summaryrefslogtreecommitdiff
path: root/crypto/openssl/crypto/modes/asm/ghashv8-armx.pl
blob: d7fa510afd3a6d31ec92a227ae1e32650ffe108f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
#! /usr/bin/env perl
# Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
#
# Licensed under the OpenSSL license (the "License").  You may not use
# this file except in compliance with the License.  You can obtain a copy
# in the file LICENSE in the source distribution or at
# https://www.openssl.org/source/license.html

#
# ====================================================================
# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
# project. The module is, however, dual licensed under OpenSSL and
# CRYPTOGAMS licenses depending on where you obtain it. For further
# details see http://www.openssl.org/~appro/cryptogams/.
# ====================================================================
#
# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
#
# June 2014
#
# Initial version was developed in tight cooperation with Ard
# Biesheuvel of Linaro from bits-n-pieces from other assembly modules.
# Just like aesv8-armx.pl this module supports both AArch32 and
# AArch64 execution modes.
#
# July 2014
#
# Implement 2x aggregated reduction [see ghash-x86.pl for background
# information].
#
# November 2017
#
# AArch64 register bank to "accommodate" 4x aggregated reduction and
# improve performance by 20-70% depending on processor.
#
# Current performance in cycles per processed byte:
#
#		64-bit PMULL	32-bit PMULL	32-bit NEON(*)
# Apple A7	0.58		0.92		5.62
# Cortex-A53	0.85		1.01		8.39
# Cortex-A57	0.73		1.17		7.61
# Denver	0.51		0.65		6.02
# Mongoose	0.65		1.10		8.06
# Kryo		0.76		1.16		8.00
#
# (*)	presented for reference/comparison purposes;

$flavour = shift;
$output  = shift;

$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
die "can't locate arm-xlate.pl";

open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;

$Xi="x0";	# argument block
$Htbl="x1";
$inp="x2";
$len="x3";

$inc="x12";

{
my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));

$code=<<___;
#include "arm_arch.h"

#if __ARM_MAX_ARCH__>=7
.text
___
# $code.=".arch	armv8-a+crypto\n"	if ($flavour =~ /64/);
$code.=<<___				if ($flavour !~ /64/);
.fpu	neon
.code	32
#undef	__thumb2__
___

################################################################################
# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
#
# input:	128-bit H - secret parameter E(K,0^128)
# output:	precomputed table filled with degrees of twisted H;
#		H is twisted to handle reverse bitness of GHASH;
#		only few of 16 slots of Htable[16] are used;
#		data is opaque to outside world (which allows to
#		optimize the code independently);
#
$code.=<<___;
.global	gcm_init_v8
.type	gcm_init_v8,%function
.align	4
gcm_init_v8:
	vld1.64		{$t1},[x1]		@ load input H
	vmov.i8		$xC2,#0xe1
	vshl.i64	$xC2,$xC2,#57		@ 0xc2.0
	vext.8		$IN,$t1,$t1,#8
	vshr.u64	$t2,$xC2,#63
	vdup.32		$t1,${t1}[1]
	vext.8		$t0,$t2,$xC2,#8		@ t0=0xc2....01
	vshr.u64	$t2,$IN,#63
	vshr.s32	$t1,$t1,#31		@ broadcast carry bit
	vand		$t2,$t2,$t0
	vshl.i64	$IN,$IN,#1
	vext.8		$t2,$t2,$t2,#8
	vand		$t0,$t0,$t1
	vorr		$IN,$IN,$t2		@ H<<<=1
	veor		$H,$IN,$t0		@ twisted H
	vst1.64		{$H},[x0],#16		@ store Htable[0]

	@ calculate H^2
	vext.8		$t0,$H,$H,#8		@ Karatsuba pre-processing
	vpmull.p64	$Xl,$H,$H
	veor		$t0,$t0,$H
	vpmull2.p64	$Xh,$H,$H
	vpmull.p64	$Xm,$t0,$t0

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase

	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$H2,$Xl,$t2

	vext.8		$t1,$H2,$H2,#8		@ Karatsuba pre-processing
	veor		$t1,$t1,$H2
	vext.8		$Hhl,$t0,$t1,#8		@ pack Karatsuba pre-processed
	vst1.64		{$Hhl-$H2},[x0],#32	@ store Htable[1..2]
___
if ($flavour =~ /64/) {
my ($t3,$Yl,$Ym,$Yh) = map("q$_",(4..7));

$code.=<<___;
	@ calculate H^3 and H^4
	vpmull.p64	$Xl,$H, $H2
	 vpmull.p64	$Yl,$H2,$H2
	vpmull2.p64	$Xh,$H, $H2
	 vpmull2.p64	$Yh,$H2,$H2
	vpmull.p64	$Xm,$t0,$t1
	 vpmull.p64	$Ym,$t1,$t1

	vext.8		$t0,$Xl,$Xh,#8		@ Karatsuba post-processing
	 vext.8		$t1,$Yl,$Yh,#8
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t0
	 veor		$t3,$Yl,$Yh
	 veor		$Ym,$Ym,$t1
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase
	 veor		$Ym,$Ym,$t3
	 vpmull.p64	$t3,$Yl,$xC2

	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	 vmov		$Yh#lo,$Ym#hi
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vmov		$Ym#hi,$Yl#lo
	veor		$Xl,$Xm,$t2
	 veor		$Yl,$Ym,$t3

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase
	 vext.8		$t3,$Yl,$Yl,#8
	vpmull.p64	$Xl,$Xl,$xC2
	 vpmull.p64	$Yl,$Yl,$xC2
	veor		$t2,$t2,$Xh
	 veor		$t3,$t3,$Yh
	veor		$H, $Xl,$t2		@ H^3
	 veor		$H2,$Yl,$t3		@ H^4

	vext.8		$t0,$H, $H,#8		@ Karatsuba pre-processing
	 vext.8		$t1,$H2,$H2,#8
	veor		$t0,$t0,$H
	 veor		$t1,$t1,$H2
	vext.8		$Hhl,$t0,$t1,#8		@ pack Karatsuba pre-processed
	vst1.64		{$H-$H2},[x0]		@ store Htable[3..5]
___
}
$code.=<<___;
	ret
.size	gcm_init_v8,.-gcm_init_v8
___
################################################################################
# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
#
# input:	Xi - current hash value;
#		Htable - table precomputed in gcm_init_v8;
# output:	Xi - next hash value Xi;
#
$code.=<<___;
.global	gcm_gmult_v8
.type	gcm_gmult_v8,%function
.align	4
gcm_gmult_v8:
	vld1.64		{$t1},[$Xi]		@ load Xi
	vmov.i8		$xC2,#0xe1
	vld1.64		{$H-$Hhl},[$Htbl]	@ load twisted H, ...
	vshl.u64	$xC2,$xC2,#57
#ifndef __ARMEB__
	vrev64.8	$t1,$t1
#endif
	vext.8		$IN,$t1,$t1,#8

	vpmull.p64	$Xl,$H,$IN		@ H.lo·Xi.lo
	veor		$t1,$t1,$IN		@ Karatsuba pre-processing
	vpmull2.p64	$Xh,$H,$IN		@ H.hi·Xi.hi
	vpmull.p64	$Xm,$Hhl,$t1		@ (H.lo+H.hi)·(Xi.lo+Xi.hi)

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction

	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2

#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
#endif
	vext.8		$Xl,$Xl,$Xl,#8
	vst1.64		{$Xl},[$Xi]		@ write out Xi

	ret
.size	gcm_gmult_v8,.-gcm_gmult_v8
___
################################################################################
# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
#
# input:	table precomputed in gcm_init_v8;
#		current hash value Xi;
#		pointer to input data;
#		length of input data in bytes, but divisible by block size;
# output:	next hash value Xi;
#
$code.=<<___;
.global	gcm_ghash_v8
.type	gcm_ghash_v8,%function
.align	4
gcm_ghash_v8:
___
$code.=<<___	if ($flavour =~ /64/);
	cmp		$len,#64
	b.hs		.Lgcm_ghash_v8_4x
___
$code.=<<___		if ($flavour !~ /64/);
	vstmdb		sp!,{d8-d15}		@ 32-bit ABI says so
___
$code.=<<___;
	vld1.64		{$Xl},[$Xi]		@ load [rotated] Xi
						@ "[rotated]" means that
						@ loaded value would have
						@ to be rotated in order to
						@ make it appear as in
						@ algorithm specification
	subs		$len,$len,#32		@ see if $len is 32 or larger
	mov		$inc,#16		@ $inc is used as post-
						@ increment for input pointer;
						@ as loop is modulo-scheduled
						@ $inc is zeroed just in time
						@ to preclude overstepping
						@ inp[len], which means that
						@ last block[s] are actually
						@ loaded twice, but last
						@ copy is not processed
	vld1.64		{$H-$Hhl},[$Htbl],#32	@ load twisted H, ..., H^2
	vmov.i8		$xC2,#0xe1
	vld1.64		{$H2},[$Htbl]
	cclr		$inc,eq			@ is it time to zero $inc?
	vext.8		$Xl,$Xl,$Xl,#8		@ rotate Xi
	vld1.64		{$t0},[$inp],#16	@ load [rotated] I[0]
	vshl.u64	$xC2,$xC2,#57		@ compose 0xc2.0 constant
#ifndef __ARMEB__
	vrev64.8	$t0,$t0
	vrev64.8	$Xl,$Xl
#endif
	vext.8		$IN,$t0,$t0,#8		@ rotate I[0]
	b.lo		.Lodd_tail_v8		@ $len was less than 32
___
{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
	#######
	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
	#	[(H*Ii+1) + (H*Xi+1)] mod P =
	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
	#
$code.=<<___;
	vld1.64		{$t1},[$inp],$inc	@ load [rotated] I[1]
#ifndef __ARMEB__
	vrev64.8	$t1,$t1
#endif
	vext.8		$In,$t1,$t1,#8
	veor		$IN,$IN,$Xl		@ I[i]^=Xi
	vpmull.p64	$Xln,$H,$In		@ H·Ii+1
	veor		$t1,$t1,$In		@ Karatsuba pre-processing
	vpmull2.p64	$Xhn,$H,$In
	b		.Loop_mod2x_v8

.align	4
.Loop_mod2x_v8:
	vext.8		$t2,$IN,$IN,#8
	subs		$len,$len,#32		@ is there more data?
	vpmull.p64	$Xl,$H2,$IN		@ H^2.lo·Xi.lo
	cclr		$inc,lo			@ is it time to zero $inc?

	 vpmull.p64	$Xmn,$Hhl,$t1
	veor		$t2,$t2,$IN		@ Karatsuba pre-processing
	vpmull2.p64	$Xh,$H2,$IN		@ H^2.hi·Xi.hi
	veor		$Xl,$Xl,$Xln		@ accumulate
	vpmull2.p64	$Xm,$Hhl,$t2		@ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi)
	 vld1.64	{$t0},[$inp],$inc	@ load [rotated] I[i+2]

	veor		$Xh,$Xh,$Xhn
	 cclr		$inc,eq			@ is it time to zero $inc?
	veor		$Xm,$Xm,$Xmn

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	 vld1.64	{$t1},[$inp],$inc	@ load [rotated] I[i+3]
#ifndef __ARMEB__
	 vrev64.8	$t0,$t0
#endif
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction

#ifndef __ARMEB__
	 vrev64.8	$t1,$t1
#endif
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vext.8		$In,$t1,$t1,#8
	 vext.8		$IN,$t0,$t0,#8
	veor		$Xl,$Xm,$t2
	 vpmull.p64	$Xln,$H,$In		@ H·Ii+1
	veor		$IN,$IN,$Xh		@ accumulate $IN early

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$IN,$IN,$t2
	 veor		$t1,$t1,$In		@ Karatsuba pre-processing
	veor		$IN,$IN,$Xl
	 vpmull2.p64	$Xhn,$H,$In
	b.hs		.Loop_mod2x_v8		@ there was at least 32 more bytes

	veor		$Xh,$Xh,$t2
	vext.8		$IN,$t0,$t0,#8		@ re-construct $IN
	adds		$len,$len,#32		@ re-construct $len
	veor		$Xl,$Xl,$Xh		@ re-construct $Xl
	b.eq		.Ldone_v8		@ is $len zero?
___
}
$code.=<<___;
.Lodd_tail_v8:
	vext.8		$t2,$Xl,$Xl,#8
	veor		$IN,$IN,$Xl		@ inp^=Xi
	veor		$t1,$t0,$t2		@ $t1 is rotated inp^Xi

	vpmull.p64	$Xl,$H,$IN		@ H.lo·Xi.lo
	veor		$t1,$t1,$IN		@ Karatsuba pre-processing
	vpmull2.p64	$Xh,$H,$IN		@ H.hi·Xi.hi
	vpmull.p64	$Xm,$Hhl,$t1		@ (H.lo+H.hi)·(Xi.lo+Xi.hi)

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	veor		$Xm,$Xm,$t2
	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction

	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2

.Ldone_v8:
#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
#endif
	vext.8		$Xl,$Xl,$Xl,#8
	vst1.64		{$Xl},[$Xi]		@ write out Xi

___
$code.=<<___		if ($flavour !~ /64/);
	vldmia		sp!,{d8-d15}		@ 32-bit ABI says so
___
$code.=<<___;
	ret
.size	gcm_ghash_v8,.-gcm_ghash_v8
___

if ($flavour =~ /64/) {				# 4x subroutine
my ($I0,$j1,$j2,$j3,
    $I1,$I2,$I3,$H3,$H34,$H4,$Yl,$Ym,$Yh) = map("q$_",(4..7,15..23));

$code.=<<___;
.type	gcm_ghash_v8_4x,%function
.align	4
gcm_ghash_v8_4x:
.Lgcm_ghash_v8_4x:
	vld1.64		{$Xl},[$Xi]		@ load [rotated] Xi
	vld1.64		{$H-$H2},[$Htbl],#48	@ load twisted H, ..., H^2
	vmov.i8		$xC2,#0xe1
	vld1.64		{$H3-$H4},[$Htbl]	@ load twisted H^3, ..., H^4
	vshl.u64	$xC2,$xC2,#57		@ compose 0xc2.0 constant

	vld1.64		{$I0-$j3},[$inp],#64
#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
	vrev64.8	$j1,$j1
	vrev64.8	$j2,$j2
	vrev64.8	$j3,$j3
	vrev64.8	$I0,$I0
#endif
	vext.8		$I3,$j3,$j3,#8
	vext.8		$I2,$j2,$j2,#8
	vext.8		$I1,$j1,$j1,#8

	vpmull.p64	$Yl,$H,$I3		@ H·Ii+3
	veor		$j3,$j3,$I3
	vpmull2.p64	$Yh,$H,$I3
	vpmull.p64	$Ym,$Hhl,$j3

	vpmull.p64	$t0,$H2,$I2		@ H^2·Ii+2
	veor		$j2,$j2,$I2
	vpmull2.p64	$I2,$H2,$I2
	vpmull2.p64	$j2,$Hhl,$j2

	veor		$Yl,$Yl,$t0
	veor		$Yh,$Yh,$I2
	veor		$Ym,$Ym,$j2

	vpmull.p64	$j3,$H3,$I1		@ H^3·Ii+1
	veor		$j1,$j1,$I1
	vpmull2.p64	$I1,$H3,$I1
	vpmull.p64	$j1,$H34,$j1

	veor		$Yl,$Yl,$j3
	veor		$Yh,$Yh,$I1
	veor		$Ym,$Ym,$j1

	subs		$len,$len,#128
	b.lo		.Ltail4x

	b		.Loop4x

.align	4
.Loop4x:
	veor		$t0,$I0,$Xl
	 vld1.64	{$I0-$j3},[$inp],#64
	vext.8		$IN,$t0,$t0,#8
#ifndef __ARMEB__
	 vrev64.8	$j1,$j1
	 vrev64.8	$j2,$j2
	 vrev64.8	$j3,$j3
	 vrev64.8	$I0,$I0
#endif

	vpmull.p64	$Xl,$H4,$IN		@ H^4·(Xi+Ii)
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H4,$IN
	 vext.8		$I3,$j3,$j3,#8
	vpmull2.p64	$Xm,$H34,$t0

	veor		$Xl,$Xl,$Yl
	veor		$Xh,$Xh,$Yh
	 vext.8		$I2,$j2,$j2,#8
	veor		$Xm,$Xm,$Ym
	 vext.8		$I1,$j1,$j1,#8

	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	 vpmull.p64	$Yl,$H,$I3		@ H·Ii+3
	 veor		$j3,$j3,$I3
	veor		$Xm,$Xm,$t1
	 vpmull2.p64	$Yh,$H,$I3
	veor		$Xm,$Xm,$t2
	 vpmull.p64	$Ym,$Hhl,$j3

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vpmull.p64	$t0,$H2,$I2		@ H^2·Ii+2
	 veor		$j2,$j2,$I2
	 vpmull2.p64	$I2,$H2,$I2
	veor		$Xl,$Xm,$t2
	 vpmull2.p64	$j2,$Hhl,$j2

	 veor		$Yl,$Yl,$t0
	 veor		$Yh,$Yh,$I2
	 veor		$Ym,$Ym,$j2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	 vpmull.p64	$j3,$H3,$I1		@ H^3·Ii+1
	 veor		$j1,$j1,$I1
	veor		$t2,$t2,$Xh
	 vpmull2.p64	$I1,$H3,$I1
	 vpmull.p64	$j1,$H34,$j1

	veor		$Xl,$Xl,$t2
	 veor		$Yl,$Yl,$j3
	 veor		$Yh,$Yh,$I1
	vext.8		$Xl,$Xl,$Xl,#8
	 veor		$Ym,$Ym,$j1

	subs		$len,$len,#64
	b.hs		.Loop4x

.Ltail4x:
	veor		$t0,$I0,$Xl
	vext.8		$IN,$t0,$t0,#8

	vpmull.p64	$Xl,$H4,$IN		@ H^4·(Xi+Ii)
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H4,$IN
	vpmull2.p64	$Xm,$H34,$t0

	veor		$Xl,$Xl,$Yl
	veor		$Xh,$Xh,$Yh
	veor		$Xm,$Xm,$Ym

	adds		$len,$len,#64
	b.eq		.Ldone4x

	cmp		$len,#32
	b.lo		.Lone
	b.eq		.Ltwo
.Lthree:
	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	 vld1.64	{$I0-$j2},[$inp]
	veor		$Xm,$Xm,$t2
#ifndef	__ARMEB__
	 vrev64.8	$j1,$j1
	 vrev64.8	$j2,$j2
	 vrev64.8	$I0,$I0
#endif

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vext.8		$I2,$j2,$j2,#8
	 vext.8		$I1,$j1,$j1,#8
	veor		$Xl,$Xm,$t2

	 vpmull.p64	$Yl,$H,$I2		@ H·Ii+2
	 veor		$j2,$j2,$I2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	 vpmull2.p64	$Yh,$H,$I2
	 vpmull.p64	$Ym,$Hhl,$j2
	veor		$Xl,$Xl,$t2
	 vpmull.p64	$j3,$H2,$I1		@ H^2·Ii+1
	 veor		$j1,$j1,$I1
	vext.8		$Xl,$Xl,$Xl,#8

	 vpmull2.p64	$I1,$H2,$I1
	veor		$t0,$I0,$Xl
	 vpmull2.p64	$j1,$Hhl,$j1
	vext.8		$IN,$t0,$t0,#8

	 veor		$Yl,$Yl,$j3
	 veor		$Yh,$Yh,$I1
	 veor		$Ym,$Ym,$j1

	vpmull.p64	$Xl,$H3,$IN		@ H^3·(Xi+Ii)
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H3,$IN
	vpmull.p64	$Xm,$H34,$t0

	veor		$Xl,$Xl,$Yl
	veor		$Xh,$Xh,$Yh
	veor		$Xm,$Xm,$Ym
	b		.Ldone4x

.align	4
.Ltwo:
	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	 vld1.64	{$I0-$j1},[$inp]
	veor		$Xm,$Xm,$t2
#ifndef	__ARMEB__
	 vrev64.8	$j1,$j1
	 vrev64.8	$I0,$I0
#endif

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	 vext.8		$I1,$j1,$j1,#8
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2
	vext.8		$Xl,$Xl,$Xl,#8

	 vpmull.p64	$Yl,$H,$I1		@ H·Ii+1
	 veor		$j1,$j1,$I1

	veor		$t0,$I0,$Xl
	vext.8		$IN,$t0,$t0,#8

	 vpmull2.p64	$Yh,$H,$I1
	 vpmull.p64	$Ym,$Hhl,$j1

	vpmull.p64	$Xl,$H2,$IN		@ H^2·(Xi+Ii)
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H2,$IN
	vpmull2.p64	$Xm,$Hhl,$t0

	veor		$Xl,$Xl,$Yl
	veor		$Xh,$Xh,$Yh
	veor		$Xm,$Xm,$Ym
	b		.Ldone4x

.align	4
.Lone:
	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	 vld1.64	{$I0},[$inp]
	veor		$Xm,$Xm,$t2
#ifndef	__ARMEB__
	 vrev64.8	$I0,$I0
#endif

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2
	vext.8		$Xl,$Xl,$Xl,#8

	veor		$t0,$I0,$Xl
	vext.8		$IN,$t0,$t0,#8

	vpmull.p64	$Xl,$H,$IN
	veor		$t0,$t0,$IN
	vpmull2.p64	$Xh,$H,$IN
	vpmull.p64	$Xm,$Hhl,$t0

.Ldone4x:
	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
	veor		$t2,$Xl,$Xh
	veor		$Xm,$Xm,$t1
	veor		$Xm,$Xm,$t2

	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
	veor		$Xl,$Xm,$t2

	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
	vpmull.p64	$Xl,$Xl,$xC2
	veor		$t2,$t2,$Xh
	veor		$Xl,$Xl,$t2
	vext.8		$Xl,$Xl,$Xl,#8

#ifndef __ARMEB__
	vrev64.8	$Xl,$Xl
#endif
	vst1.64		{$Xl},[$Xi]		@ write out Xi

	ret
.size	gcm_ghash_v8_4x,.-gcm_ghash_v8_4x
___

}
}

$code.=<<___;
.asciz  "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
.align  2
#endif
___

if ($flavour =~ /64/) {			######## 64-bit code
    sub unvmov {
	my $arg=shift;

	$arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
	sprintf	"ins	v%d.d[%d],v%d.d[%d]",$1<8?$1:$1+8,($2 eq "lo")?0:1,
					     $3<8?$3:$3+8,($4 eq "lo")?0:1;
    }
    foreach(split("\n",$code)) {
	s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel	$1$2,$1zr,$1$2,$3/o	or
	s/vmov\.i8/movi/o		or	# fix up legacy mnemonics
	s/vmov\s+(.*)/unvmov($1)/geo	or
	s/vext\.8/ext/o			or
	s/vshr\.s/sshr\.s/o		or
	s/vshr/ushr/o			or
	s/^(\s+)v/$1/o			or	# strip off v prefix
	s/\bbx\s+lr\b/ret/o;

	s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo;	# old->new registers
	s/@\s/\/\//o;				# old->new style commentary

	# fix up remaining legacy suffixes
	s/\.[ui]?8(\s)/$1/o;
	s/\.[uis]?32//o and s/\.16b/\.4s/go;
	m/\.p64/o and s/\.16b/\.1q/o;		# 1st pmull argument
	m/l\.p64/o and s/\.16b/\.1d/go;		# 2nd and 3rd pmull arguments
	s/\.[uisp]?64//o and s/\.16b/\.2d/go;
	s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;

	print $_,"\n";
    }
} else {				######## 32-bit code
    sub unvdup32 {
	my $arg=shift;

	$arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
	sprintf	"vdup.32	q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
    }
    sub unvpmullp64 {
	my ($mnemonic,$arg)=@_;

	if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
	    my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
				 |(($2&7)<<17)|(($2&8)<<4)
				 |(($3&7)<<1) |(($3&8)<<2);
	    $word |= 0x00010001	 if ($mnemonic =~ "2");
	    # since ARMv7 instructions are always encoded little-endian.
	    # correct solution is to use .inst directive, but older
	    # assemblers don't implement it:-(
	    sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
			$word&0xff,($word>>8)&0xff,
			($word>>16)&0xff,($word>>24)&0xff,
			$mnemonic,$arg;
	}
    }

    foreach(split("\n",$code)) {
	s/\b[wx]([0-9]+)\b/r$1/go;		# new->old registers
	s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go;	# new->old registers
	s/\/\/\s?/@ /o;				# new->old style commentary

	# fix up remaining new-style suffixes
	s/\],#[0-9]+/]!/o;

	s/cclr\s+([^,]+),\s*([a-z]+)/mov$2	$1,#0/o			or
	s/vdup\.32\s+(.*)/unvdup32($1)/geo				or
	s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo		or
	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo	or
	s/^(\s+)b\./$1b/o						or
	s/^(\s+)ret/$1bx\tlr/o;

	print $_,"\n";
    }
}

close STDOUT; # enforce flush