Skip the separator line_extractor.GetHexMaxU64(false, 0); // Read the offset line_extractor.GetHexMaxU64(false, 0); // Read the major device number line_extractor.GetChar(); // Read the device id separator line_extractor.GetHexMaxU64(false, 0); // Read the major device number line_extractor.SkipSpaces(); // Skip the separator line_extractor.GetU64(0, 10); // Read the inode number line_extractor.SkipSpaces(); const char *name = line_extractor.Peek(); if (name) memory_region_info.SetName(name); return Status(); } Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, MemoryRegionInfo &range_info) { // FIXME review that the final memory region returned extends to the end of // the virtual address space, // with no perms if it is not mapped. // Use an approach that reads memory regions from /proc/{pid}/maps. // Assume proc maps entries are in ascending order. // FIXME assert if we find differently. if (m_supports_mem_region == LazyBool::eLazyBoolNo) { // We're done. return Status("unsupported"); } Status error = PopulateMemoryRegionCache(); if (error.Fail()) { return error; } lldb::addr_t prev_base_address = 0; // FIXME start by finding the last region that is <= target address using // binary search. Data is sorted. // There can be a ton of regions on pthreads apps with lots of threads. for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); ++it) { MemoryRegionInfo &proc_entry_info = it->first; // Sanity check assumption that /proc/{pid}/maps entries are ascending. assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); prev_base_address = proc_entry_info.GetRange().GetRangeBase(); UNUSED_IF_ASSERT_DISABLED(prev_base_address); // If the target address comes before this entry, indicate distance to next // region. if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { range_info.GetRange().SetRangeBase(load_addr); range_info.GetRange().SetByteSize( proc_entry_info.GetRange().GetRangeBase() - load_addr); range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); return error; } else if (proc_entry_info.GetRange().Contains(load_addr)) { // The target address is within the memory region we're processing here. range_info = proc_entry_info; return error; } // The target memory address comes somewhere after the region we just // parsed. } // If we made it here, we didn't find an entry that contained the given // address. Return the // load_addr as start and the amount of bytes betwwen load address and the end // of the memory as // size. range_info.GetRange().SetRangeBase(load_addr); range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); return error; } Status NativeProcessLinux::PopulateMemoryRegionCache() { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); // If our cache is empty, pull the latest. There should always be at least // one memory region if memory region handling is supported. if (!m_mem_region_cache.empty()) { LLDB_LOG(log, "reusing {0} cached memory region entries", m_mem_region_cache.size()); return Status(); } auto BufferOrError = getProcFile(GetID(), "maps"); if (!BufferOrError) { m_supports_mem_region = LazyBool::eLazyBoolNo; return BufferOrError.getError(); } StringRef Rest = BufferOrError.get()->getBuffer(); while (! Rest.empty()) { StringRef Line; std::tie(Line, Rest) = Rest.split('\n'); MemoryRegionInfo info; const Status parse_error = ParseMemoryRegionInfoFromProcMapsLine(Line, info); if (parse_error.Fail()) { LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", Line, parse_error); m_supports_mem_region = LazyBool::eLazyBoolNo; return parse_error; } m_mem_region_cache.emplace_back( info, FileSpec(info.GetName().GetCString(), true)); } if (m_mem_region_cache.empty()) { // No entries after attempting to read them. This shouldn't happen if // /proc/{pid}/maps is supported. Assume we don't support map entries // via procfs. m_supports_mem_region = LazyBool::eLazyBoolNo; LLDB_LOG(log, "failed to find any procfs maps entries, assuming no support " "for memory region metadata retrieval"); return Status("not supported"); } LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", m_mem_region_cache.size(), GetID()); // We support memory retrieval, remember that. m_supports_mem_region = LazyBool::eLazyBoolYes; return Status(); } void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); LLDB_LOG(log, "newBumpId={0}", newBumpId); LLDB_LOG(log, "clearing {0} entries from memory region cache", m_mem_region_cache.size()); m_mem_region_cache.clear(); } Status NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) { // FIXME implementing this requires the equivalent of // InferiorCallPOSIX::InferiorCallMmap, which depends on // functional ThreadPlans working with Native*Protocol. #if 1 return Status("not implemented yet"); #else addr = LLDB_INVALID_ADDRESS; unsigned prot = 0; if (permissions & lldb::ePermissionsReadable) prot |= eMmapProtRead; if (permissions & lldb::ePermissionsWritable) prot |= eMmapProtWrite; if (permissions & lldb::ePermissionsExecutable) prot |= eMmapProtExec; // TODO implement this directly in NativeProcessLinux // (and lift to NativeProcessPOSIX if/when that class is // refactored out). if (InferiorCallMmap(this, addr, 0, size, prot, eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { m_addr_to_mmap_size[addr] = size; return Status(); } else { addr = LLDB_INVALID_ADDRESS; return Status("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString(permissions)); } #endif } Status NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { // FIXME see comments in AllocateMemory - required lower-level // bits not in place yet (ThreadPlans) return Status("not implemented"); } lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { // punt on this for now return LLDB_INVALID_ADDRESS; } size_t NativeProcessLinux::UpdateThreads() { // The NativeProcessLinux monitoring threads are always up to date // with respect to thread state and they keep the thread list // populated properly. All this method needs to do is return the // thread count. return m_threads.size(); } bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { arch = m_arch; return true; } Status NativeProcessLinux::GetSoftwareBreakpointPCOffset( uint32_t &actual_opcode_size) { // FIXME put this behind a breakpoint protocol class that can be // set per architecture. Need ARM, MIPS support here. static const uint8_t g_i386_opcode[] = {0xCC}; static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; switch (m_arch.GetMachine()) { case llvm::Triple::x86: case llvm::Triple::x86_64: actual_opcode_size = static_cast(sizeof(g_i386_opcode)); return Status(); case llvm::Triple::systemz: actual_opcode_size = static_cast(sizeof(g_s390x_opcode)); return Status(); case llvm::Triple::arm: case llvm::Triple::aarch64: case llvm::Triple::mips64: case llvm::Triple::mips64el: case llvm::Triple::mips: case llvm::Triple::mipsel: // On these architectures the PC don't get updated for breakpoint hits actual_opcode_size = 0; return Status(); default: assert(false && "CPU type not supported!"); return Status("CPU type not supported"); } } Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, bool hardware) { if (hardware) return SetHardwareBreakpoint(addr, size); else return SetSoftwareBreakpoint(addr, size); } Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { if (hardware) return RemoveHardwareBreakpoint(addr); else return NativeProcessProtocol::RemoveBreakpoint(addr); } Status NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) { // FIXME put this behind a breakpoint protocol class that can be set per // architecture. Need MIPS support here. static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the // linux kernel does otherwise. static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; static const uint8_t g_i386_opcode[] = {0xCC}; static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; switch (m_arch.GetMachine()) { case llvm::Triple::aarch64: trap_opcode_bytes = g_aarch64_opcode; actual_opcode_size = sizeof(g_aarch64_opcode); return Status(); case llvm::Triple::arm: switch (trap_opcode_size_hint) { case 2: trap_opcode_bytes = g_thumb_breakpoint_opcode; actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); return Status(); case 4: trap_opcode_bytes = g_arm_breakpoint_opcode; actual_opcode_size = sizeof(g_arm_breakpoint_opcode); return Status(); default: assert(false && "Unrecognised trap opcode size hint!"); return Status("Unrecognised trap opcode size hint!"); } case llvm::Triple::x86: case llvm::Triple::x86_64: trap_opcode_bytes = g_i386_opcode; actual_opcode_size = sizeof(g_i386_opcode); return Status(); case llvm::Triple::mips: case llvm::Triple::mips64: trap_opcode_bytes = g_mips64_opcode; actual_opcode_size = sizeof(g_mips64_opcode); return Status(); case llvm::Triple::mipsel: case llvm::Triple::mips64el: trap_opcode_bytes = g_mips64el_opcode; actual_opcode_size = sizeof(g_mips64el_opcode); return Status(); case llvm::Triple::systemz: trap_opcode_bytes = g_s390x_opcode; actual_opcode_size = sizeof(g_s390x_opcode); return Status(); default: assert(false && "CPU type not supported!"); return Status("CPU type not supported"); } } #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGSEGV); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGSEGV"); break; case SI_KERNEL: // Linux will occasionally send spurious SI_KERNEL codes. // (this is poorly documented in sigaction) // One way to get this is via unaligned SIMD loads. reason = ProcessMessage::eInvalidAddress; // for lack of anything better break; case SEGV_MAPERR: reason = ProcessMessage::eInvalidAddress; break; case SEGV_ACCERR: reason = ProcessMessage::ePrivilegedAddress; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGILL); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGILL"); break; case ILL_ILLOPC: reason = ProcessMessage::eIllegalOpcode; break; case ILL_ILLOPN: reason = ProcessMessage::eIllegalOperand; break; case ILL_ILLADR: reason = ProcessMessage::eIllegalAddressingMode; break; case ILL_ILLTRP: reason = ProcessMessage::eIllegalTrap; break; case ILL_PRVOPC: reason = ProcessMessage::ePrivilegedOpcode; break; case ILL_PRVREG: reason = ProcessMessage::ePrivilegedRegister; break; case ILL_COPROC: reason = ProcessMessage::eCoprocessorError; break; case ILL_BADSTK: reason = ProcessMessage::eInternalStackError; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGFPE); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGFPE"); break; case FPE_INTDIV: reason = ProcessMessage::eIntegerDivideByZero; break; case FPE_INTOVF: reason = ProcessMessage::eIntegerOverflow; break; case FPE_FLTDIV: reason = ProcessMessage::eFloatDivideByZero; break; case FPE_FLTOVF: reason = ProcessMessage::eFloatOverflow; break; case FPE_FLTUND: reason = ProcessMessage::eFloatUnderflow; break; case FPE_FLTRES: reason = ProcessMessage::eFloatInexactResult; break; case FPE_FLTINV: reason = ProcessMessage::eFloatInvalidOperation; break; case FPE_FLTSUB: reason = ProcessMessage::eFloatSubscriptRange; break; } return reason; } #endif #if 0 ProcessMessage::CrashReason NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) { ProcessMessage::CrashReason reason; assert(info->si_signo == SIGBUS); reason = ProcessMessage::eInvalidCrashReason; switch (info->si_code) { default: assert(false && "unexpected si_code for SIGBUS"); break; case BUS_ADRALN: reason = ProcessMessage::eIllegalAlignment; break; case BUS_ADRERR: reason = ProcessMessage::eIllegalAddress; break; case BUS_OBJERR: reason = ProcessMessage::eHardwareError; break; } return reason; } #endif Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) { if (ProcessVmReadvSupported()) { // The process_vm_readv path is about 50 times faster than ptrace api. We // want to use // this syscall if it is supported. const ::pid_t pid = GetID(); struct iovec local_iov, remote_iov; local_iov.iov_base = buf; local_iov.iov_len = size; remote_iov.iov_base = reinterpret_cast(addr); remote_iov.iov_len = size; bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); const bool success = bytes_read == size; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); LLDB_LOG(log, "using process_vm_readv to read {0} bytes from inferior " "address {1:x}: {2}", size, addr, success ? "Success" : llvm::sys::StrError(errno)); if (success) return Status(); // else the call failed for some reason, let's retry the read using ptrace // api. } unsigned char *dst = static_cast(buf); size_t remainder; long data; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { Status error = NativeProcessLinux::PtraceWrapper( PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); if (error.Fail()) return error; remainder = size - bytes_read; remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; // Copy the data into our buffer memcpy(dst, &data, remainder); LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); addr += k_ptrace_word_size; dst += k_ptrace_word_size; } return Status(); } Status NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) { Status error = ReadMemory(addr, buf, size, bytes_read); if (error.Fail()) return error; return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); } Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) { const unsigned char *src = static_cast(buf); size_t remainder; Status error; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { remainder = size - bytes_written; remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; if (remainder == k_ptrace_word_size) { unsigned long data = 0; memcpy(&data, src, k_ptrace_word_size); LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void *)addr, (void *)data); if (error.Fail()) return error; } else { unsigned char buff[8]; size_t bytes_read; error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); if (error.Fail()) return error; memcpy(buff, src, remainder); size_t bytes_written_rec; error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); if (error.Fail()) return error; LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, *(unsigned long *)buff); } addr += k_ptrace_word_size; src += k_ptrace_word_size; } return error; } Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); } Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) { return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); } Status NativeProcessLinux::Detach(lldb::tid_t tid) { if (tid == LLDB_INVALID_THREAD_ID) return Status(); return PtraceWrapper(PTRACE_DETACH, tid); } bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { for (auto thread_sp : m_threads) { assert(thread_sp && "thread list should not contain NULL threads"); if (thread_sp->GetID() == thread_id) { // We have this thread. return true; } } // We don't have this thread. return false; } bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); LLDB_LOG(log, "tid: {0})", thread_id); bool found = false; for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { if (*it && ((*it)->GetID() == thread_id)) { m_threads.erase(it); found = true; break; } } SignalIfAllThreadsStopped(); return found; } NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); assert(!HasThreadNoLock(thread_id) && "attempted to add a thread by id that already exists"); // If this is the first thread, save it as the current thread if (m_threads.empty()) SetCurrentThreadID(thread_id); auto thread_sp = std::make_shared(this, thread_id); m_threads.push_back(thread_sp); return thread_sp; } Status NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); Status error; // Find out the size of a breakpoint (might depend on where we are in the // code). NativeRegisterContextSP context_sp = thread.GetRegisterContext(); if (!context_sp) { error.SetErrorString("cannot get a NativeRegisterContext for the thread"); LLDB_LOG(log, "failed: {0}", error); return error; } uint32_t breakpoint_size = 0; error = GetSoftwareBreakpointPCOffset(breakpoint_size); if (error.Fail()) { LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); return error; } else LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); // First try probing for a breakpoint at a software breakpoint location: PC - // breakpoint size. const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation(); lldb::addr_t breakpoint_addr = initial_pc_addr; if (breakpoint_size > 0) { // Do not allow breakpoint probe to wrap around. if (breakpoint_addr >= breakpoint_size) breakpoint_addr -= breakpoint_size; } // Check if we stopped because of a breakpoint. NativeBreakpointSP breakpoint_sp; error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); if (!error.Success() || !breakpoint_sp) { // We didn't find one at a software probe location. Nothing to do. LLDB_LOG(log, "pid {0} no lldb breakpoint found at current pc with " "adjustment: {1}", GetID(), breakpoint_addr); return Status(); } // If the breakpoint is not a software breakpoint, nothing to do. if (!breakpoint_sp->IsSoftwareBreakpoint()) { LLDB_LOG( log, "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", GetID(), breakpoint_addr); return Status(); } // // We have a software breakpoint and need to adjust the PC. // // Sanity check. if (breakpoint_size == 0) { // Nothing to do! How did we get here? LLDB_LOG(log, "pid {0} breakpoint found at {1:x}, it is software, but the " "size is zero, nothing to do (unexpected)", GetID(), breakpoint_addr); return Status(); } // Change the program counter. LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr); error = context_sp->SetPC(breakpoint_addr); if (error.Fail()) { LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), thread.GetID(), error); return error; } return error; } Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, FileSpec &file_spec) { Status error = PopulateMemoryRegionCache(); if (error.Fail()) return error; FileSpec module_file_spec(module_path, true); file_spec.Clear(); for (const auto &it : m_mem_region_cache) { if (it.second.GetFilename() == module_file_spec.GetFilename()) { file_spec = it.second; return Status(); } } return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", module_file_spec.GetFilename().AsCString(), GetID()); } Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, lldb::addr_t &load_addr) { load_addr = LLDB_INVALID_ADDRESS; Status error = PopulateMemoryRegionCache(); if (error.Fail()) return error; FileSpec file(file_name, false); for (const auto &it : m_mem_region_cache) { if (it.second == file) { load_addr = it.first.GetRange().GetRangeBase(); return Status(); } } return Status("No load address found for specified file."); } NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { return std::static_pointer_cast( NativeProcessProtocol::GetThreadByID(tid)); } Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo) { Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); LLDB_LOG(log, "tid: {0}", thread.GetID()); // Before we do the resume below, first check if we have a pending // stop notification that is currently waiting for // all threads to stop. This is potentially a buggy situation since // we're ostensibly waiting for threads to stop before we send out the // pending notification, and here we are resuming one before we send // out the pending stop notification. if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { LLDB_LOG(log, "about to resume tid {0} per explicit request but we have a " "pending stop notification (tid {1}) that is actively " "waiting for this thread to stop. Valid sequence of events?", thread.GetID(), m_pending_notification_tid); } // Request a resume. We expect this to be synchronous and the system // to reflect it is running after this completes. switch (state) { case eStateRunning: { const auto resume_result = thread.Resume(signo); if (resume_result.Success()) SetState(eStateRunning, true); return resume_result; } case eStateStepping: { const auto step_result = thread.SingleStep(signo); if (step_result.Success()) SetState(eStateRunning, true); return step_result; } default: LLDB_LOG(log, "Unhandled state {0}.", state); llvm_unreachable("Unhandled state for resume"); } } //===----------------------------------------------------------------------===// void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); LLDB_LOG(log, "about to process event: (triggering_tid: {0})", triggering_tid); m_pending_notification_tid = triggering_tid; // Request a stop for all the thread stops that need to be stopped // and are not already known to be stopped. for (const auto &thread_sp : m_threads) { if (StateIsRunningState(thread_sp->GetState())) static_pointer_cast(thread_sp)->RequestStop(); } SignalIfAllThreadsStopped(); LLDB_LOG(log, "event processing done"); } void NativeProcessLinux::SignalIfAllThreadsStopped() { if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) return; // No pending notification. Nothing to do. for (const auto &thread_sp : m_threads) { if (StateIsRunningState(thread_sp->GetState())) return; // Some threads are still running. Don't signal yet. } // We have a pending notification and all threads have stopped. Log *log( GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); // Clear any temporary breakpoints we used to implement software single // stepping. for (const auto &thread_info : m_threads_stepping_with_breakpoint) { Status error = RemoveBreakpoint(thread_info.second); if (error.Fail()) LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", thread_info.first, error); } m_threads_stepping_with_breakpoint.clear(); // Notify the delegate about the stop SetCurrentThreadID(m_pending_notification_tid); SetState(StateType::eStateStopped, true); m_pending_notification_tid = LLDB_INVALID_THREAD_ID; } void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); LLDB_LOG(log, "tid: {0}", thread.GetID()); if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState())) { // We will need to wait for this new thread to stop as well before firing // the // notification. thread.RequestStop(); } } void NativeProcessLinux::SigchldHandler() { Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); // Process all pending waitpid notifications. while (true) { int status = -1; ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); if (wait_pid == 0) break; // We are done. if (wait_pid == -1) { if (errno == EINTR) continue; Status error(errno, eErrorTypePOSIX); LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); break; } WaitStatus wait_status = WaitStatus::Decode(status); bool exited = wait_status.type == WaitStatus::Exit || (wait_status.type == WaitStatus::Signal && wait_pid == static_cast<::pid_t>(GetID())); LLDB_LOG( log, "waitpid (-1, &status, _) => pid = {0}, status = {1}, exited = {2}", wait_pid, wait_status, exited); MonitorCallback(wait_pid, exited, wait_status); } } // Wrapper for ptrace to catch errors and log calls. // Note that ptrace sets errno on error because -1 can be a valid result (i.e. // for PTRACE_PEEK*) Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result) { Status error; long int ret; Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); PtraceDisplayBytes(req, data, data_size); errno = 0; if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), *(unsigned int *)addr, data); else ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), addr, data); if (ret == -1) error.SetErrorToErrno(); if (result) *result = ret; LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, data_size, ret); PtraceDisplayBytes(req, data, data_size); if (error.Fail()) LLDB_LOG(log, "ptrace() failed: {0}", error); return error; }