diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 | 
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/clang/lib/CodeGen/CGExprConstant.cpp | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/CGExprConstant.cpp')
| -rw-r--r-- | contrib/llvm-project/clang/lib/CodeGen/CGExprConstant.cpp | 2327 | 
1 files changed, 2327 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/CodeGen/CGExprConstant.cpp b/contrib/llvm-project/clang/lib/CodeGen/CGExprConstant.cpp new file mode 100644 index 000000000000..31cf2aef1ba0 --- /dev/null +++ b/contrib/llvm-project/clang/lib/CodeGen/CGExprConstant.cpp @@ -0,0 +1,2327 @@ +//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Constant Expr nodes as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CodeGenFunction.h" +#include "CGCXXABI.h" +#include "CGObjCRuntime.h" +#include "CGRecordLayout.h" +#include "CodeGenModule.h" +#include "ConstantEmitter.h" +#include "TargetInfo.h" +#include "clang/AST/APValue.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/RecordLayout.h" +#include "clang/AST/StmtVisitor.h" +#include "clang/Basic/Builtins.h" +#include "llvm/ADT/Sequence.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalVariable.h" +using namespace clang; +using namespace CodeGen; + +//===----------------------------------------------------------------------===// +//                            ConstantAggregateBuilder +//===----------------------------------------------------------------------===// + +namespace { +class ConstExprEmitter; + +struct ConstantAggregateBuilderUtils { +  CodeGenModule &CGM; + +  ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {} + +  CharUnits getAlignment(const llvm::Constant *C) const { +    return CharUnits::fromQuantity( +        CGM.getDataLayout().getABITypeAlignment(C->getType())); +  } + +  CharUnits getSize(llvm::Type *Ty) const { +    return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty)); +  } + +  CharUnits getSize(const llvm::Constant *C) const { +    return getSize(C->getType()); +  } + +  llvm::Constant *getPadding(CharUnits PadSize) const { +    llvm::Type *Ty = CGM.Int8Ty; +    if (PadSize > CharUnits::One()) +      Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); +    return llvm::UndefValue::get(Ty); +  } + +  llvm::Constant *getZeroes(CharUnits ZeroSize) const { +    llvm::Type *Ty = llvm::ArrayType::get(CGM.Int8Ty, ZeroSize.getQuantity()); +    return llvm::ConstantAggregateZero::get(Ty); +  } +}; + +/// Incremental builder for an llvm::Constant* holding a struct or array +/// constant. +class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils { +  /// The elements of the constant. These two arrays must have the same size; +  /// Offsets[i] describes the offset of Elems[i] within the constant. The +  /// elements are kept in increasing offset order, and we ensure that there +  /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]). +  /// +  /// This may contain explicit padding elements (in order to create a +  /// natural layout), but need not. Gaps between elements are implicitly +  /// considered to be filled with undef. +  llvm::SmallVector<llvm::Constant*, 32> Elems; +  llvm::SmallVector<CharUnits, 32> Offsets; + +  /// The size of the constant (the maximum end offset of any added element). +  /// May be larger than the end of Elems.back() if we split the last element +  /// and removed some trailing undefs. +  CharUnits Size = CharUnits::Zero(); + +  /// This is true only if laying out Elems in order as the elements of a +  /// non-packed LLVM struct will give the correct layout. +  bool NaturalLayout = true; + +  bool split(size_t Index, CharUnits Hint); +  Optional<size_t> splitAt(CharUnits Pos); + +  static llvm::Constant *buildFrom(CodeGenModule &CGM, +                                   ArrayRef<llvm::Constant *> Elems, +                                   ArrayRef<CharUnits> Offsets, +                                   CharUnits StartOffset, CharUnits Size, +                                   bool NaturalLayout, llvm::Type *DesiredTy, +                                   bool AllowOversized); + +public: +  ConstantAggregateBuilder(CodeGenModule &CGM) +      : ConstantAggregateBuilderUtils(CGM) {} + +  /// Update or overwrite the value starting at \p Offset with \c C. +  /// +  /// \param AllowOverwrite If \c true, this constant might overwrite (part of) +  ///        a constant that has already been added. This flag is only used to +  ///        detect bugs. +  bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite); + +  /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits. +  bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite); + +  /// Attempt to condense the value starting at \p Offset to a constant of type +  /// \p DesiredTy. +  void condense(CharUnits Offset, llvm::Type *DesiredTy); + +  /// Produce a constant representing the entire accumulated value, ideally of +  /// the specified type. If \p AllowOversized, the constant might be larger +  /// than implied by \p DesiredTy (eg, if there is a flexible array member). +  /// Otherwise, the constant will be of exactly the same size as \p DesiredTy +  /// even if we can't represent it as that type. +  llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const { +    return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size, +                     NaturalLayout, DesiredTy, AllowOversized); +  } +}; + +template<typename Container, typename Range = std::initializer_list< +                                 typename Container::value_type>> +static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) { +  assert(BeginOff <= EndOff && "invalid replacement range"); +  llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals); +} + +bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset, +                          bool AllowOverwrite) { +  // Common case: appending to a layout. +  if (Offset >= Size) { +    CharUnits Align = getAlignment(C); +    CharUnits AlignedSize = Size.alignTo(Align); +    if (AlignedSize > Offset || Offset.alignTo(Align) != Offset) +      NaturalLayout = false; +    else if (AlignedSize < Offset) { +      Elems.push_back(getPadding(Offset - Size)); +      Offsets.push_back(Size); +    } +    Elems.push_back(C); +    Offsets.push_back(Offset); +    Size = Offset + getSize(C); +    return true; +  } + +  // Uncommon case: constant overlaps what we've already created. +  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); +  if (!FirstElemToReplace) +    return false; + +  CharUnits CSize = getSize(C); +  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + CSize); +  if (!LastElemToReplace) +    return false; + +  assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) && +         "unexpectedly overwriting field"); + +  replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C}); +  replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset}); +  Size = std::max(Size, Offset + CSize); +  NaturalLayout = false; +  return true; +} + +bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits, +                              bool AllowOverwrite) { +  const ASTContext &Context = CGM.getContext(); +  const uint64_t CharWidth = CGM.getContext().getCharWidth(); + +  // Offset of where we want the first bit to go within the bits of the +  // current char. +  unsigned OffsetWithinChar = OffsetInBits % CharWidth; + +  // We split bit-fields up into individual bytes. Walk over the bytes and +  // update them. +  for (CharUnits OffsetInChars = +           Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar); +       /**/; ++OffsetInChars) { +    // Number of bits we want to fill in this char. +    unsigned WantedBits = +        std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar); + +    // Get a char containing the bits we want in the right places. The other +    // bits have unspecified values. +    llvm::APInt BitsThisChar = Bits; +    if (BitsThisChar.getBitWidth() < CharWidth) +      BitsThisChar = BitsThisChar.zext(CharWidth); +    if (CGM.getDataLayout().isBigEndian()) { +      // Figure out how much to shift by. We may need to left-shift if we have +      // less than one byte of Bits left. +      int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar; +      if (Shift > 0) +        BitsThisChar.lshrInPlace(Shift); +      else if (Shift < 0) +        BitsThisChar = BitsThisChar.shl(-Shift); +    } else { +      BitsThisChar = BitsThisChar.shl(OffsetWithinChar); +    } +    if (BitsThisChar.getBitWidth() > CharWidth) +      BitsThisChar = BitsThisChar.trunc(CharWidth); + +    if (WantedBits == CharWidth) { +      // Got a full byte: just add it directly. +      add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), +          OffsetInChars, AllowOverwrite); +    } else { +      // Partial byte: update the existing integer if there is one. If we +      // can't split out a 1-CharUnit range to update, then we can't add +      // these bits and fail the entire constant emission. +      llvm::Optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars); +      if (!FirstElemToUpdate) +        return false; +      llvm::Optional<size_t> LastElemToUpdate = +          splitAt(OffsetInChars + CharUnits::One()); +      if (!LastElemToUpdate) +        return false; +      assert(*LastElemToUpdate - *FirstElemToUpdate < 2 && +             "should have at most one element covering one byte"); + +      // Figure out which bits we want and discard the rest. +      llvm::APInt UpdateMask(CharWidth, 0); +      if (CGM.getDataLayout().isBigEndian()) +        UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits, +                           CharWidth - OffsetWithinChar); +      else +        UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits); +      BitsThisChar &= UpdateMask; + +      if (*FirstElemToUpdate == *LastElemToUpdate || +          Elems[*FirstElemToUpdate]->isNullValue() || +          isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) { +        // All existing bits are either zero or undef. +        add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar), +            OffsetInChars, /*AllowOverwrite*/ true); +      } else { +        llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate]; +        // In order to perform a partial update, we need the existing bitwise +        // value, which we can only extract for a constant int. +        auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate); +        if (!CI) +          return false; +        // Because this is a 1-CharUnit range, the constant occupying it must +        // be exactly one CharUnit wide. +        assert(CI->getBitWidth() == CharWidth && "splitAt failed"); +        assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) && +               "unexpectedly overwriting bitfield"); +        BitsThisChar |= (CI->getValue() & ~UpdateMask); +        ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar); +      } +    } + +    // Stop if we've added all the bits. +    if (WantedBits == Bits.getBitWidth()) +      break; + +    // Remove the consumed bits from Bits. +    if (!CGM.getDataLayout().isBigEndian()) +      Bits.lshrInPlace(WantedBits); +    Bits = Bits.trunc(Bits.getBitWidth() - WantedBits); + +    // The remanining bits go at the start of the following bytes. +    OffsetWithinChar = 0; +  } + +  return true; +} + +/// Returns a position within Elems and Offsets such that all elements +/// before the returned index end before Pos and all elements at or after +/// the returned index begin at or after Pos. Splits elements as necessary +/// to ensure this. Returns None if we find something we can't split. +Optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) { +  if (Pos >= Size) +    return Offsets.size(); + +  while (true) { +    auto FirstAfterPos = llvm::upper_bound(Offsets, Pos); +    if (FirstAfterPos == Offsets.begin()) +      return 0; + +    // If we already have an element starting at Pos, we're done. +    size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1; +    if (Offsets[LastAtOrBeforePosIndex] == Pos) +      return LastAtOrBeforePosIndex; + +    // We found an element starting before Pos. Check for overlap. +    if (Offsets[LastAtOrBeforePosIndex] + +        getSize(Elems[LastAtOrBeforePosIndex]) <= Pos) +      return LastAtOrBeforePosIndex + 1; + +    // Try to decompose it into smaller constants. +    if (!split(LastAtOrBeforePosIndex, Pos)) +      return None; +  } +} + +/// Split the constant at index Index, if possible. Return true if we did. +/// Hint indicates the location at which we'd like to split, but may be +/// ignored. +bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) { +  NaturalLayout = false; +  llvm::Constant *C = Elems[Index]; +  CharUnits Offset = Offsets[Index]; + +  if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) { +    replace(Elems, Index, Index + 1, +            llvm::map_range(llvm::seq(0u, CA->getNumOperands()), +                            [&](unsigned Op) { return CA->getOperand(Op); })); +    if (auto *Seq = dyn_cast<llvm::SequentialType>(CA->getType())) { +      // Array or vector. +      CharUnits ElemSize = getSize(Seq->getElementType()); +      replace( +          Offsets, Index, Index + 1, +          llvm::map_range(llvm::seq(0u, CA->getNumOperands()), +                          [&](unsigned Op) { return Offset + Op * ElemSize; })); +    } else { +      // Must be a struct. +      auto *ST = cast<llvm::StructType>(CA->getType()); +      const llvm::StructLayout *Layout = +          CGM.getDataLayout().getStructLayout(ST); +      replace(Offsets, Index, Index + 1, +              llvm::map_range( +                  llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) { +                    return Offset + CharUnits::fromQuantity( +                                        Layout->getElementOffset(Op)); +                  })); +    } +    return true; +  } + +  if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) { +    // FIXME: If possible, split into two ConstantDataSequentials at Hint. +    CharUnits ElemSize = getSize(CDS->getElementType()); +    replace(Elems, Index, Index + 1, +            llvm::map_range(llvm::seq(0u, CDS->getNumElements()), +                            [&](unsigned Elem) { +                              return CDS->getElementAsConstant(Elem); +                            })); +    replace(Offsets, Index, Index + 1, +            llvm::map_range( +                llvm::seq(0u, CDS->getNumElements()), +                [&](unsigned Elem) { return Offset + Elem * ElemSize; })); +    return true; +  } + +  if (isa<llvm::ConstantAggregateZero>(C)) { +    CharUnits ElemSize = getSize(C); +    assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split"); +    replace(Elems, Index, Index + 1, +            {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)}); +    replace(Offsets, Index, Index + 1, {Offset, Hint}); +    return true; +  } + +  if (isa<llvm::UndefValue>(C)) { +    replace(Elems, Index, Index + 1, {}); +    replace(Offsets, Index, Index + 1, {}); +    return true; +  } + +  // FIXME: We could split a ConstantInt if the need ever arose. +  // We don't need to do this to handle bit-fields because we always eagerly +  // split them into 1-byte chunks. + +  return false; +} + +static llvm::Constant * +EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, +                  llvm::Type *CommonElementType, unsigned ArrayBound, +                  SmallVectorImpl<llvm::Constant *> &Elements, +                  llvm::Constant *Filler); + +llvm::Constant *ConstantAggregateBuilder::buildFrom( +    CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems, +    ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size, +    bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) { +  ConstantAggregateBuilderUtils Utils(CGM); + +  if (Elems.empty()) +    return llvm::UndefValue::get(DesiredTy); + +  auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; }; + +  // If we want an array type, see if all the elements are the same type and +  // appropriately spaced. +  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) { +    assert(!AllowOversized && "oversized array emission not supported"); + +    bool CanEmitArray = true; +    llvm::Type *CommonType = Elems[0]->getType(); +    llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType); +    CharUnits ElemSize = Utils.getSize(ATy->getElementType()); +    SmallVector<llvm::Constant*, 32> ArrayElements; +    for (size_t I = 0; I != Elems.size(); ++I) { +      // Skip zeroes; we'll use a zero value as our array filler. +      if (Elems[I]->isNullValue()) +        continue; + +      // All remaining elements must be the same type. +      if (Elems[I]->getType() != CommonType || +          Offset(I) % ElemSize != 0) { +        CanEmitArray = false; +        break; +      } +      ArrayElements.resize(Offset(I) / ElemSize + 1, Filler); +      ArrayElements.back() = Elems[I]; +    } + +    if (CanEmitArray) { +      return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(), +                               ArrayElements, Filler); +    } + +    // Can't emit as an array, carry on to emit as a struct. +  } + +  CharUnits DesiredSize = Utils.getSize(DesiredTy); +  CharUnits Align = CharUnits::One(); +  for (llvm::Constant *C : Elems) +    Align = std::max(Align, Utils.getAlignment(C)); +  CharUnits AlignedSize = Size.alignTo(Align); + +  bool Packed = false; +  ArrayRef<llvm::Constant*> UnpackedElems = Elems; +  llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage; +  if ((DesiredSize < AlignedSize && !AllowOversized) || +      DesiredSize.alignTo(Align) != DesiredSize) { +    // The natural layout would be the wrong size; force use of a packed layout. +    NaturalLayout = false; +    Packed = true; +  } else if (DesiredSize > AlignedSize) { +    // The constant would be too small. Add padding to fix it. +    UnpackedElemStorage.assign(Elems.begin(), Elems.end()); +    UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size)); +    UnpackedElems = UnpackedElemStorage; +  } + +  // If we don't have a natural layout, insert padding as necessary. +  // As we go, double-check to see if we can actually just emit Elems +  // as a non-packed struct and do so opportunistically if possible. +  llvm::SmallVector<llvm::Constant*, 32> PackedElems; +  if (!NaturalLayout) { +    CharUnits SizeSoFar = CharUnits::Zero(); +    for (size_t I = 0; I != Elems.size(); ++I) { +      CharUnits Align = Utils.getAlignment(Elems[I]); +      CharUnits NaturalOffset = SizeSoFar.alignTo(Align); +      CharUnits DesiredOffset = Offset(I); +      assert(DesiredOffset >= SizeSoFar && "elements out of order"); + +      if (DesiredOffset != NaturalOffset) +        Packed = true; +      if (DesiredOffset != SizeSoFar) +        PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar)); +      PackedElems.push_back(Elems[I]); +      SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]); +    } +    // If we're using the packed layout, pad it out to the desired size if +    // necessary. +    if (Packed) { +      assert((SizeSoFar <= DesiredSize || AllowOversized) && +             "requested size is too small for contents"); +      if (SizeSoFar < DesiredSize) +        PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar)); +    } +  } + +  llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements( +      CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed); + +  // Pick the type to use.  If the type is layout identical to the desired +  // type then use it, otherwise use whatever the builder produced for us. +  if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) { +    if (DesiredSTy->isLayoutIdentical(STy)) +      STy = DesiredSTy; +  } + +  return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems); +} + +void ConstantAggregateBuilder::condense(CharUnits Offset, +                                        llvm::Type *DesiredTy) { +  CharUnits Size = getSize(DesiredTy); + +  llvm::Optional<size_t> FirstElemToReplace = splitAt(Offset); +  if (!FirstElemToReplace) +    return; +  size_t First = *FirstElemToReplace; + +  llvm::Optional<size_t> LastElemToReplace = splitAt(Offset + Size); +  if (!LastElemToReplace) +    return; +  size_t Last = *LastElemToReplace; + +  size_t Length = Last - First; +  if (Length == 0) +    return; + +  if (Length == 1 && Offsets[First] == Offset && +      getSize(Elems[First]) == Size) { +    // Re-wrap single element structs if necessary. Otherwise, leave any single +    // element constant of the right size alone even if it has the wrong type. +    auto *STy = dyn_cast<llvm::StructType>(DesiredTy); +    if (STy && STy->getNumElements() == 1 && +        STy->getElementType(0) == Elems[First]->getType()) +      Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]); +    return; +  } + +  llvm::Constant *Replacement = buildFrom( +      CGM, makeArrayRef(Elems).slice(First, Length), +      makeArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy), +      /*known to have natural layout=*/false, DesiredTy, false); +  replace(Elems, First, Last, {Replacement}); +  replace(Offsets, First, Last, {Offset}); +} + +//===----------------------------------------------------------------------===// +//                            ConstStructBuilder +//===----------------------------------------------------------------------===// + +class ConstStructBuilder { +  CodeGenModule &CGM; +  ConstantEmitter &Emitter; +  ConstantAggregateBuilder &Builder; +  CharUnits StartOffset; + +public: +  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, +                                     InitListExpr *ILE, QualType StructTy); +  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter, +                                     const APValue &Value, QualType ValTy); +  static bool UpdateStruct(ConstantEmitter &Emitter, +                           ConstantAggregateBuilder &Const, CharUnits Offset, +                           InitListExpr *Updater); + +private: +  ConstStructBuilder(ConstantEmitter &Emitter, +                     ConstantAggregateBuilder &Builder, CharUnits StartOffset) +      : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder), +        StartOffset(StartOffset) {} + +  bool AppendField(const FieldDecl *Field, uint64_t FieldOffset, +                   llvm::Constant *InitExpr, bool AllowOverwrite = false); + +  bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst, +                   bool AllowOverwrite = false); + +  bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, +                      llvm::ConstantInt *InitExpr, bool AllowOverwrite = false); + +  bool Build(InitListExpr *ILE, bool AllowOverwrite); +  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, +             const CXXRecordDecl *VTableClass, CharUnits BaseOffset); +  llvm::Constant *Finalize(QualType Ty); +}; + +bool ConstStructBuilder::AppendField( +    const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst, +    bool AllowOverwrite) { +  const ASTContext &Context = CGM.getContext(); + +  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); + +  return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite); +} + +bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars, +                                     llvm::Constant *InitCst, +                                     bool AllowOverwrite) { +  return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite); +} + +bool ConstStructBuilder::AppendBitField( +    const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI, +    bool AllowOverwrite) { +  uint64_t FieldSize = Field->getBitWidthValue(CGM.getContext()); +  llvm::APInt FieldValue = CI->getValue(); + +  // Promote the size of FieldValue if necessary +  // FIXME: This should never occur, but currently it can because initializer +  // constants are cast to bool, and because clang is not enforcing bitfield +  // width limits. +  if (FieldSize > FieldValue.getBitWidth()) +    FieldValue = FieldValue.zext(FieldSize); + +  // Truncate the size of FieldValue to the bit field size. +  if (FieldSize < FieldValue.getBitWidth()) +    FieldValue = FieldValue.trunc(FieldSize); + +  return Builder.addBits(FieldValue, +                         CGM.getContext().toBits(StartOffset) + FieldOffset, +                         AllowOverwrite); +} + +static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter, +                                      ConstantAggregateBuilder &Const, +                                      CharUnits Offset, QualType Type, +                                      InitListExpr *Updater) { +  if (Type->isRecordType()) +    return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater); + +  auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type); +  if (!CAT) +    return false; +  QualType ElemType = CAT->getElementType(); +  CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType); +  llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType); + +  llvm::Constant *FillC = nullptr; +  if (Expr *Filler = Updater->getArrayFiller()) { +    if (!isa<NoInitExpr>(Filler)) { +      FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType); +      if (!FillC) +        return false; +    } +  } + +  unsigned NumElementsToUpdate = +      FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits(); +  for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) { +    Expr *Init = nullptr; +    if (I < Updater->getNumInits()) +      Init = Updater->getInit(I); + +    if (!Init && FillC) { +      if (!Const.add(FillC, Offset, true)) +        return false; +    } else if (!Init || isa<NoInitExpr>(Init)) { +      continue; +    } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) { +      if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType, +                                     ChildILE)) +        return false; +      // Attempt to reduce the array element to a single constant if necessary. +      Const.condense(Offset, ElemTy); +    } else { +      llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType); +      if (!Const.add(Val, Offset, true)) +        return false; +    } +  } + +  return true; +} + +bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) { +  RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); +  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); + +  unsigned FieldNo = -1; +  unsigned ElementNo = 0; + +  // Bail out if we have base classes. We could support these, but they only +  // arise in C++1z where we will have already constant folded most interesting +  // cases. FIXME: There are still a few more cases we can handle this way. +  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) +    if (CXXRD->getNumBases()) +      return false; + +  for (FieldDecl *Field : RD->fields()) { +    ++FieldNo; + +    // If this is a union, skip all the fields that aren't being initialized. +    if (RD->isUnion() && +        !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field)) +      continue; + +    // Don't emit anonymous bitfields or zero-sized fields. +    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) +      continue; + +    // Get the initializer.  A struct can include fields without initializers, +    // we just use explicit null values for them. +    Expr *Init = nullptr; +    if (ElementNo < ILE->getNumInits()) +      Init = ILE->getInit(ElementNo++); +    if (Init && isa<NoInitExpr>(Init)) +      continue; + +    // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr +    // represents additional overwriting of our current constant value, and not +    // a new constant to emit independently. +    if (AllowOverwrite && +        (Field->getType()->isArrayType() || Field->getType()->isRecordType())) { +      if (auto *SubILE = dyn_cast<InitListExpr>(Init)) { +        CharUnits Offset = CGM.getContext().toCharUnitsFromBits( +            Layout.getFieldOffset(FieldNo)); +        if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset, +                                       Field->getType(), SubILE)) +          return false; +        // If we split apart the field's value, try to collapse it down to a +        // single value now. +        Builder.condense(StartOffset + Offset, +                         CGM.getTypes().ConvertTypeForMem(Field->getType())); +        continue; +      } +    } + +    llvm::Constant *EltInit = +        Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType()) +             : Emitter.emitNullForMemory(Field->getType()); +    if (!EltInit) +      return false; + +    if (!Field->isBitField()) { +      // Handle non-bitfield members. +      if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit, +                       AllowOverwrite)) +        return false; +      // After emitting a non-empty field with [[no_unique_address]], we may +      // need to overwrite its tail padding. +      if (Field->hasAttr<NoUniqueAddressAttr>()) +        AllowOverwrite = true; +    } else { +      // Otherwise we have a bitfield. +      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { +        if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI, +                            AllowOverwrite)) +          return false; +      } else { +        // We are trying to initialize a bitfield with a non-trivial constant, +        // this must require run-time code. +        return false; +      } +    } +  } + +  return true; +} + +namespace { +struct BaseInfo { +  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) +    : Decl(Decl), Offset(Offset), Index(Index) { +  } + +  const CXXRecordDecl *Decl; +  CharUnits Offset; +  unsigned Index; + +  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } +}; +} + +bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, +                               bool IsPrimaryBase, +                               const CXXRecordDecl *VTableClass, +                               CharUnits Offset) { +  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); + +  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { +    // Add a vtable pointer, if we need one and it hasn't already been added. +    if (CD->isDynamicClass() && !IsPrimaryBase) { +      llvm::Constant *VTableAddressPoint = +          CGM.getCXXABI().getVTableAddressPointForConstExpr( +              BaseSubobject(CD, Offset), VTableClass); +      if (!AppendBytes(Offset, VTableAddressPoint)) +        return false; +    } + +    // Accumulate and sort bases, in order to visit them in address order, which +    // may not be the same as declaration order. +    SmallVector<BaseInfo, 8> Bases; +    Bases.reserve(CD->getNumBases()); +    unsigned BaseNo = 0; +    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), +         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { +      assert(!Base->isVirtual() && "should not have virtual bases here"); +      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); +      CharUnits BaseOffset = Layout.getBaseClassOffset(BD); +      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); +    } +    llvm::stable_sort(Bases); + +    for (unsigned I = 0, N = Bases.size(); I != N; ++I) { +      BaseInfo &Base = Bases[I]; + +      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; +      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, +            VTableClass, Offset + Base.Offset); +    } +  } + +  unsigned FieldNo = 0; +  uint64_t OffsetBits = CGM.getContext().toBits(Offset); + +  bool AllowOverwrite = false; +  for (RecordDecl::field_iterator Field = RD->field_begin(), +       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { +    // If this is a union, skip all the fields that aren't being initialized. +    if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field)) +      continue; + +    // Don't emit anonymous bitfields or zero-sized fields. +    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext())) +      continue; + +    // Emit the value of the initializer. +    const APValue &FieldValue = +      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); +    llvm::Constant *EltInit = +      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType()); +    if (!EltInit) +      return false; + +    if (!Field->isBitField()) { +      // Handle non-bitfield members. +      if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, +                       EltInit, AllowOverwrite)) +        return false; +      // After emitting a non-empty field with [[no_unique_address]], we may +      // need to overwrite its tail padding. +      if (Field->hasAttr<NoUniqueAddressAttr>()) +        AllowOverwrite = true; +    } else { +      // Otherwise we have a bitfield. +      if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, +                          cast<llvm::ConstantInt>(EltInit), AllowOverwrite)) +        return false; +    } +  } + +  return true; +} + +llvm::Constant *ConstStructBuilder::Finalize(QualType Type) { +  RecordDecl *RD = Type->getAs<RecordType>()->getDecl(); +  llvm::Type *ValTy = CGM.getTypes().ConvertType(Type); +  return Builder.build(ValTy, RD->hasFlexibleArrayMember()); +} + +llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, +                                                InitListExpr *ILE, +                                                QualType ValTy) { +  ConstantAggregateBuilder Const(Emitter.CGM); +  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); + +  if (!Builder.Build(ILE, /*AllowOverwrite*/false)) +    return nullptr; + +  return Builder.Finalize(ValTy); +} + +llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter, +                                                const APValue &Val, +                                                QualType ValTy) { +  ConstantAggregateBuilder Const(Emitter.CGM); +  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero()); + +  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); +  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); +  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero())) +    return nullptr; + +  return Builder.Finalize(ValTy); +} + +bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter, +                                      ConstantAggregateBuilder &Const, +                                      CharUnits Offset, InitListExpr *Updater) { +  return ConstStructBuilder(Emitter, Const, Offset) +      .Build(Updater, /*AllowOverwrite*/ true); +} + +//===----------------------------------------------------------------------===// +//                             ConstExprEmitter +//===----------------------------------------------------------------------===// + +static ConstantAddress tryEmitGlobalCompoundLiteral(CodeGenModule &CGM, +                                                    CodeGenFunction *CGF, +                                              const CompoundLiteralExpr *E) { +  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); +  if (llvm::GlobalVariable *Addr = +          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E)) +    return ConstantAddress(Addr, Align); + +  LangAS addressSpace = E->getType().getAddressSpace(); + +  ConstantEmitter emitter(CGM, CGF); +  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(), +                                                    addressSpace, E->getType()); +  if (!C) { +    assert(!E->isFileScope() && +           "file-scope compound literal did not have constant initializer!"); +    return ConstantAddress::invalid(); +  } + +  auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), +                                     CGM.isTypeConstant(E->getType(), true), +                                     llvm::GlobalValue::InternalLinkage, +                                     C, ".compoundliteral", nullptr, +                                     llvm::GlobalVariable::NotThreadLocal, +                    CGM.getContext().getTargetAddressSpace(addressSpace)); +  emitter.finalize(GV); +  GV->setAlignment(Align.getQuantity()); +  CGM.setAddrOfConstantCompoundLiteral(E, GV); +  return ConstantAddress(GV, Align); +} + +static llvm::Constant * +EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType, +                  llvm::Type *CommonElementType, unsigned ArrayBound, +                  SmallVectorImpl<llvm::Constant *> &Elements, +                  llvm::Constant *Filler) { +  // Figure out how long the initial prefix of non-zero elements is. +  unsigned NonzeroLength = ArrayBound; +  if (Elements.size() < NonzeroLength && Filler->isNullValue()) +    NonzeroLength = Elements.size(); +  if (NonzeroLength == Elements.size()) { +    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue()) +      --NonzeroLength; +  } + +  if (NonzeroLength == 0) +    return llvm::ConstantAggregateZero::get(DesiredType); + +  // Add a zeroinitializer array filler if we have lots of trailing zeroes. +  unsigned TrailingZeroes = ArrayBound - NonzeroLength; +  if (TrailingZeroes >= 8) { +    assert(Elements.size() >= NonzeroLength && +           "missing initializer for non-zero element"); + +    // If all the elements had the same type up to the trailing zeroes, emit a +    // struct of two arrays (the nonzero data and the zeroinitializer). +    if (CommonElementType && NonzeroLength >= 8) { +      llvm::Constant *Initial = llvm::ConstantArray::get( +          llvm::ArrayType::get(CommonElementType, NonzeroLength), +          makeArrayRef(Elements).take_front(NonzeroLength)); +      Elements.resize(2); +      Elements[0] = Initial; +    } else { +      Elements.resize(NonzeroLength + 1); +    } + +    auto *FillerType = +        CommonElementType ? CommonElementType : DesiredType->getElementType(); +    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes); +    Elements.back() = llvm::ConstantAggregateZero::get(FillerType); +    CommonElementType = nullptr; +  } else if (Elements.size() != ArrayBound) { +    // Otherwise pad to the right size with the filler if necessary. +    Elements.resize(ArrayBound, Filler); +    if (Filler->getType() != CommonElementType) +      CommonElementType = nullptr; +  } + +  // If all elements have the same type, just emit an array constant. +  if (CommonElementType) +    return llvm::ConstantArray::get( +        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements); + +  // We have mixed types. Use a packed struct. +  llvm::SmallVector<llvm::Type *, 16> Types; +  Types.reserve(Elements.size()); +  for (llvm::Constant *Elt : Elements) +    Types.push_back(Elt->getType()); +  llvm::StructType *SType = +      llvm::StructType::get(CGM.getLLVMContext(), Types, true); +  return llvm::ConstantStruct::get(SType, Elements); +} + +// This class only needs to handle arrays, structs and unions. Outside C++11 +// mode, we don't currently constant fold those types.  All other types are +// handled by constant folding. +// +// Constant folding is currently missing support for a few features supported +// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr. +class ConstExprEmitter : +  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> { +  CodeGenModule &CGM; +  ConstantEmitter &Emitter; +  llvm::LLVMContext &VMContext; +public: +  ConstExprEmitter(ConstantEmitter &emitter) +    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) { +  } + +  //===--------------------------------------------------------------------===// +  //                            Visitor Methods +  //===--------------------------------------------------------------------===// + +  llvm::Constant *VisitStmt(Stmt *S, QualType T) { +    return nullptr; +  } + +  llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) { +    return Visit(CE->getSubExpr(), T); +  } + +  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) { +    return Visit(PE->getSubExpr(), T); +  } + +  llvm::Constant * +  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE, +                                    QualType T) { +    return Visit(PE->getReplacement(), T); +  } + +  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE, +                                            QualType T) { +    return Visit(GE->getResultExpr(), T); +  } + +  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) { +    return Visit(CE->getChosenSubExpr(), T); +  } + +  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) { +    return Visit(E->getInitializer(), T); +  } + +  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) { +    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) +      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF); +    Expr *subExpr = E->getSubExpr(); + +    switch (E->getCastKind()) { +    case CK_ToUnion: { +      // GCC cast to union extension +      assert(E->getType()->isUnionType() && +             "Destination type is not union type!"); + +      auto field = E->getTargetUnionField(); + +      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType()); +      if (!C) return nullptr; + +      auto destTy = ConvertType(destType); +      if (C->getType() == destTy) return C; + +      // Build a struct with the union sub-element as the first member, +      // and padded to the appropriate size. +      SmallVector<llvm::Constant*, 2> Elts; +      SmallVector<llvm::Type*, 2> Types; +      Elts.push_back(C); +      Types.push_back(C->getType()); +      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); +      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy); + +      assert(CurSize <= TotalSize && "Union size mismatch!"); +      if (unsigned NumPadBytes = TotalSize - CurSize) { +        llvm::Type *Ty = CGM.Int8Ty; +        if (NumPadBytes > 1) +          Ty = llvm::ArrayType::get(Ty, NumPadBytes); + +        Elts.push_back(llvm::UndefValue::get(Ty)); +        Types.push_back(Ty); +      } + +      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false); +      return llvm::ConstantStruct::get(STy, Elts); +    } + +    case CK_AddressSpaceConversion: { +      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); +      if (!C) return nullptr; +      LangAS destAS = E->getType()->getPointeeType().getAddressSpace(); +      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace(); +      llvm::Type *destTy = ConvertType(E->getType()); +      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS, +                                                             destAS, destTy); +    } + +    case CK_LValueToRValue: +    case CK_AtomicToNonAtomic: +    case CK_NonAtomicToAtomic: +    case CK_NoOp: +    case CK_ConstructorConversion: +      return Visit(subExpr, destType); + +    case CK_IntToOCLSampler: +      llvm_unreachable("global sampler variables are not generated"); + +    case CK_Dependent: llvm_unreachable("saw dependent cast!"); + +    case CK_BuiltinFnToFnPtr: +      llvm_unreachable("builtin functions are handled elsewhere"); + +    case CK_ReinterpretMemberPointer: +    case CK_DerivedToBaseMemberPointer: +    case CK_BaseToDerivedMemberPointer: { +      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType()); +      if (!C) return nullptr; +      return CGM.getCXXABI().EmitMemberPointerConversion(E, C); +    } + +    // These will never be supported. +    case CK_ObjCObjectLValueCast: +    case CK_ARCProduceObject: +    case CK_ARCConsumeObject: +    case CK_ARCReclaimReturnedObject: +    case CK_ARCExtendBlockObject: +    case CK_CopyAndAutoreleaseBlockObject: +      return nullptr; + +    // These don't need to be handled here because Evaluate knows how to +    // evaluate them in the cases where they can be folded. +    case CK_BitCast: +    case CK_ToVoid: +    case CK_Dynamic: +    case CK_LValueBitCast: +    case CK_LValueToRValueBitCast: +    case CK_NullToMemberPointer: +    case CK_UserDefinedConversion: +    case CK_CPointerToObjCPointerCast: +    case CK_BlockPointerToObjCPointerCast: +    case CK_AnyPointerToBlockPointerCast: +    case CK_ArrayToPointerDecay: +    case CK_FunctionToPointerDecay: +    case CK_BaseToDerived: +    case CK_DerivedToBase: +    case CK_UncheckedDerivedToBase: +    case CK_MemberPointerToBoolean: +    case CK_VectorSplat: +    case CK_FloatingRealToComplex: +    case CK_FloatingComplexToReal: +    case CK_FloatingComplexToBoolean: +    case CK_FloatingComplexCast: +    case CK_FloatingComplexToIntegralComplex: +    case CK_IntegralRealToComplex: +    case CK_IntegralComplexToReal: +    case CK_IntegralComplexToBoolean: +    case CK_IntegralComplexCast: +    case CK_IntegralComplexToFloatingComplex: +    case CK_PointerToIntegral: +    case CK_PointerToBoolean: +    case CK_NullToPointer: +    case CK_IntegralCast: +    case CK_BooleanToSignedIntegral: +    case CK_IntegralToPointer: +    case CK_IntegralToBoolean: +    case CK_IntegralToFloating: +    case CK_FloatingToIntegral: +    case CK_FloatingToBoolean: +    case CK_FloatingCast: +    case CK_FixedPointCast: +    case CK_FixedPointToBoolean: +    case CK_FixedPointToIntegral: +    case CK_IntegralToFixedPoint: +    case CK_ZeroToOCLOpaqueType: +      return nullptr; +    } +    llvm_unreachable("Invalid CastKind"); +  } + +  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) { +    // No need for a DefaultInitExprScope: we don't handle 'this' in a +    // constant expression. +    return Visit(DIE->getExpr(), T); +  } + +  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) { +    if (!E->cleanupsHaveSideEffects()) +      return Visit(E->getSubExpr(), T); +    return nullptr; +  } + +  llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E, +                                                QualType T) { +    return Visit(E->GetTemporaryExpr(), T); +  } + +  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) { +    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType()); +    assert(CAT && "can't emit array init for non-constant-bound array"); +    unsigned NumInitElements = ILE->getNumInits(); +    unsigned NumElements = CAT->getSize().getZExtValue(); + +    // Initialising an array requires us to automatically +    // initialise any elements that have not been initialised explicitly +    unsigned NumInitableElts = std::min(NumInitElements, NumElements); + +    QualType EltType = CAT->getElementType(); + +    // Initialize remaining array elements. +    llvm::Constant *fillC = nullptr; +    if (Expr *filler = ILE->getArrayFiller()) { +      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType); +      if (!fillC) +        return nullptr; +    } + +    // Copy initializer elements. +    SmallVector<llvm::Constant*, 16> Elts; +    if (fillC && fillC->isNullValue()) +      Elts.reserve(NumInitableElts + 1); +    else +      Elts.reserve(NumElements); + +    llvm::Type *CommonElementType = nullptr; +    for (unsigned i = 0; i < NumInitableElts; ++i) { +      Expr *Init = ILE->getInit(i); +      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType); +      if (!C) +        return nullptr; +      if (i == 0) +        CommonElementType = C->getType(); +      else if (C->getType() != CommonElementType) +        CommonElementType = nullptr; +      Elts.push_back(C); +    } + +    llvm::ArrayType *Desired = +        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType())); +    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, +                             fillC); +  } + +  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) { +    return ConstStructBuilder::BuildStruct(Emitter, ILE, T); +  } + +  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E, +                                             QualType T) { +    return CGM.EmitNullConstant(T); +  } + +  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) { +    if (ILE->isTransparent()) +      return Visit(ILE->getInit(0), T); + +    if (ILE->getType()->isArrayType()) +      return EmitArrayInitialization(ILE, T); + +    if (ILE->getType()->isRecordType()) +      return EmitRecordInitialization(ILE, T); + +    return nullptr; +  } + +  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E, +                                                QualType destType) { +    auto C = Visit(E->getBase(), destType); +    if (!C) +      return nullptr; + +    ConstantAggregateBuilder Const(CGM); +    Const.add(C, CharUnits::Zero(), false); + +    if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType, +                                   E->getUpdater())) +      return nullptr; + +    llvm::Type *ValTy = CGM.getTypes().ConvertType(destType); +    bool HasFlexibleArray = false; +    if (auto *RT = destType->getAs<RecordType>()) +      HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember(); +    return Const.build(ValTy, HasFlexibleArray); +  } + +  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) { +    if (!E->getConstructor()->isTrivial()) +      return nullptr; + +    // FIXME: We should not have to call getBaseElementType here. +    const RecordType *RT = +      CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); +    const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); + +    // If the class doesn't have a trivial destructor, we can't emit it as a +    // constant expr. +    if (!RD->hasTrivialDestructor()) +      return nullptr; + +    // Only copy and default constructors can be trivial. + + +    if (E->getNumArgs()) { +      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); +      assert(E->getConstructor()->isCopyOrMoveConstructor() && +             "trivial ctor has argument but isn't a copy/move ctor"); + +      Expr *Arg = E->getArg(0); +      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && +             "argument to copy ctor is of wrong type"); + +      return Visit(Arg, Ty); +    } + +    return CGM.EmitNullConstant(Ty); +  } + +  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) { +    // This is a string literal initializing an array in an initializer. +    return CGM.GetConstantArrayFromStringLiteral(E); +  } + +  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) { +    // This must be an @encode initializing an array in a static initializer. +    // Don't emit it as the address of the string, emit the string data itself +    // as an inline array. +    std::string Str; +    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); +    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T); + +    // Resize the string to the right size, adding zeros at the end, or +    // truncating as needed. +    Str.resize(CAT->getSize().getZExtValue(), '\0'); +    return llvm::ConstantDataArray::getString(VMContext, Str, false); +  } + +  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) { +    return Visit(E->getSubExpr(), T); +  } + +  // Utility methods +  llvm::Type *ConvertType(QualType T) { +    return CGM.getTypes().ConvertType(T); +  } +}; + +}  // end anonymous namespace. + +llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C, +                                                        AbstractState saved) { +  Abstract = saved.OldValue; + +  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() && +         "created a placeholder while doing an abstract emission?"); + +  // No validation necessary for now. +  // No cleanup to do for now. +  return C; +} + +llvm::Constant * +ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) { +  auto state = pushAbstract(); +  auto C = tryEmitPrivateForVarInit(D); +  return validateAndPopAbstract(C, state); +} + +llvm::Constant * +ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) { +  auto state = pushAbstract(); +  auto C = tryEmitPrivate(E, destType); +  return validateAndPopAbstract(C, state); +} + +llvm::Constant * +ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) { +  auto state = pushAbstract(); +  auto C = tryEmitPrivate(value, destType); +  return validateAndPopAbstract(C, state); +} + +llvm::Constant * +ConstantEmitter::emitAbstract(const Expr *E, QualType destType) { +  auto state = pushAbstract(); +  auto C = tryEmitPrivate(E, destType); +  C = validateAndPopAbstract(C, state); +  if (!C) { +    CGM.Error(E->getExprLoc(), +              "internal error: could not emit constant value \"abstractly\""); +    C = CGM.EmitNullConstant(destType); +  } +  return C; +} + +llvm::Constant * +ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value, +                              QualType destType) { +  auto state = pushAbstract(); +  auto C = tryEmitPrivate(value, destType); +  C = validateAndPopAbstract(C, state); +  if (!C) { +    CGM.Error(loc, +              "internal error: could not emit constant value \"abstractly\""); +    C = CGM.EmitNullConstant(destType); +  } +  return C; +} + +llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) { +  initializeNonAbstract(D.getType().getAddressSpace()); +  return markIfFailed(tryEmitPrivateForVarInit(D)); +} + +llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E, +                                                       LangAS destAddrSpace, +                                                       QualType destType) { +  initializeNonAbstract(destAddrSpace); +  return markIfFailed(tryEmitPrivateForMemory(E, destType)); +} + +llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value, +                                                    LangAS destAddrSpace, +                                                    QualType destType) { +  initializeNonAbstract(destAddrSpace); +  auto C = tryEmitPrivateForMemory(value, destType); +  assert(C && "couldn't emit constant value non-abstractly?"); +  return C; +} + +llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() { +  assert(!Abstract && "cannot get current address for abstract constant"); + + + +  // Make an obviously ill-formed global that should blow up compilation +  // if it survives. +  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true, +                                         llvm::GlobalValue::PrivateLinkage, +                                         /*init*/ nullptr, +                                         /*name*/ "", +                                         /*before*/ nullptr, +                                         llvm::GlobalVariable::NotThreadLocal, +                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace)); + +  PlaceholderAddresses.push_back(std::make_pair(nullptr, global)); + +  return global; +} + +void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal, +                                           llvm::GlobalValue *placeholder) { +  assert(!PlaceholderAddresses.empty()); +  assert(PlaceholderAddresses.back().first == nullptr); +  assert(PlaceholderAddresses.back().second == placeholder); +  PlaceholderAddresses.back().first = signal; +} + +namespace { +  struct ReplacePlaceholders { +    CodeGenModule &CGM; + +    /// The base address of the global. +    llvm::Constant *Base; +    llvm::Type *BaseValueTy = nullptr; + +    /// The placeholder addresses that were registered during emission. +    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses; + +    /// The locations of the placeholder signals. +    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations; + +    /// The current index stack.  We use a simple unsigned stack because +    /// we assume that placeholders will be relatively sparse in the +    /// initializer, but we cache the index values we find just in case. +    llvm::SmallVector<unsigned, 8> Indices; +    llvm::SmallVector<llvm::Constant*, 8> IndexValues; + +    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base, +                        ArrayRef<std::pair<llvm::Constant*, +                                           llvm::GlobalVariable*>> addresses) +        : CGM(CGM), Base(base), +          PlaceholderAddresses(addresses.begin(), addresses.end()) { +    } + +    void replaceInInitializer(llvm::Constant *init) { +      // Remember the type of the top-most initializer. +      BaseValueTy = init->getType(); + +      // Initialize the stack. +      Indices.push_back(0); +      IndexValues.push_back(nullptr); + +      // Recurse into the initializer. +      findLocations(init); + +      // Check invariants. +      assert(IndexValues.size() == Indices.size() && "mismatch"); +      assert(Indices.size() == 1 && "didn't pop all indices"); + +      // Do the replacement; this basically invalidates 'init'. +      assert(Locations.size() == PlaceholderAddresses.size() && +             "missed a placeholder?"); + +      // We're iterating over a hashtable, so this would be a source of +      // non-determinism in compiler output *except* that we're just +      // messing around with llvm::Constant structures, which never itself +      // does anything that should be visible in compiler output. +      for (auto &entry : Locations) { +        assert(entry.first->getParent() == nullptr && "not a placeholder!"); +        entry.first->replaceAllUsesWith(entry.second); +        entry.first->eraseFromParent(); +      } +    } + +  private: +    void findLocations(llvm::Constant *init) { +      // Recurse into aggregates. +      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) { +        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) { +          Indices.push_back(i); +          IndexValues.push_back(nullptr); + +          findLocations(agg->getOperand(i)); + +          IndexValues.pop_back(); +          Indices.pop_back(); +        } +        return; +      } + +      // Otherwise, check for registered constants. +      while (true) { +        auto it = PlaceholderAddresses.find(init); +        if (it != PlaceholderAddresses.end()) { +          setLocation(it->second); +          break; +        } + +        // Look through bitcasts or other expressions. +        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) { +          init = expr->getOperand(0); +        } else { +          break; +        } +      } +    } + +    void setLocation(llvm::GlobalVariable *placeholder) { +      assert(Locations.find(placeholder) == Locations.end() && +             "already found location for placeholder!"); + +      // Lazily fill in IndexValues with the values from Indices. +      // We do this in reverse because we should always have a strict +      // prefix of indices from the start. +      assert(Indices.size() == IndexValues.size()); +      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) { +        if (IndexValues[i]) { +#ifndef NDEBUG +          for (size_t j = 0; j != i + 1; ++j) { +            assert(IndexValues[j] && +                   isa<llvm::ConstantInt>(IndexValues[j]) && +                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue() +                     == Indices[j]); +          } +#endif +          break; +        } + +        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]); +      } + +      // Form a GEP and then bitcast to the placeholder type so that the +      // replacement will succeed. +      llvm::Constant *location = +        llvm::ConstantExpr::getInBoundsGetElementPtr(BaseValueTy, +                                                     Base, IndexValues); +      location = llvm::ConstantExpr::getBitCast(location, +                                                placeholder->getType()); + +      Locations.insert({placeholder, location}); +    } +  }; +} + +void ConstantEmitter::finalize(llvm::GlobalVariable *global) { +  assert(InitializedNonAbstract && +         "finalizing emitter that was used for abstract emission?"); +  assert(!Finalized && "finalizing emitter multiple times"); +  assert(global->getInitializer()); + +  // Note that we might also be Failed. +  Finalized = true; + +  if (!PlaceholderAddresses.empty()) { +    ReplacePlaceholders(CGM, global, PlaceholderAddresses) +      .replaceInInitializer(global->getInitializer()); +    PlaceholderAddresses.clear(); // satisfy +  } +} + +ConstantEmitter::~ConstantEmitter() { +  assert((!InitializedNonAbstract || Finalized || Failed) && +         "not finalized after being initialized for non-abstract emission"); +  assert(PlaceholderAddresses.empty() && "unhandled placeholders"); +} + +static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) { +  if (auto AT = type->getAs<AtomicType>()) { +    return CGM.getContext().getQualifiedType(AT->getValueType(), +                                             type.getQualifiers()); +  } +  return type; +} + +llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) { +  // Make a quick check if variable can be default NULL initialized +  // and avoid going through rest of code which may do, for c++11, +  // initialization of memory to all NULLs. +  if (!D.hasLocalStorage()) { +    QualType Ty = CGM.getContext().getBaseElementType(D.getType()); +    if (Ty->isRecordType()) +      if (const CXXConstructExpr *E = +          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { +        const CXXConstructorDecl *CD = E->getConstructor(); +        if (CD->isTrivial() && CD->isDefaultConstructor()) +          return CGM.EmitNullConstant(D.getType()); +      } +    InConstantContext = true; +  } + +  QualType destType = D.getType(); + +  // Try to emit the initializer.  Note that this can allow some things that +  // are not allowed by tryEmitPrivateForMemory alone. +  if (auto value = D.evaluateValue()) { +    return tryEmitPrivateForMemory(*value, destType); +  } + +  // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a +  // reference is a constant expression, and the reference binds to a temporary, +  // then constant initialization is performed. ConstExprEmitter will +  // incorrectly emit a prvalue constant in this case, and the calling code +  // interprets that as the (pointer) value of the reference, rather than the +  // desired value of the referee. +  if (destType->isReferenceType()) +    return nullptr; + +  const Expr *E = D.getInit(); +  assert(E && "No initializer to emit"); + +  auto nonMemoryDestType = getNonMemoryType(CGM, destType); +  auto C = +    ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), nonMemoryDestType); +  return (C ? emitForMemory(C, destType) : nullptr); +} + +llvm::Constant * +ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) { +  auto nonMemoryDestType = getNonMemoryType(CGM, destType); +  auto C = tryEmitAbstract(E, nonMemoryDestType); +  return (C ? emitForMemory(C, destType) : nullptr); +} + +llvm::Constant * +ConstantEmitter::tryEmitAbstractForMemory(const APValue &value, +                                          QualType destType) { +  auto nonMemoryDestType = getNonMemoryType(CGM, destType); +  auto C = tryEmitAbstract(value, nonMemoryDestType); +  return (C ? emitForMemory(C, destType) : nullptr); +} + +llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E, +                                                         QualType destType) { +  auto nonMemoryDestType = getNonMemoryType(CGM, destType); +  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType); +  return (C ? emitForMemory(C, destType) : nullptr); +} + +llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value, +                                                         QualType destType) { +  auto nonMemoryDestType = getNonMemoryType(CGM, destType); +  auto C = tryEmitPrivate(value, nonMemoryDestType); +  return (C ? emitForMemory(C, destType) : nullptr); +} + +llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM, +                                               llvm::Constant *C, +                                               QualType destType) { +  // For an _Atomic-qualified constant, we may need to add tail padding. +  if (auto AT = destType->getAs<AtomicType>()) { +    QualType destValueType = AT->getValueType(); +    C = emitForMemory(CGM, C, destValueType); + +    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType); +    uint64_t outerSize = CGM.getContext().getTypeSize(destType); +    if (innerSize == outerSize) +      return C; + +    assert(innerSize < outerSize && "emitted over-large constant for atomic"); +    llvm::Constant *elts[] = { +      C, +      llvm::ConstantAggregateZero::get( +          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8)) +    }; +    return llvm::ConstantStruct::getAnon(elts); +  } + +  // Zero-extend bool. +  if (C->getType()->isIntegerTy(1)) { +    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType); +    return llvm::ConstantExpr::getZExt(C, boolTy); +  } + +  return C; +} + +llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E, +                                                QualType destType) { +  Expr::EvalResult Result; + +  bool Success = false; + +  if (destType->isReferenceType()) +    Success = E->EvaluateAsLValue(Result, CGM.getContext()); +  else +    Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext); + +  llvm::Constant *C; +  if (Success && !Result.HasSideEffects) +    C = tryEmitPrivate(Result.Val, destType); +  else +    C = ConstExprEmitter(*this).Visit(const_cast<Expr*>(E), destType); + +  return C; +} + +llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) { +  return getTargetCodeGenInfo().getNullPointer(*this, T, QT); +} + +namespace { +/// A struct which can be used to peephole certain kinds of finalization +/// that normally happen during l-value emission. +struct ConstantLValue { +  llvm::Constant *Value; +  bool HasOffsetApplied; + +  /*implicit*/ ConstantLValue(llvm::Constant *value, +                              bool hasOffsetApplied = false) +    : Value(value), HasOffsetApplied(false) {} + +  /*implicit*/ ConstantLValue(ConstantAddress address) +    : ConstantLValue(address.getPointer()) {} +}; + +/// A helper class for emitting constant l-values. +class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter, +                                                      ConstantLValue> { +  CodeGenModule &CGM; +  ConstantEmitter &Emitter; +  const APValue &Value; +  QualType DestType; + +  // Befriend StmtVisitorBase so that we don't have to expose Visit*. +  friend StmtVisitorBase; + +public: +  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value, +                        QualType destType) +    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {} + +  llvm::Constant *tryEmit(); + +private: +  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy); +  ConstantLValue tryEmitBase(const APValue::LValueBase &base); + +  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; } +  ConstantLValue VisitConstantExpr(const ConstantExpr *E); +  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); +  ConstantLValue VisitStringLiteral(const StringLiteral *E); +  ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E); +  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E); +  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E); +  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E); +  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E); +  ConstantLValue VisitCallExpr(const CallExpr *E); +  ConstantLValue VisitBlockExpr(const BlockExpr *E); +  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E); +  ConstantLValue VisitCXXUuidofExpr(const CXXUuidofExpr *E); +  ConstantLValue VisitMaterializeTemporaryExpr( +                                         const MaterializeTemporaryExpr *E); + +  bool hasNonZeroOffset() const { +    return !Value.getLValueOffset().isZero(); +  } + +  /// Return the value offset. +  llvm::Constant *getOffset() { +    return llvm::ConstantInt::get(CGM.Int64Ty, +                                  Value.getLValueOffset().getQuantity()); +  } + +  /// Apply the value offset to the given constant. +  llvm::Constant *applyOffset(llvm::Constant *C) { +    if (!hasNonZeroOffset()) +      return C; + +    llvm::Type *origPtrTy = C->getType(); +    unsigned AS = origPtrTy->getPointerAddressSpace(); +    llvm::Type *charPtrTy = CGM.Int8Ty->getPointerTo(AS); +    C = llvm::ConstantExpr::getBitCast(C, charPtrTy); +    C = llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset()); +    C = llvm::ConstantExpr::getPointerCast(C, origPtrTy); +    return C; +  } +}; + +} + +llvm::Constant *ConstantLValueEmitter::tryEmit() { +  const APValue::LValueBase &base = Value.getLValueBase(); + +  // The destination type should be a pointer or reference +  // type, but it might also be a cast thereof. +  // +  // FIXME: the chain of casts required should be reflected in the APValue. +  // We need this in order to correctly handle things like a ptrtoint of a +  // non-zero null pointer and addrspace casts that aren't trivially +  // represented in LLVM IR. +  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType); +  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy)); + +  // If there's no base at all, this is a null or absolute pointer, +  // possibly cast back to an integer type. +  if (!base) { +    return tryEmitAbsolute(destTy); +  } + +  // Otherwise, try to emit the base. +  ConstantLValue result = tryEmitBase(base); + +  // If that failed, we're done. +  llvm::Constant *value = result.Value; +  if (!value) return nullptr; + +  // Apply the offset if necessary and not already done. +  if (!result.HasOffsetApplied) { +    value = applyOffset(value); +  } + +  // Convert to the appropriate type; this could be an lvalue for +  // an integer.  FIXME: performAddrSpaceCast +  if (isa<llvm::PointerType>(destTy)) +    return llvm::ConstantExpr::getPointerCast(value, destTy); + +  return llvm::ConstantExpr::getPtrToInt(value, destTy); +} + +/// Try to emit an absolute l-value, such as a null pointer or an integer +/// bitcast to pointer type. +llvm::Constant * +ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) { +  // If we're producing a pointer, this is easy. +  auto destPtrTy = cast<llvm::PointerType>(destTy); +  if (Value.isNullPointer()) { +    // FIXME: integer offsets from non-zero null pointers. +    return CGM.getNullPointer(destPtrTy, DestType); +  } + +  // Convert the integer to a pointer-sized integer before converting it +  // to a pointer. +  // FIXME: signedness depends on the original integer type. +  auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy); +  llvm::Constant *C; +  C = llvm::ConstantExpr::getIntegerCast(getOffset(), intptrTy, +                                         /*isSigned*/ false); +  C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy); +  return C; +} + +ConstantLValue +ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) { +  // Handle values. +  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) { +    if (D->hasAttr<WeakRefAttr>()) +      return CGM.GetWeakRefReference(D).getPointer(); + +    if (auto FD = dyn_cast<FunctionDecl>(D)) +      return CGM.GetAddrOfFunction(FD); + +    if (auto VD = dyn_cast<VarDecl>(D)) { +      // We can never refer to a variable with local storage. +      if (!VD->hasLocalStorage()) { +        if (VD->isFileVarDecl() || VD->hasExternalStorage()) +          return CGM.GetAddrOfGlobalVar(VD); + +        if (VD->isLocalVarDecl()) { +          return CGM.getOrCreateStaticVarDecl( +              *VD, CGM.getLLVMLinkageVarDefinition(VD, /*IsConstant=*/false)); +        } +      } +    } + +    return nullptr; +  } + +  // Handle typeid(T). +  if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>()) { +    llvm::Type *StdTypeInfoPtrTy = +        CGM.getTypes().ConvertType(base.getTypeInfoType())->getPointerTo(); +    llvm::Constant *TypeInfo = +        CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0)); +    if (TypeInfo->getType() != StdTypeInfoPtrTy) +      TypeInfo = llvm::ConstantExpr::getBitCast(TypeInfo, StdTypeInfoPtrTy); +    return TypeInfo; +  } + +  // Otherwise, it must be an expression. +  return Visit(base.get<const Expr*>()); +} + +ConstantLValue +ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) { +  return Visit(E->getSubExpr()); +} + +ConstantLValue +ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { +  return tryEmitGlobalCompoundLiteral(CGM, Emitter.CGF, E); +} + +ConstantLValue +ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) { +  return CGM.GetAddrOfConstantStringFromLiteral(E); +} + +ConstantLValue +ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { +  return CGM.GetAddrOfConstantStringFromObjCEncode(E); +} + +static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S, +                                                    QualType T, +                                                    CodeGenModule &CGM) { +  auto C = CGM.getObjCRuntime().GenerateConstantString(S); +  return C.getElementBitCast(CGM.getTypes().ConvertTypeForMem(T)); +} + +ConstantLValue +ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) { +  return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM); +} + +ConstantLValue +ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { +  assert(E->isExpressibleAsConstantInitializer() && +         "this boxed expression can't be emitted as a compile-time constant"); +  auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts()); +  return emitConstantObjCStringLiteral(SL, E->getType(), CGM); +} + +ConstantLValue +ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) { +  return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName()); +} + +ConstantLValue +ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) { +  assert(Emitter.CGF && "Invalid address of label expression outside function"); +  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel()); +  Ptr = llvm::ConstantExpr::getBitCast(Ptr, +                                   CGM.getTypes().ConvertType(E->getType())); +  return Ptr; +} + +ConstantLValue +ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) { +  unsigned builtin = E->getBuiltinCallee(); +  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString && +      builtin != Builtin::BI__builtin___NSStringMakeConstantString) +    return nullptr; + +  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts()); +  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) { +    return CGM.getObjCRuntime().GenerateConstantString(literal); +  } else { +    // FIXME: need to deal with UCN conversion issues. +    return CGM.GetAddrOfConstantCFString(literal); +  } +} + +ConstantLValue +ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) { +  StringRef functionName; +  if (auto CGF = Emitter.CGF) +    functionName = CGF->CurFn->getName(); +  else +    functionName = "global"; + +  return CGM.GetAddrOfGlobalBlock(E, functionName); +} + +ConstantLValue +ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { +  QualType T; +  if (E->isTypeOperand()) +    T = E->getTypeOperand(CGM.getContext()); +  else +    T = E->getExprOperand()->getType(); +  return CGM.GetAddrOfRTTIDescriptor(T); +} + +ConstantLValue +ConstantLValueEmitter::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { +  return CGM.GetAddrOfUuidDescriptor(E); +} + +ConstantLValue +ConstantLValueEmitter::VisitMaterializeTemporaryExpr( +                                            const MaterializeTemporaryExpr *E) { +  assert(E->getStorageDuration() == SD_Static); +  SmallVector<const Expr *, 2> CommaLHSs; +  SmallVector<SubobjectAdjustment, 2> Adjustments; +  const Expr *Inner = E->GetTemporaryExpr() +      ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); +  return CGM.GetAddrOfGlobalTemporary(E, Inner); +} + +llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value, +                                                QualType DestType) { +  switch (Value.getKind()) { +  case APValue::None: +  case APValue::Indeterminate: +    // Out-of-lifetime and indeterminate values can be modeled as 'undef'. +    return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType)); +  case APValue::LValue: +    return ConstantLValueEmitter(*this, Value, DestType).tryEmit(); +  case APValue::Int: +    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt()); +  case APValue::FixedPoint: +    return llvm::ConstantInt::get(CGM.getLLVMContext(), +                                  Value.getFixedPoint().getValue()); +  case APValue::ComplexInt: { +    llvm::Constant *Complex[2]; + +    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(), +                                        Value.getComplexIntReal()); +    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(), +                                        Value.getComplexIntImag()); + +    // FIXME: the target may want to specify that this is packed. +    llvm::StructType *STy = +        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); +    return llvm::ConstantStruct::get(STy, Complex); +  } +  case APValue::Float: { +    const llvm::APFloat &Init = Value.getFloat(); +    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() && +        !CGM.getContext().getLangOpts().NativeHalfType && +        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics()) +      return llvm::ConstantInt::get(CGM.getLLVMContext(), +                                    Init.bitcastToAPInt()); +    else +      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init); +  } +  case APValue::ComplexFloat: { +    llvm::Constant *Complex[2]; + +    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(), +                                       Value.getComplexFloatReal()); +    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(), +                                       Value.getComplexFloatImag()); + +    // FIXME: the target may want to specify that this is packed. +    llvm::StructType *STy = +        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType()); +    return llvm::ConstantStruct::get(STy, Complex); +  } +  case APValue::Vector: { +    unsigned NumElts = Value.getVectorLength(); +    SmallVector<llvm::Constant *, 4> Inits(NumElts); + +    for (unsigned I = 0; I != NumElts; ++I) { +      const APValue &Elt = Value.getVectorElt(I); +      if (Elt.isInt()) +        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt()); +      else if (Elt.isFloat()) +        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat()); +      else +        llvm_unreachable("unsupported vector element type"); +    } +    return llvm::ConstantVector::get(Inits); +  } +  case APValue::AddrLabelDiff: { +    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); +    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); +    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType()); +    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType()); +    if (!LHS || !RHS) return nullptr; + +    // Compute difference +    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType); +    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy); +    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy); +    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); + +    // LLVM is a bit sensitive about the exact format of the +    // address-of-label difference; make sure to truncate after +    // the subtraction. +    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); +  } +  case APValue::Struct: +  case APValue::Union: +    return ConstStructBuilder::BuildStruct(*this, Value, DestType); +  case APValue::Array: { +    const ConstantArrayType *CAT = +        CGM.getContext().getAsConstantArrayType(DestType); +    unsigned NumElements = Value.getArraySize(); +    unsigned NumInitElts = Value.getArrayInitializedElts(); + +    // Emit array filler, if there is one. +    llvm::Constant *Filler = nullptr; +    if (Value.hasArrayFiller()) { +      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(), +                                        CAT->getElementType()); +      if (!Filler) +        return nullptr; +    } + +    // Emit initializer elements. +    SmallVector<llvm::Constant*, 16> Elts; +    if (Filler && Filler->isNullValue()) +      Elts.reserve(NumInitElts + 1); +    else +      Elts.reserve(NumElements); + +    llvm::Type *CommonElementType = nullptr; +    for (unsigned I = 0; I < NumInitElts; ++I) { +      llvm::Constant *C = tryEmitPrivateForMemory( +          Value.getArrayInitializedElt(I), CAT->getElementType()); +      if (!C) return nullptr; + +      if (I == 0) +        CommonElementType = C->getType(); +      else if (C->getType() != CommonElementType) +        CommonElementType = nullptr; +      Elts.push_back(C); +    } + +    // This means that the array type is probably "IncompleteType" or some +    // type that is not ConstantArray. +    if (CAT == nullptr && CommonElementType == nullptr && !NumInitElts) { +      const ArrayType *AT = CGM.getContext().getAsArrayType(DestType); +      CommonElementType = CGM.getTypes().ConvertType(AT->getElementType()); +      llvm::ArrayType *AType = llvm::ArrayType::get(CommonElementType, +                                                    NumElements); +      return llvm::ConstantAggregateZero::get(AType); +    } + +    llvm::ArrayType *Desired = +        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType)); +    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts, +                             Filler); +  } +  case APValue::MemberPointer: +    return CGM.getCXXABI().EmitMemberPointer(Value, DestType); +  } +  llvm_unreachable("Unknown APValue kind"); +} + +llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted( +    const CompoundLiteralExpr *E) { +  return EmittedCompoundLiterals.lookup(E); +} + +void CodeGenModule::setAddrOfConstantCompoundLiteral( +    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) { +  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second; +  (void)Ok; +  assert(Ok && "CLE has already been emitted!"); +} + +ConstantAddress +CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { +  assert(E->isFileScope() && "not a file-scope compound literal expr"); +  return tryEmitGlobalCompoundLiteral(*this, nullptr, E); +} + +llvm::Constant * +CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { +  // Member pointer constants always have a very particular form. +  const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); +  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); + +  // A member function pointer. +  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) +    return getCXXABI().EmitMemberFunctionPointer(method); + +  // Otherwise, a member data pointer. +  uint64_t fieldOffset = getContext().getFieldOffset(decl); +  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); +  return getCXXABI().EmitMemberDataPointer(type, chars); +} + +static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, +                                               llvm::Type *baseType, +                                               const CXXRecordDecl *base); + +static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, +                                        const RecordDecl *record, +                                        bool asCompleteObject) { +  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); +  llvm::StructType *structure = +    (asCompleteObject ? layout.getLLVMType() +                      : layout.getBaseSubobjectLLVMType()); + +  unsigned numElements = structure->getNumElements(); +  std::vector<llvm::Constant *> elements(numElements); + +  auto CXXR = dyn_cast<CXXRecordDecl>(record); +  // Fill in all the bases. +  if (CXXR) { +    for (const auto &I : CXXR->bases()) { +      if (I.isVirtual()) { +        // Ignore virtual bases; if we're laying out for a complete +        // object, we'll lay these out later. +        continue; +      } + +      const CXXRecordDecl *base = +        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); + +      // Ignore empty bases. +      if (base->isEmpty() || +          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize() +              .isZero()) +        continue; + +      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); +      llvm::Type *baseType = structure->getElementType(fieldIndex); +      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); +    } +  } + +  // Fill in all the fields. +  for (const auto *Field : record->fields()) { +    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we +    // will fill in later.) +    if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) { +      unsigned fieldIndex = layout.getLLVMFieldNo(Field); +      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); +    } + +    // For unions, stop after the first named field. +    if (record->isUnion()) { +      if (Field->getIdentifier()) +        break; +      if (const auto *FieldRD = Field->getType()->getAsRecordDecl()) +        if (FieldRD->findFirstNamedDataMember()) +          break; +    } +  } + +  // Fill in the virtual bases, if we're working with the complete object. +  if (CXXR && asCompleteObject) { +    for (const auto &I : CXXR->vbases()) { +      const CXXRecordDecl *base = +        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); + +      // Ignore empty bases. +      if (base->isEmpty()) +        continue; + +      unsigned fieldIndex = layout.getVirtualBaseIndex(base); + +      // We might have already laid this field out. +      if (elements[fieldIndex]) continue; + +      llvm::Type *baseType = structure->getElementType(fieldIndex); +      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); +    } +  } + +  // Now go through all other fields and zero them out. +  for (unsigned i = 0; i != numElements; ++i) { +    if (!elements[i]) +      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); +  } + +  return llvm::ConstantStruct::get(structure, elements); +} + +/// Emit the null constant for a base subobject. +static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, +                                               llvm::Type *baseType, +                                               const CXXRecordDecl *base) { +  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); + +  // Just zero out bases that don't have any pointer to data members. +  if (baseLayout.isZeroInitializableAsBase()) +    return llvm::Constant::getNullValue(baseType); + +  // Otherwise, we can just use its null constant. +  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); +} + +llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM, +                                                   QualType T) { +  return emitForMemory(CGM, CGM.EmitNullConstant(T), T); +} + +llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { +  if (T->getAs<PointerType>()) +    return getNullPointer( +        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T); + +  if (getTypes().isZeroInitializable(T)) +    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); + +  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { +    llvm::ArrayType *ATy = +      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); + +    QualType ElementTy = CAT->getElementType(); + +    llvm::Constant *Element = +      ConstantEmitter::emitNullForMemory(*this, ElementTy); +    unsigned NumElements = CAT->getSize().getZExtValue(); +    SmallVector<llvm::Constant *, 8> Array(NumElements, Element); +    return llvm::ConstantArray::get(ATy, Array); +  } + +  if (const RecordType *RT = T->getAs<RecordType>()) +    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true); + +  assert(T->isMemberDataPointerType() && +         "Should only see pointers to data members here!"); + +  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); +} + +llvm::Constant * +CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { +  return ::EmitNullConstant(*this, Record, false); +}  | 
