diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2020-07-26 19:36:28 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2020-07-26 19:36:28 +0000 |
commit | cfca06d7963fa0909f90483b42a6d7d194d01e08 (patch) | |
tree | 209fb2a2d68f8f277793fc8df46c753d31bc853b /clang/lib/Headers/__clang_hip_math.h | |
parent | 706b4fc47bbc608932d3b491ae19a3b9cde9497b (diff) |
Notes
Diffstat (limited to 'clang/lib/Headers/__clang_hip_math.h')
-rw-r--r-- | clang/lib/Headers/__clang_hip_math.h | 1185 |
1 files changed, 1185 insertions, 0 deletions
diff --git a/clang/lib/Headers/__clang_hip_math.h b/clang/lib/Headers/__clang_hip_math.h new file mode 100644 index 000000000000..cf7014b9aefe --- /dev/null +++ b/clang/lib/Headers/__clang_hip_math.h @@ -0,0 +1,1185 @@ +/*===---- __clang_hip_math.h - HIP math decls -------------------------------=== + * + * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. + * See https://llvm.org/LICENSE.txt for license information. + * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception + * + *===-----------------------------------------------------------------------=== + */ + +#ifndef __CLANG_HIP_MATH_H__ +#define __CLANG_HIP_MATH_H__ + +#include <algorithm> +#include <limits.h> +#include <limits> +#include <stdint.h> + +#pragma push_macro("__DEVICE__") +#pragma push_macro("__RETURN_TYPE") + +// to be consistent with __clang_cuda_math_forward_declares +#define __DEVICE__ static __device__ +#define __RETURN_TYPE bool + +__DEVICE__ +inline uint64_t __make_mantissa_base8(const char *__tagp) { + uint64_t __r = 0; + while (__tagp) { + char __tmp = *__tagp; + + if (__tmp >= '0' && __tmp <= '7') + __r = (__r * 8u) + __tmp - '0'; + else + return 0; + + ++__tagp; + } + + return __r; +} + +__DEVICE__ +inline uint64_t __make_mantissa_base10(const char *__tagp) { + uint64_t __r = 0; + while (__tagp) { + char __tmp = *__tagp; + + if (__tmp >= '0' && __tmp <= '9') + __r = (__r * 10u) + __tmp - '0'; + else + return 0; + + ++__tagp; + } + + return __r; +} + +__DEVICE__ +inline uint64_t __make_mantissa_base16(const char *__tagp) { + uint64_t __r = 0; + while (__tagp) { + char __tmp = *__tagp; + + if (__tmp >= '0' && __tmp <= '9') + __r = (__r * 16u) + __tmp - '0'; + else if (__tmp >= 'a' && __tmp <= 'f') + __r = (__r * 16u) + __tmp - 'a' + 10; + else if (__tmp >= 'A' && __tmp <= 'F') + __r = (__r * 16u) + __tmp - 'A' + 10; + else + return 0; + + ++__tagp; + } + + return __r; +} + +__DEVICE__ +inline uint64_t __make_mantissa(const char *__tagp) { + if (!__tagp) + return 0u; + + if (*__tagp == '0') { + ++__tagp; + + if (*__tagp == 'x' || *__tagp == 'X') + return __make_mantissa_base16(__tagp); + else + return __make_mantissa_base8(__tagp); + } + + return __make_mantissa_base10(__tagp); +} + +// BEGIN FLOAT +__DEVICE__ +inline float abs(float __x) { return __ocml_fabs_f32(__x); } +__DEVICE__ +inline float acosf(float __x) { return __ocml_acos_f32(__x); } +__DEVICE__ +inline float acoshf(float __x) { return __ocml_acosh_f32(__x); } +__DEVICE__ +inline float asinf(float __x) { return __ocml_asin_f32(__x); } +__DEVICE__ +inline float asinhf(float __x) { return __ocml_asinh_f32(__x); } +__DEVICE__ +inline float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); } +__DEVICE__ +inline float atanf(float __x) { return __ocml_atan_f32(__x); } +__DEVICE__ +inline float atanhf(float __x) { return __ocml_atanh_f32(__x); } +__DEVICE__ +inline float cbrtf(float __x) { return __ocml_cbrt_f32(__x); } +__DEVICE__ +inline float ceilf(float __x) { return __ocml_ceil_f32(__x); } +__DEVICE__ +inline float copysignf(float __x, float __y) { + return __ocml_copysign_f32(__x, __y); +} +__DEVICE__ +inline float cosf(float __x) { return __ocml_cos_f32(__x); } +__DEVICE__ +inline float coshf(float __x) { return __ocml_cosh_f32(__x); } +__DEVICE__ +inline float cospif(float __x) { return __ocml_cospi_f32(__x); } +__DEVICE__ +inline float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); } +__DEVICE__ +inline float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); } +__DEVICE__ +inline float erfcf(float __x) { return __ocml_erfc_f32(__x); } +__DEVICE__ +inline float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); } +__DEVICE__ +inline float erfcxf(float __x) { return __ocml_erfcx_f32(__x); } +__DEVICE__ +inline float erff(float __x) { return __ocml_erf_f32(__x); } +__DEVICE__ +inline float erfinvf(float __x) { return __ocml_erfinv_f32(__x); } +__DEVICE__ +inline float exp10f(float __x) { return __ocml_exp10_f32(__x); } +__DEVICE__ +inline float exp2f(float __x) { return __ocml_exp2_f32(__x); } +__DEVICE__ +inline float expf(float __x) { return __ocml_exp_f32(__x); } +__DEVICE__ +inline float expm1f(float __x) { return __ocml_expm1_f32(__x); } +__DEVICE__ +inline float fabsf(float __x) { return __ocml_fabs_f32(__x); } +__DEVICE__ +inline float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); } +__DEVICE__ +inline float fdividef(float __x, float __y) { return __x / __y; } +__DEVICE__ +inline float floorf(float __x) { return __ocml_floor_f32(__x); } +__DEVICE__ +inline float fmaf(float __x, float __y, float __z) { + return __ocml_fma_f32(__x, __y, __z); +} +__DEVICE__ +inline float fmaxf(float __x, float __y) { return __ocml_fmax_f32(__x, __y); } +__DEVICE__ +inline float fminf(float __x, float __y) { return __ocml_fmin_f32(__x, __y); } +__DEVICE__ +inline float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); } +__DEVICE__ +inline float frexpf(float __x, int *__nptr) { + int __tmp; + float __r = + __ocml_frexp_f32(__x, (__attribute__((address_space(5))) int *)&__tmp); + *__nptr = __tmp; + + return __r; +} +__DEVICE__ +inline float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); } +__DEVICE__ +inline int ilogbf(float __x) { return __ocml_ilogb_f32(__x); } +__DEVICE__ +inline __RETURN_TYPE isfinite(float __x) { return __ocml_isfinite_f32(__x); } +__DEVICE__ +inline __RETURN_TYPE isinf(float __x) { return __ocml_isinf_f32(__x); } +__DEVICE__ +inline __RETURN_TYPE isnan(float __x) { return __ocml_isnan_f32(__x); } +__DEVICE__ +inline float j0f(float __x) { return __ocml_j0_f32(__x); } +__DEVICE__ +inline float j1f(float __x) { return __ocml_j1_f32(__x); } +__DEVICE__ +inline float jnf(int __n, + float __x) { // TODO: we could use Ahmes multiplication + // and the Miller & Brown algorithm + // for linear recurrences to get O(log n) steps, but it's unclear if + // it'd be beneficial in this case. + if (__n == 0) + return j0f(__x); + if (__n == 1) + return j1f(__x); + + float __x0 = j0f(__x); + float __x1 = j1f(__x); + for (int __i = 1; __i < __n; ++__i) { + float __x2 = (2 * __i) / __x * __x1 - __x0; + __x0 = __x1; + __x1 = __x2; + } + + return __x1; +} +__DEVICE__ +inline float ldexpf(float __x, int __e) { return __ocml_ldexp_f32(__x, __e); } +__DEVICE__ +inline float lgammaf(float __x) { return __ocml_lgamma_f32(__x); } +__DEVICE__ +inline long long int llrintf(float __x) { return __ocml_rint_f32(__x); } +__DEVICE__ +inline long long int llroundf(float __x) { return __ocml_round_f32(__x); } +__DEVICE__ +inline float log10f(float __x) { return __ocml_log10_f32(__x); } +__DEVICE__ +inline float log1pf(float __x) { return __ocml_log1p_f32(__x); } +__DEVICE__ +inline float log2f(float __x) { return __ocml_log2_f32(__x); } +__DEVICE__ +inline float logbf(float __x) { return __ocml_logb_f32(__x); } +__DEVICE__ +inline float logf(float __x) { return __ocml_log_f32(__x); } +__DEVICE__ +inline long int lrintf(float __x) { return __ocml_rint_f32(__x); } +__DEVICE__ +inline long int lroundf(float __x) { return __ocml_round_f32(__x); } +__DEVICE__ +inline float modff(float __x, float *__iptr) { + float __tmp; + float __r = + __ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp); + *__iptr = __tmp; + + return __r; +} +__DEVICE__ +inline float nanf(const char *__tagp) { + union { + float val; + struct ieee_float { + uint32_t mantissa : 22; + uint32_t quiet : 1; + uint32_t exponent : 8; + uint32_t sign : 1; + } bits; + + static_assert(sizeof(float) == sizeof(ieee_float), ""); + } __tmp; + + __tmp.bits.sign = 0u; + __tmp.bits.exponent = ~0u; + __tmp.bits.quiet = 1u; + __tmp.bits.mantissa = __make_mantissa(__tagp); + + return __tmp.val; +} +__DEVICE__ +inline float nearbyintf(float __x) { return __ocml_nearbyint_f32(__x); } +__DEVICE__ +inline float nextafterf(float __x, float __y) { + return __ocml_nextafter_f32(__x, __y); +} +__DEVICE__ +inline float norm3df(float __x, float __y, float __z) { + return __ocml_len3_f32(__x, __y, __z); +} +__DEVICE__ +inline float norm4df(float __x, float __y, float __z, float __w) { + return __ocml_len4_f32(__x, __y, __z, __w); +} +__DEVICE__ +inline float normcdff(float __x) { return __ocml_ncdf_f32(__x); } +__DEVICE__ +inline float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); } +__DEVICE__ +inline float +normf(int __dim, + const float *__a) { // TODO: placeholder until OCML adds support. + float __r = 0; + while (__dim--) { + __r += __a[0] * __a[0]; + ++__a; + } + + return __ocml_sqrt_f32(__r); +} +__DEVICE__ +inline float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); } +__DEVICE__ +inline float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); } +__DEVICE__ +inline float remainderf(float __x, float __y) { + return __ocml_remainder_f32(__x, __y); +} +__DEVICE__ +inline float remquof(float __x, float __y, int *__quo) { + int __tmp; + float __r = __ocml_remquo_f32( + __x, __y, (__attribute__((address_space(5))) int *)&__tmp); + *__quo = __tmp; + + return __r; +} +__DEVICE__ +inline float rhypotf(float __x, float __y) { + return __ocml_rhypot_f32(__x, __y); +} +__DEVICE__ +inline float rintf(float __x) { return __ocml_rint_f32(__x); } +__DEVICE__ +inline float rnorm3df(float __x, float __y, float __z) { + return __ocml_rlen3_f32(__x, __y, __z); +} + +__DEVICE__ +inline float rnorm4df(float __x, float __y, float __z, float __w) { + return __ocml_rlen4_f32(__x, __y, __z, __w); +} +__DEVICE__ +inline float +rnormf(int __dim, + const float *__a) { // TODO: placeholder until OCML adds support. + float __r = 0; + while (__dim--) { + __r += __a[0] * __a[0]; + ++__a; + } + + return __ocml_rsqrt_f32(__r); +} +__DEVICE__ +inline float roundf(float __x) { return __ocml_round_f32(__x); } +__DEVICE__ +inline float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); } +__DEVICE__ +inline float scalblnf(float __x, long int __n) { + return (__n < INT_MAX) ? __ocml_scalbn_f32(__x, __n) + : __ocml_scalb_f32(__x, __n); +} +__DEVICE__ +inline float scalbnf(float __x, int __n) { return __ocml_scalbn_f32(__x, __n); } +__DEVICE__ +inline __RETURN_TYPE signbit(float __x) { return __ocml_signbit_f32(__x); } +__DEVICE__ +inline void sincosf(float __x, float *__sinptr, float *__cosptr) { + float __tmp; + + *__sinptr = + __ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp); + *__cosptr = __tmp; +} +__DEVICE__ +inline void sincospif(float __x, float *__sinptr, float *__cosptr) { + float __tmp; + + *__sinptr = __ocml_sincospi_f32( + __x, (__attribute__((address_space(5))) float *)&__tmp); + *__cosptr = __tmp; +} +__DEVICE__ +inline float sinf(float __x) { return __ocml_sin_f32(__x); } +__DEVICE__ +inline float sinhf(float __x) { return __ocml_sinh_f32(__x); } +__DEVICE__ +inline float sinpif(float __x) { return __ocml_sinpi_f32(__x); } +__DEVICE__ +inline float sqrtf(float __x) { return __ocml_sqrt_f32(__x); } +__DEVICE__ +inline float tanf(float __x) { return __ocml_tan_f32(__x); } +__DEVICE__ +inline float tanhf(float __x) { return __ocml_tanh_f32(__x); } +__DEVICE__ +inline float tgammaf(float __x) { return __ocml_tgamma_f32(__x); } +__DEVICE__ +inline float truncf(float __x) { return __ocml_trunc_f32(__x); } +__DEVICE__ +inline float y0f(float __x) { return __ocml_y0_f32(__x); } +__DEVICE__ +inline float y1f(float __x) { return __ocml_y1_f32(__x); } +__DEVICE__ +inline float ynf(int __n, + float __x) { // TODO: we could use Ahmes multiplication + // and the Miller & Brown algorithm + // for linear recurrences to get O(log n) steps, but it's unclear if + // it'd be beneficial in this case. Placeholder until OCML adds + // support. + if (__n == 0) + return y0f(__x); + if (__n == 1) + return y1f(__x); + + float __x0 = y0f(__x); + float __x1 = y1f(__x); + for (int __i = 1; __i < __n; ++__i) { + float __x2 = (2 * __i) / __x * __x1 - __x0; + __x0 = __x1; + __x1 = __x2; + } + + return __x1; +} + +// BEGIN INTRINSICS +__DEVICE__ +inline float __cosf(float __x) { return __ocml_native_cos_f32(__x); } +__DEVICE__ +inline float __exp10f(float __x) { return __ocml_native_exp10_f32(__x); } +__DEVICE__ +inline float __expf(float __x) { return __ocml_native_exp_f32(__x); } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __fadd_rd(float __x, float __y) { + return __ocml_add_rtn_f32(__x, __y); +} +#endif +__DEVICE__ +inline float __fadd_rn(float __x, float __y) { return __x + __y; } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __fadd_ru(float __x, float __y) { + return __ocml_add_rtp_f32(__x, __y); +} +__DEVICE__ +inline float __fadd_rz(float __x, float __y) { + return __ocml_add_rtz_f32(__x, __y); +} +__DEVICE__ +inline float __fdiv_rd(float __x, float __y) { + return __ocml_div_rtn_f32(__x, __y); +} +#endif +__DEVICE__ +inline float __fdiv_rn(float __x, float __y) { return __x / __y; } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __fdiv_ru(float __x, float __y) { + return __ocml_div_rtp_f32(__x, __y); +} +__DEVICE__ +inline float __fdiv_rz(float __x, float __y) { + return __ocml_div_rtz_f32(__x, __y); +} +#endif +__DEVICE__ +inline float __fdividef(float __x, float __y) { return __x / __y; } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __fmaf_rd(float __x, float __y, float __z) { + return __ocml_fma_rtn_f32(__x, __y, __z); +} +#endif +__DEVICE__ +inline float __fmaf_rn(float __x, float __y, float __z) { + return __ocml_fma_f32(__x, __y, __z); +} +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __fmaf_ru(float __x, float __y, float __z) { + return __ocml_fma_rtp_f32(__x, __y, __z); +} +__DEVICE__ +inline float __fmaf_rz(float __x, float __y, float __z) { + return __ocml_fma_rtz_f32(__x, __y, __z); +} +__DEVICE__ +inline float __fmul_rd(float __x, float __y) { + return __ocml_mul_rtn_f32(__x, __y); +} +#endif +__DEVICE__ +inline float __fmul_rn(float __x, float __y) { return __x * __y; } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __fmul_ru(float __x, float __y) { + return __ocml_mul_rtp_f32(__x, __y); +} +__DEVICE__ +inline float __fmul_rz(float __x, float __y) { + return __ocml_mul_rtz_f32(__x, __y); +} +__DEVICE__ +inline float __frcp_rd(float __x) { return __llvm_amdgcn_rcp_f32(__x); } +#endif +__DEVICE__ +inline float __frcp_rn(float __x) { return __llvm_amdgcn_rcp_f32(__x); } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __frcp_ru(float __x) { return __llvm_amdgcn_rcp_f32(__x); } +__DEVICE__ +inline float __frcp_rz(float __x) { return __llvm_amdgcn_rcp_f32(__x); } +#endif +__DEVICE__ +inline float __frsqrt_rn(float __x) { return __llvm_amdgcn_rsq_f32(__x); } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); } +#endif +__DEVICE__ +inline float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); } +__DEVICE__ +inline float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); } +__DEVICE__ +inline float __fsub_rd(float __x, float __y) { + return __ocml_sub_rtn_f32(__x, __y); +} +#endif +__DEVICE__ +inline float __fsub_rn(float __x, float __y) { return __x - __y; } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline float __fsub_ru(float __x, float __y) { + return __ocml_sub_rtp_f32(__x, __y); +} +__DEVICE__ +inline float __fsub_rz(float __x, float __y) { + return __ocml_sub_rtz_f32(__x, __y); +} +#endif +__DEVICE__ +inline float __log10f(float __x) { return __ocml_native_log10_f32(__x); } +__DEVICE__ +inline float __log2f(float __x) { return __ocml_native_log2_f32(__x); } +__DEVICE__ +inline float __logf(float __x) { return __ocml_native_log_f32(__x); } +__DEVICE__ +inline float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); } +__DEVICE__ +inline float __saturatef(float __x) { + return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x); +} +__DEVICE__ +inline void __sincosf(float __x, float *__sinptr, float *__cosptr) { + *__sinptr = __ocml_native_sin_f32(__x); + *__cosptr = __ocml_native_cos_f32(__x); +} +__DEVICE__ +inline float __sinf(float __x) { return __ocml_native_sin_f32(__x); } +__DEVICE__ +inline float __tanf(float __x) { return __ocml_tan_f32(__x); } +// END INTRINSICS +// END FLOAT + +// BEGIN DOUBLE +__DEVICE__ +inline double abs(double __x) { return __ocml_fabs_f64(__x); } +__DEVICE__ +inline double acos(double __x) { return __ocml_acos_f64(__x); } +__DEVICE__ +inline double acosh(double __x) { return __ocml_acosh_f64(__x); } +__DEVICE__ +inline double asin(double __x) { return __ocml_asin_f64(__x); } +__DEVICE__ +inline double asinh(double __x) { return __ocml_asinh_f64(__x); } +__DEVICE__ +inline double atan(double __x) { return __ocml_atan_f64(__x); } +__DEVICE__ +inline double atan2(double __x, double __y) { + return __ocml_atan2_f64(__x, __y); +} +__DEVICE__ +inline double atanh(double __x) { return __ocml_atanh_f64(__x); } +__DEVICE__ +inline double cbrt(double __x) { return __ocml_cbrt_f64(__x); } +__DEVICE__ +inline double ceil(double __x) { return __ocml_ceil_f64(__x); } +__DEVICE__ +inline double copysign(double __x, double __y) { + return __ocml_copysign_f64(__x, __y); +} +__DEVICE__ +inline double cos(double __x) { return __ocml_cos_f64(__x); } +__DEVICE__ +inline double cosh(double __x) { return __ocml_cosh_f64(__x); } +__DEVICE__ +inline double cospi(double __x) { return __ocml_cospi_f64(__x); } +__DEVICE__ +inline double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); } +__DEVICE__ +inline double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); } +__DEVICE__ +inline double erf(double __x) { return __ocml_erf_f64(__x); } +__DEVICE__ +inline double erfc(double __x) { return __ocml_erfc_f64(__x); } +__DEVICE__ +inline double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); } +__DEVICE__ +inline double erfcx(double __x) { return __ocml_erfcx_f64(__x); } +__DEVICE__ +inline double erfinv(double __x) { return __ocml_erfinv_f64(__x); } +__DEVICE__ +inline double exp(double __x) { return __ocml_exp_f64(__x); } +__DEVICE__ +inline double exp10(double __x) { return __ocml_exp10_f64(__x); } +__DEVICE__ +inline double exp2(double __x) { return __ocml_exp2_f64(__x); } +__DEVICE__ +inline double expm1(double __x) { return __ocml_expm1_f64(__x); } +__DEVICE__ +inline double fabs(double __x) { return __ocml_fabs_f64(__x); } +__DEVICE__ +inline double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); } +__DEVICE__ +inline double floor(double __x) { return __ocml_floor_f64(__x); } +__DEVICE__ +inline double fma(double __x, double __y, double __z) { + return __ocml_fma_f64(__x, __y, __z); +} +__DEVICE__ +inline double fmax(double __x, double __y) { return __ocml_fmax_f64(__x, __y); } +__DEVICE__ +inline double fmin(double __x, double __y) { return __ocml_fmin_f64(__x, __y); } +__DEVICE__ +inline double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); } +__DEVICE__ +inline double frexp(double __x, int *__nptr) { + int __tmp; + double __r = + __ocml_frexp_f64(__x, (__attribute__((address_space(5))) int *)&__tmp); + *__nptr = __tmp; + + return __r; +} +__DEVICE__ +inline double hypot(double __x, double __y) { + return __ocml_hypot_f64(__x, __y); +} +__DEVICE__ +inline int ilogb(double __x) { return __ocml_ilogb_f64(__x); } +__DEVICE__ +inline __RETURN_TYPE isfinite(double __x) { return __ocml_isfinite_f64(__x); } +__DEVICE__ +inline __RETURN_TYPE isinf(double __x) { return __ocml_isinf_f64(__x); } +__DEVICE__ +inline __RETURN_TYPE isnan(double __x) { return __ocml_isnan_f64(__x); } +__DEVICE__ +inline double j0(double __x) { return __ocml_j0_f64(__x); } +__DEVICE__ +inline double j1(double __x) { return __ocml_j1_f64(__x); } +__DEVICE__ +inline double jn(int __n, + double __x) { // TODO: we could use Ahmes multiplication + // and the Miller & Brown algorithm + // for linear recurrences to get O(log n) steps, but it's unclear if + // it'd be beneficial in this case. Placeholder until OCML adds + // support. + if (__n == 0) + return j0f(__x); + if (__n == 1) + return j1f(__x); + + double __x0 = j0f(__x); + double __x1 = j1f(__x); + for (int __i = 1; __i < __n; ++__i) { + double __x2 = (2 * __i) / __x * __x1 - __x0; + __x0 = __x1; + __x1 = __x2; + } + + return __x1; +} +__DEVICE__ +inline double ldexp(double __x, int __e) { return __ocml_ldexp_f64(__x, __e); } +__DEVICE__ +inline double lgamma(double __x) { return __ocml_lgamma_f64(__x); } +__DEVICE__ +inline long long int llrint(double __x) { return __ocml_rint_f64(__x); } +__DEVICE__ +inline long long int llround(double __x) { return __ocml_round_f64(__x); } +__DEVICE__ +inline double log(double __x) { return __ocml_log_f64(__x); } +__DEVICE__ +inline double log10(double __x) { return __ocml_log10_f64(__x); } +__DEVICE__ +inline double log1p(double __x) { return __ocml_log1p_f64(__x); } +__DEVICE__ +inline double log2(double __x) { return __ocml_log2_f64(__x); } +__DEVICE__ +inline double logb(double __x) { return __ocml_logb_f64(__x); } +__DEVICE__ +inline long int lrint(double __x) { return __ocml_rint_f64(__x); } +__DEVICE__ +inline long int lround(double __x) { return __ocml_round_f64(__x); } +__DEVICE__ +inline double modf(double __x, double *__iptr) { + double __tmp; + double __r = + __ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp); + *__iptr = __tmp; + + return __r; +} +__DEVICE__ +inline double nan(const char *__tagp) { +#if !_WIN32 + union { + double val; + struct ieee_double { + uint64_t mantissa : 51; + uint32_t quiet : 1; + uint32_t exponent : 11; + uint32_t sign : 1; + } bits; + static_assert(sizeof(double) == sizeof(ieee_double), ""); + } __tmp; + + __tmp.bits.sign = 0u; + __tmp.bits.exponent = ~0u; + __tmp.bits.quiet = 1u; + __tmp.bits.mantissa = __make_mantissa(__tagp); + + return __tmp.val; +#else + static_assert(sizeof(uint64_t) == sizeof(double)); + uint64_t val = __make_mantissa(__tagp); + val |= 0xFFF << 51; + return *reinterpret_cast<double *>(&val); +#endif +} +__DEVICE__ +inline double nearbyint(double __x) { return __ocml_nearbyint_f64(__x); } +__DEVICE__ +inline double nextafter(double __x, double __y) { + return __ocml_nextafter_f64(__x, __y); +} +__DEVICE__ +inline double +norm(int __dim, + const double *__a) { // TODO: placeholder until OCML adds support. + double __r = 0; + while (__dim--) { + __r += __a[0] * __a[0]; + ++__a; + } + + return __ocml_sqrt_f64(__r); +} +__DEVICE__ +inline double norm3d(double __x, double __y, double __z) { + return __ocml_len3_f64(__x, __y, __z); +} +__DEVICE__ +inline double norm4d(double __x, double __y, double __z, double __w) { + return __ocml_len4_f64(__x, __y, __z, __w); +} +__DEVICE__ +inline double normcdf(double __x) { return __ocml_ncdf_f64(__x); } +__DEVICE__ +inline double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); } +__DEVICE__ +inline double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); } +__DEVICE__ +inline double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); } +__DEVICE__ +inline double remainder(double __x, double __y) { + return __ocml_remainder_f64(__x, __y); +} +__DEVICE__ +inline double remquo(double __x, double __y, int *__quo) { + int __tmp; + double __r = __ocml_remquo_f64( + __x, __y, (__attribute__((address_space(5))) int *)&__tmp); + *__quo = __tmp; + + return __r; +} +__DEVICE__ +inline double rhypot(double __x, double __y) { + return __ocml_rhypot_f64(__x, __y); +} +__DEVICE__ +inline double rint(double __x) { return __ocml_rint_f64(__x); } +__DEVICE__ +inline double +rnorm(int __dim, + const double *__a) { // TODO: placeholder until OCML adds support. + double __r = 0; + while (__dim--) { + __r += __a[0] * __a[0]; + ++__a; + } + + return __ocml_rsqrt_f64(__r); +} +__DEVICE__ +inline double rnorm3d(double __x, double __y, double __z) { + return __ocml_rlen3_f64(__x, __y, __z); +} +__DEVICE__ +inline double rnorm4d(double __x, double __y, double __z, double __w) { + return __ocml_rlen4_f64(__x, __y, __z, __w); +} +__DEVICE__ +inline double round(double __x) { return __ocml_round_f64(__x); } +__DEVICE__ +inline double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); } +__DEVICE__ +inline double scalbln(double __x, long int __n) { + return (__n < INT_MAX) ? __ocml_scalbn_f64(__x, __n) + : __ocml_scalb_f64(__x, __n); +} +__DEVICE__ +inline double scalbn(double __x, int __n) { + return __ocml_scalbn_f64(__x, __n); +} +__DEVICE__ +inline __RETURN_TYPE signbit(double __x) { return __ocml_signbit_f64(__x); } +__DEVICE__ +inline double sin(double __x) { return __ocml_sin_f64(__x); } +__DEVICE__ +inline void sincos(double __x, double *__sinptr, double *__cosptr) { + double __tmp; + *__sinptr = __ocml_sincos_f64( + __x, (__attribute__((address_space(5))) double *)&__tmp); + *__cosptr = __tmp; +} +__DEVICE__ +inline void sincospi(double __x, double *__sinptr, double *__cosptr) { + double __tmp; + *__sinptr = __ocml_sincospi_f64( + __x, (__attribute__((address_space(5))) double *)&__tmp); + *__cosptr = __tmp; +} +__DEVICE__ +inline double sinh(double __x) { return __ocml_sinh_f64(__x); } +__DEVICE__ +inline double sinpi(double __x) { return __ocml_sinpi_f64(__x); } +__DEVICE__ +inline double sqrt(double __x) { return __ocml_sqrt_f64(__x); } +__DEVICE__ +inline double tan(double __x) { return __ocml_tan_f64(__x); } +__DEVICE__ +inline double tanh(double __x) { return __ocml_tanh_f64(__x); } +__DEVICE__ +inline double tgamma(double __x) { return __ocml_tgamma_f64(__x); } +__DEVICE__ +inline double trunc(double __x) { return __ocml_trunc_f64(__x); } +__DEVICE__ +inline double y0(double __x) { return __ocml_y0_f64(__x); } +__DEVICE__ +inline double y1(double __x) { return __ocml_y1_f64(__x); } +__DEVICE__ +inline double yn(int __n, + double __x) { // TODO: we could use Ahmes multiplication + // and the Miller & Brown algorithm + // for linear recurrences to get O(log n) steps, but it's unclear if + // it'd be beneficial in this case. Placeholder until OCML adds + // support. + if (__n == 0) + return j0f(__x); + if (__n == 1) + return j1f(__x); + + double __x0 = j0f(__x); + double __x1 = j1f(__x); + for (int __i = 1; __i < __n; ++__i) { + double __x2 = (2 * __i) / __x * __x1 - __x0; + __x0 = __x1; + __x1 = __x2; + } + + return __x1; +} + +// BEGIN INTRINSICS +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline double __dadd_rd(double __x, double __y) { + return __ocml_add_rtn_f64(__x, __y); +} +#endif +__DEVICE__ +inline double __dadd_rn(double __x, double __y) { return __x + __y; } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline double __dadd_ru(double __x, double __y) { + return __ocml_add_rtp_f64(__x, __y); +} +__DEVICE__ +inline double __dadd_rz(double __x, double __y) { + return __ocml_add_rtz_f64(__x, __y); +} +__DEVICE__ +inline double __ddiv_rd(double __x, double __y) { + return __ocml_div_rtn_f64(__x, __y); +} +#endif +__DEVICE__ +inline double __ddiv_rn(double __x, double __y) { return __x / __y; } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline double __ddiv_ru(double __x, double __y) { + return __ocml_div_rtp_f64(__x, __y); +} +__DEVICE__ +inline double __ddiv_rz(double __x, double __y) { + return __ocml_div_rtz_f64(__x, __y); +} +__DEVICE__ +inline double __dmul_rd(double __x, double __y) { + return __ocml_mul_rtn_f64(__x, __y); +} +#endif +__DEVICE__ +inline double __dmul_rn(double __x, double __y) { return __x * __y; } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline double __dmul_ru(double __x, double __y) { + return __ocml_mul_rtp_f64(__x, __y); +} +__DEVICE__ +inline double __dmul_rz(double __x, double __y) { + return __ocml_mul_rtz_f64(__x, __y); +} +__DEVICE__ +inline double __drcp_rd(double __x) { return __llvm_amdgcn_rcp_f64(__x); } +#endif +__DEVICE__ +inline double __drcp_rn(double __x) { return __llvm_amdgcn_rcp_f64(__x); } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline double __drcp_ru(double __x) { return __llvm_amdgcn_rcp_f64(__x); } +__DEVICE__ +inline double __drcp_rz(double __x) { return __llvm_amdgcn_rcp_f64(__x); } +__DEVICE__ +inline double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); } +#endif +__DEVICE__ +inline double __dsqrt_rn(double __x) { return __ocml_sqrt_f64(__x); } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); } +__DEVICE__ +inline double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); } +__DEVICE__ +inline double __dsub_rd(double __x, double __y) { + return __ocml_sub_rtn_f64(__x, __y); +} +#endif +__DEVICE__ +inline double __dsub_rn(double __x, double __y) { return __x - __y; } +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline double __dsub_ru(double __x, double __y) { + return __ocml_sub_rtp_f64(__x, __y); +} +__DEVICE__ +inline double __dsub_rz(double __x, double __y) { + return __ocml_sub_rtz_f64(__x, __y); +} +__DEVICE__ +inline double __fma_rd(double __x, double __y, double __z) { + return __ocml_fma_rtn_f64(__x, __y, __z); +} +#endif +__DEVICE__ +inline double __fma_rn(double __x, double __y, double __z) { + return __ocml_fma_f64(__x, __y, __z); +} +#if defined OCML_BASIC_ROUNDED_OPERATIONS +__DEVICE__ +inline double __fma_ru(double __x, double __y, double __z) { + return __ocml_fma_rtp_f64(__x, __y, __z); +} +__DEVICE__ +inline double __fma_rz(double __x, double __y, double __z) { + return __ocml_fma_rtz_f64(__x, __y, __z); +} +#endif +// END INTRINSICS +// END DOUBLE + +// BEGIN INTEGER +__DEVICE__ +inline int abs(int __x) { + int __sgn = __x >> (sizeof(int) * CHAR_BIT - 1); + return (__x ^ __sgn) - __sgn; +} +__DEVICE__ +inline long labs(long __x) { + long __sgn = __x >> (sizeof(long) * CHAR_BIT - 1); + return (__x ^ __sgn) - __sgn; +} +__DEVICE__ +inline long long llabs(long long __x) { + long long __sgn = __x >> (sizeof(long long) * CHAR_BIT - 1); + return (__x ^ __sgn) - __sgn; +} + +#if defined(__cplusplus) +__DEVICE__ +inline long abs(long __x) { return labs(__x); } +__DEVICE__ +inline long long abs(long long __x) { return llabs(__x); } +#endif +// END INTEGER + +__DEVICE__ +inline _Float16 fma(_Float16 __x, _Float16 __y, _Float16 __z) { + return __ocml_fma_f16(__x, __y, __z); +} + +__DEVICE__ +inline float fma(float __x, float __y, float __z) { + return fmaf(__x, __y, __z); +} + +#pragma push_macro("__DEF_FUN1") +#pragma push_macro("__DEF_FUN2") +#pragma push_macro("__DEF_FUNI") +#pragma push_macro("__DEF_FLOAT_FUN2I") +#pragma push_macro("__HIP_OVERLOAD1") +#pragma push_macro("__HIP_OVERLOAD2") + +// __hip_enable_if::type is a type function which returns __T if __B is true. +template <bool __B, class __T = void> struct __hip_enable_if {}; + +template <class __T> struct __hip_enable_if<true, __T> { typedef __T type; }; + +// __HIP_OVERLOAD1 is used to resolve function calls with integer argument to +// avoid compilation error due to ambibuity. e.g. floor(5) is resolved with +// floor(double). +#define __HIP_OVERLOAD1(__retty, __fn) \ + template <typename __T> \ + __DEVICE__ typename __hip_enable_if<std::numeric_limits<__T>::is_integer, \ + __retty>::type \ + __fn(__T __x) { \ + return ::__fn((double)__x); \ + } + +// __HIP_OVERLOAD2 is used to resolve function calls with mixed float/double +// or integer argument to avoid compilation error due to ambibuity. e.g. +// max(5.0f, 6.0) is resolved with max(double, double). +#define __HIP_OVERLOAD2(__retty, __fn) \ + template <typename __T1, typename __T2> \ + __DEVICE__ \ + typename __hip_enable_if<std::numeric_limits<__T1>::is_specialized && \ + std::numeric_limits<__T2>::is_specialized, \ + __retty>::type \ + __fn(__T1 __x, __T2 __y) { \ + return __fn((double)__x, (double)__y); \ + } + +// Define cmath functions with float argument and returns float. +#define __DEF_FUN1(__retty, __func) \ + __DEVICE__ \ + inline float __func(float __x) { return __func##f(__x); } \ + __HIP_OVERLOAD1(__retty, __func) + +// Define cmath functions with float argument and returns __retty. +#define __DEF_FUNI(__retty, __func) \ + __DEVICE__ \ + inline __retty __func(float __x) { return __func##f(__x); } \ + __HIP_OVERLOAD1(__retty, __func) + +// define cmath functions with two float arguments. +#define __DEF_FUN2(__retty, __func) \ + __DEVICE__ \ + inline float __func(float __x, float __y) { return __func##f(__x, __y); } \ + __HIP_OVERLOAD2(__retty, __func) + +__DEF_FUN1(double, acos) +__DEF_FUN1(double, acosh) +__DEF_FUN1(double, asin) +__DEF_FUN1(double, asinh) +__DEF_FUN1(double, atan) +__DEF_FUN2(double, atan2); +__DEF_FUN1(double, atanh) +__DEF_FUN1(double, cbrt) +__DEF_FUN1(double, ceil) +__DEF_FUN2(double, copysign); +__DEF_FUN1(double, cos) +__DEF_FUN1(double, cosh) +__DEF_FUN1(double, erf) +__DEF_FUN1(double, erfc) +__DEF_FUN1(double, exp) +__DEF_FUN1(double, exp2) +__DEF_FUN1(double, expm1) +__DEF_FUN1(double, fabs) +__DEF_FUN2(double, fdim); +__DEF_FUN1(double, floor) +__DEF_FUN2(double, fmax); +__DEF_FUN2(double, fmin); +__DEF_FUN2(double, fmod); +//__HIP_OVERLOAD1(int, fpclassify) +__DEF_FUN2(double, hypot); +__DEF_FUNI(int, ilogb) +__HIP_OVERLOAD1(bool, isfinite) +__HIP_OVERLOAD2(bool, isgreater); +__HIP_OVERLOAD2(bool, isgreaterequal); +__HIP_OVERLOAD1(bool, isinf); +__HIP_OVERLOAD2(bool, isless); +__HIP_OVERLOAD2(bool, islessequal); +__HIP_OVERLOAD2(bool, islessgreater); +__HIP_OVERLOAD1(bool, isnan); +//__HIP_OVERLOAD1(bool, isnormal) +__HIP_OVERLOAD2(bool, isunordered); +__DEF_FUN1(double, lgamma) +__DEF_FUN1(double, log) +__DEF_FUN1(double, log10) +__DEF_FUN1(double, log1p) +__DEF_FUN1(double, log2) +__DEF_FUN1(double, logb) +__DEF_FUNI(long long, llrint) +__DEF_FUNI(long long, llround) +__DEF_FUNI(long, lrint) +__DEF_FUNI(long, lround) +__DEF_FUN1(double, nearbyint); +__DEF_FUN2(double, nextafter); +__DEF_FUN2(double, pow); +__DEF_FUN2(double, remainder); +__DEF_FUN1(double, rint); +__DEF_FUN1(double, round); +__HIP_OVERLOAD1(bool, signbit) +__DEF_FUN1(double, sin) +__DEF_FUN1(double, sinh) +__DEF_FUN1(double, sqrt) +__DEF_FUN1(double, tan) +__DEF_FUN1(double, tanh) +__DEF_FUN1(double, tgamma) +__DEF_FUN1(double, trunc); + +// define cmath functions with a float and an integer argument. +#define __DEF_FLOAT_FUN2I(__func) \ + __DEVICE__ \ + inline float __func(float __x, int __y) { return __func##f(__x, __y); } +__DEF_FLOAT_FUN2I(scalbn) + +template <class T> __DEVICE__ inline T min(T __arg1, T __arg2) { + return (__arg1 < __arg2) ? __arg1 : __arg2; +} + +template <class T> __DEVICE__ inline T max(T __arg1, T __arg2) { + return (__arg1 > __arg2) ? __arg1 : __arg2; +} + +__DEVICE__ inline int min(int __arg1, int __arg2) { + return (__arg1 < __arg2) ? __arg1 : __arg2; +} +__DEVICE__ inline int max(int __arg1, int __arg2) { + return (__arg1 > __arg2) ? __arg1 : __arg2; +} + +__DEVICE__ +inline float max(float __x, float __y) { return fmaxf(__x, __y); } + +__DEVICE__ +inline double max(double __x, double __y) { return fmax(__x, __y); } + +__DEVICE__ +inline float min(float __x, float __y) { return fminf(__x, __y); } + +__DEVICE__ +inline double min(double __x, double __y) { return fmin(__x, __y); } + +__HIP_OVERLOAD2(double, max) +__HIP_OVERLOAD2(double, min) + +__host__ inline static int min(int __arg1, int __arg2) { + return std::min(__arg1, __arg2); +} + +__host__ inline static int max(int __arg1, int __arg2) { + return std::max(__arg1, __arg2); +} + +#pragma pop_macro("__DEF_FUN1") +#pragma pop_macro("__DEF_FUN2") +#pragma pop_macro("__DEF_FUNI") +#pragma pop_macro("__DEF_FLOAT_FUN2I") +#pragma pop_macro("__HIP_OVERLOAD1") +#pragma pop_macro("__HIP_OVERLOAD2") +#pragma pop_macro("__DEVICE__") +#pragma pop_macro("__RETURN_TYPE") + +#endif // __CLANG_HIP_MATH_H__ |