summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp5604
1 files changed, 5604 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp b/contrib/llvm-project/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp
new file mode 100644
index 000000000000..67343d11d333
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/Sema/SemaTemplateInstantiateDecl.cpp
@@ -0,0 +1,5604 @@
+//===--- SemaTemplateInstantiateDecl.cpp - C++ Template Decl Instantiation ===/
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//===----------------------------------------------------------------------===/
+//
+// This file implements C++ template instantiation for declarations.
+//
+//===----------------------------------------------------------------------===/
+#include "clang/Sema/SemaInternal.h"
+#include "clang/AST/ASTConsumer.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTMutationListener.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/DeclVisitor.h"
+#include "clang/AST/DependentDiagnostic.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/PrettyDeclStackTrace.h"
+#include "clang/AST/TypeLoc.h"
+#include "clang/Sema/Initialization.h"
+#include "clang/Sema/Lookup.h"
+#include "clang/Sema/Template.h"
+#include "clang/Sema/TemplateInstCallback.h"
+#include "llvm/Support/TimeProfiler.h"
+
+using namespace clang;
+
+static bool isDeclWithinFunction(const Decl *D) {
+ const DeclContext *DC = D->getDeclContext();
+ if (DC->isFunctionOrMethod())
+ return true;
+
+ if (DC->isRecord())
+ return cast<CXXRecordDecl>(DC)->isLocalClass();
+
+ return false;
+}
+
+template<typename DeclT>
+static bool SubstQualifier(Sema &SemaRef, const DeclT *OldDecl, DeclT *NewDecl,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ if (!OldDecl->getQualifierLoc())
+ return false;
+
+ assert((NewDecl->getFriendObjectKind() ||
+ !OldDecl->getLexicalDeclContext()->isDependentContext()) &&
+ "non-friend with qualified name defined in dependent context");
+ Sema::ContextRAII SavedContext(
+ SemaRef,
+ const_cast<DeclContext *>(NewDecl->getFriendObjectKind()
+ ? NewDecl->getLexicalDeclContext()
+ : OldDecl->getLexicalDeclContext()));
+
+ NestedNameSpecifierLoc NewQualifierLoc
+ = SemaRef.SubstNestedNameSpecifierLoc(OldDecl->getQualifierLoc(),
+ TemplateArgs);
+
+ if (!NewQualifierLoc)
+ return true;
+
+ NewDecl->setQualifierInfo(NewQualifierLoc);
+ return false;
+}
+
+bool TemplateDeclInstantiator::SubstQualifier(const DeclaratorDecl *OldDecl,
+ DeclaratorDecl *NewDecl) {
+ return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
+}
+
+bool TemplateDeclInstantiator::SubstQualifier(const TagDecl *OldDecl,
+ TagDecl *NewDecl) {
+ return ::SubstQualifier(SemaRef, OldDecl, NewDecl, TemplateArgs);
+}
+
+// Include attribute instantiation code.
+#include "clang/Sema/AttrTemplateInstantiate.inc"
+
+static void instantiateDependentAlignedAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AlignedAttr *Aligned, Decl *New, bool IsPackExpansion) {
+ if (Aligned->isAlignmentExpr()) {
+ // The alignment expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+ ExprResult Result = S.SubstExpr(Aligned->getAlignmentExpr(), TemplateArgs);
+ if (!Result.isInvalid())
+ S.AddAlignedAttr(Aligned->getLocation(), New, Result.getAs<Expr>(),
+ Aligned->getSpellingListIndex(), IsPackExpansion);
+ } else {
+ TypeSourceInfo *Result = S.SubstType(Aligned->getAlignmentType(),
+ TemplateArgs, Aligned->getLocation(),
+ DeclarationName());
+ if (Result)
+ S.AddAlignedAttr(Aligned->getLocation(), New, Result,
+ Aligned->getSpellingListIndex(), IsPackExpansion);
+ }
+}
+
+static void instantiateDependentAlignedAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AlignedAttr *Aligned, Decl *New) {
+ if (!Aligned->isPackExpansion()) {
+ instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
+ return;
+ }
+
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ if (Aligned->isAlignmentExpr())
+ S.collectUnexpandedParameterPacks(Aligned->getAlignmentExpr(),
+ Unexpanded);
+ else
+ S.collectUnexpandedParameterPacks(Aligned->getAlignmentType()->getTypeLoc(),
+ Unexpanded);
+ assert(!Unexpanded.empty() && "Pack expansion without parameter packs?");
+
+ // Determine whether we can expand this attribute pack yet.
+ bool Expand = true, RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ // FIXME: Use the actual location of the ellipsis.
+ SourceLocation EllipsisLoc = Aligned->getLocation();
+ if (S.CheckParameterPacksForExpansion(EllipsisLoc, Aligned->getRange(),
+ Unexpanded, TemplateArgs, Expand,
+ RetainExpansion, NumExpansions))
+ return;
+
+ if (!Expand) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, -1);
+ instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, true);
+ } else {
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, I);
+ instantiateDependentAlignedAttr(S, TemplateArgs, Aligned, New, false);
+ }
+ }
+}
+
+static void instantiateDependentAssumeAlignedAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AssumeAlignedAttr *Aligned, Decl *New) {
+ // The alignment expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ Expr *E, *OE = nullptr;
+ ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ E = Result.getAs<Expr>();
+
+ if (Aligned->getOffset()) {
+ Result = S.SubstExpr(Aligned->getOffset(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ OE = Result.getAs<Expr>();
+ }
+
+ S.AddAssumeAlignedAttr(Aligned->getLocation(), New, E, OE,
+ Aligned->getSpellingListIndex());
+}
+
+static void instantiateDependentAlignValueAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AlignValueAttr *Aligned, Decl *New) {
+ // The alignment expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+ ExprResult Result = S.SubstExpr(Aligned->getAlignment(), TemplateArgs);
+ if (!Result.isInvalid())
+ S.AddAlignValueAttr(Aligned->getLocation(), New, Result.getAs<Expr>(),
+ Aligned->getSpellingListIndex());
+}
+
+static void instantiateDependentAllocAlignAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AllocAlignAttr *Align, Decl *New) {
+ Expr *Param = IntegerLiteral::Create(
+ S.getASTContext(),
+ llvm::APInt(64, Align->getParamIndex().getSourceIndex()),
+ S.getASTContext().UnsignedLongLongTy, Align->getLocation());
+ S.AddAllocAlignAttr(Align->getLocation(), New, Param,
+ Align->getSpellingListIndex());
+}
+
+static Expr *instantiateDependentFunctionAttrCondition(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const Attr *A, Expr *OldCond, const Decl *Tmpl, FunctionDecl *New) {
+ Expr *Cond = nullptr;
+ {
+ Sema::ContextRAII SwitchContext(S, New);
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+ ExprResult Result = S.SubstExpr(OldCond, TemplateArgs);
+ if (Result.isInvalid())
+ return nullptr;
+ Cond = Result.getAs<Expr>();
+ }
+ if (!Cond->isTypeDependent()) {
+ ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
+ if (Converted.isInvalid())
+ return nullptr;
+ Cond = Converted.get();
+ }
+
+ SmallVector<PartialDiagnosticAt, 8> Diags;
+ if (OldCond->isValueDependent() && !Cond->isValueDependent() &&
+ !Expr::isPotentialConstantExprUnevaluated(Cond, New, Diags)) {
+ S.Diag(A->getLocation(), diag::err_attr_cond_never_constant_expr) << A;
+ for (const auto &P : Diags)
+ S.Diag(P.first, P.second);
+ return nullptr;
+ }
+ return Cond;
+}
+
+static void instantiateDependentEnableIfAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const EnableIfAttr *EIA, const Decl *Tmpl, FunctionDecl *New) {
+ Expr *Cond = instantiateDependentFunctionAttrCondition(
+ S, TemplateArgs, EIA, EIA->getCond(), Tmpl, New);
+
+ if (Cond)
+ New->addAttr(new (S.getASTContext()) EnableIfAttr(
+ EIA->getLocation(), S.getASTContext(), Cond, EIA->getMessage(),
+ EIA->getSpellingListIndex()));
+}
+
+static void instantiateDependentDiagnoseIfAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const DiagnoseIfAttr *DIA, const Decl *Tmpl, FunctionDecl *New) {
+ Expr *Cond = instantiateDependentFunctionAttrCondition(
+ S, TemplateArgs, DIA, DIA->getCond(), Tmpl, New);
+
+ if (Cond)
+ New->addAttr(new (S.getASTContext()) DiagnoseIfAttr(
+ DIA->getLocation(), S.getASTContext(), Cond, DIA->getMessage(),
+ DIA->getDiagnosticType(), DIA->getArgDependent(), New,
+ DIA->getSpellingListIndex()));
+}
+
+// Constructs and adds to New a new instance of CUDALaunchBoundsAttr using
+// template A as the base and arguments from TemplateArgs.
+static void instantiateDependentCUDALaunchBoundsAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const CUDALaunchBoundsAttr &Attr, Decl *New) {
+ // The alignment expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ ExprResult Result = S.SubstExpr(Attr.getMaxThreads(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ Expr *MaxThreads = Result.getAs<Expr>();
+
+ Expr *MinBlocks = nullptr;
+ if (Attr.getMinBlocks()) {
+ Result = S.SubstExpr(Attr.getMinBlocks(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ MinBlocks = Result.getAs<Expr>();
+ }
+
+ S.AddLaunchBoundsAttr(Attr.getLocation(), New, MaxThreads, MinBlocks,
+ Attr.getSpellingListIndex());
+}
+
+static void
+instantiateDependentModeAttr(Sema &S,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ const ModeAttr &Attr, Decl *New) {
+ S.AddModeAttr(Attr.getRange(), New, Attr.getMode(),
+ Attr.getSpellingListIndex(), /*InInstantiation=*/true);
+}
+
+/// Instantiation of 'declare simd' attribute and its arguments.
+static void instantiateOMPDeclareSimdDeclAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const OMPDeclareSimdDeclAttr &Attr, Decl *New) {
+ // Allow 'this' in clauses with varlists.
+ if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
+ New = FTD->getTemplatedDecl();
+ auto *FD = cast<FunctionDecl>(New);
+ auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
+ SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps;
+ SmallVector<unsigned, 4> LinModifiers;
+
+ auto SubstExpr = [&](Expr *E) -> ExprResult {
+ if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
+ if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
+ Sema::ContextRAII SavedContext(S, FD);
+ LocalInstantiationScope Local(S);
+ if (FD->getNumParams() > PVD->getFunctionScopeIndex())
+ Local.InstantiatedLocal(
+ PVD, FD->getParamDecl(PVD->getFunctionScopeIndex()));
+ return S.SubstExpr(E, TemplateArgs);
+ }
+ Sema::CXXThisScopeRAII ThisScope(S, ThisContext, Qualifiers(),
+ FD->isCXXInstanceMember());
+ return S.SubstExpr(E, TemplateArgs);
+ };
+
+ // Substitute a single OpenMP clause, which is a potentially-evaluated
+ // full-expression.
+ auto Subst = [&](Expr *E) -> ExprResult {
+ EnterExpressionEvaluationContext Evaluated(
+ S, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
+ ExprResult Res = SubstExpr(E);
+ if (Res.isInvalid())
+ return Res;
+ return S.ActOnFinishFullExpr(Res.get(), false);
+ };
+
+ ExprResult Simdlen;
+ if (auto *E = Attr.getSimdlen())
+ Simdlen = Subst(E);
+
+ if (Attr.uniforms_size() > 0) {
+ for(auto *E : Attr.uniforms()) {
+ ExprResult Inst = Subst(E);
+ if (Inst.isInvalid())
+ continue;
+ Uniforms.push_back(Inst.get());
+ }
+ }
+
+ auto AI = Attr.alignments_begin();
+ for (auto *E : Attr.aligneds()) {
+ ExprResult Inst = Subst(E);
+ if (Inst.isInvalid())
+ continue;
+ Aligneds.push_back(Inst.get());
+ Inst = ExprEmpty();
+ if (*AI)
+ Inst = S.SubstExpr(*AI, TemplateArgs);
+ Alignments.push_back(Inst.get());
+ ++AI;
+ }
+
+ auto SI = Attr.steps_begin();
+ for (auto *E : Attr.linears()) {
+ ExprResult Inst = Subst(E);
+ if (Inst.isInvalid())
+ continue;
+ Linears.push_back(Inst.get());
+ Inst = ExprEmpty();
+ if (*SI)
+ Inst = S.SubstExpr(*SI, TemplateArgs);
+ Steps.push_back(Inst.get());
+ ++SI;
+ }
+ LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end());
+ (void)S.ActOnOpenMPDeclareSimdDirective(
+ S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(),
+ Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps,
+ Attr.getRange());
+}
+
+static void instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AMDGPUFlatWorkGroupSizeAttr &Attr, Decl *New) {
+ // Both min and max expression are constant expressions.
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ Expr *MinExpr = Result.getAs<Expr>();
+
+ Result = S.SubstExpr(Attr.getMax(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ Expr *MaxExpr = Result.getAs<Expr>();
+
+ S.addAMDGPUFlatWorkGroupSizeAttr(Attr.getLocation(), New, MinExpr, MaxExpr,
+ Attr.getSpellingListIndex());
+}
+
+static ExplicitSpecifier
+instantiateExplicitSpecifier(Sema &S,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ ExplicitSpecifier ES, FunctionDecl *New) {
+ if (!ES.getExpr())
+ return ES;
+ Expr *OldCond = ES.getExpr();
+ Expr *Cond = nullptr;
+ {
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+ ExprResult SubstResult = S.SubstExpr(OldCond, TemplateArgs);
+ if (SubstResult.isInvalid()) {
+ return ExplicitSpecifier::Invalid();
+ }
+ Cond = SubstResult.get();
+ }
+ ExplicitSpecifier Result(Cond, ES.getKind());
+ if (!Cond->isTypeDependent())
+ S.tryResolveExplicitSpecifier(Result);
+ return Result;
+}
+
+static void instantiateDependentAMDGPUWavesPerEUAttr(
+ Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
+ const AMDGPUWavesPerEUAttr &Attr, Decl *New) {
+ // Both min and max expression are constant expressions.
+ EnterExpressionEvaluationContext Unevaluated(
+ S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ ExprResult Result = S.SubstExpr(Attr.getMin(), TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ Expr *MinExpr = Result.getAs<Expr>();
+
+ Expr *MaxExpr = nullptr;
+ if (auto Max = Attr.getMax()) {
+ Result = S.SubstExpr(Max, TemplateArgs);
+ if (Result.isInvalid())
+ return;
+ MaxExpr = Result.getAs<Expr>();
+ }
+
+ S.addAMDGPUWavesPerEUAttr(Attr.getLocation(), New, MinExpr, MaxExpr,
+ Attr.getSpellingListIndex());
+}
+
+void Sema::InstantiateAttrsForDecl(
+ const MultiLevelTemplateArgumentList &TemplateArgs, const Decl *Tmpl,
+ Decl *New, LateInstantiatedAttrVec *LateAttrs,
+ LocalInstantiationScope *OuterMostScope) {
+ if (NamedDecl *ND = dyn_cast<NamedDecl>(New)) {
+ for (const auto *TmplAttr : Tmpl->attrs()) {
+ // FIXME: If any of the special case versions from InstantiateAttrs become
+ // applicable to template declaration, we'll need to add them here.
+ CXXThisScopeRAII ThisScope(
+ *this, dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext()),
+ Qualifiers(), ND->isCXXInstanceMember());
+
+ Attr *NewAttr = sema::instantiateTemplateAttributeForDecl(
+ TmplAttr, Context, *this, TemplateArgs);
+ if (NewAttr)
+ New->addAttr(NewAttr);
+ }
+ }
+}
+
+static Sema::RetainOwnershipKind
+attrToRetainOwnershipKind(const Attr *A) {
+ switch (A->getKind()) {
+ case clang::attr::CFConsumed:
+ return Sema::RetainOwnershipKind::CF;
+ case clang::attr::OSConsumed:
+ return Sema::RetainOwnershipKind::OS;
+ case clang::attr::NSConsumed:
+ return Sema::RetainOwnershipKind::NS;
+ default:
+ llvm_unreachable("Wrong argument supplied");
+ }
+}
+
+void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,
+ const Decl *Tmpl, Decl *New,
+ LateInstantiatedAttrVec *LateAttrs,
+ LocalInstantiationScope *OuterMostScope) {
+ for (const auto *TmplAttr : Tmpl->attrs()) {
+ // FIXME: This should be generalized to more than just the AlignedAttr.
+ const AlignedAttr *Aligned = dyn_cast<AlignedAttr>(TmplAttr);
+ if (Aligned && Aligned->isAlignmentDependent()) {
+ instantiateDependentAlignedAttr(*this, TemplateArgs, Aligned, New);
+ continue;
+ }
+
+ const AssumeAlignedAttr *AssumeAligned = dyn_cast<AssumeAlignedAttr>(TmplAttr);
+ if (AssumeAligned) {
+ instantiateDependentAssumeAlignedAttr(*this, TemplateArgs, AssumeAligned, New);
+ continue;
+ }
+
+ const AlignValueAttr *AlignValue = dyn_cast<AlignValueAttr>(TmplAttr);
+ if (AlignValue) {
+ instantiateDependentAlignValueAttr(*this, TemplateArgs, AlignValue, New);
+ continue;
+ }
+
+ if (const auto *AllocAlign = dyn_cast<AllocAlignAttr>(TmplAttr)) {
+ instantiateDependentAllocAlignAttr(*this, TemplateArgs, AllocAlign, New);
+ continue;
+ }
+
+
+ if (const auto *EnableIf = dyn_cast<EnableIfAttr>(TmplAttr)) {
+ instantiateDependentEnableIfAttr(*this, TemplateArgs, EnableIf, Tmpl,
+ cast<FunctionDecl>(New));
+ continue;
+ }
+
+ if (const auto *DiagnoseIf = dyn_cast<DiagnoseIfAttr>(TmplAttr)) {
+ instantiateDependentDiagnoseIfAttr(*this, TemplateArgs, DiagnoseIf, Tmpl,
+ cast<FunctionDecl>(New));
+ continue;
+ }
+
+ if (const CUDALaunchBoundsAttr *CUDALaunchBounds =
+ dyn_cast<CUDALaunchBoundsAttr>(TmplAttr)) {
+ instantiateDependentCUDALaunchBoundsAttr(*this, TemplateArgs,
+ *CUDALaunchBounds, New);
+ continue;
+ }
+
+ if (const ModeAttr *Mode = dyn_cast<ModeAttr>(TmplAttr)) {
+ instantiateDependentModeAttr(*this, TemplateArgs, *Mode, New);
+ continue;
+ }
+
+ if (const auto *OMPAttr = dyn_cast<OMPDeclareSimdDeclAttr>(TmplAttr)) {
+ instantiateOMPDeclareSimdDeclAttr(*this, TemplateArgs, *OMPAttr, New);
+ continue;
+ }
+
+ if (const AMDGPUFlatWorkGroupSizeAttr *AMDGPUFlatWorkGroupSize =
+ dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(TmplAttr)) {
+ instantiateDependentAMDGPUFlatWorkGroupSizeAttr(
+ *this, TemplateArgs, *AMDGPUFlatWorkGroupSize, New);
+ }
+
+ if (const AMDGPUWavesPerEUAttr *AMDGPUFlatWorkGroupSize =
+ dyn_cast<AMDGPUWavesPerEUAttr>(TmplAttr)) {
+ instantiateDependentAMDGPUWavesPerEUAttr(*this, TemplateArgs,
+ *AMDGPUFlatWorkGroupSize, New);
+ }
+
+ // Existing DLL attribute on the instantiation takes precedence.
+ if (TmplAttr->getKind() == attr::DLLExport ||
+ TmplAttr->getKind() == attr::DLLImport) {
+ if (New->hasAttr<DLLExportAttr>() || New->hasAttr<DLLImportAttr>()) {
+ continue;
+ }
+ }
+
+ if (auto ABIAttr = dyn_cast<ParameterABIAttr>(TmplAttr)) {
+ AddParameterABIAttr(ABIAttr->getRange(), New, ABIAttr->getABI(),
+ ABIAttr->getSpellingListIndex());
+ continue;
+ }
+
+ if (isa<NSConsumedAttr>(TmplAttr) || isa<OSConsumedAttr>(TmplAttr) ||
+ isa<CFConsumedAttr>(TmplAttr)) {
+ AddXConsumedAttr(New, TmplAttr->getRange(),
+ TmplAttr->getSpellingListIndex(),
+ attrToRetainOwnershipKind(TmplAttr),
+ /*template instantiation=*/true);
+ continue;
+ }
+
+ assert(!TmplAttr->isPackExpansion());
+ if (TmplAttr->isLateParsed() && LateAttrs) {
+ // Late parsed attributes must be instantiated and attached after the
+ // enclosing class has been instantiated. See Sema::InstantiateClass.
+ LocalInstantiationScope *Saved = nullptr;
+ if (CurrentInstantiationScope)
+ Saved = CurrentInstantiationScope->cloneScopes(OuterMostScope);
+ LateAttrs->push_back(LateInstantiatedAttribute(TmplAttr, Saved, New));
+ } else {
+ // Allow 'this' within late-parsed attributes.
+ NamedDecl *ND = dyn_cast<NamedDecl>(New);
+ CXXRecordDecl *ThisContext =
+ dyn_cast_or_null<CXXRecordDecl>(ND->getDeclContext());
+ CXXThisScopeRAII ThisScope(*this, ThisContext, Qualifiers(),
+ ND && ND->isCXXInstanceMember());
+
+ Attr *NewAttr = sema::instantiateTemplateAttribute(TmplAttr, Context,
+ *this, TemplateArgs);
+ if (NewAttr)
+ New->addAttr(NewAttr);
+ }
+ }
+}
+
+/// Get the previous declaration of a declaration for the purposes of template
+/// instantiation. If this finds a previous declaration, then the previous
+/// declaration of the instantiation of D should be an instantiation of the
+/// result of this function.
+template<typename DeclT>
+static DeclT *getPreviousDeclForInstantiation(DeclT *D) {
+ DeclT *Result = D->getPreviousDecl();
+
+ // If the declaration is within a class, and the previous declaration was
+ // merged from a different definition of that class, then we don't have a
+ // previous declaration for the purpose of template instantiation.
+ if (Result && isa<CXXRecordDecl>(D->getDeclContext()) &&
+ D->getLexicalDeclContext() != Result->getLexicalDeclContext())
+ return nullptr;
+
+ return Result;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitTranslationUnitDecl(TranslationUnitDecl *D) {
+ llvm_unreachable("Translation units cannot be instantiated");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitPragmaCommentDecl(PragmaCommentDecl *D) {
+ llvm_unreachable("pragma comment cannot be instantiated");
+}
+
+Decl *TemplateDeclInstantiator::VisitPragmaDetectMismatchDecl(
+ PragmaDetectMismatchDecl *D) {
+ llvm_unreachable("pragma comment cannot be instantiated");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitExternCContextDecl(ExternCContextDecl *D) {
+ llvm_unreachable("extern \"C\" context cannot be instantiated");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitLabelDecl(LabelDecl *D) {
+ LabelDecl *Inst = LabelDecl::Create(SemaRef.Context, Owner, D->getLocation(),
+ D->getIdentifier());
+ Owner->addDecl(Inst);
+ return Inst;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitNamespaceDecl(NamespaceDecl *D) {
+ llvm_unreachable("Namespaces cannot be instantiated");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitNamespaceAliasDecl(NamespaceAliasDecl *D) {
+ NamespaceAliasDecl *Inst
+ = NamespaceAliasDecl::Create(SemaRef.Context, Owner,
+ D->getNamespaceLoc(),
+ D->getAliasLoc(),
+ D->getIdentifier(),
+ D->getQualifierLoc(),
+ D->getTargetNameLoc(),
+ D->getNamespace());
+ Owner->addDecl(Inst);
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::InstantiateTypedefNameDecl(TypedefNameDecl *D,
+ bool IsTypeAlias) {
+ bool Invalid = false;
+ TypeSourceInfo *DI = D->getTypeSourceInfo();
+ if (DI->getType()->isInstantiationDependentType() ||
+ DI->getType()->isVariablyModifiedType()) {
+ DI = SemaRef.SubstType(DI, TemplateArgs,
+ D->getLocation(), D->getDeclName());
+ if (!DI) {
+ Invalid = true;
+ DI = SemaRef.Context.getTrivialTypeSourceInfo(SemaRef.Context.IntTy);
+ }
+ } else {
+ SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
+ }
+
+ // HACK: g++ has a bug where it gets the value kind of ?: wrong.
+ // libstdc++ relies upon this bug in its implementation of common_type.
+ // If we happen to be processing that implementation, fake up the g++ ?:
+ // semantics. See LWG issue 2141 for more information on the bug.
+ const DecltypeType *DT = DI->getType()->getAs<DecltypeType>();
+ CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D->getDeclContext());
+ if (DT && RD && isa<ConditionalOperator>(DT->getUnderlyingExpr()) &&
+ DT->isReferenceType() &&
+ RD->getEnclosingNamespaceContext() == SemaRef.getStdNamespace() &&
+ RD->getIdentifier() && RD->getIdentifier()->isStr("common_type") &&
+ D->getIdentifier() && D->getIdentifier()->isStr("type") &&
+ SemaRef.getSourceManager().isInSystemHeader(D->getBeginLoc()))
+ // Fold it to the (non-reference) type which g++ would have produced.
+ DI = SemaRef.Context.getTrivialTypeSourceInfo(
+ DI->getType().getNonReferenceType());
+
+ // Create the new typedef
+ TypedefNameDecl *Typedef;
+ if (IsTypeAlias)
+ Typedef = TypeAliasDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
+ D->getLocation(), D->getIdentifier(), DI);
+ else
+ Typedef = TypedefDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
+ D->getLocation(), D->getIdentifier(), DI);
+ if (Invalid)
+ Typedef->setInvalidDecl();
+
+ // If the old typedef was the name for linkage purposes of an anonymous
+ // tag decl, re-establish that relationship for the new typedef.
+ if (const TagType *oldTagType = D->getUnderlyingType()->getAs<TagType>()) {
+ TagDecl *oldTag = oldTagType->getDecl();
+ if (oldTag->getTypedefNameForAnonDecl() == D && !Invalid) {
+ TagDecl *newTag = DI->getType()->castAs<TagType>()->getDecl();
+ assert(!newTag->hasNameForLinkage());
+ newTag->setTypedefNameForAnonDecl(Typedef);
+ }
+ }
+
+ if (TypedefNameDecl *Prev = getPreviousDeclForInstantiation(D)) {
+ NamedDecl *InstPrev = SemaRef.FindInstantiatedDecl(D->getLocation(), Prev,
+ TemplateArgs);
+ if (!InstPrev)
+ return nullptr;
+
+ TypedefNameDecl *InstPrevTypedef = cast<TypedefNameDecl>(InstPrev);
+
+ // If the typedef types are not identical, reject them.
+ SemaRef.isIncompatibleTypedef(InstPrevTypedef, Typedef);
+
+ Typedef->setPreviousDecl(InstPrevTypedef);
+ }
+
+ SemaRef.InstantiateAttrs(TemplateArgs, D, Typedef);
+
+ Typedef->setAccess(D->getAccess());
+
+ return Typedef;
+}
+
+Decl *TemplateDeclInstantiator::VisitTypedefDecl(TypedefDecl *D) {
+ Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/false);
+ if (Typedef)
+ Owner->addDecl(Typedef);
+ return Typedef;
+}
+
+Decl *TemplateDeclInstantiator::VisitTypeAliasDecl(TypeAliasDecl *D) {
+ Decl *Typedef = InstantiateTypedefNameDecl(D, /*IsTypeAlias=*/true);
+ if (Typedef)
+ Owner->addDecl(Typedef);
+ return Typedef;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitTypeAliasTemplateDecl(TypeAliasTemplateDecl *D) {
+ // Create a local instantiation scope for this type alias template, which
+ // will contain the instantiations of the template parameters.
+ LocalInstantiationScope Scope(SemaRef);
+
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ TypeAliasDecl *Pattern = D->getTemplatedDecl();
+
+ TypeAliasTemplateDecl *PrevAliasTemplate = nullptr;
+ if (getPreviousDeclForInstantiation<TypedefNameDecl>(Pattern)) {
+ DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
+ if (!Found.empty()) {
+ PrevAliasTemplate = dyn_cast<TypeAliasTemplateDecl>(Found.front());
+ }
+ }
+
+ TypeAliasDecl *AliasInst = cast_or_null<TypeAliasDecl>(
+ InstantiateTypedefNameDecl(Pattern, /*IsTypeAlias=*/true));
+ if (!AliasInst)
+ return nullptr;
+
+ TypeAliasTemplateDecl *Inst
+ = TypeAliasTemplateDecl::Create(SemaRef.Context, Owner, D->getLocation(),
+ D->getDeclName(), InstParams, AliasInst);
+ AliasInst->setDescribedAliasTemplate(Inst);
+ if (PrevAliasTemplate)
+ Inst->setPreviousDecl(PrevAliasTemplate);
+
+ Inst->setAccess(D->getAccess());
+
+ if (!PrevAliasTemplate)
+ Inst->setInstantiatedFromMemberTemplate(D);
+
+ Owner->addDecl(Inst);
+
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::VisitBindingDecl(BindingDecl *D) {
+ auto *NewBD = BindingDecl::Create(SemaRef.Context, Owner, D->getLocation(),
+ D->getIdentifier());
+ NewBD->setReferenced(D->isReferenced());
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewBD);
+ return NewBD;
+}
+
+Decl *TemplateDeclInstantiator::VisitDecompositionDecl(DecompositionDecl *D) {
+ // Transform the bindings first.
+ SmallVector<BindingDecl*, 16> NewBindings;
+ for (auto *OldBD : D->bindings())
+ NewBindings.push_back(cast<BindingDecl>(VisitBindingDecl(OldBD)));
+ ArrayRef<BindingDecl*> NewBindingArray = NewBindings;
+
+ auto *NewDD = cast_or_null<DecompositionDecl>(
+ VisitVarDecl(D, /*InstantiatingVarTemplate=*/false, &NewBindingArray));
+
+ if (!NewDD || NewDD->isInvalidDecl())
+ for (auto *NewBD : NewBindings)
+ NewBD->setInvalidDecl();
+
+ return NewDD;
+}
+
+Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D) {
+ return VisitVarDecl(D, /*InstantiatingVarTemplate=*/false);
+}
+
+Decl *TemplateDeclInstantiator::VisitVarDecl(VarDecl *D,
+ bool InstantiatingVarTemplate,
+ ArrayRef<BindingDecl*> *Bindings) {
+
+ // Do substitution on the type of the declaration
+ TypeSourceInfo *DI = SemaRef.SubstType(
+ D->getTypeSourceInfo(), TemplateArgs, D->getTypeSpecStartLoc(),
+ D->getDeclName(), /*AllowDeducedTST*/true);
+ if (!DI)
+ return nullptr;
+
+ if (DI->getType()->isFunctionType()) {
+ SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
+ << D->isStaticDataMember() << DI->getType();
+ return nullptr;
+ }
+
+ DeclContext *DC = Owner;
+ if (D->isLocalExternDecl())
+ SemaRef.adjustContextForLocalExternDecl(DC);
+
+ // Build the instantiated declaration.
+ VarDecl *Var;
+ if (Bindings)
+ Var = DecompositionDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
+ D->getLocation(), DI->getType(), DI,
+ D->getStorageClass(), *Bindings);
+ else
+ Var = VarDecl::Create(SemaRef.Context, DC, D->getInnerLocStart(),
+ D->getLocation(), D->getIdentifier(), DI->getType(),
+ DI, D->getStorageClass());
+
+ // In ARC, infer 'retaining' for variables of retainable type.
+ if (SemaRef.getLangOpts().ObjCAutoRefCount &&
+ SemaRef.inferObjCARCLifetime(Var))
+ Var->setInvalidDecl();
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(D, Var))
+ return nullptr;
+
+ SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
+ StartingScope, InstantiatingVarTemplate);
+
+ if (D->isNRVOVariable()) {
+ QualType ReturnType = cast<FunctionDecl>(DC)->getReturnType();
+ if (SemaRef.isCopyElisionCandidate(ReturnType, Var, Sema::CES_Strict))
+ Var->setNRVOVariable(true);
+ }
+
+ Var->setImplicit(D->isImplicit());
+
+ if (Var->isStaticLocal())
+ SemaRef.CheckStaticLocalForDllExport(Var);
+
+ return Var;
+}
+
+Decl *TemplateDeclInstantiator::VisitAccessSpecDecl(AccessSpecDecl *D) {
+ AccessSpecDecl* AD
+ = AccessSpecDecl::Create(SemaRef.Context, D->getAccess(), Owner,
+ D->getAccessSpecifierLoc(), D->getColonLoc());
+ Owner->addHiddenDecl(AD);
+ return AD;
+}
+
+Decl *TemplateDeclInstantiator::VisitFieldDecl(FieldDecl *D) {
+ bool Invalid = false;
+ TypeSourceInfo *DI = D->getTypeSourceInfo();
+ if (DI->getType()->isInstantiationDependentType() ||
+ DI->getType()->isVariablyModifiedType()) {
+ DI = SemaRef.SubstType(DI, TemplateArgs,
+ D->getLocation(), D->getDeclName());
+ if (!DI) {
+ DI = D->getTypeSourceInfo();
+ Invalid = true;
+ } else if (DI->getType()->isFunctionType()) {
+ // C++ [temp.arg.type]p3:
+ // If a declaration acquires a function type through a type
+ // dependent on a template-parameter and this causes a
+ // declaration that does not use the syntactic form of a
+ // function declarator to have function type, the program is
+ // ill-formed.
+ SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
+ << DI->getType();
+ Invalid = true;
+ }
+ } else {
+ SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
+ }
+
+ Expr *BitWidth = D->getBitWidth();
+ if (Invalid)
+ BitWidth = nullptr;
+ else if (BitWidth) {
+ // The bit-width expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(
+ SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ ExprResult InstantiatedBitWidth
+ = SemaRef.SubstExpr(BitWidth, TemplateArgs);
+ if (InstantiatedBitWidth.isInvalid()) {
+ Invalid = true;
+ BitWidth = nullptr;
+ } else
+ BitWidth = InstantiatedBitWidth.getAs<Expr>();
+ }
+
+ FieldDecl *Field = SemaRef.CheckFieldDecl(D->getDeclName(),
+ DI->getType(), DI,
+ cast<RecordDecl>(Owner),
+ D->getLocation(),
+ D->isMutable(),
+ BitWidth,
+ D->getInClassInitStyle(),
+ D->getInnerLocStart(),
+ D->getAccess(),
+ nullptr);
+ if (!Field) {
+ cast<Decl>(Owner)->setInvalidDecl();
+ return nullptr;
+ }
+
+ SemaRef.InstantiateAttrs(TemplateArgs, D, Field, LateAttrs, StartingScope);
+
+ if (Field->hasAttrs())
+ SemaRef.CheckAlignasUnderalignment(Field);
+
+ if (Invalid)
+ Field->setInvalidDecl();
+
+ if (!Field->getDeclName()) {
+ // Keep track of where this decl came from.
+ SemaRef.Context.setInstantiatedFromUnnamedFieldDecl(Field, D);
+ }
+ if (CXXRecordDecl *Parent= dyn_cast<CXXRecordDecl>(Field->getDeclContext())) {
+ if (Parent->isAnonymousStructOrUnion() &&
+ Parent->getRedeclContext()->isFunctionOrMethod())
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Field);
+ }
+
+ Field->setImplicit(D->isImplicit());
+ Field->setAccess(D->getAccess());
+ Owner->addDecl(Field);
+
+ return Field;
+}
+
+Decl *TemplateDeclInstantiator::VisitMSPropertyDecl(MSPropertyDecl *D) {
+ bool Invalid = false;
+ TypeSourceInfo *DI = D->getTypeSourceInfo();
+
+ if (DI->getType()->isVariablyModifiedType()) {
+ SemaRef.Diag(D->getLocation(), diag::err_property_is_variably_modified)
+ << D;
+ Invalid = true;
+ } else if (DI->getType()->isInstantiationDependentType()) {
+ DI = SemaRef.SubstType(DI, TemplateArgs,
+ D->getLocation(), D->getDeclName());
+ if (!DI) {
+ DI = D->getTypeSourceInfo();
+ Invalid = true;
+ } else if (DI->getType()->isFunctionType()) {
+ // C++ [temp.arg.type]p3:
+ // If a declaration acquires a function type through a type
+ // dependent on a template-parameter and this causes a
+ // declaration that does not use the syntactic form of a
+ // function declarator to have function type, the program is
+ // ill-formed.
+ SemaRef.Diag(D->getLocation(), diag::err_field_instantiates_to_function)
+ << DI->getType();
+ Invalid = true;
+ }
+ } else {
+ SemaRef.MarkDeclarationsReferencedInType(D->getLocation(), DI->getType());
+ }
+
+ MSPropertyDecl *Property = MSPropertyDecl::Create(
+ SemaRef.Context, Owner, D->getLocation(), D->getDeclName(), DI->getType(),
+ DI, D->getBeginLoc(), D->getGetterId(), D->getSetterId());
+
+ SemaRef.InstantiateAttrs(TemplateArgs, D, Property, LateAttrs,
+ StartingScope);
+
+ if (Invalid)
+ Property->setInvalidDecl();
+
+ Property->setAccess(D->getAccess());
+ Owner->addDecl(Property);
+
+ return Property;
+}
+
+Decl *TemplateDeclInstantiator::VisitIndirectFieldDecl(IndirectFieldDecl *D) {
+ NamedDecl **NamedChain =
+ new (SemaRef.Context)NamedDecl*[D->getChainingSize()];
+
+ int i = 0;
+ for (auto *PI : D->chain()) {
+ NamedDecl *Next = SemaRef.FindInstantiatedDecl(D->getLocation(), PI,
+ TemplateArgs);
+ if (!Next)
+ return nullptr;
+
+ NamedChain[i++] = Next;
+ }
+
+ QualType T = cast<FieldDecl>(NamedChain[i-1])->getType();
+ IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
+ SemaRef.Context, Owner, D->getLocation(), D->getIdentifier(), T,
+ {NamedChain, D->getChainingSize()});
+
+ for (const auto *Attr : D->attrs())
+ IndirectField->addAttr(Attr->clone(SemaRef.Context));
+
+ IndirectField->setImplicit(D->isImplicit());
+ IndirectField->setAccess(D->getAccess());
+ Owner->addDecl(IndirectField);
+ return IndirectField;
+}
+
+Decl *TemplateDeclInstantiator::VisitFriendDecl(FriendDecl *D) {
+ // Handle friend type expressions by simply substituting template
+ // parameters into the pattern type and checking the result.
+ if (TypeSourceInfo *Ty = D->getFriendType()) {
+ TypeSourceInfo *InstTy;
+ // If this is an unsupported friend, don't bother substituting template
+ // arguments into it. The actual type referred to won't be used by any
+ // parts of Clang, and may not be valid for instantiating. Just use the
+ // same info for the instantiated friend.
+ if (D->isUnsupportedFriend()) {
+ InstTy = Ty;
+ } else {
+ InstTy = SemaRef.SubstType(Ty, TemplateArgs,
+ D->getLocation(), DeclarationName());
+ }
+ if (!InstTy)
+ return nullptr;
+
+ FriendDecl *FD = SemaRef.CheckFriendTypeDecl(D->getBeginLoc(),
+ D->getFriendLoc(), InstTy);
+ if (!FD)
+ return nullptr;
+
+ FD->setAccess(AS_public);
+ FD->setUnsupportedFriend(D->isUnsupportedFriend());
+ Owner->addDecl(FD);
+ return FD;
+ }
+
+ NamedDecl *ND = D->getFriendDecl();
+ assert(ND && "friend decl must be a decl or a type!");
+
+ // All of the Visit implementations for the various potential friend
+ // declarations have to be carefully written to work for friend
+ // objects, with the most important detail being that the target
+ // decl should almost certainly not be placed in Owner.
+ Decl *NewND = Visit(ND);
+ if (!NewND) return nullptr;
+
+ FriendDecl *FD =
+ FriendDecl::Create(SemaRef.Context, Owner, D->getLocation(),
+ cast<NamedDecl>(NewND), D->getFriendLoc());
+ FD->setAccess(AS_public);
+ FD->setUnsupportedFriend(D->isUnsupportedFriend());
+ Owner->addDecl(FD);
+ return FD;
+}
+
+Decl *TemplateDeclInstantiator::VisitStaticAssertDecl(StaticAssertDecl *D) {
+ Expr *AssertExpr = D->getAssertExpr();
+
+ // The expression in a static assertion is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(
+ SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ ExprResult InstantiatedAssertExpr
+ = SemaRef.SubstExpr(AssertExpr, TemplateArgs);
+ if (InstantiatedAssertExpr.isInvalid())
+ return nullptr;
+
+ return SemaRef.BuildStaticAssertDeclaration(D->getLocation(),
+ InstantiatedAssertExpr.get(),
+ D->getMessage(),
+ D->getRParenLoc(),
+ D->isFailed());
+}
+
+Decl *TemplateDeclInstantiator::VisitEnumDecl(EnumDecl *D) {
+ EnumDecl *PrevDecl = nullptr;
+ if (EnumDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
+ NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
+ PatternPrev,
+ TemplateArgs);
+ if (!Prev) return nullptr;
+ PrevDecl = cast<EnumDecl>(Prev);
+ }
+
+ EnumDecl *Enum =
+ EnumDecl::Create(SemaRef.Context, Owner, D->getBeginLoc(),
+ D->getLocation(), D->getIdentifier(), PrevDecl,
+ D->isScoped(), D->isScopedUsingClassTag(), D->isFixed());
+ if (D->isFixed()) {
+ if (TypeSourceInfo *TI = D->getIntegerTypeSourceInfo()) {
+ // If we have type source information for the underlying type, it means it
+ // has been explicitly set by the user. Perform substitution on it before
+ // moving on.
+ SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
+ TypeSourceInfo *NewTI = SemaRef.SubstType(TI, TemplateArgs, UnderlyingLoc,
+ DeclarationName());
+ if (!NewTI || SemaRef.CheckEnumUnderlyingType(NewTI))
+ Enum->setIntegerType(SemaRef.Context.IntTy);
+ else
+ Enum->setIntegerTypeSourceInfo(NewTI);
+ } else {
+ assert(!D->getIntegerType()->isDependentType()
+ && "Dependent type without type source info");
+ Enum->setIntegerType(D->getIntegerType());
+ }
+ }
+
+ SemaRef.InstantiateAttrs(TemplateArgs, D, Enum);
+
+ Enum->setInstantiationOfMemberEnum(D, TSK_ImplicitInstantiation);
+ Enum->setAccess(D->getAccess());
+ // Forward the mangling number from the template to the instantiated decl.
+ SemaRef.Context.setManglingNumber(Enum, SemaRef.Context.getManglingNumber(D));
+ // See if the old tag was defined along with a declarator.
+ // If it did, mark the new tag as being associated with that declarator.
+ if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
+ SemaRef.Context.addDeclaratorForUnnamedTagDecl(Enum, DD);
+ // See if the old tag was defined along with a typedef.
+ // If it did, mark the new tag as being associated with that typedef.
+ if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
+ SemaRef.Context.addTypedefNameForUnnamedTagDecl(Enum, TND);
+ if (SubstQualifier(D, Enum)) return nullptr;
+ Owner->addDecl(Enum);
+
+ EnumDecl *Def = D->getDefinition();
+ if (Def && Def != D) {
+ // If this is an out-of-line definition of an enum member template, check
+ // that the underlying types match in the instantiation of both
+ // declarations.
+ if (TypeSourceInfo *TI = Def->getIntegerTypeSourceInfo()) {
+ SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
+ QualType DefnUnderlying =
+ SemaRef.SubstType(TI->getType(), TemplateArgs,
+ UnderlyingLoc, DeclarationName());
+ SemaRef.CheckEnumRedeclaration(Def->getLocation(), Def->isScoped(),
+ DefnUnderlying, /*IsFixed=*/true, Enum);
+ }
+ }
+
+ // C++11 [temp.inst]p1: The implicit instantiation of a class template
+ // specialization causes the implicit instantiation of the declarations, but
+ // not the definitions of scoped member enumerations.
+ //
+ // DR1484 clarifies that enumeration definitions inside of a template
+ // declaration aren't considered entities that can be separately instantiated
+ // from the rest of the entity they are declared inside of.
+ if (isDeclWithinFunction(D) ? D == Def : Def && !Enum->isScoped()) {
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Enum);
+ InstantiateEnumDefinition(Enum, Def);
+ }
+
+ return Enum;
+}
+
+void TemplateDeclInstantiator::InstantiateEnumDefinition(
+ EnumDecl *Enum, EnumDecl *Pattern) {
+ Enum->startDefinition();
+
+ // Update the location to refer to the definition.
+ Enum->setLocation(Pattern->getLocation());
+
+ SmallVector<Decl*, 4> Enumerators;
+
+ EnumConstantDecl *LastEnumConst = nullptr;
+ for (auto *EC : Pattern->enumerators()) {
+ // The specified value for the enumerator.
+ ExprResult Value((Expr *)nullptr);
+ if (Expr *UninstValue = EC->getInitExpr()) {
+ // The enumerator's value expression is a constant expression.
+ EnterExpressionEvaluationContext Unevaluated(
+ SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+
+ Value = SemaRef.SubstExpr(UninstValue, TemplateArgs);
+ }
+
+ // Drop the initial value and continue.
+ bool isInvalid = false;
+ if (Value.isInvalid()) {
+ Value = nullptr;
+ isInvalid = true;
+ }
+
+ EnumConstantDecl *EnumConst
+ = SemaRef.CheckEnumConstant(Enum, LastEnumConst,
+ EC->getLocation(), EC->getIdentifier(),
+ Value.get());
+
+ if (isInvalid) {
+ if (EnumConst)
+ EnumConst->setInvalidDecl();
+ Enum->setInvalidDecl();
+ }
+
+ if (EnumConst) {
+ SemaRef.InstantiateAttrs(TemplateArgs, EC, EnumConst);
+
+ EnumConst->setAccess(Enum->getAccess());
+ Enum->addDecl(EnumConst);
+ Enumerators.push_back(EnumConst);
+ LastEnumConst = EnumConst;
+
+ if (Pattern->getDeclContext()->isFunctionOrMethod() &&
+ !Enum->isScoped()) {
+ // If the enumeration is within a function or method, record the enum
+ // constant as a local.
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(EC, EnumConst);
+ }
+ }
+ }
+
+ SemaRef.ActOnEnumBody(Enum->getLocation(), Enum->getBraceRange(), Enum,
+ Enumerators, nullptr, ParsedAttributesView());
+}
+
+Decl *TemplateDeclInstantiator::VisitEnumConstantDecl(EnumConstantDecl *D) {
+ llvm_unreachable("EnumConstantDecls can only occur within EnumDecls.");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitBuiltinTemplateDecl(BuiltinTemplateDecl *D) {
+ llvm_unreachable("BuiltinTemplateDecls cannot be instantiated.");
+}
+
+Decl *TemplateDeclInstantiator::VisitClassTemplateDecl(ClassTemplateDecl *D) {
+ bool isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
+
+ // Create a local instantiation scope for this class template, which
+ // will contain the instantiations of the template parameters.
+ LocalInstantiationScope Scope(SemaRef);
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ CXXRecordDecl *Pattern = D->getTemplatedDecl();
+
+ // Instantiate the qualifier. We have to do this first in case
+ // we're a friend declaration, because if we are then we need to put
+ // the new declaration in the appropriate context.
+ NestedNameSpecifierLoc QualifierLoc = Pattern->getQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+ }
+
+ CXXRecordDecl *PrevDecl = nullptr;
+ ClassTemplateDecl *PrevClassTemplate = nullptr;
+
+ if (!isFriend && getPreviousDeclForInstantiation(Pattern)) {
+ DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
+ if (!Found.empty()) {
+ PrevClassTemplate = dyn_cast<ClassTemplateDecl>(Found.front());
+ if (PrevClassTemplate)
+ PrevDecl = PrevClassTemplate->getTemplatedDecl();
+ }
+ }
+
+ // If this isn't a friend, then it's a member template, in which
+ // case we just want to build the instantiation in the
+ // specialization. If it is a friend, we want to build it in
+ // the appropriate context.
+ DeclContext *DC = Owner;
+ if (isFriend) {
+ if (QualifierLoc) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ DC = SemaRef.computeDeclContext(SS);
+ if (!DC) return nullptr;
+ } else {
+ DC = SemaRef.FindInstantiatedContext(Pattern->getLocation(),
+ Pattern->getDeclContext(),
+ TemplateArgs);
+ }
+
+ // Look for a previous declaration of the template in the owning
+ // context.
+ LookupResult R(SemaRef, Pattern->getDeclName(), Pattern->getLocation(),
+ Sema::LookupOrdinaryName,
+ SemaRef.forRedeclarationInCurContext());
+ SemaRef.LookupQualifiedName(R, DC);
+
+ if (R.isSingleResult()) {
+ PrevClassTemplate = R.getAsSingle<ClassTemplateDecl>();
+ if (PrevClassTemplate)
+ PrevDecl = PrevClassTemplate->getTemplatedDecl();
+ }
+
+ if (!PrevClassTemplate && QualifierLoc) {
+ SemaRef.Diag(Pattern->getLocation(), diag::err_not_tag_in_scope)
+ << D->getTemplatedDecl()->getTagKind() << Pattern->getDeclName() << DC
+ << QualifierLoc.getSourceRange();
+ return nullptr;
+ }
+
+ bool AdoptedPreviousTemplateParams = false;
+ if (PrevClassTemplate) {
+ bool Complain = true;
+
+ // HACK: libstdc++ 4.2.1 contains an ill-formed friend class
+ // template for struct std::tr1::__detail::_Map_base, where the
+ // template parameters of the friend declaration don't match the
+ // template parameters of the original declaration. In this one
+ // case, we don't complain about the ill-formed friend
+ // declaration.
+ if (isFriend && Pattern->getIdentifier() &&
+ Pattern->getIdentifier()->isStr("_Map_base") &&
+ DC->isNamespace() &&
+ cast<NamespaceDecl>(DC)->getIdentifier() &&
+ cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__detail")) {
+ DeclContext *DCParent = DC->getParent();
+ if (DCParent->isNamespace() &&
+ cast<NamespaceDecl>(DCParent)->getIdentifier() &&
+ cast<NamespaceDecl>(DCParent)->getIdentifier()->isStr("tr1")) {
+ if (cast<Decl>(DCParent)->isInStdNamespace())
+ Complain = false;
+ }
+ }
+
+ TemplateParameterList *PrevParams
+ = PrevClassTemplate->getMostRecentDecl()->getTemplateParameters();
+
+ // Make sure the parameter lists match.
+ if (!SemaRef.TemplateParameterListsAreEqual(InstParams, PrevParams,
+ Complain,
+ Sema::TPL_TemplateMatch)) {
+ if (Complain)
+ return nullptr;
+
+ AdoptedPreviousTemplateParams = true;
+ InstParams = PrevParams;
+ }
+
+ // Do some additional validation, then merge default arguments
+ // from the existing declarations.
+ if (!AdoptedPreviousTemplateParams &&
+ SemaRef.CheckTemplateParameterList(InstParams, PrevParams,
+ Sema::TPC_ClassTemplate))
+ return nullptr;
+ }
+ }
+
+ CXXRecordDecl *RecordInst = CXXRecordDecl::Create(
+ SemaRef.Context, Pattern->getTagKind(), DC, Pattern->getBeginLoc(),
+ Pattern->getLocation(), Pattern->getIdentifier(), PrevDecl,
+ /*DelayTypeCreation=*/true);
+
+ if (QualifierLoc)
+ RecordInst->setQualifierInfo(QualifierLoc);
+
+ SemaRef.InstantiateAttrsForDecl(TemplateArgs, Pattern, RecordInst, LateAttrs,
+ StartingScope);
+
+ ClassTemplateDecl *Inst
+ = ClassTemplateDecl::Create(SemaRef.Context, DC, D->getLocation(),
+ D->getIdentifier(), InstParams, RecordInst);
+ assert(!(isFriend && Owner->isDependentContext()));
+ Inst->setPreviousDecl(PrevClassTemplate);
+
+ RecordInst->setDescribedClassTemplate(Inst);
+
+ if (isFriend) {
+ if (PrevClassTemplate)
+ Inst->setAccess(PrevClassTemplate->getAccess());
+ else
+ Inst->setAccess(D->getAccess());
+
+ Inst->setObjectOfFriendDecl();
+ // TODO: do we want to track the instantiation progeny of this
+ // friend target decl?
+ } else {
+ Inst->setAccess(D->getAccess());
+ if (!PrevClassTemplate)
+ Inst->setInstantiatedFromMemberTemplate(D);
+ }
+
+ // Trigger creation of the type for the instantiation.
+ SemaRef.Context.getInjectedClassNameType(RecordInst,
+ Inst->getInjectedClassNameSpecialization());
+
+ // Finish handling of friends.
+ if (isFriend) {
+ DC->makeDeclVisibleInContext(Inst);
+ Inst->setLexicalDeclContext(Owner);
+ RecordInst->setLexicalDeclContext(Owner);
+ return Inst;
+ }
+
+ if (D->isOutOfLine()) {
+ Inst->setLexicalDeclContext(D->getLexicalDeclContext());
+ RecordInst->setLexicalDeclContext(D->getLexicalDeclContext());
+ }
+
+ Owner->addDecl(Inst);
+
+ if (!PrevClassTemplate) {
+ // Queue up any out-of-line partial specializations of this member
+ // class template; the client will force their instantiation once
+ // the enclosing class has been instantiated.
+ SmallVector<ClassTemplatePartialSpecializationDecl *, 4> PartialSpecs;
+ D->getPartialSpecializations(PartialSpecs);
+ for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
+ if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
+ OutOfLinePartialSpecs.push_back(std::make_pair(Inst, PartialSpecs[I]));
+ }
+
+ return Inst;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitClassTemplatePartialSpecializationDecl(
+ ClassTemplatePartialSpecializationDecl *D) {
+ ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
+
+ // Lookup the already-instantiated declaration in the instantiation
+ // of the class template and return that.
+ DeclContext::lookup_result Found
+ = Owner->lookup(ClassTemplate->getDeclName());
+ if (Found.empty())
+ return nullptr;
+
+ ClassTemplateDecl *InstClassTemplate
+ = dyn_cast<ClassTemplateDecl>(Found.front());
+ if (!InstClassTemplate)
+ return nullptr;
+
+ if (ClassTemplatePartialSpecializationDecl *Result
+ = InstClassTemplate->findPartialSpecInstantiatedFromMember(D))
+ return Result;
+
+ return InstantiateClassTemplatePartialSpecialization(InstClassTemplate, D);
+}
+
+Decl *TemplateDeclInstantiator::VisitVarTemplateDecl(VarTemplateDecl *D) {
+ assert(D->getTemplatedDecl()->isStaticDataMember() &&
+ "Only static data member templates are allowed.");
+
+ // Create a local instantiation scope for this variable template, which
+ // will contain the instantiations of the template parameters.
+ LocalInstantiationScope Scope(SemaRef);
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ VarDecl *Pattern = D->getTemplatedDecl();
+ VarTemplateDecl *PrevVarTemplate = nullptr;
+
+ if (getPreviousDeclForInstantiation(Pattern)) {
+ DeclContext::lookup_result Found = Owner->lookup(Pattern->getDeclName());
+ if (!Found.empty())
+ PrevVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
+ }
+
+ VarDecl *VarInst =
+ cast_or_null<VarDecl>(VisitVarDecl(Pattern,
+ /*InstantiatingVarTemplate=*/true));
+ if (!VarInst) return nullptr;
+
+ DeclContext *DC = Owner;
+
+ VarTemplateDecl *Inst = VarTemplateDecl::Create(
+ SemaRef.Context, DC, D->getLocation(), D->getIdentifier(), InstParams,
+ VarInst);
+ VarInst->setDescribedVarTemplate(Inst);
+ Inst->setPreviousDecl(PrevVarTemplate);
+
+ Inst->setAccess(D->getAccess());
+ if (!PrevVarTemplate)
+ Inst->setInstantiatedFromMemberTemplate(D);
+
+ if (D->isOutOfLine()) {
+ Inst->setLexicalDeclContext(D->getLexicalDeclContext());
+ VarInst->setLexicalDeclContext(D->getLexicalDeclContext());
+ }
+
+ Owner->addDecl(Inst);
+
+ if (!PrevVarTemplate) {
+ // Queue up any out-of-line partial specializations of this member
+ // variable template; the client will force their instantiation once
+ // the enclosing class has been instantiated.
+ SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
+ D->getPartialSpecializations(PartialSpecs);
+ for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I)
+ if (PartialSpecs[I]->getFirstDecl()->isOutOfLine())
+ OutOfLineVarPartialSpecs.push_back(
+ std::make_pair(Inst, PartialSpecs[I]));
+ }
+
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::VisitVarTemplatePartialSpecializationDecl(
+ VarTemplatePartialSpecializationDecl *D) {
+ assert(D->isStaticDataMember() &&
+ "Only static data member templates are allowed.");
+
+ VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
+
+ // Lookup the already-instantiated declaration and return that.
+ DeclContext::lookup_result Found = Owner->lookup(VarTemplate->getDeclName());
+ assert(!Found.empty() && "Instantiation found nothing?");
+
+ VarTemplateDecl *InstVarTemplate = dyn_cast<VarTemplateDecl>(Found.front());
+ assert(InstVarTemplate && "Instantiation did not find a variable template?");
+
+ if (VarTemplatePartialSpecializationDecl *Result =
+ InstVarTemplate->findPartialSpecInstantiatedFromMember(D))
+ return Result;
+
+ return InstantiateVarTemplatePartialSpecialization(InstVarTemplate, D);
+}
+
+Decl *
+TemplateDeclInstantiator::VisitFunctionTemplateDecl(FunctionTemplateDecl *D) {
+ // Create a local instantiation scope for this function template, which
+ // will contain the instantiations of the template parameters and then get
+ // merged with the local instantiation scope for the function template
+ // itself.
+ LocalInstantiationScope Scope(SemaRef);
+
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ FunctionDecl *Instantiated = nullptr;
+ if (CXXMethodDecl *DMethod = dyn_cast<CXXMethodDecl>(D->getTemplatedDecl()))
+ Instantiated = cast_or_null<FunctionDecl>(VisitCXXMethodDecl(DMethod,
+ InstParams));
+ else
+ Instantiated = cast_or_null<FunctionDecl>(VisitFunctionDecl(
+ D->getTemplatedDecl(),
+ InstParams));
+
+ if (!Instantiated)
+ return nullptr;
+
+ // Link the instantiated function template declaration to the function
+ // template from which it was instantiated.
+ FunctionTemplateDecl *InstTemplate
+ = Instantiated->getDescribedFunctionTemplate();
+ InstTemplate->setAccess(D->getAccess());
+ assert(InstTemplate &&
+ "VisitFunctionDecl/CXXMethodDecl didn't create a template!");
+
+ bool isFriend = (InstTemplate->getFriendObjectKind() != Decl::FOK_None);
+
+ // Link the instantiation back to the pattern *unless* this is a
+ // non-definition friend declaration.
+ if (!InstTemplate->getInstantiatedFromMemberTemplate() &&
+ !(isFriend && !D->getTemplatedDecl()->isThisDeclarationADefinition()))
+ InstTemplate->setInstantiatedFromMemberTemplate(D);
+
+ // Make declarations visible in the appropriate context.
+ if (!isFriend) {
+ Owner->addDecl(InstTemplate);
+ } else if (InstTemplate->getDeclContext()->isRecord() &&
+ !getPreviousDeclForInstantiation(D)) {
+ SemaRef.CheckFriendAccess(InstTemplate);
+ }
+
+ return InstTemplate;
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXRecordDecl(CXXRecordDecl *D) {
+ CXXRecordDecl *PrevDecl = nullptr;
+ if (D->isInjectedClassName())
+ PrevDecl = cast<CXXRecordDecl>(Owner);
+ else if (CXXRecordDecl *PatternPrev = getPreviousDeclForInstantiation(D)) {
+ NamedDecl *Prev = SemaRef.FindInstantiatedDecl(D->getLocation(),
+ PatternPrev,
+ TemplateArgs);
+ if (!Prev) return nullptr;
+ PrevDecl = cast<CXXRecordDecl>(Prev);
+ }
+
+ CXXRecordDecl *Record = CXXRecordDecl::Create(
+ SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(),
+ D->getLocation(), D->getIdentifier(), PrevDecl);
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(D, Record))
+ return nullptr;
+
+ SemaRef.InstantiateAttrsForDecl(TemplateArgs, D, Record, LateAttrs,
+ StartingScope);
+
+ Record->setImplicit(D->isImplicit());
+ // FIXME: Check against AS_none is an ugly hack to work around the issue that
+ // the tag decls introduced by friend class declarations don't have an access
+ // specifier. Remove once this area of the code gets sorted out.
+ if (D->getAccess() != AS_none)
+ Record->setAccess(D->getAccess());
+ if (!D->isInjectedClassName())
+ Record->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
+
+ // If the original function was part of a friend declaration,
+ // inherit its namespace state.
+ if (D->getFriendObjectKind())
+ Record->setObjectOfFriendDecl();
+
+ // Make sure that anonymous structs and unions are recorded.
+ if (D->isAnonymousStructOrUnion())
+ Record->setAnonymousStructOrUnion(true);
+
+ if (D->isLocalClass())
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Record);
+
+ // Forward the mangling number from the template to the instantiated decl.
+ SemaRef.Context.setManglingNumber(Record,
+ SemaRef.Context.getManglingNumber(D));
+
+ // See if the old tag was defined along with a declarator.
+ // If it did, mark the new tag as being associated with that declarator.
+ if (DeclaratorDecl *DD = SemaRef.Context.getDeclaratorForUnnamedTagDecl(D))
+ SemaRef.Context.addDeclaratorForUnnamedTagDecl(Record, DD);
+
+ // See if the old tag was defined along with a typedef.
+ // If it did, mark the new tag as being associated with that typedef.
+ if (TypedefNameDecl *TND = SemaRef.Context.getTypedefNameForUnnamedTagDecl(D))
+ SemaRef.Context.addTypedefNameForUnnamedTagDecl(Record, TND);
+
+ Owner->addDecl(Record);
+
+ // DR1484 clarifies that the members of a local class are instantiated as part
+ // of the instantiation of their enclosing entity.
+ if (D->isCompleteDefinition() && D->isLocalClass()) {
+ Sema::LocalEagerInstantiationScope LocalInstantiations(SemaRef);
+
+ SemaRef.InstantiateClass(D->getLocation(), Record, D, TemplateArgs,
+ TSK_ImplicitInstantiation,
+ /*Complain=*/true);
+
+ // For nested local classes, we will instantiate the members when we
+ // reach the end of the outermost (non-nested) local class.
+ if (!D->isCXXClassMember())
+ SemaRef.InstantiateClassMembers(D->getLocation(), Record, TemplateArgs,
+ TSK_ImplicitInstantiation);
+
+ // This class may have local implicit instantiations that need to be
+ // performed within this scope.
+ LocalInstantiations.perform();
+ }
+
+ SemaRef.DiagnoseUnusedNestedTypedefs(Record);
+
+ return Record;
+}
+
+/// Adjust the given function type for an instantiation of the
+/// given declaration, to cope with modifications to the function's type that
+/// aren't reflected in the type-source information.
+///
+/// \param D The declaration we're instantiating.
+/// \param TInfo The already-instantiated type.
+static QualType adjustFunctionTypeForInstantiation(ASTContext &Context,
+ FunctionDecl *D,
+ TypeSourceInfo *TInfo) {
+ const FunctionProtoType *OrigFunc
+ = D->getType()->castAs<FunctionProtoType>();
+ const FunctionProtoType *NewFunc
+ = TInfo->getType()->castAs<FunctionProtoType>();
+ if (OrigFunc->getExtInfo() == NewFunc->getExtInfo())
+ return TInfo->getType();
+
+ FunctionProtoType::ExtProtoInfo NewEPI = NewFunc->getExtProtoInfo();
+ NewEPI.ExtInfo = OrigFunc->getExtInfo();
+ return Context.getFunctionType(NewFunc->getReturnType(),
+ NewFunc->getParamTypes(), NewEPI);
+}
+
+/// Normal class members are of more specific types and therefore
+/// don't make it here. This function serves three purposes:
+/// 1) instantiating function templates
+/// 2) substituting friend declarations
+/// 3) substituting deduction guide declarations for nested class templates
+Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D,
+ TemplateParameterList *TemplateParams) {
+ // Check whether there is already a function template specialization for
+ // this declaration.
+ FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
+ if (FunctionTemplate && !TemplateParams) {
+ ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
+
+ void *InsertPos = nullptr;
+ FunctionDecl *SpecFunc
+ = FunctionTemplate->findSpecialization(Innermost, InsertPos);
+
+ // If we already have a function template specialization, return it.
+ if (SpecFunc)
+ return SpecFunc;
+ }
+
+ bool isFriend;
+ if (FunctionTemplate)
+ isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
+ else
+ isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
+
+ bool MergeWithParentScope = (TemplateParams != nullptr) ||
+ Owner->isFunctionOrMethod() ||
+ !(isa<Decl>(Owner) &&
+ cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
+ LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
+
+ ExplicitSpecifier InstantiatedExplicitSpecifier;
+ if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
+ InstantiatedExplicitSpecifier = instantiateExplicitSpecifier(
+ SemaRef, TemplateArgs, DGuide->getExplicitSpecifier(), DGuide);
+ if (InstantiatedExplicitSpecifier.isInvalid())
+ return nullptr;
+ }
+
+ SmallVector<ParmVarDecl *, 4> Params;
+ TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
+ if (!TInfo)
+ return nullptr;
+ QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
+
+ NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+ }
+
+ // If we're instantiating a local function declaration, put the result
+ // in the enclosing namespace; otherwise we need to find the instantiated
+ // context.
+ DeclContext *DC;
+ if (D->isLocalExternDecl()) {
+ DC = Owner;
+ SemaRef.adjustContextForLocalExternDecl(DC);
+ } else if (isFriend && QualifierLoc) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ DC = SemaRef.computeDeclContext(SS);
+ if (!DC) return nullptr;
+ } else {
+ DC = SemaRef.FindInstantiatedContext(D->getLocation(), D->getDeclContext(),
+ TemplateArgs);
+ }
+
+ DeclarationNameInfo NameInfo
+ = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
+
+ FunctionDecl *Function;
+ if (auto *DGuide = dyn_cast<CXXDeductionGuideDecl>(D)) {
+ Function = CXXDeductionGuideDecl::Create(
+ SemaRef.Context, DC, D->getInnerLocStart(),
+ InstantiatedExplicitSpecifier, NameInfo, T, TInfo,
+ D->getSourceRange().getEnd());
+ if (DGuide->isCopyDeductionCandidate())
+ cast<CXXDeductionGuideDecl>(Function)->setIsCopyDeductionCandidate();
+ Function->setAccess(D->getAccess());
+ } else {
+ Function = FunctionDecl::Create(
+ SemaRef.Context, DC, D->getInnerLocStart(), NameInfo, T, TInfo,
+ D->getCanonicalDecl()->getStorageClass(), D->isInlineSpecified(),
+ D->hasWrittenPrototype(), D->getConstexprKind());
+ Function->setRangeEnd(D->getSourceRange().getEnd());
+ }
+
+ if (D->isInlined())
+ Function->setImplicitlyInline();
+
+ if (QualifierLoc)
+ Function->setQualifierInfo(QualifierLoc);
+
+ if (D->isLocalExternDecl())
+ Function->setLocalExternDecl();
+
+ DeclContext *LexicalDC = Owner;
+ if (!isFriend && D->isOutOfLine() && !D->isLocalExternDecl()) {
+ assert(D->getDeclContext()->isFileContext());
+ LexicalDC = D->getDeclContext();
+ }
+
+ Function->setLexicalDeclContext(LexicalDC);
+
+ // Attach the parameters
+ for (unsigned P = 0; P < Params.size(); ++P)
+ if (Params[P])
+ Params[P]->setOwningFunction(Function);
+ Function->setParams(Params);
+
+ if (TemplateParams) {
+ // Our resulting instantiation is actually a function template, since we
+ // are substituting only the outer template parameters. For example, given
+ //
+ // template<typename T>
+ // struct X {
+ // template<typename U> friend void f(T, U);
+ // };
+ //
+ // X<int> x;
+ //
+ // We are instantiating the friend function template "f" within X<int>,
+ // which means substituting int for T, but leaving "f" as a friend function
+ // template.
+ // Build the function template itself.
+ FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, DC,
+ Function->getLocation(),
+ Function->getDeclName(),
+ TemplateParams, Function);
+ Function->setDescribedFunctionTemplate(FunctionTemplate);
+
+ FunctionTemplate->setLexicalDeclContext(LexicalDC);
+
+ if (isFriend && D->isThisDeclarationADefinition()) {
+ FunctionTemplate->setInstantiatedFromMemberTemplate(
+ D->getDescribedFunctionTemplate());
+ }
+ } else if (FunctionTemplate) {
+ // Record this function template specialization.
+ ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
+ Function->setFunctionTemplateSpecialization(FunctionTemplate,
+ TemplateArgumentList::CreateCopy(SemaRef.Context,
+ Innermost),
+ /*InsertPos=*/nullptr);
+ } else if (isFriend && D->isThisDeclarationADefinition()) {
+ // Do not connect the friend to the template unless it's actually a
+ // definition. We don't want non-template functions to be marked as being
+ // template instantiations.
+ Function->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
+ }
+
+ if (isFriend)
+ Function->setObjectOfFriendDecl();
+
+ if (InitFunctionInstantiation(Function, D))
+ Function->setInvalidDecl();
+
+ bool IsExplicitSpecialization = false;
+
+ LookupResult Previous(
+ SemaRef, Function->getDeclName(), SourceLocation(),
+ D->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
+ : Sema::LookupOrdinaryName,
+ D->isLocalExternDecl() ? Sema::ForExternalRedeclaration
+ : SemaRef.forRedeclarationInCurContext());
+
+ if (DependentFunctionTemplateSpecializationInfo *Info
+ = D->getDependentSpecializationInfo()) {
+ assert(isFriend && "non-friend has dependent specialization info?");
+
+ // Instantiate the explicit template arguments.
+ TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
+ Info->getRAngleLoc());
+ if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
+ ExplicitArgs, TemplateArgs))
+ return nullptr;
+
+ // Map the candidate templates to their instantiations.
+ for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
+ Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
+ Info->getTemplate(I),
+ TemplateArgs);
+ if (!Temp) return nullptr;
+
+ Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
+ }
+
+ if (SemaRef.CheckFunctionTemplateSpecialization(Function,
+ &ExplicitArgs,
+ Previous))
+ Function->setInvalidDecl();
+
+ IsExplicitSpecialization = true;
+ } else if (const ASTTemplateArgumentListInfo *Info =
+ D->getTemplateSpecializationArgsAsWritten()) {
+ // The name of this function was written as a template-id.
+ SemaRef.LookupQualifiedName(Previous, DC);
+
+ // Instantiate the explicit template arguments.
+ TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
+ Info->getRAngleLoc());
+ if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
+ ExplicitArgs, TemplateArgs))
+ return nullptr;
+
+ if (SemaRef.CheckFunctionTemplateSpecialization(Function,
+ &ExplicitArgs,
+ Previous))
+ Function->setInvalidDecl();
+
+ IsExplicitSpecialization = true;
+ } else if (TemplateParams || !FunctionTemplate) {
+ // Look only into the namespace where the friend would be declared to
+ // find a previous declaration. This is the innermost enclosing namespace,
+ // as described in ActOnFriendFunctionDecl.
+ SemaRef.LookupQualifiedName(Previous, DC);
+
+ // In C++, the previous declaration we find might be a tag type
+ // (class or enum). In this case, the new declaration will hide the
+ // tag type. Note that this does does not apply if we're declaring a
+ // typedef (C++ [dcl.typedef]p4).
+ if (Previous.isSingleTagDecl())
+ Previous.clear();
+ }
+
+ SemaRef.CheckFunctionDeclaration(/*Scope*/ nullptr, Function, Previous,
+ IsExplicitSpecialization);
+
+ NamedDecl *PrincipalDecl = (TemplateParams
+ ? cast<NamedDecl>(FunctionTemplate)
+ : Function);
+
+ // If the original function was part of a friend declaration,
+ // inherit its namespace state and add it to the owner.
+ if (isFriend) {
+ Function->setObjectOfFriendDecl();
+ if (FunctionTemplateDecl *FT = Function->getDescribedFunctionTemplate())
+ FT->setObjectOfFriendDecl();
+ DC->makeDeclVisibleInContext(PrincipalDecl);
+
+ bool QueuedInstantiation = false;
+
+ // C++11 [temp.friend]p4 (DR329):
+ // When a function is defined in a friend function declaration in a class
+ // template, the function is instantiated when the function is odr-used.
+ // The same restrictions on multiple declarations and definitions that
+ // apply to non-template function declarations and definitions also apply
+ // to these implicit definitions.
+ if (D->isThisDeclarationADefinition()) {
+ SemaRef.CheckForFunctionRedefinition(Function);
+ if (!Function->isInvalidDecl()) {
+ for (auto R : Function->redecls()) {
+ if (R == Function)
+ continue;
+
+ // If some prior declaration of this function has been used, we need
+ // to instantiate its definition.
+ if (!QueuedInstantiation && R->isUsed(false)) {
+ if (MemberSpecializationInfo *MSInfo =
+ Function->getMemberSpecializationInfo()) {
+ if (MSInfo->getPointOfInstantiation().isInvalid()) {
+ SourceLocation Loc = R->getLocation(); // FIXME
+ MSInfo->setPointOfInstantiation(Loc);
+ SemaRef.PendingLocalImplicitInstantiations.push_back(
+ std::make_pair(Function, Loc));
+ QueuedInstantiation = true;
+ }
+ }
+ }
+ }
+ }
+ }
+
+ // Check the template parameter list against the previous declaration. The
+ // goal here is to pick up default arguments added since the friend was
+ // declared; we know the template parameter lists match, since otherwise
+ // we would not have picked this template as the previous declaration.
+ if (TemplateParams && FunctionTemplate->getPreviousDecl()) {
+ SemaRef.CheckTemplateParameterList(
+ TemplateParams,
+ FunctionTemplate->getPreviousDecl()->getTemplateParameters(),
+ Function->isThisDeclarationADefinition()
+ ? Sema::TPC_FriendFunctionTemplateDefinition
+ : Sema::TPC_FriendFunctionTemplate);
+ }
+ }
+
+ if (Function->isLocalExternDecl() && !Function->getPreviousDecl())
+ DC->makeDeclVisibleInContext(PrincipalDecl);
+
+ if (Function->isOverloadedOperator() && !DC->isRecord() &&
+ PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
+ PrincipalDecl->setNonMemberOperator();
+
+ assert(!D->isDefaulted() && "only methods should be defaulted");
+ return Function;
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(
+ CXXMethodDecl *D, TemplateParameterList *TemplateParams,
+ Optional<const ASTTemplateArgumentListInfo *>
+ ClassScopeSpecializationArgs) {
+ FunctionTemplateDecl *FunctionTemplate = D->getDescribedFunctionTemplate();
+ if (FunctionTemplate && !TemplateParams) {
+ // We are creating a function template specialization from a function
+ // template. Check whether there is already a function template
+ // specialization for this particular set of template arguments.
+ ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
+
+ void *InsertPos = nullptr;
+ FunctionDecl *SpecFunc
+ = FunctionTemplate->findSpecialization(Innermost, InsertPos);
+
+ // If we already have a function template specialization, return it.
+ if (SpecFunc)
+ return SpecFunc;
+ }
+
+ bool isFriend;
+ if (FunctionTemplate)
+ isFriend = (FunctionTemplate->getFriendObjectKind() != Decl::FOK_None);
+ else
+ isFriend = (D->getFriendObjectKind() != Decl::FOK_None);
+
+ bool MergeWithParentScope = (TemplateParams != nullptr) ||
+ !(isa<Decl>(Owner) &&
+ cast<Decl>(Owner)->isDefinedOutsideFunctionOrMethod());
+ LocalInstantiationScope Scope(SemaRef, MergeWithParentScope);
+
+ // Instantiate enclosing template arguments for friends.
+ SmallVector<TemplateParameterList *, 4> TempParamLists;
+ unsigned NumTempParamLists = 0;
+ if (isFriend && (NumTempParamLists = D->getNumTemplateParameterLists())) {
+ TempParamLists.resize(NumTempParamLists);
+ for (unsigned I = 0; I != NumTempParamLists; ++I) {
+ TemplateParameterList *TempParams = D->getTemplateParameterList(I);
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+ TempParamLists[I] = InstParams;
+ }
+ }
+
+ ExplicitSpecifier InstantiatedExplicitSpecifier =
+ instantiateExplicitSpecifier(SemaRef, TemplateArgs,
+ ExplicitSpecifier::getFromDecl(D), D);
+ if (InstantiatedExplicitSpecifier.isInvalid())
+ return nullptr;
+
+ SmallVector<ParmVarDecl *, 4> Params;
+ TypeSourceInfo *TInfo = SubstFunctionType(D, Params);
+ if (!TInfo)
+ return nullptr;
+ QualType T = adjustFunctionTypeForInstantiation(SemaRef.Context, D, TInfo);
+
+ NestedNameSpecifierLoc QualifierLoc = D->getQualifierLoc();
+ if (QualifierLoc) {
+ QualifierLoc = SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc,
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+ }
+
+ DeclContext *DC = Owner;
+ if (isFriend) {
+ if (QualifierLoc) {
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ DC = SemaRef.computeDeclContext(SS);
+
+ if (DC && SemaRef.RequireCompleteDeclContext(SS, DC))
+ return nullptr;
+ } else {
+ DC = SemaRef.FindInstantiatedContext(D->getLocation(),
+ D->getDeclContext(),
+ TemplateArgs);
+ }
+ if (!DC) return nullptr;
+ }
+
+ // Build the instantiated method declaration.
+ CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
+ CXXMethodDecl *Method = nullptr;
+
+ SourceLocation StartLoc = D->getInnerLocStart();
+ DeclarationNameInfo NameInfo
+ = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
+ if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(D)) {
+ Method = CXXConstructorDecl::Create(
+ SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
+ InstantiatedExplicitSpecifier, Constructor->isInlineSpecified(), false,
+ Constructor->getConstexprKind());
+ Method->setRangeEnd(Constructor->getEndLoc());
+ } else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(D)) {
+ Method = CXXDestructorDecl::Create(SemaRef.Context, Record,
+ StartLoc, NameInfo, T, TInfo,
+ Destructor->isInlineSpecified(),
+ false);
+ Method->setRangeEnd(Destructor->getEndLoc());
+ } else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(D)) {
+ Method = CXXConversionDecl::Create(
+ SemaRef.Context, Record, StartLoc, NameInfo, T, TInfo,
+ Conversion->isInlineSpecified(), InstantiatedExplicitSpecifier,
+ Conversion->getConstexprKind(), Conversion->getEndLoc());
+ } else {
+ StorageClass SC = D->isStatic() ? SC_Static : SC_None;
+ Method = CXXMethodDecl::Create(SemaRef.Context, Record, StartLoc, NameInfo,
+ T, TInfo, SC, D->isInlineSpecified(),
+ D->getConstexprKind(), D->getEndLoc());
+ }
+
+ if (D->isInlined())
+ Method->setImplicitlyInline();
+
+ if (QualifierLoc)
+ Method->setQualifierInfo(QualifierLoc);
+
+ if (TemplateParams) {
+ // Our resulting instantiation is actually a function template, since we
+ // are substituting only the outer template parameters. For example, given
+ //
+ // template<typename T>
+ // struct X {
+ // template<typename U> void f(T, U);
+ // };
+ //
+ // X<int> x;
+ //
+ // We are instantiating the member template "f" within X<int>, which means
+ // substituting int for T, but leaving "f" as a member function template.
+ // Build the function template itself.
+ FunctionTemplate = FunctionTemplateDecl::Create(SemaRef.Context, Record,
+ Method->getLocation(),
+ Method->getDeclName(),
+ TemplateParams, Method);
+ if (isFriend) {
+ FunctionTemplate->setLexicalDeclContext(Owner);
+ FunctionTemplate->setObjectOfFriendDecl();
+ } else if (D->isOutOfLine())
+ FunctionTemplate->setLexicalDeclContext(D->getLexicalDeclContext());
+ Method->setDescribedFunctionTemplate(FunctionTemplate);
+ } else if (FunctionTemplate) {
+ // Record this function template specialization.
+ ArrayRef<TemplateArgument> Innermost = TemplateArgs.getInnermost();
+ Method->setFunctionTemplateSpecialization(FunctionTemplate,
+ TemplateArgumentList::CreateCopy(SemaRef.Context,
+ Innermost),
+ /*InsertPos=*/nullptr);
+ } else if (!isFriend) {
+ // Record that this is an instantiation of a member function.
+ Method->setInstantiationOfMemberFunction(D, TSK_ImplicitInstantiation);
+ }
+
+ // If we are instantiating a member function defined
+ // out-of-line, the instantiation will have the same lexical
+ // context (which will be a namespace scope) as the template.
+ if (isFriend) {
+ if (NumTempParamLists)
+ Method->setTemplateParameterListsInfo(
+ SemaRef.Context,
+ llvm::makeArrayRef(TempParamLists.data(), NumTempParamLists));
+
+ Method->setLexicalDeclContext(Owner);
+ Method->setObjectOfFriendDecl();
+ } else if (D->isOutOfLine())
+ Method->setLexicalDeclContext(D->getLexicalDeclContext());
+
+ // Attach the parameters
+ for (unsigned P = 0; P < Params.size(); ++P)
+ Params[P]->setOwningFunction(Method);
+ Method->setParams(Params);
+
+ if (InitMethodInstantiation(Method, D))
+ Method->setInvalidDecl();
+
+ LookupResult Previous(SemaRef, NameInfo, Sema::LookupOrdinaryName,
+ Sema::ForExternalRedeclaration);
+
+ bool IsExplicitSpecialization = false;
+
+ // If the name of this function was written as a template-id, instantiate
+ // the explicit template arguments.
+ if (DependentFunctionTemplateSpecializationInfo *Info
+ = D->getDependentSpecializationInfo()) {
+ assert(isFriend && "non-friend has dependent specialization info?");
+
+ // Instantiate the explicit template arguments.
+ TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
+ Info->getRAngleLoc());
+ if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
+ ExplicitArgs, TemplateArgs))
+ return nullptr;
+
+ // Map the candidate templates to their instantiations.
+ for (unsigned I = 0, E = Info->getNumTemplates(); I != E; ++I) {
+ Decl *Temp = SemaRef.FindInstantiatedDecl(D->getLocation(),
+ Info->getTemplate(I),
+ TemplateArgs);
+ if (!Temp) return nullptr;
+
+ Previous.addDecl(cast<FunctionTemplateDecl>(Temp));
+ }
+
+ if (SemaRef.CheckFunctionTemplateSpecialization(Method,
+ &ExplicitArgs,
+ Previous))
+ Method->setInvalidDecl();
+
+ IsExplicitSpecialization = true;
+ } else if (const ASTTemplateArgumentListInfo *Info =
+ ClassScopeSpecializationArgs.getValueOr(
+ D->getTemplateSpecializationArgsAsWritten())) {
+ SemaRef.LookupQualifiedName(Previous, DC);
+
+ TemplateArgumentListInfo ExplicitArgs(Info->getLAngleLoc(),
+ Info->getRAngleLoc());
+ if (SemaRef.Subst(Info->getTemplateArgs(), Info->getNumTemplateArgs(),
+ ExplicitArgs, TemplateArgs))
+ return nullptr;
+
+ if (SemaRef.CheckFunctionTemplateSpecialization(Method,
+ &ExplicitArgs,
+ Previous))
+ Method->setInvalidDecl();
+
+ IsExplicitSpecialization = true;
+ } else if (ClassScopeSpecializationArgs) {
+ // Class-scope explicit specialization written without explicit template
+ // arguments.
+ SemaRef.LookupQualifiedName(Previous, DC);
+ if (SemaRef.CheckFunctionTemplateSpecialization(Method, nullptr, Previous))
+ Method->setInvalidDecl();
+
+ IsExplicitSpecialization = true;
+ } else if (!FunctionTemplate || TemplateParams || isFriend) {
+ SemaRef.LookupQualifiedName(Previous, Record);
+
+ // In C++, the previous declaration we find might be a tag type
+ // (class or enum). In this case, the new declaration will hide the
+ // tag type. Note that this does does not apply if we're declaring a
+ // typedef (C++ [dcl.typedef]p4).
+ if (Previous.isSingleTagDecl())
+ Previous.clear();
+ }
+
+ SemaRef.CheckFunctionDeclaration(nullptr, Method, Previous,
+ IsExplicitSpecialization);
+
+ if (D->isPure())
+ SemaRef.CheckPureMethod(Method, SourceRange());
+
+ // Propagate access. For a non-friend declaration, the access is
+ // whatever we're propagating from. For a friend, it should be the
+ // previous declaration we just found.
+ if (isFriend && Method->getPreviousDecl())
+ Method->setAccess(Method->getPreviousDecl()->getAccess());
+ else
+ Method->setAccess(D->getAccess());
+ if (FunctionTemplate)
+ FunctionTemplate->setAccess(Method->getAccess());
+
+ SemaRef.CheckOverrideControl(Method);
+
+ // If a function is defined as defaulted or deleted, mark it as such now.
+ if (D->isExplicitlyDefaulted())
+ SemaRef.SetDeclDefaulted(Method, Method->getLocation());
+ if (D->isDeletedAsWritten())
+ SemaRef.SetDeclDeleted(Method, Method->getLocation());
+
+ // If this is an explicit specialization, mark the implicitly-instantiated
+ // template specialization as being an explicit specialization too.
+ // FIXME: Is this necessary?
+ if (IsExplicitSpecialization && !isFriend)
+ SemaRef.CompleteMemberSpecialization(Method, Previous);
+
+ // If there's a function template, let our caller handle it.
+ if (FunctionTemplate) {
+ // do nothing
+
+ // Don't hide a (potentially) valid declaration with an invalid one.
+ } else if (Method->isInvalidDecl() && !Previous.empty()) {
+ // do nothing
+
+ // Otherwise, check access to friends and make them visible.
+ } else if (isFriend) {
+ // We only need to re-check access for methods which we didn't
+ // manage to match during parsing.
+ if (!D->getPreviousDecl())
+ SemaRef.CheckFriendAccess(Method);
+
+ Record->makeDeclVisibleInContext(Method);
+
+ // Otherwise, add the declaration. We don't need to do this for
+ // class-scope specializations because we'll have matched them with
+ // the appropriate template.
+ } else {
+ Owner->addDecl(Method);
+ }
+
+ // PR17480: Honor the used attribute to instantiate member function
+ // definitions
+ if (Method->hasAttr<UsedAttr>()) {
+ if (const auto *A = dyn_cast<CXXRecordDecl>(Owner)) {
+ SourceLocation Loc;
+ if (const MemberSpecializationInfo *MSInfo =
+ A->getMemberSpecializationInfo())
+ Loc = MSInfo->getPointOfInstantiation();
+ else if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(A))
+ Loc = Spec->getPointOfInstantiation();
+ SemaRef.MarkFunctionReferenced(Loc, Method);
+ }
+ }
+
+ return Method;
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXConstructorDecl(CXXConstructorDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXDestructorDecl(CXXDestructorDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXConversionDecl(CXXConversionDecl *D) {
+ return VisitCXXMethodDecl(D);
+}
+
+Decl *TemplateDeclInstantiator::VisitParmVarDecl(ParmVarDecl *D) {
+ return SemaRef.SubstParmVarDecl(D, TemplateArgs, /*indexAdjustment*/ 0, None,
+ /*ExpectParameterPack=*/ false);
+}
+
+Decl *TemplateDeclInstantiator::VisitTemplateTypeParmDecl(
+ TemplateTypeParmDecl *D) {
+ // TODO: don't always clone when decls are refcounted.
+ assert(D->getTypeForDecl()->isTemplateTypeParmType());
+
+ TemplateTypeParmDecl *Inst = TemplateTypeParmDecl::Create(
+ SemaRef.Context, Owner, D->getBeginLoc(), D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumSubstitutedLevels(), D->getIndex(),
+ D->getIdentifier(), D->wasDeclaredWithTypename(), D->isParameterPack());
+ Inst->setAccess(AS_public);
+
+ if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
+ TypeSourceInfo *InstantiatedDefaultArg =
+ SemaRef.SubstType(D->getDefaultArgumentInfo(), TemplateArgs,
+ D->getDefaultArgumentLoc(), D->getDeclName());
+ if (InstantiatedDefaultArg)
+ Inst->setDefaultArgument(InstantiatedDefaultArg);
+ }
+
+ // Introduce this template parameter's instantiation into the instantiation
+ // scope.
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Inst);
+
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::VisitNonTypeTemplateParmDecl(
+ NonTypeTemplateParmDecl *D) {
+ // Substitute into the type of the non-type template parameter.
+ TypeLoc TL = D->getTypeSourceInfo()->getTypeLoc();
+ SmallVector<TypeSourceInfo *, 4> ExpandedParameterPackTypesAsWritten;
+ SmallVector<QualType, 4> ExpandedParameterPackTypes;
+ bool IsExpandedParameterPack = false;
+ TypeSourceInfo *DI;
+ QualType T;
+ bool Invalid = false;
+
+ if (D->isExpandedParameterPack()) {
+ // The non-type template parameter pack is an already-expanded pack
+ // expansion of types. Substitute into each of the expanded types.
+ ExpandedParameterPackTypes.reserve(D->getNumExpansionTypes());
+ ExpandedParameterPackTypesAsWritten.reserve(D->getNumExpansionTypes());
+ for (unsigned I = 0, N = D->getNumExpansionTypes(); I != N; ++I) {
+ TypeSourceInfo *NewDI =
+ SemaRef.SubstType(D->getExpansionTypeSourceInfo(I), TemplateArgs,
+ D->getLocation(), D->getDeclName());
+ if (!NewDI)
+ return nullptr;
+
+ QualType NewT =
+ SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
+ if (NewT.isNull())
+ return nullptr;
+
+ ExpandedParameterPackTypesAsWritten.push_back(NewDI);
+ ExpandedParameterPackTypes.push_back(NewT);
+ }
+
+ IsExpandedParameterPack = true;
+ DI = D->getTypeSourceInfo();
+ T = DI->getType();
+ } else if (D->isPackExpansion()) {
+ // The non-type template parameter pack's type is a pack expansion of types.
+ // Determine whether we need to expand this parameter pack into separate
+ // types.
+ PackExpansionTypeLoc Expansion = TL.castAs<PackExpansionTypeLoc>();
+ TypeLoc Pattern = Expansion.getPatternLoc();
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ SemaRef.collectUnexpandedParameterPacks(Pattern, Unexpanded);
+
+ // Determine whether the set of unexpanded parameter packs can and should
+ // be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> OrigNumExpansions
+ = Expansion.getTypePtr()->getNumExpansions();
+ Optional<unsigned> NumExpansions = OrigNumExpansions;
+ if (SemaRef.CheckParameterPacksForExpansion(Expansion.getEllipsisLoc(),
+ Pattern.getSourceRange(),
+ Unexpanded,
+ TemplateArgs,
+ Expand, RetainExpansion,
+ NumExpansions))
+ return nullptr;
+
+ if (Expand) {
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
+ TypeSourceInfo *NewDI = SemaRef.SubstType(Pattern, TemplateArgs,
+ D->getLocation(),
+ D->getDeclName());
+ if (!NewDI)
+ return nullptr;
+
+ QualType NewT =
+ SemaRef.CheckNonTypeTemplateParameterType(NewDI, D->getLocation());
+ if (NewT.isNull())
+ return nullptr;
+
+ ExpandedParameterPackTypesAsWritten.push_back(NewDI);
+ ExpandedParameterPackTypes.push_back(NewT);
+ }
+
+ // Note that we have an expanded parameter pack. The "type" of this
+ // expanded parameter pack is the original expansion type, but callers
+ // will end up using the expanded parameter pack types for type-checking.
+ IsExpandedParameterPack = true;
+ DI = D->getTypeSourceInfo();
+ T = DI->getType();
+ } else {
+ // We cannot fully expand the pack expansion now, so substitute into the
+ // pattern and create a new pack expansion type.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
+ TypeSourceInfo *NewPattern = SemaRef.SubstType(Pattern, TemplateArgs,
+ D->getLocation(),
+ D->getDeclName());
+ if (!NewPattern)
+ return nullptr;
+
+ SemaRef.CheckNonTypeTemplateParameterType(NewPattern, D->getLocation());
+ DI = SemaRef.CheckPackExpansion(NewPattern, Expansion.getEllipsisLoc(),
+ NumExpansions);
+ if (!DI)
+ return nullptr;
+
+ T = DI->getType();
+ }
+ } else {
+ // Simple case: substitution into a parameter that is not a parameter pack.
+ DI = SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
+ D->getLocation(), D->getDeclName());
+ if (!DI)
+ return nullptr;
+
+ // Check that this type is acceptable for a non-type template parameter.
+ T = SemaRef.CheckNonTypeTemplateParameterType(DI, D->getLocation());
+ if (T.isNull()) {
+ T = SemaRef.Context.IntTy;
+ Invalid = true;
+ }
+ }
+
+ NonTypeTemplateParmDecl *Param;
+ if (IsExpandedParameterPack)
+ Param = NonTypeTemplateParmDecl::Create(
+ SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
+ D->getPosition(), D->getIdentifier(), T, DI, ExpandedParameterPackTypes,
+ ExpandedParameterPackTypesAsWritten);
+ else
+ Param = NonTypeTemplateParmDecl::Create(
+ SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
+ D->getPosition(), D->getIdentifier(), T, D->isParameterPack(), DI);
+
+ Param->setAccess(AS_public);
+ if (Invalid)
+ Param->setInvalidDecl();
+
+ if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
+ EnterExpressionEvaluationContext ConstantEvaluated(
+ SemaRef, Sema::ExpressionEvaluationContext::ConstantEvaluated);
+ ExprResult Value = SemaRef.SubstExpr(D->getDefaultArgument(), TemplateArgs);
+ if (!Value.isInvalid())
+ Param->setDefaultArgument(Value.get());
+ }
+
+ // Introduce this template parameter's instantiation into the instantiation
+ // scope.
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
+ return Param;
+}
+
+static void collectUnexpandedParameterPacks(
+ Sema &S,
+ TemplateParameterList *Params,
+ SmallVectorImpl<UnexpandedParameterPack> &Unexpanded) {
+ for (const auto &P : *Params) {
+ if (P->isTemplateParameterPack())
+ continue;
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P))
+ S.collectUnexpandedParameterPacks(NTTP->getTypeSourceInfo()->getTypeLoc(),
+ Unexpanded);
+ if (TemplateTemplateParmDecl *TTP = dyn_cast<TemplateTemplateParmDecl>(P))
+ collectUnexpandedParameterPacks(S, TTP->getTemplateParameters(),
+ Unexpanded);
+ }
+}
+
+Decl *
+TemplateDeclInstantiator::VisitTemplateTemplateParmDecl(
+ TemplateTemplateParmDecl *D) {
+ // Instantiate the template parameter list of the template template parameter.
+ TemplateParameterList *TempParams = D->getTemplateParameters();
+ TemplateParameterList *InstParams;
+ SmallVector<TemplateParameterList*, 8> ExpandedParams;
+
+ bool IsExpandedParameterPack = false;
+
+ if (D->isExpandedParameterPack()) {
+ // The template template parameter pack is an already-expanded pack
+ // expansion of template parameters. Substitute into each of the expanded
+ // parameters.
+ ExpandedParams.reserve(D->getNumExpansionTemplateParameters());
+ for (unsigned I = 0, N = D->getNumExpansionTemplateParameters();
+ I != N; ++I) {
+ LocalInstantiationScope Scope(SemaRef);
+ TemplateParameterList *Expansion =
+ SubstTemplateParams(D->getExpansionTemplateParameters(I));
+ if (!Expansion)
+ return nullptr;
+ ExpandedParams.push_back(Expansion);
+ }
+
+ IsExpandedParameterPack = true;
+ InstParams = TempParams;
+ } else if (D->isPackExpansion()) {
+ // The template template parameter pack expands to a pack of template
+ // template parameters. Determine whether we need to expand this parameter
+ // pack into separate parameters.
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ collectUnexpandedParameterPacks(SemaRef, D->getTemplateParameters(),
+ Unexpanded);
+
+ // Determine whether the set of unexpanded parameter packs can and should
+ // be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ if (SemaRef.CheckParameterPacksForExpansion(D->getLocation(),
+ TempParams->getSourceRange(),
+ Unexpanded,
+ TemplateArgs,
+ Expand, RetainExpansion,
+ NumExpansions))
+ return nullptr;
+
+ if (Expand) {
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
+ LocalInstantiationScope Scope(SemaRef);
+ TemplateParameterList *Expansion = SubstTemplateParams(TempParams);
+ if (!Expansion)
+ return nullptr;
+ ExpandedParams.push_back(Expansion);
+ }
+
+ // Note that we have an expanded parameter pack. The "type" of this
+ // expanded parameter pack is the original expansion type, but callers
+ // will end up using the expanded parameter pack types for type-checking.
+ IsExpandedParameterPack = true;
+ InstParams = TempParams;
+ } else {
+ // We cannot fully expand the pack expansion now, so just substitute
+ // into the pattern.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
+
+ LocalInstantiationScope Scope(SemaRef);
+ InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+ }
+ } else {
+ // Perform the actual substitution of template parameters within a new,
+ // local instantiation scope.
+ LocalInstantiationScope Scope(SemaRef);
+ InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+ }
+
+ // Build the template template parameter.
+ TemplateTemplateParmDecl *Param;
+ if (IsExpandedParameterPack)
+ Param = TemplateTemplateParmDecl::Create(
+ SemaRef.Context, Owner, D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
+ D->getPosition(), D->getIdentifier(), InstParams, ExpandedParams);
+ else
+ Param = TemplateTemplateParmDecl::Create(
+ SemaRef.Context, Owner, D->getLocation(),
+ D->getDepth() - TemplateArgs.getNumSubstitutedLevels(),
+ D->getPosition(), D->isParameterPack(), D->getIdentifier(), InstParams);
+ if (D->hasDefaultArgument() && !D->defaultArgumentWasInherited()) {
+ NestedNameSpecifierLoc QualifierLoc =
+ D->getDefaultArgument().getTemplateQualifierLoc();
+ QualifierLoc =
+ SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgs);
+ TemplateName TName = SemaRef.SubstTemplateName(
+ QualifierLoc, D->getDefaultArgument().getArgument().getAsTemplate(),
+ D->getDefaultArgument().getTemplateNameLoc(), TemplateArgs);
+ if (!TName.isNull())
+ Param->setDefaultArgument(
+ SemaRef.Context,
+ TemplateArgumentLoc(TemplateArgument(TName),
+ D->getDefaultArgument().getTemplateQualifierLoc(),
+ D->getDefaultArgument().getTemplateNameLoc()));
+ }
+ Param->setAccess(AS_public);
+
+ // Introduce this template parameter's instantiation into the instantiation
+ // scope.
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, Param);
+
+ return Param;
+}
+
+Decl *TemplateDeclInstantiator::VisitUsingDirectiveDecl(UsingDirectiveDecl *D) {
+ // Using directives are never dependent (and never contain any types or
+ // expressions), so they require no explicit instantiation work.
+
+ UsingDirectiveDecl *Inst
+ = UsingDirectiveDecl::Create(SemaRef.Context, Owner, D->getLocation(),
+ D->getNamespaceKeyLocation(),
+ D->getQualifierLoc(),
+ D->getIdentLocation(),
+ D->getNominatedNamespace(),
+ D->getCommonAncestor());
+
+ // Add the using directive to its declaration context
+ // only if this is not a function or method.
+ if (!Owner->isFunctionOrMethod())
+ Owner->addDecl(Inst);
+
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::VisitUsingDecl(UsingDecl *D) {
+
+ // The nested name specifier may be dependent, for example
+ // template <typename T> struct t {
+ // struct s1 { T f1(); };
+ // struct s2 : s1 { using s1::f1; };
+ // };
+ // template struct t<int>;
+ // Here, in using s1::f1, s1 refers to t<T>::s1;
+ // we need to substitute for t<int>::s1.
+ NestedNameSpecifierLoc QualifierLoc
+ = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+
+ // For an inheriting constructor declaration, the name of the using
+ // declaration is the name of a constructor in this class, not in the
+ // base class.
+ DeclarationNameInfo NameInfo = D->getNameInfo();
+ if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
+ if (auto *RD = dyn_cast<CXXRecordDecl>(SemaRef.CurContext))
+ NameInfo.setName(SemaRef.Context.DeclarationNames.getCXXConstructorName(
+ SemaRef.Context.getCanonicalType(SemaRef.Context.getRecordType(RD))));
+
+ // We only need to do redeclaration lookups if we're in a class
+ // scope (in fact, it's not really even possible in non-class
+ // scopes).
+ bool CheckRedeclaration = Owner->isRecord();
+
+ LookupResult Prev(SemaRef, NameInfo, Sema::LookupUsingDeclName,
+ Sema::ForVisibleRedeclaration);
+
+ UsingDecl *NewUD = UsingDecl::Create(SemaRef.Context, Owner,
+ D->getUsingLoc(),
+ QualifierLoc,
+ NameInfo,
+ D->hasTypename());
+
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+ if (CheckRedeclaration) {
+ Prev.setHideTags(false);
+ SemaRef.LookupQualifiedName(Prev, Owner);
+
+ // Check for invalid redeclarations.
+ if (SemaRef.CheckUsingDeclRedeclaration(D->getUsingLoc(),
+ D->hasTypename(), SS,
+ D->getLocation(), Prev))
+ NewUD->setInvalidDecl();
+
+ }
+
+ if (!NewUD->isInvalidDecl() &&
+ SemaRef.CheckUsingDeclQualifier(D->getUsingLoc(), D->hasTypename(),
+ SS, NameInfo, D->getLocation()))
+ NewUD->setInvalidDecl();
+
+ SemaRef.Context.setInstantiatedFromUsingDecl(NewUD, D);
+ NewUD->setAccess(D->getAccess());
+ Owner->addDecl(NewUD);
+
+ // Don't process the shadow decls for an invalid decl.
+ if (NewUD->isInvalidDecl())
+ return NewUD;
+
+ if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName)
+ SemaRef.CheckInheritingConstructorUsingDecl(NewUD);
+
+ bool isFunctionScope = Owner->isFunctionOrMethod();
+
+ // Process the shadow decls.
+ for (auto *Shadow : D->shadows()) {
+ // FIXME: UsingShadowDecl doesn't preserve its immediate target, so
+ // reconstruct it in the case where it matters.
+ NamedDecl *OldTarget = Shadow->getTargetDecl();
+ if (auto *CUSD = dyn_cast<ConstructorUsingShadowDecl>(Shadow))
+ if (auto *BaseShadow = CUSD->getNominatedBaseClassShadowDecl())
+ OldTarget = BaseShadow;
+
+ NamedDecl *InstTarget =
+ cast_or_null<NamedDecl>(SemaRef.FindInstantiatedDecl(
+ Shadow->getLocation(), OldTarget, TemplateArgs));
+ if (!InstTarget)
+ return nullptr;
+
+ UsingShadowDecl *PrevDecl = nullptr;
+ if (CheckRedeclaration) {
+ if (SemaRef.CheckUsingShadowDecl(NewUD, InstTarget, Prev, PrevDecl))
+ continue;
+ } else if (UsingShadowDecl *OldPrev =
+ getPreviousDeclForInstantiation(Shadow)) {
+ PrevDecl = cast_or_null<UsingShadowDecl>(SemaRef.FindInstantiatedDecl(
+ Shadow->getLocation(), OldPrev, TemplateArgs));
+ }
+
+ UsingShadowDecl *InstShadow =
+ SemaRef.BuildUsingShadowDecl(/*Scope*/nullptr, NewUD, InstTarget,
+ PrevDecl);
+ SemaRef.Context.setInstantiatedFromUsingShadowDecl(InstShadow, Shadow);
+
+ if (isFunctionScope)
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(Shadow, InstShadow);
+ }
+
+ return NewUD;
+}
+
+Decl *TemplateDeclInstantiator::VisitUsingShadowDecl(UsingShadowDecl *D) {
+ // Ignore these; we handle them in bulk when processing the UsingDecl.
+ return nullptr;
+}
+
+Decl *TemplateDeclInstantiator::VisitConstructorUsingShadowDecl(
+ ConstructorUsingShadowDecl *D) {
+ // Ignore these; we handle them in bulk when processing the UsingDecl.
+ return nullptr;
+}
+
+template <typename T>
+Decl *TemplateDeclInstantiator::instantiateUnresolvedUsingDecl(
+ T *D, bool InstantiatingPackElement) {
+ // If this is a pack expansion, expand it now.
+ if (D->isPackExpansion() && !InstantiatingPackElement) {
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ SemaRef.collectUnexpandedParameterPacks(D->getQualifierLoc(), Unexpanded);
+ SemaRef.collectUnexpandedParameterPacks(D->getNameInfo(), Unexpanded);
+
+ // Determine whether the set of unexpanded parameter packs can and should
+ // be expanded.
+ bool Expand = true;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ if (SemaRef.CheckParameterPacksForExpansion(
+ D->getEllipsisLoc(), D->getSourceRange(), Unexpanded, TemplateArgs,
+ Expand, RetainExpansion, NumExpansions))
+ return nullptr;
+
+ // This declaration cannot appear within a function template signature,
+ // so we can't have a partial argument list for a parameter pack.
+ assert(!RetainExpansion &&
+ "should never need to retain an expansion for UsingPackDecl");
+
+ if (!Expand) {
+ // We cannot fully expand the pack expansion now, so substitute into the
+ // pattern and create a new pack expansion.
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, -1);
+ return instantiateUnresolvedUsingDecl(D, true);
+ }
+
+ // Within a function, we don't have any normal way to check for conflicts
+ // between shadow declarations from different using declarations in the
+ // same pack expansion, but this is always ill-formed because all expansions
+ // must produce (conflicting) enumerators.
+ //
+ // Sadly we can't just reject this in the template definition because it
+ // could be valid if the pack is empty or has exactly one expansion.
+ if (D->getDeclContext()->isFunctionOrMethod() && *NumExpansions > 1) {
+ SemaRef.Diag(D->getEllipsisLoc(),
+ diag::err_using_decl_redeclaration_expansion);
+ return nullptr;
+ }
+
+ // Instantiate the slices of this pack and build a UsingPackDecl.
+ SmallVector<NamedDecl*, 8> Expansions;
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(SemaRef, I);
+ Decl *Slice = instantiateUnresolvedUsingDecl(D, true);
+ if (!Slice)
+ return nullptr;
+ // Note that we can still get unresolved using declarations here, if we
+ // had arguments for all packs but the pattern also contained other
+ // template arguments (this only happens during partial substitution, eg
+ // into the body of a generic lambda in a function template).
+ Expansions.push_back(cast<NamedDecl>(Slice));
+ }
+
+ auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
+ if (isDeclWithinFunction(D))
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
+ return NewD;
+ }
+
+ UnresolvedUsingTypenameDecl *TD = dyn_cast<UnresolvedUsingTypenameDecl>(D);
+ SourceLocation TypenameLoc = TD ? TD->getTypenameLoc() : SourceLocation();
+
+ NestedNameSpecifierLoc QualifierLoc
+ = SemaRef.SubstNestedNameSpecifierLoc(D->getQualifierLoc(),
+ TemplateArgs);
+ if (!QualifierLoc)
+ return nullptr;
+
+ CXXScopeSpec SS;
+ SS.Adopt(QualifierLoc);
+
+ DeclarationNameInfo NameInfo
+ = SemaRef.SubstDeclarationNameInfo(D->getNameInfo(), TemplateArgs);
+
+ // Produce a pack expansion only if we're not instantiating a particular
+ // slice of a pack expansion.
+ bool InstantiatingSlice = D->getEllipsisLoc().isValid() &&
+ SemaRef.ArgumentPackSubstitutionIndex != -1;
+ SourceLocation EllipsisLoc =
+ InstantiatingSlice ? SourceLocation() : D->getEllipsisLoc();
+
+ NamedDecl *UD = SemaRef.BuildUsingDeclaration(
+ /*Scope*/ nullptr, D->getAccess(), D->getUsingLoc(),
+ /*HasTypename*/ TD, TypenameLoc, SS, NameInfo, EllipsisLoc,
+ ParsedAttributesView(),
+ /*IsInstantiation*/ true);
+ if (UD)
+ SemaRef.Context.setInstantiatedFromUsingDecl(UD, D);
+
+ return UD;
+}
+
+Decl *TemplateDeclInstantiator::VisitUnresolvedUsingTypenameDecl(
+ UnresolvedUsingTypenameDecl *D) {
+ return instantiateUnresolvedUsingDecl(D);
+}
+
+Decl *TemplateDeclInstantiator::VisitUnresolvedUsingValueDecl(
+ UnresolvedUsingValueDecl *D) {
+ return instantiateUnresolvedUsingDecl(D);
+}
+
+Decl *TemplateDeclInstantiator::VisitUsingPackDecl(UsingPackDecl *D) {
+ SmallVector<NamedDecl*, 8> Expansions;
+ for (auto *UD : D->expansions()) {
+ if (NamedDecl *NewUD =
+ SemaRef.FindInstantiatedDecl(D->getLocation(), UD, TemplateArgs))
+ Expansions.push_back(NewUD);
+ else
+ return nullptr;
+ }
+
+ auto *NewD = SemaRef.BuildUsingPackDecl(D, Expansions);
+ if (isDeclWithinFunction(D))
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewD);
+ return NewD;
+}
+
+Decl *TemplateDeclInstantiator::VisitClassScopeFunctionSpecializationDecl(
+ ClassScopeFunctionSpecializationDecl *Decl) {
+ CXXMethodDecl *OldFD = Decl->getSpecialization();
+ return cast_or_null<CXXMethodDecl>(
+ VisitCXXMethodDecl(OldFD, nullptr, Decl->getTemplateArgsAsWritten()));
+}
+
+Decl *TemplateDeclInstantiator::VisitOMPThreadPrivateDecl(
+ OMPThreadPrivateDecl *D) {
+ SmallVector<Expr *, 5> Vars;
+ for (auto *I : D->varlists()) {
+ Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
+ assert(isa<DeclRefExpr>(Var) && "threadprivate arg is not a DeclRefExpr");
+ Vars.push_back(Var);
+ }
+
+ OMPThreadPrivateDecl *TD =
+ SemaRef.CheckOMPThreadPrivateDecl(D->getLocation(), Vars);
+
+ TD->setAccess(AS_public);
+ Owner->addDecl(TD);
+
+ return TD;
+}
+
+Decl *TemplateDeclInstantiator::VisitOMPAllocateDecl(OMPAllocateDecl *D) {
+ SmallVector<Expr *, 5> Vars;
+ for (auto *I : D->varlists()) {
+ Expr *Var = SemaRef.SubstExpr(I, TemplateArgs).get();
+ assert(isa<DeclRefExpr>(Var) && "allocate arg is not a DeclRefExpr");
+ Vars.push_back(Var);
+ }
+ SmallVector<OMPClause *, 4> Clauses;
+ // Copy map clauses from the original mapper.
+ for (OMPClause *C : D->clauselists()) {
+ auto *AC = cast<OMPAllocatorClause>(C);
+ ExprResult NewE = SemaRef.SubstExpr(AC->getAllocator(), TemplateArgs);
+ if (!NewE.isUsable())
+ continue;
+ OMPClause *IC = SemaRef.ActOnOpenMPAllocatorClause(
+ NewE.get(), AC->getBeginLoc(), AC->getLParenLoc(), AC->getEndLoc());
+ Clauses.push_back(IC);
+ }
+
+ Sema::DeclGroupPtrTy Res = SemaRef.ActOnOpenMPAllocateDirective(
+ D->getLocation(), Vars, Clauses, Owner);
+ if (Res.get().isNull())
+ return nullptr;
+ return Res.get().getSingleDecl();
+}
+
+Decl *TemplateDeclInstantiator::VisitOMPRequiresDecl(OMPRequiresDecl *D) {
+ llvm_unreachable(
+ "Requires directive cannot be instantiated within a dependent context");
+}
+
+Decl *TemplateDeclInstantiator::VisitOMPDeclareReductionDecl(
+ OMPDeclareReductionDecl *D) {
+ // Instantiate type and check if it is allowed.
+ const bool RequiresInstantiation =
+ D->getType()->isDependentType() ||
+ D->getType()->isInstantiationDependentType() ||
+ D->getType()->containsUnexpandedParameterPack();
+ QualType SubstReductionType;
+ if (RequiresInstantiation) {
+ SubstReductionType = SemaRef.ActOnOpenMPDeclareReductionType(
+ D->getLocation(),
+ ParsedType::make(SemaRef.SubstType(
+ D->getType(), TemplateArgs, D->getLocation(), DeclarationName())));
+ } else {
+ SubstReductionType = D->getType();
+ }
+ if (SubstReductionType.isNull())
+ return nullptr;
+ bool IsCorrect = !SubstReductionType.isNull();
+ // Create instantiated copy.
+ std::pair<QualType, SourceLocation> ReductionTypes[] = {
+ std::make_pair(SubstReductionType, D->getLocation())};
+ auto *PrevDeclInScope = D->getPrevDeclInScope();
+ if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
+ PrevDeclInScope = cast<OMPDeclareReductionDecl>(
+ SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
+ ->get<Decl *>());
+ }
+ auto DRD = SemaRef.ActOnOpenMPDeclareReductionDirectiveStart(
+ /*S=*/nullptr, Owner, D->getDeclName(), ReductionTypes, D->getAccess(),
+ PrevDeclInScope);
+ auto *NewDRD = cast<OMPDeclareReductionDecl>(DRD.get().getSingleDecl());
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDRD);
+ if (!RequiresInstantiation) {
+ if (Expr *Combiner = D->getCombiner()) {
+ NewDRD->setCombinerData(D->getCombinerIn(), D->getCombinerOut());
+ NewDRD->setCombiner(Combiner);
+ if (Expr *Init = D->getInitializer()) {
+ NewDRD->setInitializerData(D->getInitOrig(), D->getInitPriv());
+ NewDRD->setInitializer(Init, D->getInitializerKind());
+ }
+ }
+ (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(
+ /*S=*/nullptr, DRD, IsCorrect && !D->isInvalidDecl());
+ return NewDRD;
+ }
+ Expr *SubstCombiner = nullptr;
+ Expr *SubstInitializer = nullptr;
+ // Combiners instantiation sequence.
+ if (D->getCombiner()) {
+ SemaRef.ActOnOpenMPDeclareReductionCombinerStart(
+ /*S=*/nullptr, NewDRD);
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(
+ cast<DeclRefExpr>(D->getCombinerIn())->getDecl(),
+ cast<DeclRefExpr>(NewDRD->getCombinerIn())->getDecl());
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(
+ cast<DeclRefExpr>(D->getCombinerOut())->getDecl(),
+ cast<DeclRefExpr>(NewDRD->getCombinerOut())->getDecl());
+ auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
+ Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
+ ThisContext);
+ SubstCombiner = SemaRef.SubstExpr(D->getCombiner(), TemplateArgs).get();
+ SemaRef.ActOnOpenMPDeclareReductionCombinerEnd(NewDRD, SubstCombiner);
+ // Initializers instantiation sequence.
+ if (D->getInitializer()) {
+ VarDecl *OmpPrivParm =
+ SemaRef.ActOnOpenMPDeclareReductionInitializerStart(
+ /*S=*/nullptr, NewDRD);
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(
+ cast<DeclRefExpr>(D->getInitOrig())->getDecl(),
+ cast<DeclRefExpr>(NewDRD->getInitOrig())->getDecl());
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(
+ cast<DeclRefExpr>(D->getInitPriv())->getDecl(),
+ cast<DeclRefExpr>(NewDRD->getInitPriv())->getDecl());
+ if (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit) {
+ SubstInitializer =
+ SemaRef.SubstExpr(D->getInitializer(), TemplateArgs).get();
+ } else {
+ IsCorrect = IsCorrect && OmpPrivParm->hasInit();
+ }
+ SemaRef.ActOnOpenMPDeclareReductionInitializerEnd(
+ NewDRD, SubstInitializer, OmpPrivParm);
+ }
+ IsCorrect =
+ IsCorrect && SubstCombiner &&
+ (!D->getInitializer() ||
+ (D->getInitializerKind() == OMPDeclareReductionDecl::CallInit &&
+ SubstInitializer) ||
+ (D->getInitializerKind() != OMPDeclareReductionDecl::CallInit &&
+ !SubstInitializer && !SubstInitializer));
+ } else {
+ IsCorrect = false;
+ }
+
+ (void)SemaRef.ActOnOpenMPDeclareReductionDirectiveEnd(/*S=*/nullptr, DRD,
+ IsCorrect);
+
+ return NewDRD;
+}
+
+Decl *
+TemplateDeclInstantiator::VisitOMPDeclareMapperDecl(OMPDeclareMapperDecl *D) {
+ // Instantiate type and check if it is allowed.
+ const bool RequiresInstantiation =
+ D->getType()->isDependentType() ||
+ D->getType()->isInstantiationDependentType() ||
+ D->getType()->containsUnexpandedParameterPack();
+ QualType SubstMapperTy;
+ DeclarationName VN = D->getVarName();
+ if (RequiresInstantiation) {
+ SubstMapperTy = SemaRef.ActOnOpenMPDeclareMapperType(
+ D->getLocation(),
+ ParsedType::make(SemaRef.SubstType(D->getType(), TemplateArgs,
+ D->getLocation(), VN)));
+ } else {
+ SubstMapperTy = D->getType();
+ }
+ if (SubstMapperTy.isNull())
+ return nullptr;
+ // Create an instantiated copy of mapper.
+ auto *PrevDeclInScope = D->getPrevDeclInScope();
+ if (PrevDeclInScope && !PrevDeclInScope->isInvalidDecl()) {
+ PrevDeclInScope = cast<OMPDeclareMapperDecl>(
+ SemaRef.CurrentInstantiationScope->findInstantiationOf(PrevDeclInScope)
+ ->get<Decl *>());
+ }
+ OMPDeclareMapperDecl *NewDMD = SemaRef.ActOnOpenMPDeclareMapperDirectiveStart(
+ /*S=*/nullptr, Owner, D->getDeclName(), SubstMapperTy, D->getLocation(),
+ VN, D->getAccess(), PrevDeclInScope);
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(D, NewDMD);
+ SmallVector<OMPClause *, 6> Clauses;
+ bool IsCorrect = true;
+ if (!RequiresInstantiation) {
+ // Copy the mapper variable.
+ NewDMD->setMapperVarRef(D->getMapperVarRef());
+ // Copy map clauses from the original mapper.
+ for (OMPClause *C : D->clauselists())
+ Clauses.push_back(C);
+ } else {
+ // Instantiate the mapper variable.
+ DeclarationNameInfo DirName;
+ SemaRef.StartOpenMPDSABlock(OMPD_declare_mapper, DirName, /*S=*/nullptr,
+ (*D->clauselist_begin())->getBeginLoc());
+ SemaRef.ActOnOpenMPDeclareMapperDirectiveVarDecl(
+ NewDMD, /*S=*/nullptr, SubstMapperTy, D->getLocation(), VN);
+ SemaRef.CurrentInstantiationScope->InstantiatedLocal(
+ cast<DeclRefExpr>(D->getMapperVarRef())->getDecl(),
+ cast<DeclRefExpr>(NewDMD->getMapperVarRef())->getDecl());
+ auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(Owner);
+ Sema::CXXThisScopeRAII ThisScope(SemaRef, ThisContext, Qualifiers(),
+ ThisContext);
+ // Instantiate map clauses.
+ for (OMPClause *C : D->clauselists()) {
+ auto *OldC = cast<OMPMapClause>(C);
+ SmallVector<Expr *, 4> NewVars;
+ for (Expr *OE : OldC->varlists()) {
+ Expr *NE = SemaRef.SubstExpr(OE, TemplateArgs).get();
+ if (!NE) {
+ IsCorrect = false;
+ break;
+ }
+ NewVars.push_back(NE);
+ }
+ if (!IsCorrect)
+ break;
+ NestedNameSpecifierLoc NewQualifierLoc =
+ SemaRef.SubstNestedNameSpecifierLoc(OldC->getMapperQualifierLoc(),
+ TemplateArgs);
+ CXXScopeSpec SS;
+ SS.Adopt(NewQualifierLoc);
+ DeclarationNameInfo NewNameInfo = SemaRef.SubstDeclarationNameInfo(
+ OldC->getMapperIdInfo(), TemplateArgs);
+ OMPVarListLocTy Locs(OldC->getBeginLoc(), OldC->getLParenLoc(),
+ OldC->getEndLoc());
+ OMPClause *NewC = SemaRef.ActOnOpenMPMapClause(
+ OldC->getMapTypeModifiers(), OldC->getMapTypeModifiersLoc(), SS,
+ NewNameInfo, OldC->getMapType(), OldC->isImplicitMapType(),
+ OldC->getMapLoc(), OldC->getColonLoc(), NewVars, Locs);
+ Clauses.push_back(NewC);
+ }
+ SemaRef.EndOpenMPDSABlock(nullptr);
+ }
+ (void)SemaRef.ActOnOpenMPDeclareMapperDirectiveEnd(NewDMD, /*S=*/nullptr,
+ Clauses);
+ if (!IsCorrect)
+ return nullptr;
+ return NewDMD;
+}
+
+Decl *TemplateDeclInstantiator::VisitOMPCapturedExprDecl(
+ OMPCapturedExprDecl * /*D*/) {
+ llvm_unreachable("Should not be met in templates");
+}
+
+Decl *TemplateDeclInstantiator::VisitFunctionDecl(FunctionDecl *D) {
+ return VisitFunctionDecl(D, nullptr);
+}
+
+Decl *
+TemplateDeclInstantiator::VisitCXXDeductionGuideDecl(CXXDeductionGuideDecl *D) {
+ Decl *Inst = VisitFunctionDecl(D, nullptr);
+ if (Inst && !D->getDescribedFunctionTemplate())
+ Owner->addDecl(Inst);
+ return Inst;
+}
+
+Decl *TemplateDeclInstantiator::VisitCXXMethodDecl(CXXMethodDecl *D) {
+ return VisitCXXMethodDecl(D, nullptr);
+}
+
+Decl *TemplateDeclInstantiator::VisitRecordDecl(RecordDecl *D) {
+ llvm_unreachable("There are only CXXRecordDecls in C++");
+}
+
+Decl *
+TemplateDeclInstantiator::VisitClassTemplateSpecializationDecl(
+ ClassTemplateSpecializationDecl *D) {
+ // As a MS extension, we permit class-scope explicit specialization
+ // of member class templates.
+ ClassTemplateDecl *ClassTemplate = D->getSpecializedTemplate();
+ assert(ClassTemplate->getDeclContext()->isRecord() &&
+ D->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
+ "can only instantiate an explicit specialization "
+ "for a member class template");
+
+ // Lookup the already-instantiated declaration in the instantiation
+ // of the class template.
+ ClassTemplateDecl *InstClassTemplate =
+ cast_or_null<ClassTemplateDecl>(SemaRef.FindInstantiatedDecl(
+ D->getLocation(), ClassTemplate, TemplateArgs));
+ if (!InstClassTemplate)
+ return nullptr;
+
+ // Substitute into the template arguments of the class template explicit
+ // specialization.
+ TemplateSpecializationTypeLoc Loc = D->getTypeAsWritten()->getTypeLoc().
+ castAs<TemplateSpecializationTypeLoc>();
+ TemplateArgumentListInfo InstTemplateArgs(Loc.getLAngleLoc(),
+ Loc.getRAngleLoc());
+ SmallVector<TemplateArgumentLoc, 4> ArgLocs;
+ for (unsigned I = 0; I != Loc.getNumArgs(); ++I)
+ ArgLocs.push_back(Loc.getArgLoc(I));
+ if (SemaRef.Subst(ArgLocs.data(), ArgLocs.size(),
+ InstTemplateArgs, TemplateArgs))
+ return nullptr;
+
+ // Check that the template argument list is well-formed for this
+ // class template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (SemaRef.CheckTemplateArgumentList(InstClassTemplate,
+ D->getLocation(),
+ InstTemplateArgs,
+ false,
+ Converted))
+ return nullptr;
+
+ // Figure out where to insert this class template explicit specialization
+ // in the member template's set of class template explicit specializations.
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *PrevDecl =
+ InstClassTemplate->findSpecialization(Converted, InsertPos);
+
+ // Check whether we've already seen a conflicting instantiation of this
+ // declaration (for instance, if there was a prior implicit instantiation).
+ bool Ignored;
+ if (PrevDecl &&
+ SemaRef.CheckSpecializationInstantiationRedecl(D->getLocation(),
+ D->getSpecializationKind(),
+ PrevDecl,
+ PrevDecl->getSpecializationKind(),
+ PrevDecl->getPointOfInstantiation(),
+ Ignored))
+ return nullptr;
+
+ // If PrevDecl was a definition and D is also a definition, diagnose.
+ // This happens in cases like:
+ //
+ // template<typename T, typename U>
+ // struct Outer {
+ // template<typename X> struct Inner;
+ // template<> struct Inner<T> {};
+ // template<> struct Inner<U> {};
+ // };
+ //
+ // Outer<int, int> outer; // error: the explicit specializations of Inner
+ // // have the same signature.
+ if (PrevDecl && PrevDecl->getDefinition() &&
+ D->isThisDeclarationADefinition()) {
+ SemaRef.Diag(D->getLocation(), diag::err_redefinition) << PrevDecl;
+ SemaRef.Diag(PrevDecl->getDefinition()->getLocation(),
+ diag::note_previous_definition);
+ return nullptr;
+ }
+
+ // Create the class template partial specialization declaration.
+ ClassTemplateSpecializationDecl *InstD =
+ ClassTemplateSpecializationDecl::Create(
+ SemaRef.Context, D->getTagKind(), Owner, D->getBeginLoc(),
+ D->getLocation(), InstClassTemplate, Converted, PrevDecl);
+
+ // Add this partial specialization to the set of class template partial
+ // specializations.
+ if (!PrevDecl)
+ InstClassTemplate->AddSpecialization(InstD, InsertPos);
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(D, InstD))
+ return nullptr;
+
+ // Build the canonical type that describes the converted template
+ // arguments of the class template explicit specialization.
+ QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
+ TemplateName(InstClassTemplate), Converted,
+ SemaRef.Context.getRecordType(InstD));
+
+ // Build the fully-sugared type for this class template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
+ TemplateName(InstClassTemplate), D->getLocation(), InstTemplateArgs,
+ CanonType);
+
+ InstD->setAccess(D->getAccess());
+ InstD->setInstantiationOfMemberClass(D, TSK_ImplicitInstantiation);
+ InstD->setSpecializationKind(D->getSpecializationKind());
+ InstD->setTypeAsWritten(WrittenTy);
+ InstD->setExternLoc(D->getExternLoc());
+ InstD->setTemplateKeywordLoc(D->getTemplateKeywordLoc());
+
+ Owner->addDecl(InstD);
+
+ // Instantiate the members of the class-scope explicit specialization eagerly.
+ // We don't have support for lazy instantiation of an explicit specialization
+ // yet, and MSVC eagerly instantiates in this case.
+ // FIXME: This is wrong in standard C++.
+ if (D->isThisDeclarationADefinition() &&
+ SemaRef.InstantiateClass(D->getLocation(), InstD, D, TemplateArgs,
+ TSK_ImplicitInstantiation,
+ /*Complain=*/true))
+ return nullptr;
+
+ return InstD;
+}
+
+Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
+ VarTemplateSpecializationDecl *D) {
+
+ TemplateArgumentListInfo VarTemplateArgsInfo;
+ VarTemplateDecl *VarTemplate = D->getSpecializedTemplate();
+ assert(VarTemplate &&
+ "A template specialization without specialized template?");
+
+ VarTemplateDecl *InstVarTemplate =
+ cast_or_null<VarTemplateDecl>(SemaRef.FindInstantiatedDecl(
+ D->getLocation(), VarTemplate, TemplateArgs));
+ if (!InstVarTemplate)
+ return nullptr;
+
+ // Substitute the current template arguments.
+ const TemplateArgumentListInfo &TemplateArgsInfo = D->getTemplateArgsInfo();
+ VarTemplateArgsInfo.setLAngleLoc(TemplateArgsInfo.getLAngleLoc());
+ VarTemplateArgsInfo.setRAngleLoc(TemplateArgsInfo.getRAngleLoc());
+
+ if (SemaRef.Subst(TemplateArgsInfo.getArgumentArray(),
+ TemplateArgsInfo.size(), VarTemplateArgsInfo, TemplateArgs))
+ return nullptr;
+
+ // Check that the template argument list is well-formed for this template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (SemaRef.CheckTemplateArgumentList(InstVarTemplate, D->getLocation(),
+ VarTemplateArgsInfo, false, Converted))
+ return nullptr;
+
+ // Check whether we've already seen a declaration of this specialization.
+ void *InsertPos = nullptr;
+ VarTemplateSpecializationDecl *PrevDecl =
+ InstVarTemplate->findSpecialization(Converted, InsertPos);
+
+ // Check whether we've already seen a conflicting instantiation of this
+ // declaration (for instance, if there was a prior implicit instantiation).
+ bool Ignored;
+ if (PrevDecl && SemaRef.CheckSpecializationInstantiationRedecl(
+ D->getLocation(), D->getSpecializationKind(), PrevDecl,
+ PrevDecl->getSpecializationKind(),
+ PrevDecl->getPointOfInstantiation(), Ignored))
+ return nullptr;
+
+ return VisitVarTemplateSpecializationDecl(
+ InstVarTemplate, D, InsertPos, VarTemplateArgsInfo, Converted, PrevDecl);
+}
+
+Decl *TemplateDeclInstantiator::VisitVarTemplateSpecializationDecl(
+ VarTemplateDecl *VarTemplate, VarDecl *D, void *InsertPos,
+ const TemplateArgumentListInfo &TemplateArgsInfo,
+ ArrayRef<TemplateArgument> Converted,
+ VarTemplateSpecializationDecl *PrevDecl) {
+
+ // Do substitution on the type of the declaration
+ TypeSourceInfo *DI =
+ SemaRef.SubstType(D->getTypeSourceInfo(), TemplateArgs,
+ D->getTypeSpecStartLoc(), D->getDeclName());
+ if (!DI)
+ return nullptr;
+
+ if (DI->getType()->isFunctionType()) {
+ SemaRef.Diag(D->getLocation(), diag::err_variable_instantiates_to_function)
+ << D->isStaticDataMember() << DI->getType();
+ return nullptr;
+ }
+
+ // Build the instantiated declaration
+ VarTemplateSpecializationDecl *Var = VarTemplateSpecializationDecl::Create(
+ SemaRef.Context, Owner, D->getInnerLocStart(), D->getLocation(),
+ VarTemplate, DI->getType(), DI, D->getStorageClass(), Converted);
+ Var->setTemplateArgsInfo(TemplateArgsInfo);
+ if (InsertPos)
+ VarTemplate->AddSpecialization(Var, InsertPos);
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(D, Var))
+ return nullptr;
+
+ SemaRef.BuildVariableInstantiation(Var, D, TemplateArgs, LateAttrs, Owner,
+ StartingScope, false, PrevDecl);
+
+ return Var;
+}
+
+Decl *TemplateDeclInstantiator::VisitObjCAtDefsFieldDecl(ObjCAtDefsFieldDecl *D) {
+ llvm_unreachable("@defs is not supported in Objective-C++");
+}
+
+Decl *TemplateDeclInstantiator::VisitFriendTemplateDecl(FriendTemplateDecl *D) {
+ // FIXME: We need to be able to instantiate FriendTemplateDecls.
+ unsigned DiagID = SemaRef.getDiagnostics().getCustomDiagID(
+ DiagnosticsEngine::Error,
+ "cannot instantiate %0 yet");
+ SemaRef.Diag(D->getLocation(), DiagID)
+ << D->getDeclKindName();
+
+ return nullptr;
+}
+
+Decl *TemplateDeclInstantiator::VisitConceptDecl(ConceptDecl *D) {
+ llvm_unreachable("Concept definitions cannot reside inside a template");
+}
+
+Decl *TemplateDeclInstantiator::VisitDecl(Decl *D) {
+ llvm_unreachable("Unexpected decl");
+}
+
+Decl *Sema::SubstDecl(Decl *D, DeclContext *Owner,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
+ if (D->isInvalidDecl())
+ return nullptr;
+
+ return Instantiator.Visit(D);
+}
+
+/// Instantiates a nested template parameter list in the current
+/// instantiation context.
+///
+/// \param L The parameter list to instantiate
+///
+/// \returns NULL if there was an error
+TemplateParameterList *
+TemplateDeclInstantiator::SubstTemplateParams(TemplateParameterList *L) {
+ // Get errors for all the parameters before bailing out.
+ bool Invalid = false;
+
+ unsigned N = L->size();
+ typedef SmallVector<NamedDecl *, 8> ParamVector;
+ ParamVector Params;
+ Params.reserve(N);
+ for (auto &P : *L) {
+ NamedDecl *D = cast_or_null<NamedDecl>(Visit(P));
+ Params.push_back(D);
+ Invalid = Invalid || !D || D->isInvalidDecl();
+ }
+
+ // Clean up if we had an error.
+ if (Invalid)
+ return nullptr;
+
+ // Note: we substitute into associated constraints later
+ Expr *const UninstantiatedRequiresClause = L->getRequiresClause();
+
+ TemplateParameterList *InstL
+ = TemplateParameterList::Create(SemaRef.Context, L->getTemplateLoc(),
+ L->getLAngleLoc(), Params,
+ L->getRAngleLoc(),
+ UninstantiatedRequiresClause);
+ return InstL;
+}
+
+TemplateParameterList *
+Sema::SubstTemplateParams(TemplateParameterList *Params, DeclContext *Owner,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ TemplateDeclInstantiator Instantiator(*this, Owner, TemplateArgs);
+ return Instantiator.SubstTemplateParams(Params);
+}
+
+/// Instantiate the declaration of a class template partial
+/// specialization.
+///
+/// \param ClassTemplate the (instantiated) class template that is partially
+// specialized by the instantiation of \p PartialSpec.
+///
+/// \param PartialSpec the (uninstantiated) class template partial
+/// specialization that we are instantiating.
+///
+/// \returns The instantiated partial specialization, if successful; otherwise,
+/// NULL to indicate an error.
+ClassTemplatePartialSpecializationDecl *
+TemplateDeclInstantiator::InstantiateClassTemplatePartialSpecialization(
+ ClassTemplateDecl *ClassTemplate,
+ ClassTemplatePartialSpecializationDecl *PartialSpec) {
+ // Create a local instantiation scope for this class template partial
+ // specialization, which will contain the instantiations of the template
+ // parameters.
+ LocalInstantiationScope Scope(SemaRef);
+
+ // Substitute into the template parameters of the class template partial
+ // specialization.
+ TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ // Substitute into the template arguments of the class template partial
+ // specialization.
+ const ASTTemplateArgumentListInfo *TemplArgInfo
+ = PartialSpec->getTemplateArgsAsWritten();
+ TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
+ TemplArgInfo->RAngleLoc);
+ if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
+ TemplArgInfo->NumTemplateArgs,
+ InstTemplateArgs, TemplateArgs))
+ return nullptr;
+
+ // Check that the template argument list is well-formed for this
+ // class template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (SemaRef.CheckTemplateArgumentList(ClassTemplate,
+ PartialSpec->getLocation(),
+ InstTemplateArgs,
+ false,
+ Converted))
+ return nullptr;
+
+ // Check these arguments are valid for a template partial specialization.
+ if (SemaRef.CheckTemplatePartialSpecializationArgs(
+ PartialSpec->getLocation(), ClassTemplate, InstTemplateArgs.size(),
+ Converted))
+ return nullptr;
+
+ // Figure out where to insert this class template partial specialization
+ // in the member template's set of class template partial specializations.
+ void *InsertPos = nullptr;
+ ClassTemplateSpecializationDecl *PrevDecl
+ = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
+
+ // Build the canonical type that describes the converted template
+ // arguments of the class template partial specialization.
+ QualType CanonType
+ = SemaRef.Context.getTemplateSpecializationType(TemplateName(ClassTemplate),
+ Converted);
+
+ // Build the fully-sugared type for this class template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ TypeSourceInfo *WrittenTy
+ = SemaRef.Context.getTemplateSpecializationTypeInfo(
+ TemplateName(ClassTemplate),
+ PartialSpec->getLocation(),
+ InstTemplateArgs,
+ CanonType);
+
+ if (PrevDecl) {
+ // We've already seen a partial specialization with the same template
+ // parameters and template arguments. This can happen, for example, when
+ // substituting the outer template arguments ends up causing two
+ // class template partial specializations of a member class template
+ // to have identical forms, e.g.,
+ //
+ // template<typename T, typename U>
+ // struct Outer {
+ // template<typename X, typename Y> struct Inner;
+ // template<typename Y> struct Inner<T, Y>;
+ // template<typename Y> struct Inner<U, Y>;
+ // };
+ //
+ // Outer<int, int> outer; // error: the partial specializations of Inner
+ // // have the same signature.
+ SemaRef.Diag(PartialSpec->getLocation(), diag::err_partial_spec_redeclared)
+ << WrittenTy->getType();
+ SemaRef.Diag(PrevDecl->getLocation(), diag::note_prev_partial_spec_here)
+ << SemaRef.Context.getTypeDeclType(PrevDecl);
+ return nullptr;
+ }
+
+
+ // Create the class template partial specialization declaration.
+ ClassTemplatePartialSpecializationDecl *InstPartialSpec =
+ ClassTemplatePartialSpecializationDecl::Create(
+ SemaRef.Context, PartialSpec->getTagKind(), Owner,
+ PartialSpec->getBeginLoc(), PartialSpec->getLocation(), InstParams,
+ ClassTemplate, Converted, InstTemplateArgs, CanonType, nullptr);
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(PartialSpec, InstPartialSpec))
+ return nullptr;
+
+ InstPartialSpec->setInstantiatedFromMember(PartialSpec);
+ InstPartialSpec->setTypeAsWritten(WrittenTy);
+
+ // Check the completed partial specialization.
+ SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
+
+ // Add this partial specialization to the set of class template partial
+ // specializations.
+ ClassTemplate->AddPartialSpecialization(InstPartialSpec,
+ /*InsertPos=*/nullptr);
+ return InstPartialSpec;
+}
+
+/// Instantiate the declaration of a variable template partial
+/// specialization.
+///
+/// \param VarTemplate the (instantiated) variable template that is partially
+/// specialized by the instantiation of \p PartialSpec.
+///
+/// \param PartialSpec the (uninstantiated) variable template partial
+/// specialization that we are instantiating.
+///
+/// \returns The instantiated partial specialization, if successful; otherwise,
+/// NULL to indicate an error.
+VarTemplatePartialSpecializationDecl *
+TemplateDeclInstantiator::InstantiateVarTemplatePartialSpecialization(
+ VarTemplateDecl *VarTemplate,
+ VarTemplatePartialSpecializationDecl *PartialSpec) {
+ // Create a local instantiation scope for this variable template partial
+ // specialization, which will contain the instantiations of the template
+ // parameters.
+ LocalInstantiationScope Scope(SemaRef);
+
+ // Substitute into the template parameters of the variable template partial
+ // specialization.
+ TemplateParameterList *TempParams = PartialSpec->getTemplateParameters();
+ TemplateParameterList *InstParams = SubstTemplateParams(TempParams);
+ if (!InstParams)
+ return nullptr;
+
+ // Substitute into the template arguments of the variable template partial
+ // specialization.
+ const ASTTemplateArgumentListInfo *TemplArgInfo
+ = PartialSpec->getTemplateArgsAsWritten();
+ TemplateArgumentListInfo InstTemplateArgs(TemplArgInfo->LAngleLoc,
+ TemplArgInfo->RAngleLoc);
+ if (SemaRef.Subst(TemplArgInfo->getTemplateArgs(),
+ TemplArgInfo->NumTemplateArgs,
+ InstTemplateArgs, TemplateArgs))
+ return nullptr;
+
+ // Check that the template argument list is well-formed for this
+ // class template.
+ SmallVector<TemplateArgument, 4> Converted;
+ if (SemaRef.CheckTemplateArgumentList(VarTemplate, PartialSpec->getLocation(),
+ InstTemplateArgs, false, Converted))
+ return nullptr;
+
+ // Check these arguments are valid for a template partial specialization.
+ if (SemaRef.CheckTemplatePartialSpecializationArgs(
+ PartialSpec->getLocation(), VarTemplate, InstTemplateArgs.size(),
+ Converted))
+ return nullptr;
+
+ // Figure out where to insert this variable template partial specialization
+ // in the member template's set of variable template partial specializations.
+ void *InsertPos = nullptr;
+ VarTemplateSpecializationDecl *PrevDecl =
+ VarTemplate->findPartialSpecialization(Converted, InsertPos);
+
+ // Build the canonical type that describes the converted template
+ // arguments of the variable template partial specialization.
+ QualType CanonType = SemaRef.Context.getTemplateSpecializationType(
+ TemplateName(VarTemplate), Converted);
+
+ // Build the fully-sugared type for this variable template
+ // specialization as the user wrote in the specialization
+ // itself. This means that we'll pretty-print the type retrieved
+ // from the specialization's declaration the way that the user
+ // actually wrote the specialization, rather than formatting the
+ // name based on the "canonical" representation used to store the
+ // template arguments in the specialization.
+ TypeSourceInfo *WrittenTy = SemaRef.Context.getTemplateSpecializationTypeInfo(
+ TemplateName(VarTemplate), PartialSpec->getLocation(), InstTemplateArgs,
+ CanonType);
+
+ if (PrevDecl) {
+ // We've already seen a partial specialization with the same template
+ // parameters and template arguments. This can happen, for example, when
+ // substituting the outer template arguments ends up causing two
+ // variable template partial specializations of a member variable template
+ // to have identical forms, e.g.,
+ //
+ // template<typename T, typename U>
+ // struct Outer {
+ // template<typename X, typename Y> pair<X,Y> p;
+ // template<typename Y> pair<T, Y> p;
+ // template<typename Y> pair<U, Y> p;
+ // };
+ //
+ // Outer<int, int> outer; // error: the partial specializations of Inner
+ // // have the same signature.
+ SemaRef.Diag(PartialSpec->getLocation(),
+ diag::err_var_partial_spec_redeclared)
+ << WrittenTy->getType();
+ SemaRef.Diag(PrevDecl->getLocation(),
+ diag::note_var_prev_partial_spec_here);
+ return nullptr;
+ }
+
+ // Do substitution on the type of the declaration
+ TypeSourceInfo *DI = SemaRef.SubstType(
+ PartialSpec->getTypeSourceInfo(), TemplateArgs,
+ PartialSpec->getTypeSpecStartLoc(), PartialSpec->getDeclName());
+ if (!DI)
+ return nullptr;
+
+ if (DI->getType()->isFunctionType()) {
+ SemaRef.Diag(PartialSpec->getLocation(),
+ diag::err_variable_instantiates_to_function)
+ << PartialSpec->isStaticDataMember() << DI->getType();
+ return nullptr;
+ }
+
+ // Create the variable template partial specialization declaration.
+ VarTemplatePartialSpecializationDecl *InstPartialSpec =
+ VarTemplatePartialSpecializationDecl::Create(
+ SemaRef.Context, Owner, PartialSpec->getInnerLocStart(),
+ PartialSpec->getLocation(), InstParams, VarTemplate, DI->getType(),
+ DI, PartialSpec->getStorageClass(), Converted, InstTemplateArgs);
+
+ // Substitute the nested name specifier, if any.
+ if (SubstQualifier(PartialSpec, InstPartialSpec))
+ return nullptr;
+
+ InstPartialSpec->setInstantiatedFromMember(PartialSpec);
+ InstPartialSpec->setTypeAsWritten(WrittenTy);
+
+ // Check the completed partial specialization.
+ SemaRef.CheckTemplatePartialSpecialization(InstPartialSpec);
+
+ // Add this partial specialization to the set of variable template partial
+ // specializations. The instantiation of the initializer is not necessary.
+ VarTemplate->AddPartialSpecialization(InstPartialSpec, /*InsertPos=*/nullptr);
+
+ SemaRef.BuildVariableInstantiation(InstPartialSpec, PartialSpec, TemplateArgs,
+ LateAttrs, Owner, StartingScope);
+
+ return InstPartialSpec;
+}
+
+TypeSourceInfo*
+TemplateDeclInstantiator::SubstFunctionType(FunctionDecl *D,
+ SmallVectorImpl<ParmVarDecl *> &Params) {
+ TypeSourceInfo *OldTInfo = D->getTypeSourceInfo();
+ assert(OldTInfo && "substituting function without type source info");
+ assert(Params.empty() && "parameter vector is non-empty at start");
+
+ CXXRecordDecl *ThisContext = nullptr;
+ Qualifiers ThisTypeQuals;
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
+ ThisContext = cast<CXXRecordDecl>(Owner);
+ ThisTypeQuals = Method->getMethodQualifiers();
+ }
+
+ TypeSourceInfo *NewTInfo
+ = SemaRef.SubstFunctionDeclType(OldTInfo, TemplateArgs,
+ D->getTypeSpecStartLoc(),
+ D->getDeclName(),
+ ThisContext, ThisTypeQuals);
+ if (!NewTInfo)
+ return nullptr;
+
+ TypeLoc OldTL = OldTInfo->getTypeLoc().IgnoreParens();
+ if (FunctionProtoTypeLoc OldProtoLoc = OldTL.getAs<FunctionProtoTypeLoc>()) {
+ if (NewTInfo != OldTInfo) {
+ // Get parameters from the new type info.
+ TypeLoc NewTL = NewTInfo->getTypeLoc().IgnoreParens();
+ FunctionProtoTypeLoc NewProtoLoc = NewTL.castAs<FunctionProtoTypeLoc>();
+ unsigned NewIdx = 0;
+ for (unsigned OldIdx = 0, NumOldParams = OldProtoLoc.getNumParams();
+ OldIdx != NumOldParams; ++OldIdx) {
+ ParmVarDecl *OldParam = OldProtoLoc.getParam(OldIdx);
+ LocalInstantiationScope *Scope = SemaRef.CurrentInstantiationScope;
+
+ Optional<unsigned> NumArgumentsInExpansion;
+ if (OldParam->isParameterPack())
+ NumArgumentsInExpansion =
+ SemaRef.getNumArgumentsInExpansion(OldParam->getType(),
+ TemplateArgs);
+ if (!NumArgumentsInExpansion) {
+ // Simple case: normal parameter, or a parameter pack that's
+ // instantiated to a (still-dependent) parameter pack.
+ ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
+ Params.push_back(NewParam);
+ Scope->InstantiatedLocal(OldParam, NewParam);
+ } else {
+ // Parameter pack expansion: make the instantiation an argument pack.
+ Scope->MakeInstantiatedLocalArgPack(OldParam);
+ for (unsigned I = 0; I != *NumArgumentsInExpansion; ++I) {
+ ParmVarDecl *NewParam = NewProtoLoc.getParam(NewIdx++);
+ Params.push_back(NewParam);
+ Scope->InstantiatedLocalPackArg(OldParam, NewParam);
+ }
+ }
+ }
+ } else {
+ // The function type itself was not dependent and therefore no
+ // substitution occurred. However, we still need to instantiate
+ // the function parameters themselves.
+ const FunctionProtoType *OldProto =
+ cast<FunctionProtoType>(OldProtoLoc.getType());
+ for (unsigned i = 0, i_end = OldProtoLoc.getNumParams(); i != i_end;
+ ++i) {
+ ParmVarDecl *OldParam = OldProtoLoc.getParam(i);
+ if (!OldParam) {
+ Params.push_back(SemaRef.BuildParmVarDeclForTypedef(
+ D, D->getLocation(), OldProto->getParamType(i)));
+ continue;
+ }
+
+ ParmVarDecl *Parm =
+ cast_or_null<ParmVarDecl>(VisitParmVarDecl(OldParam));
+ if (!Parm)
+ return nullptr;
+ Params.push_back(Parm);
+ }
+ }
+ } else {
+ // If the type of this function, after ignoring parentheses, is not
+ // *directly* a function type, then we're instantiating a function that
+ // was declared via a typedef or with attributes, e.g.,
+ //
+ // typedef int functype(int, int);
+ // functype func;
+ // int __cdecl meth(int, int);
+ //
+ // In this case, we'll just go instantiate the ParmVarDecls that we
+ // synthesized in the method declaration.
+ SmallVector<QualType, 4> ParamTypes;
+ Sema::ExtParameterInfoBuilder ExtParamInfos;
+ if (SemaRef.SubstParmTypes(D->getLocation(), D->parameters(), nullptr,
+ TemplateArgs, ParamTypes, &Params,
+ ExtParamInfos))
+ return nullptr;
+ }
+
+ return NewTInfo;
+}
+
+/// Introduce the instantiated function parameters into the local
+/// instantiation scope, and set the parameter names to those used
+/// in the template.
+static bool addInstantiatedParametersToScope(Sema &S, FunctionDecl *Function,
+ const FunctionDecl *PatternDecl,
+ LocalInstantiationScope &Scope,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ unsigned FParamIdx = 0;
+ for (unsigned I = 0, N = PatternDecl->getNumParams(); I != N; ++I) {
+ const ParmVarDecl *PatternParam = PatternDecl->getParamDecl(I);
+ if (!PatternParam->isParameterPack()) {
+ // Simple case: not a parameter pack.
+ assert(FParamIdx < Function->getNumParams());
+ ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
+ FunctionParam->setDeclName(PatternParam->getDeclName());
+ // If the parameter's type is not dependent, update it to match the type
+ // in the pattern. They can differ in top-level cv-qualifiers, and we want
+ // the pattern's type here. If the type is dependent, they can't differ,
+ // per core issue 1668. Substitute into the type from the pattern, in case
+ // it's instantiation-dependent.
+ // FIXME: Updating the type to work around this is at best fragile.
+ if (!PatternDecl->getType()->isDependentType()) {
+ QualType T = S.SubstType(PatternParam->getType(), TemplateArgs,
+ FunctionParam->getLocation(),
+ FunctionParam->getDeclName());
+ if (T.isNull())
+ return true;
+ FunctionParam->setType(T);
+ }
+
+ Scope.InstantiatedLocal(PatternParam, FunctionParam);
+ ++FParamIdx;
+ continue;
+ }
+
+ // Expand the parameter pack.
+ Scope.MakeInstantiatedLocalArgPack(PatternParam);
+ Optional<unsigned> NumArgumentsInExpansion
+ = S.getNumArgumentsInExpansion(PatternParam->getType(), TemplateArgs);
+ if (NumArgumentsInExpansion) {
+ QualType PatternType =
+ PatternParam->getType()->castAs<PackExpansionType>()->getPattern();
+ for (unsigned Arg = 0; Arg < *NumArgumentsInExpansion; ++Arg) {
+ ParmVarDecl *FunctionParam = Function->getParamDecl(FParamIdx);
+ FunctionParam->setDeclName(PatternParam->getDeclName());
+ if (!PatternDecl->getType()->isDependentType()) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(S, Arg);
+ QualType T = S.SubstType(PatternType, TemplateArgs,
+ FunctionParam->getLocation(),
+ FunctionParam->getDeclName());
+ if (T.isNull())
+ return true;
+ FunctionParam->setType(T);
+ }
+
+ Scope.InstantiatedLocalPackArg(PatternParam, FunctionParam);
+ ++FParamIdx;
+ }
+ }
+ }
+
+ return false;
+}
+
+void Sema::InstantiateExceptionSpec(SourceLocation PointOfInstantiation,
+ FunctionDecl *Decl) {
+ const FunctionProtoType *Proto = Decl->getType()->castAs<FunctionProtoType>();
+ if (Proto->getExceptionSpecType() != EST_Uninstantiated)
+ return;
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Decl,
+ InstantiatingTemplate::ExceptionSpecification());
+ if (Inst.isInvalid()) {
+ // We hit the instantiation depth limit. Clear the exception specification
+ // so that our callers don't have to cope with EST_Uninstantiated.
+ UpdateExceptionSpec(Decl, EST_None);
+ return;
+ }
+ if (Inst.isAlreadyInstantiating()) {
+ // This exception specification indirectly depends on itself. Reject.
+ // FIXME: Corresponding rule in the standard?
+ Diag(PointOfInstantiation, diag::err_exception_spec_cycle) << Decl;
+ UpdateExceptionSpec(Decl, EST_None);
+ return;
+ }
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ Sema::ContextRAII savedContext(*this, Decl);
+ LocalInstantiationScope Scope(*this);
+
+ MultiLevelTemplateArgumentList TemplateArgs =
+ getTemplateInstantiationArgs(Decl, nullptr, /*RelativeToPrimary*/true);
+
+ FunctionDecl *Template = Proto->getExceptionSpecTemplate();
+ if (addInstantiatedParametersToScope(*this, Decl, Template, Scope,
+ TemplateArgs)) {
+ UpdateExceptionSpec(Decl, EST_None);
+ return;
+ }
+
+ SubstExceptionSpec(Decl, Template->getType()->castAs<FunctionProtoType>(),
+ TemplateArgs);
+}
+
+/// Initializes the common fields of an instantiation function
+/// declaration (New) from the corresponding fields of its template (Tmpl).
+///
+/// \returns true if there was an error
+bool
+TemplateDeclInstantiator::InitFunctionInstantiation(FunctionDecl *New,
+ FunctionDecl *Tmpl) {
+ if (Tmpl->isDeleted())
+ New->setDeletedAsWritten();
+
+ New->setImplicit(Tmpl->isImplicit());
+
+ // Forward the mangling number from the template to the instantiated decl.
+ SemaRef.Context.setManglingNumber(New,
+ SemaRef.Context.getManglingNumber(Tmpl));
+
+ // If we are performing substituting explicitly-specified template arguments
+ // or deduced template arguments into a function template and we reach this
+ // point, we are now past the point where SFINAE applies and have committed
+ // to keeping the new function template specialization. We therefore
+ // convert the active template instantiation for the function template
+ // into a template instantiation for this specific function template
+ // specialization, which is not a SFINAE context, so that we diagnose any
+ // further errors in the declaration itself.
+ typedef Sema::CodeSynthesisContext ActiveInstType;
+ ActiveInstType &ActiveInst = SemaRef.CodeSynthesisContexts.back();
+ if (ActiveInst.Kind == ActiveInstType::ExplicitTemplateArgumentSubstitution ||
+ ActiveInst.Kind == ActiveInstType::DeducedTemplateArgumentSubstitution) {
+ if (FunctionTemplateDecl *FunTmpl
+ = dyn_cast<FunctionTemplateDecl>(ActiveInst.Entity)) {
+ assert(FunTmpl->getTemplatedDecl() == Tmpl &&
+ "Deduction from the wrong function template?");
+ (void) FunTmpl;
+ atTemplateEnd(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
+ ActiveInst.Kind = ActiveInstType::TemplateInstantiation;
+ ActiveInst.Entity = New;
+ atTemplateBegin(SemaRef.TemplateInstCallbacks, SemaRef, ActiveInst);
+ }
+ }
+
+ const FunctionProtoType *Proto = Tmpl->getType()->getAs<FunctionProtoType>();
+ assert(Proto && "Function template without prototype?");
+
+ if (Proto->hasExceptionSpec() || Proto->getNoReturnAttr()) {
+ FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
+
+ // DR1330: In C++11, defer instantiation of a non-trivial
+ // exception specification.
+ // DR1484: Local classes and their members are instantiated along with the
+ // containing function.
+ if (SemaRef.getLangOpts().CPlusPlus11 &&
+ EPI.ExceptionSpec.Type != EST_None &&
+ EPI.ExceptionSpec.Type != EST_DynamicNone &&
+ EPI.ExceptionSpec.Type != EST_BasicNoexcept &&
+ !Tmpl->isLexicallyWithinFunctionOrMethod()) {
+ FunctionDecl *ExceptionSpecTemplate = Tmpl;
+ if (EPI.ExceptionSpec.Type == EST_Uninstantiated)
+ ExceptionSpecTemplate = EPI.ExceptionSpec.SourceTemplate;
+ ExceptionSpecificationType NewEST = EST_Uninstantiated;
+ if (EPI.ExceptionSpec.Type == EST_Unevaluated)
+ NewEST = EST_Unevaluated;
+
+ // Mark the function has having an uninstantiated exception specification.
+ const FunctionProtoType *NewProto
+ = New->getType()->getAs<FunctionProtoType>();
+ assert(NewProto && "Template instantiation without function prototype?");
+ EPI = NewProto->getExtProtoInfo();
+ EPI.ExceptionSpec.Type = NewEST;
+ EPI.ExceptionSpec.SourceDecl = New;
+ EPI.ExceptionSpec.SourceTemplate = ExceptionSpecTemplate;
+ New->setType(SemaRef.Context.getFunctionType(
+ NewProto->getReturnType(), NewProto->getParamTypes(), EPI));
+ } else {
+ Sema::ContextRAII SwitchContext(SemaRef, New);
+ SemaRef.SubstExceptionSpec(New, Proto, TemplateArgs);
+ }
+ }
+
+ // Get the definition. Leaves the variable unchanged if undefined.
+ const FunctionDecl *Definition = Tmpl;
+ Tmpl->isDefined(Definition);
+
+ SemaRef.InstantiateAttrs(TemplateArgs, Definition, New,
+ LateAttrs, StartingScope);
+
+ return false;
+}
+
+/// Initializes common fields of an instantiated method
+/// declaration (New) from the corresponding fields of its template
+/// (Tmpl).
+///
+/// \returns true if there was an error
+bool
+TemplateDeclInstantiator::InitMethodInstantiation(CXXMethodDecl *New,
+ CXXMethodDecl *Tmpl) {
+ if (InitFunctionInstantiation(New, Tmpl))
+ return true;
+
+ if (isa<CXXDestructorDecl>(New) && SemaRef.getLangOpts().CPlusPlus11)
+ SemaRef.AdjustDestructorExceptionSpec(cast<CXXDestructorDecl>(New));
+
+ New->setAccess(Tmpl->getAccess());
+ if (Tmpl->isVirtualAsWritten())
+ New->setVirtualAsWritten(true);
+
+ // FIXME: New needs a pointer to Tmpl
+ return false;
+}
+
+/// Instantiate (or find existing instantiation of) a function template with a
+/// given set of template arguments.
+///
+/// Usually this should not be used, and template argument deduction should be
+/// used in its place.
+FunctionDecl *
+Sema::InstantiateFunctionDeclaration(FunctionTemplateDecl *FTD,
+ const TemplateArgumentList *Args,
+ SourceLocation Loc) {
+ FunctionDecl *FD = FTD->getTemplatedDecl();
+
+ sema::TemplateDeductionInfo Info(Loc);
+ InstantiatingTemplate Inst(
+ *this, Loc, FTD, Args->asArray(),
+ CodeSynthesisContext::ExplicitTemplateArgumentSubstitution, Info);
+ if (Inst.isInvalid())
+ return nullptr;
+
+ ContextRAII SavedContext(*this, FD);
+ MultiLevelTemplateArgumentList MArgs(*Args);
+
+ return cast_or_null<FunctionDecl>(SubstDecl(FD, FD->getParent(), MArgs));
+}
+
+/// In the MS ABI, we need to instantiate default arguments of dllexported
+/// default constructors along with the constructor definition. This allows IR
+/// gen to emit a constructor closure which calls the default constructor with
+/// its default arguments.
+static void InstantiateDefaultCtorDefaultArgs(Sema &S,
+ CXXConstructorDecl *Ctor) {
+ assert(S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
+ Ctor->isDefaultConstructor());
+ unsigned NumParams = Ctor->getNumParams();
+ if (NumParams == 0)
+ return;
+ DLLExportAttr *Attr = Ctor->getAttr<DLLExportAttr>();
+ if (!Attr)
+ return;
+ for (unsigned I = 0; I != NumParams; ++I) {
+ (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), Ctor,
+ Ctor->getParamDecl(I));
+ S.DiscardCleanupsInEvaluationContext();
+ }
+}
+
+/// Instantiate the definition of the given function from its
+/// template.
+///
+/// \param PointOfInstantiation the point at which the instantiation was
+/// required. Note that this is not precisely a "point of instantiation"
+/// for the function, but it's close.
+///
+/// \param Function the already-instantiated declaration of a
+/// function template specialization or member function of a class template
+/// specialization.
+///
+/// \param Recursive if true, recursively instantiates any functions that
+/// are required by this instantiation.
+///
+/// \param DefinitionRequired if true, then we are performing an explicit
+/// instantiation where the body of the function is required. Complain if
+/// there is no such body.
+void Sema::InstantiateFunctionDefinition(SourceLocation PointOfInstantiation,
+ FunctionDecl *Function,
+ bool Recursive,
+ bool DefinitionRequired,
+ bool AtEndOfTU) {
+ if (Function->isInvalidDecl() || Function->isDefined() ||
+ isa<CXXDeductionGuideDecl>(Function))
+ return;
+
+ // Never instantiate an explicit specialization except if it is a class scope
+ // explicit specialization.
+ TemplateSpecializationKind TSK =
+ Function->getTemplateSpecializationKindForInstantiation();
+ if (TSK == TSK_ExplicitSpecialization)
+ return;
+
+ // Find the function body that we'll be substituting.
+ const FunctionDecl *PatternDecl = Function->getTemplateInstantiationPattern();
+ assert(PatternDecl && "instantiating a non-template");
+
+ const FunctionDecl *PatternDef = PatternDecl->getDefinition();
+ Stmt *Pattern = nullptr;
+ if (PatternDef) {
+ Pattern = PatternDef->getBody(PatternDef);
+ PatternDecl = PatternDef;
+ if (PatternDef->willHaveBody())
+ PatternDef = nullptr;
+ }
+
+ // FIXME: We need to track the instantiation stack in order to know which
+ // definitions should be visible within this instantiation.
+ if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Function,
+ Function->getInstantiatedFromMemberFunction(),
+ PatternDecl, PatternDef, TSK,
+ /*Complain*/DefinitionRequired)) {
+ if (DefinitionRequired)
+ Function->setInvalidDecl();
+ else if (TSK == TSK_ExplicitInstantiationDefinition) {
+ // Try again at the end of the translation unit (at which point a
+ // definition will be required).
+ assert(!Recursive);
+ Function->setInstantiationIsPending(true);
+ PendingInstantiations.push_back(
+ std::make_pair(Function, PointOfInstantiation));
+ } else if (TSK == TSK_ImplicitInstantiation) {
+ if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
+ !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
+ Diag(PointOfInstantiation, diag::warn_func_template_missing)
+ << Function;
+ Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
+ if (getLangOpts().CPlusPlus11)
+ Diag(PointOfInstantiation, diag::note_inst_declaration_hint)
+ << Function;
+ }
+ }
+
+ return;
+ }
+
+ // Postpone late parsed template instantiations.
+ if (PatternDecl->isLateTemplateParsed() &&
+ !LateTemplateParser) {
+ Function->setInstantiationIsPending(true);
+ LateParsedInstantiations.push_back(
+ std::make_pair(Function, PointOfInstantiation));
+ return;
+ }
+
+ llvm::TimeTraceScope TimeScope("InstantiateFunction", [&]() {
+ std::string Name;
+ llvm::raw_string_ostream OS(Name);
+ Function->getNameForDiagnostic(OS, getPrintingPolicy(),
+ /*Qualified=*/true);
+ return Name;
+ });
+
+ // If we're performing recursive template instantiation, create our own
+ // queue of pending implicit instantiations that we will instantiate later,
+ // while we're still within our own instantiation context.
+ // This has to happen before LateTemplateParser below is called, so that
+ // it marks vtables used in late parsed templates as used.
+ GlobalEagerInstantiationScope GlobalInstantiations(*this,
+ /*Enabled=*/Recursive);
+ LocalEagerInstantiationScope LocalInstantiations(*this);
+
+ // Call the LateTemplateParser callback if there is a need to late parse
+ // a templated function definition.
+ if (!Pattern && PatternDecl->isLateTemplateParsed() &&
+ LateTemplateParser) {
+ // FIXME: Optimize to allow individual templates to be deserialized.
+ if (PatternDecl->isFromASTFile())
+ ExternalSource->ReadLateParsedTemplates(LateParsedTemplateMap);
+
+ auto LPTIter = LateParsedTemplateMap.find(PatternDecl);
+ assert(LPTIter != LateParsedTemplateMap.end() &&
+ "missing LateParsedTemplate");
+ LateTemplateParser(OpaqueParser, *LPTIter->second);
+ Pattern = PatternDecl->getBody(PatternDecl);
+ }
+
+ // Note, we should never try to instantiate a deleted function template.
+ assert((Pattern || PatternDecl->isDefaulted() ||
+ PatternDecl->hasSkippedBody()) &&
+ "unexpected kind of function template definition");
+
+ // C++1y [temp.explicit]p10:
+ // Except for inline functions, declarations with types deduced from their
+ // initializer or return value, and class template specializations, other
+ // explicit instantiation declarations have the effect of suppressing the
+ // implicit instantiation of the entity to which they refer.
+ if (TSK == TSK_ExplicitInstantiationDeclaration &&
+ !PatternDecl->isInlined() &&
+ !PatternDecl->getReturnType()->getContainedAutoType())
+ return;
+
+ if (PatternDecl->isInlined()) {
+ // Function, and all later redeclarations of it (from imported modules,
+ // for instance), are now implicitly inline.
+ for (auto *D = Function->getMostRecentDecl(); /**/;
+ D = D->getPreviousDecl()) {
+ D->setImplicitlyInline();
+ if (D == Function)
+ break;
+ }
+ }
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Function);
+ if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
+ return;
+ PrettyDeclStackTraceEntry CrashInfo(Context, Function, SourceLocation(),
+ "instantiating function definition");
+
+ // The instantiation is visible here, even if it was first declared in an
+ // unimported module.
+ Function->setVisibleDespiteOwningModule();
+
+ // Copy the inner loc start from the pattern.
+ Function->setInnerLocStart(PatternDecl->getInnerLocStart());
+
+ EnterExpressionEvaluationContext EvalContext(
+ *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated);
+
+ // Introduce a new scope where local variable instantiations will be
+ // recorded, unless we're actually a member function within a local
+ // class, in which case we need to merge our results with the parent
+ // scope (of the enclosing function).
+ bool MergeWithParentScope = false;
+ if (CXXRecordDecl *Rec = dyn_cast<CXXRecordDecl>(Function->getDeclContext()))
+ MergeWithParentScope = Rec->isLocalClass();
+
+ LocalInstantiationScope Scope(*this, MergeWithParentScope);
+
+ if (PatternDecl->isDefaulted())
+ SetDeclDefaulted(Function, PatternDecl->getLocation());
+ else {
+ MultiLevelTemplateArgumentList TemplateArgs =
+ getTemplateInstantiationArgs(Function, nullptr, false, PatternDecl);
+
+ // Substitute into the qualifier; we can get a substitution failure here
+ // through evil use of alias templates.
+ // FIXME: Is CurContext correct for this? Should we go to the (instantiation
+ // of the) lexical context of the pattern?
+ SubstQualifier(*this, PatternDecl, Function, TemplateArgs);
+
+ ActOnStartOfFunctionDef(nullptr, Function);
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ Sema::ContextRAII savedContext(*this, Function);
+
+ if (addInstantiatedParametersToScope(*this, Function, PatternDecl, Scope,
+ TemplateArgs))
+ return;
+
+ StmtResult Body;
+ if (PatternDecl->hasSkippedBody()) {
+ ActOnSkippedFunctionBody(Function);
+ Body = nullptr;
+ } else {
+ if (CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(Function)) {
+ // If this is a constructor, instantiate the member initializers.
+ InstantiateMemInitializers(Ctor, cast<CXXConstructorDecl>(PatternDecl),
+ TemplateArgs);
+
+ // If this is an MS ABI dllexport default constructor, instantiate any
+ // default arguments.
+ if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
+ Ctor->isDefaultConstructor()) {
+ InstantiateDefaultCtorDefaultArgs(*this, Ctor);
+ }
+ }
+
+ // Instantiate the function body.
+ Body = SubstStmt(Pattern, TemplateArgs);
+
+ if (Body.isInvalid())
+ Function->setInvalidDecl();
+ }
+ // FIXME: finishing the function body while in an expression evaluation
+ // context seems wrong. Investigate more.
+ ActOnFinishFunctionBody(Function, Body.get(), /*IsInstantiation=*/true);
+
+ PerformDependentDiagnostics(PatternDecl, TemplateArgs);
+
+ if (auto *Listener = getASTMutationListener())
+ Listener->FunctionDefinitionInstantiated(Function);
+
+ savedContext.pop();
+ }
+
+ DeclGroupRef DG(Function);
+ Consumer.HandleTopLevelDecl(DG);
+
+ // This class may have local implicit instantiations that need to be
+ // instantiation within this scope.
+ LocalInstantiations.perform();
+ Scope.Exit();
+ GlobalInstantiations.perform();
+}
+
+VarTemplateSpecializationDecl *Sema::BuildVarTemplateInstantiation(
+ VarTemplateDecl *VarTemplate, VarDecl *FromVar,
+ const TemplateArgumentList &TemplateArgList,
+ const TemplateArgumentListInfo &TemplateArgsInfo,
+ SmallVectorImpl<TemplateArgument> &Converted,
+ SourceLocation PointOfInstantiation, void *InsertPos,
+ LateInstantiatedAttrVec *LateAttrs,
+ LocalInstantiationScope *StartingScope) {
+ if (FromVar->isInvalidDecl())
+ return nullptr;
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, FromVar);
+ if (Inst.isInvalid())
+ return nullptr;
+
+ MultiLevelTemplateArgumentList TemplateArgLists;
+ TemplateArgLists.addOuterTemplateArguments(&TemplateArgList);
+
+ // Instantiate the first declaration of the variable template: for a partial
+ // specialization of a static data member template, the first declaration may
+ // or may not be the declaration in the class; if it's in the class, we want
+ // to instantiate a member in the class (a declaration), and if it's outside,
+ // we want to instantiate a definition.
+ //
+ // If we're instantiating an explicitly-specialized member template or member
+ // partial specialization, don't do this. The member specialization completely
+ // replaces the original declaration in this case.
+ bool IsMemberSpec = false;
+ if (VarTemplatePartialSpecializationDecl *PartialSpec =
+ dyn_cast<VarTemplatePartialSpecializationDecl>(FromVar))
+ IsMemberSpec = PartialSpec->isMemberSpecialization();
+ else if (VarTemplateDecl *FromTemplate = FromVar->getDescribedVarTemplate())
+ IsMemberSpec = FromTemplate->isMemberSpecialization();
+ if (!IsMemberSpec)
+ FromVar = FromVar->getFirstDecl();
+
+ MultiLevelTemplateArgumentList MultiLevelList(TemplateArgList);
+ TemplateDeclInstantiator Instantiator(*this, FromVar->getDeclContext(),
+ MultiLevelList);
+
+ // TODO: Set LateAttrs and StartingScope ...
+
+ return cast_or_null<VarTemplateSpecializationDecl>(
+ Instantiator.VisitVarTemplateSpecializationDecl(
+ VarTemplate, FromVar, InsertPos, TemplateArgsInfo, Converted));
+}
+
+/// Instantiates a variable template specialization by completing it
+/// with appropriate type information and initializer.
+VarTemplateSpecializationDecl *Sema::CompleteVarTemplateSpecializationDecl(
+ VarTemplateSpecializationDecl *VarSpec, VarDecl *PatternDecl,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ assert(PatternDecl->isThisDeclarationADefinition() &&
+ "don't have a definition to instantiate from");
+
+ // Do substitution on the type of the declaration
+ TypeSourceInfo *DI =
+ SubstType(PatternDecl->getTypeSourceInfo(), TemplateArgs,
+ PatternDecl->getTypeSpecStartLoc(), PatternDecl->getDeclName());
+ if (!DI)
+ return nullptr;
+
+ // Update the type of this variable template specialization.
+ VarSpec->setType(DI->getType());
+
+ // Convert the declaration into a definition now.
+ VarSpec->setCompleteDefinition();
+
+ // Instantiate the initializer.
+ InstantiateVariableInitializer(VarSpec, PatternDecl, TemplateArgs);
+
+ return VarSpec;
+}
+
+/// BuildVariableInstantiation - Used after a new variable has been created.
+/// Sets basic variable data and decides whether to postpone the
+/// variable instantiation.
+void Sema::BuildVariableInstantiation(
+ VarDecl *NewVar, VarDecl *OldVar,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ LateInstantiatedAttrVec *LateAttrs, DeclContext *Owner,
+ LocalInstantiationScope *StartingScope,
+ bool InstantiatingVarTemplate,
+ VarTemplateSpecializationDecl *PrevDeclForVarTemplateSpecialization) {
+ // Instantiating a partial specialization to produce a partial
+ // specialization.
+ bool InstantiatingVarTemplatePartialSpec =
+ isa<VarTemplatePartialSpecializationDecl>(OldVar) &&
+ isa<VarTemplatePartialSpecializationDecl>(NewVar);
+ // Instantiating from a variable template (or partial specialization) to
+ // produce a variable template specialization.
+ bool InstantiatingSpecFromTemplate =
+ isa<VarTemplateSpecializationDecl>(NewVar) &&
+ (OldVar->getDescribedVarTemplate() ||
+ isa<VarTemplatePartialSpecializationDecl>(OldVar));
+
+ // If we are instantiating a local extern declaration, the
+ // instantiation belongs lexically to the containing function.
+ // If we are instantiating a static data member defined
+ // out-of-line, the instantiation will have the same lexical
+ // context (which will be a namespace scope) as the template.
+ if (OldVar->isLocalExternDecl()) {
+ NewVar->setLocalExternDecl();
+ NewVar->setLexicalDeclContext(Owner);
+ } else if (OldVar->isOutOfLine())
+ NewVar->setLexicalDeclContext(OldVar->getLexicalDeclContext());
+ NewVar->setTSCSpec(OldVar->getTSCSpec());
+ NewVar->setInitStyle(OldVar->getInitStyle());
+ NewVar->setCXXForRangeDecl(OldVar->isCXXForRangeDecl());
+ NewVar->setObjCForDecl(OldVar->isObjCForDecl());
+ NewVar->setConstexpr(OldVar->isConstexpr());
+ NewVar->setInitCapture(OldVar->isInitCapture());
+ NewVar->setPreviousDeclInSameBlockScope(
+ OldVar->isPreviousDeclInSameBlockScope());
+ NewVar->setAccess(OldVar->getAccess());
+
+ if (!OldVar->isStaticDataMember()) {
+ if (OldVar->isUsed(false))
+ NewVar->setIsUsed();
+ NewVar->setReferenced(OldVar->isReferenced());
+ }
+
+ InstantiateAttrs(TemplateArgs, OldVar, NewVar, LateAttrs, StartingScope);
+
+ LookupResult Previous(
+ *this, NewVar->getDeclName(), NewVar->getLocation(),
+ NewVar->isLocalExternDecl() ? Sema::LookupRedeclarationWithLinkage
+ : Sema::LookupOrdinaryName,
+ NewVar->isLocalExternDecl() ? Sema::ForExternalRedeclaration
+ : forRedeclarationInCurContext());
+
+ if (NewVar->isLocalExternDecl() && OldVar->getPreviousDecl() &&
+ (!OldVar->getPreviousDecl()->getDeclContext()->isDependentContext() ||
+ OldVar->getPreviousDecl()->getDeclContext()==OldVar->getDeclContext())) {
+ // We have a previous declaration. Use that one, so we merge with the
+ // right type.
+ if (NamedDecl *NewPrev = FindInstantiatedDecl(
+ NewVar->getLocation(), OldVar->getPreviousDecl(), TemplateArgs))
+ Previous.addDecl(NewPrev);
+ } else if (!isa<VarTemplateSpecializationDecl>(NewVar) &&
+ OldVar->hasLinkage()) {
+ LookupQualifiedName(Previous, NewVar->getDeclContext(), false);
+ } else if (PrevDeclForVarTemplateSpecialization) {
+ Previous.addDecl(PrevDeclForVarTemplateSpecialization);
+ }
+ CheckVariableDeclaration(NewVar, Previous);
+
+ if (!InstantiatingVarTemplate) {
+ NewVar->getLexicalDeclContext()->addHiddenDecl(NewVar);
+ if (!NewVar->isLocalExternDecl() || !NewVar->getPreviousDecl())
+ NewVar->getDeclContext()->makeDeclVisibleInContext(NewVar);
+ }
+
+ if (!OldVar->isOutOfLine()) {
+ if (NewVar->getDeclContext()->isFunctionOrMethod())
+ CurrentInstantiationScope->InstantiatedLocal(OldVar, NewVar);
+ }
+
+ // Link instantiations of static data members back to the template from
+ // which they were instantiated.
+ //
+ // Don't do this when instantiating a template (we link the template itself
+ // back in that case) nor when instantiating a static data member template
+ // (that's not a member specialization).
+ if (NewVar->isStaticDataMember() && !InstantiatingVarTemplate &&
+ !InstantiatingSpecFromTemplate)
+ NewVar->setInstantiationOfStaticDataMember(OldVar,
+ TSK_ImplicitInstantiation);
+
+ // If the pattern is an (in-class) explicit specialization, then the result
+ // is also an explicit specialization.
+ if (VarTemplateSpecializationDecl *OldVTSD =
+ dyn_cast<VarTemplateSpecializationDecl>(OldVar)) {
+ if (OldVTSD->getSpecializationKind() == TSK_ExplicitSpecialization &&
+ !isa<VarTemplatePartialSpecializationDecl>(OldVTSD))
+ cast<VarTemplateSpecializationDecl>(NewVar)->setSpecializationKind(
+ TSK_ExplicitSpecialization);
+ }
+
+ // Forward the mangling number from the template to the instantiated decl.
+ Context.setManglingNumber(NewVar, Context.getManglingNumber(OldVar));
+ Context.setStaticLocalNumber(NewVar, Context.getStaticLocalNumber(OldVar));
+
+ // Figure out whether to eagerly instantiate the initializer.
+ if (InstantiatingVarTemplate || InstantiatingVarTemplatePartialSpec) {
+ // We're producing a template. Don't instantiate the initializer yet.
+ } else if (NewVar->getType()->isUndeducedType()) {
+ // We need the type to complete the declaration of the variable.
+ InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
+ } else if (InstantiatingSpecFromTemplate ||
+ (OldVar->isInline() && OldVar->isThisDeclarationADefinition() &&
+ !NewVar->isThisDeclarationADefinition())) {
+ // Delay instantiation of the initializer for variable template
+ // specializations or inline static data members until a definition of the
+ // variable is needed.
+ } else {
+ InstantiateVariableInitializer(NewVar, OldVar, TemplateArgs);
+ }
+
+ // Diagnose unused local variables with dependent types, where the diagnostic
+ // will have been deferred.
+ if (!NewVar->isInvalidDecl() &&
+ NewVar->getDeclContext()->isFunctionOrMethod() &&
+ OldVar->getType()->isDependentType())
+ DiagnoseUnusedDecl(NewVar);
+}
+
+/// Instantiate the initializer of a variable.
+void Sema::InstantiateVariableInitializer(
+ VarDecl *Var, VarDecl *OldVar,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ if (ASTMutationListener *L = getASTContext().getASTMutationListener())
+ L->VariableDefinitionInstantiated(Var);
+
+ // We propagate the 'inline' flag with the initializer, because it
+ // would otherwise imply that the variable is a definition for a
+ // non-static data member.
+ if (OldVar->isInlineSpecified())
+ Var->setInlineSpecified();
+ else if (OldVar->isInline())
+ Var->setImplicitlyInline();
+
+ if (OldVar->getInit()) {
+ EnterExpressionEvaluationContext Evaluated(
+ *this, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, Var);
+
+ // Instantiate the initializer.
+ ExprResult Init;
+
+ {
+ ContextRAII SwitchContext(*this, Var->getDeclContext());
+ Init = SubstInitializer(OldVar->getInit(), TemplateArgs,
+ OldVar->getInitStyle() == VarDecl::CallInit);
+ }
+
+ if (!Init.isInvalid()) {
+ Expr *InitExpr = Init.get();
+
+ if (Var->hasAttr<DLLImportAttr>() &&
+ (!InitExpr ||
+ !InitExpr->isConstantInitializer(getASTContext(), false))) {
+ // Do not dynamically initialize dllimport variables.
+ } else if (InitExpr) {
+ bool DirectInit = OldVar->isDirectInit();
+ AddInitializerToDecl(Var, InitExpr, DirectInit);
+ } else
+ ActOnUninitializedDecl(Var);
+ } else {
+ // FIXME: Not too happy about invalidating the declaration
+ // because of a bogus initializer.
+ Var->setInvalidDecl();
+ }
+ } else {
+ // `inline` variables are a definition and declaration all in one; we won't
+ // pick up an initializer from anywhere else.
+ if (Var->isStaticDataMember() && !Var->isInline()) {
+ if (!Var->isOutOfLine())
+ return;
+
+ // If the declaration inside the class had an initializer, don't add
+ // another one to the out-of-line definition.
+ if (OldVar->getFirstDecl()->hasInit())
+ return;
+ }
+
+ // We'll add an initializer to a for-range declaration later.
+ if (Var->isCXXForRangeDecl() || Var->isObjCForDecl())
+ return;
+
+ ActOnUninitializedDecl(Var);
+ }
+
+ if (getLangOpts().CUDA)
+ checkAllowedCUDAInitializer(Var);
+}
+
+/// Instantiate the definition of the given variable from its
+/// template.
+///
+/// \param PointOfInstantiation the point at which the instantiation was
+/// required. Note that this is not precisely a "point of instantiation"
+/// for the variable, but it's close.
+///
+/// \param Var the already-instantiated declaration of a templated variable.
+///
+/// \param Recursive if true, recursively instantiates any functions that
+/// are required by this instantiation.
+///
+/// \param DefinitionRequired if true, then we are performing an explicit
+/// instantiation where a definition of the variable is required. Complain
+/// if there is no such definition.
+void Sema::InstantiateVariableDefinition(SourceLocation PointOfInstantiation,
+ VarDecl *Var, bool Recursive,
+ bool DefinitionRequired, bool AtEndOfTU) {
+ if (Var->isInvalidDecl())
+ return;
+
+ // Never instantiate an explicitly-specialized entity.
+ TemplateSpecializationKind TSK =
+ Var->getTemplateSpecializationKindForInstantiation();
+ if (TSK == TSK_ExplicitSpecialization)
+ return;
+
+ // Find the pattern and the arguments to substitute into it.
+ VarDecl *PatternDecl = Var->getTemplateInstantiationPattern();
+ assert(PatternDecl && "no pattern for templated variable");
+ MultiLevelTemplateArgumentList TemplateArgs =
+ getTemplateInstantiationArgs(Var);
+
+ VarTemplateSpecializationDecl *VarSpec =
+ dyn_cast<VarTemplateSpecializationDecl>(Var);
+ if (VarSpec) {
+ // If this is a variable template specialization, make sure that it is
+ // non-dependent.
+ bool InstantiationDependent = false;
+ assert(!TemplateSpecializationType::anyDependentTemplateArguments(
+ VarSpec->getTemplateArgsInfo(), InstantiationDependent) &&
+ "Only instantiate variable template specializations that are "
+ "not type-dependent");
+ (void)InstantiationDependent;
+
+ // If this is a static data member template, there might be an
+ // uninstantiated initializer on the declaration. If so, instantiate
+ // it now.
+ //
+ // FIXME: This largely duplicates what we would do below. The difference
+ // is that along this path we may instantiate an initializer from an
+ // in-class declaration of the template and instantiate the definition
+ // from a separate out-of-class definition.
+ if (PatternDecl->isStaticDataMember() &&
+ (PatternDecl = PatternDecl->getFirstDecl())->hasInit() &&
+ !Var->hasInit()) {
+ // FIXME: Factor out the duplicated instantiation context setup/tear down
+ // code here.
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
+ if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
+ return;
+ PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
+ "instantiating variable initializer");
+
+ // The instantiation is visible here, even if it was first declared in an
+ // unimported module.
+ Var->setVisibleDespiteOwningModule();
+
+ // If we're performing recursive template instantiation, create our own
+ // queue of pending implicit instantiations that we will instantiate
+ // later, while we're still within our own instantiation context.
+ GlobalEagerInstantiationScope GlobalInstantiations(*this,
+ /*Enabled=*/Recursive);
+ LocalInstantiationScope Local(*this);
+ LocalEagerInstantiationScope LocalInstantiations(*this);
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ ContextRAII PreviousContext(*this, Var->getDeclContext());
+ InstantiateVariableInitializer(Var, PatternDecl, TemplateArgs);
+ PreviousContext.pop();
+
+ // This variable may have local implicit instantiations that need to be
+ // instantiated within this scope.
+ LocalInstantiations.perform();
+ Local.Exit();
+ GlobalInstantiations.perform();
+ }
+ } else {
+ assert(Var->isStaticDataMember() && PatternDecl->isStaticDataMember() &&
+ "not a static data member?");
+ }
+
+ VarDecl *Def = PatternDecl->getDefinition(getASTContext());
+
+ // If we don't have a definition of the variable template, we won't perform
+ // any instantiation. Rather, we rely on the user to instantiate this
+ // definition (or provide a specialization for it) in another translation
+ // unit.
+ if (!Def && !DefinitionRequired) {
+ if (TSK == TSK_ExplicitInstantiationDefinition) {
+ PendingInstantiations.push_back(
+ std::make_pair(Var, PointOfInstantiation));
+ } else if (TSK == TSK_ImplicitInstantiation) {
+ // Warn about missing definition at the end of translation unit.
+ if (AtEndOfTU && !getDiagnostics().hasErrorOccurred() &&
+ !getSourceManager().isInSystemHeader(PatternDecl->getBeginLoc())) {
+ Diag(PointOfInstantiation, diag::warn_var_template_missing)
+ << Var;
+ Diag(PatternDecl->getLocation(), diag::note_forward_template_decl);
+ if (getLangOpts().CPlusPlus11)
+ Diag(PointOfInstantiation, diag::note_inst_declaration_hint) << Var;
+ }
+ return;
+ }
+ }
+
+ // FIXME: We need to track the instantiation stack in order to know which
+ // definitions should be visible within this instantiation.
+ // FIXME: Produce diagnostics when Var->getInstantiatedFromStaticDataMember().
+ if (DiagnoseUninstantiableTemplate(PointOfInstantiation, Var,
+ /*InstantiatedFromMember*/false,
+ PatternDecl, Def, TSK,
+ /*Complain*/DefinitionRequired))
+ return;
+
+ // C++11 [temp.explicit]p10:
+ // Except for inline functions, const variables of literal types, variables
+ // of reference types, [...] explicit instantiation declarations
+ // have the effect of suppressing the implicit instantiation of the entity
+ // to which they refer.
+ //
+ // FIXME: That's not exactly the same as "might be usable in constant
+ // expressions", which only allows constexpr variables and const integral
+ // types, not arbitrary const literal types.
+ if (TSK == TSK_ExplicitInstantiationDeclaration &&
+ !Var->mightBeUsableInConstantExpressions(getASTContext()))
+ return;
+
+ // Make sure to pass the instantiated variable to the consumer at the end.
+ struct PassToConsumerRAII {
+ ASTConsumer &Consumer;
+ VarDecl *Var;
+
+ PassToConsumerRAII(ASTConsumer &Consumer, VarDecl *Var)
+ : Consumer(Consumer), Var(Var) { }
+
+ ~PassToConsumerRAII() {
+ Consumer.HandleCXXStaticMemberVarInstantiation(Var);
+ }
+ } PassToConsumerRAII(Consumer, Var);
+
+ // If we already have a definition, we're done.
+ if (VarDecl *Def = Var->getDefinition()) {
+ // We may be explicitly instantiating something we've already implicitly
+ // instantiated.
+ Def->setTemplateSpecializationKind(Var->getTemplateSpecializationKind(),
+ PointOfInstantiation);
+ return;
+ }
+
+ InstantiatingTemplate Inst(*this, PointOfInstantiation, Var);
+ if (Inst.isInvalid() || Inst.isAlreadyInstantiating())
+ return;
+ PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
+ "instantiating variable definition");
+
+ // If we're performing recursive template instantiation, create our own
+ // queue of pending implicit instantiations that we will instantiate later,
+ // while we're still within our own instantiation context.
+ GlobalEagerInstantiationScope GlobalInstantiations(*this,
+ /*Enabled=*/Recursive);
+
+ // Enter the scope of this instantiation. We don't use
+ // PushDeclContext because we don't have a scope.
+ ContextRAII PreviousContext(*this, Var->getDeclContext());
+ LocalInstantiationScope Local(*this);
+
+ LocalEagerInstantiationScope LocalInstantiations(*this);
+
+ VarDecl *OldVar = Var;
+ if (Def->isStaticDataMember() && !Def->isOutOfLine()) {
+ // We're instantiating an inline static data member whose definition was
+ // provided inside the class.
+ InstantiateVariableInitializer(Var, Def, TemplateArgs);
+ } else if (!VarSpec) {
+ Var = cast_or_null<VarDecl>(SubstDecl(Def, Var->getDeclContext(),
+ TemplateArgs));
+ } else if (Var->isStaticDataMember() &&
+ Var->getLexicalDeclContext()->isRecord()) {
+ // We need to instantiate the definition of a static data member template,
+ // and all we have is the in-class declaration of it. Instantiate a separate
+ // declaration of the definition.
+ TemplateDeclInstantiator Instantiator(*this, Var->getDeclContext(),
+ TemplateArgs);
+ Var = cast_or_null<VarDecl>(Instantiator.VisitVarTemplateSpecializationDecl(
+ VarSpec->getSpecializedTemplate(), Def, nullptr,
+ VarSpec->getTemplateArgsInfo(), VarSpec->getTemplateArgs().asArray()));
+ if (Var) {
+ llvm::PointerUnion<VarTemplateDecl *,
+ VarTemplatePartialSpecializationDecl *> PatternPtr =
+ VarSpec->getSpecializedTemplateOrPartial();
+ if (VarTemplatePartialSpecializationDecl *Partial =
+ PatternPtr.dyn_cast<VarTemplatePartialSpecializationDecl *>())
+ cast<VarTemplateSpecializationDecl>(Var)->setInstantiationOf(
+ Partial, &VarSpec->getTemplateInstantiationArgs());
+
+ // Merge the definition with the declaration.
+ LookupResult R(*this, Var->getDeclName(), Var->getLocation(),
+ LookupOrdinaryName, forRedeclarationInCurContext());
+ R.addDecl(OldVar);
+ MergeVarDecl(Var, R);
+
+ // Attach the initializer.
+ InstantiateVariableInitializer(Var, Def, TemplateArgs);
+ }
+ } else
+ // Complete the existing variable's definition with an appropriately
+ // substituted type and initializer.
+ Var = CompleteVarTemplateSpecializationDecl(VarSpec, Def, TemplateArgs);
+
+ PreviousContext.pop();
+
+ if (Var) {
+ PassToConsumerRAII.Var = Var;
+ Var->setTemplateSpecializationKind(OldVar->getTemplateSpecializationKind(),
+ OldVar->getPointOfInstantiation());
+ }
+
+ // This variable may have local implicit instantiations that need to be
+ // instantiated within this scope.
+ LocalInstantiations.perform();
+ Local.Exit();
+ GlobalInstantiations.perform();
+}
+
+void
+Sema::InstantiateMemInitializers(CXXConstructorDecl *New,
+ const CXXConstructorDecl *Tmpl,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+
+ SmallVector<CXXCtorInitializer*, 4> NewInits;
+ bool AnyErrors = Tmpl->isInvalidDecl();
+
+ // Instantiate all the initializers.
+ for (const auto *Init : Tmpl->inits()) {
+ // Only instantiate written initializers, let Sema re-construct implicit
+ // ones.
+ if (!Init->isWritten())
+ continue;
+
+ SourceLocation EllipsisLoc;
+
+ if (Init->isPackExpansion()) {
+ // This is a pack expansion. We should expand it now.
+ TypeLoc BaseTL = Init->getTypeSourceInfo()->getTypeLoc();
+ SmallVector<UnexpandedParameterPack, 4> Unexpanded;
+ collectUnexpandedParameterPacks(BaseTL, Unexpanded);
+ collectUnexpandedParameterPacks(Init->getInit(), Unexpanded);
+ bool ShouldExpand = false;
+ bool RetainExpansion = false;
+ Optional<unsigned> NumExpansions;
+ if (CheckParameterPacksForExpansion(Init->getEllipsisLoc(),
+ BaseTL.getSourceRange(),
+ Unexpanded,
+ TemplateArgs, ShouldExpand,
+ RetainExpansion,
+ NumExpansions)) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ continue;
+ }
+ assert(ShouldExpand && "Partial instantiation of base initializer?");
+
+ // Loop over all of the arguments in the argument pack(s),
+ for (unsigned I = 0; I != *NumExpansions; ++I) {
+ Sema::ArgumentPackSubstitutionIndexRAII SubstIndex(*this, I);
+
+ // Instantiate the initializer.
+ ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
+ /*CXXDirectInit=*/true);
+ if (TempInit.isInvalid()) {
+ AnyErrors = true;
+ break;
+ }
+
+ // Instantiate the base type.
+ TypeSourceInfo *BaseTInfo = SubstType(Init->getTypeSourceInfo(),
+ TemplateArgs,
+ Init->getSourceLocation(),
+ New->getDeclName());
+ if (!BaseTInfo) {
+ AnyErrors = true;
+ break;
+ }
+
+ // Build the initializer.
+ MemInitResult NewInit = BuildBaseInitializer(BaseTInfo->getType(),
+ BaseTInfo, TempInit.get(),
+ New->getParent(),
+ SourceLocation());
+ if (NewInit.isInvalid()) {
+ AnyErrors = true;
+ break;
+ }
+
+ NewInits.push_back(NewInit.get());
+ }
+
+ continue;
+ }
+
+ // Instantiate the initializer.
+ ExprResult TempInit = SubstInitializer(Init->getInit(), TemplateArgs,
+ /*CXXDirectInit=*/true);
+ if (TempInit.isInvalid()) {
+ AnyErrors = true;
+ continue;
+ }
+
+ MemInitResult NewInit;
+ if (Init->isDelegatingInitializer() || Init->isBaseInitializer()) {
+ TypeSourceInfo *TInfo = SubstType(Init->getTypeSourceInfo(),
+ TemplateArgs,
+ Init->getSourceLocation(),
+ New->getDeclName());
+ if (!TInfo) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ continue;
+ }
+
+ if (Init->isBaseInitializer())
+ NewInit = BuildBaseInitializer(TInfo->getType(), TInfo, TempInit.get(),
+ New->getParent(), EllipsisLoc);
+ else
+ NewInit = BuildDelegatingInitializer(TInfo, TempInit.get(),
+ cast<CXXRecordDecl>(CurContext->getParent()));
+ } else if (Init->isMemberInitializer()) {
+ FieldDecl *Member = cast_or_null<FieldDecl>(FindInstantiatedDecl(
+ Init->getMemberLocation(),
+ Init->getMember(),
+ TemplateArgs));
+ if (!Member) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ continue;
+ }
+
+ NewInit = BuildMemberInitializer(Member, TempInit.get(),
+ Init->getSourceLocation());
+ } else if (Init->isIndirectMemberInitializer()) {
+ IndirectFieldDecl *IndirectMember =
+ cast_or_null<IndirectFieldDecl>(FindInstantiatedDecl(
+ Init->getMemberLocation(),
+ Init->getIndirectMember(), TemplateArgs));
+
+ if (!IndirectMember) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ continue;
+ }
+
+ NewInit = BuildMemberInitializer(IndirectMember, TempInit.get(),
+ Init->getSourceLocation());
+ }
+
+ if (NewInit.isInvalid()) {
+ AnyErrors = true;
+ New->setInvalidDecl();
+ } else {
+ NewInits.push_back(NewInit.get());
+ }
+ }
+
+ // Assign all the initializers to the new constructor.
+ ActOnMemInitializers(New,
+ /*FIXME: ColonLoc */
+ SourceLocation(),
+ NewInits,
+ AnyErrors);
+}
+
+// TODO: this could be templated if the various decl types used the
+// same method name.
+static bool isInstantiationOf(ClassTemplateDecl *Pattern,
+ ClassTemplateDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberTemplate();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(FunctionTemplateDecl *Pattern,
+ FunctionTemplateDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberTemplate();
+ } while (Instance);
+
+ return false;
+}
+
+static bool
+isInstantiationOf(ClassTemplatePartialSpecializationDecl *Pattern,
+ ClassTemplatePartialSpecializationDecl *Instance) {
+ Pattern
+ = cast<ClassTemplatePartialSpecializationDecl>(Pattern->getCanonicalDecl());
+ do {
+ Instance = cast<ClassTemplatePartialSpecializationDecl>(
+ Instance->getCanonicalDecl());
+ if (Pattern == Instance)
+ return true;
+ Instance = Instance->getInstantiatedFromMember();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(CXXRecordDecl *Pattern,
+ CXXRecordDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberClass();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(FunctionDecl *Pattern,
+ FunctionDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberFunction();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(EnumDecl *Pattern,
+ EnumDecl *Instance) {
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromMemberEnum();
+ } while (Instance);
+
+ return false;
+}
+
+static bool isInstantiationOf(UsingShadowDecl *Pattern,
+ UsingShadowDecl *Instance,
+ ASTContext &C) {
+ return declaresSameEntity(C.getInstantiatedFromUsingShadowDecl(Instance),
+ Pattern);
+}
+
+static bool isInstantiationOf(UsingDecl *Pattern, UsingDecl *Instance,
+ ASTContext &C) {
+ return declaresSameEntity(C.getInstantiatedFromUsingDecl(Instance), Pattern);
+}
+
+template<typename T>
+static bool isInstantiationOfUnresolvedUsingDecl(T *Pattern, Decl *Other,
+ ASTContext &Ctx) {
+ // An unresolved using declaration can instantiate to an unresolved using
+ // declaration, or to a using declaration or a using declaration pack.
+ //
+ // Multiple declarations can claim to be instantiated from an unresolved
+ // using declaration if it's a pack expansion. We want the UsingPackDecl
+ // in that case, not the individual UsingDecls within the pack.
+ bool OtherIsPackExpansion;
+ NamedDecl *OtherFrom;
+ if (auto *OtherUUD = dyn_cast<T>(Other)) {
+ OtherIsPackExpansion = OtherUUD->isPackExpansion();
+ OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUUD);
+ } else if (auto *OtherUPD = dyn_cast<UsingPackDecl>(Other)) {
+ OtherIsPackExpansion = true;
+ OtherFrom = OtherUPD->getInstantiatedFromUsingDecl();
+ } else if (auto *OtherUD = dyn_cast<UsingDecl>(Other)) {
+ OtherIsPackExpansion = false;
+ OtherFrom = Ctx.getInstantiatedFromUsingDecl(OtherUD);
+ } else {
+ return false;
+ }
+ return Pattern->isPackExpansion() == OtherIsPackExpansion &&
+ declaresSameEntity(OtherFrom, Pattern);
+}
+
+static bool isInstantiationOfStaticDataMember(VarDecl *Pattern,
+ VarDecl *Instance) {
+ assert(Instance->isStaticDataMember());
+
+ Pattern = Pattern->getCanonicalDecl();
+
+ do {
+ Instance = Instance->getCanonicalDecl();
+ if (Pattern == Instance) return true;
+ Instance = Instance->getInstantiatedFromStaticDataMember();
+ } while (Instance);
+
+ return false;
+}
+
+// Other is the prospective instantiation
+// D is the prospective pattern
+static bool isInstantiationOf(ASTContext &Ctx, NamedDecl *D, Decl *Other) {
+ if (auto *UUD = dyn_cast<UnresolvedUsingTypenameDecl>(D))
+ return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
+
+ if (auto *UUD = dyn_cast<UnresolvedUsingValueDecl>(D))
+ return isInstantiationOfUnresolvedUsingDecl(UUD, Other, Ctx);
+
+ if (D->getKind() != Other->getKind())
+ return false;
+
+ if (auto *Record = dyn_cast<CXXRecordDecl>(Other))
+ return isInstantiationOf(cast<CXXRecordDecl>(D), Record);
+
+ if (auto *Function = dyn_cast<FunctionDecl>(Other))
+ return isInstantiationOf(cast<FunctionDecl>(D), Function);
+
+ if (auto *Enum = dyn_cast<EnumDecl>(Other))
+ return isInstantiationOf(cast<EnumDecl>(D), Enum);
+
+ if (auto *Var = dyn_cast<VarDecl>(Other))
+ if (Var->isStaticDataMember())
+ return isInstantiationOfStaticDataMember(cast<VarDecl>(D), Var);
+
+ if (auto *Temp = dyn_cast<ClassTemplateDecl>(Other))
+ return isInstantiationOf(cast<ClassTemplateDecl>(D), Temp);
+
+ if (auto *Temp = dyn_cast<FunctionTemplateDecl>(Other))
+ return isInstantiationOf(cast<FunctionTemplateDecl>(D), Temp);
+
+ if (auto *PartialSpec =
+ dyn_cast<ClassTemplatePartialSpecializationDecl>(Other))
+ return isInstantiationOf(cast<ClassTemplatePartialSpecializationDecl>(D),
+ PartialSpec);
+
+ if (auto *Field = dyn_cast<FieldDecl>(Other)) {
+ if (!Field->getDeclName()) {
+ // This is an unnamed field.
+ return declaresSameEntity(Ctx.getInstantiatedFromUnnamedFieldDecl(Field),
+ cast<FieldDecl>(D));
+ }
+ }
+
+ if (auto *Using = dyn_cast<UsingDecl>(Other))
+ return isInstantiationOf(cast<UsingDecl>(D), Using, Ctx);
+
+ if (auto *Shadow = dyn_cast<UsingShadowDecl>(Other))
+ return isInstantiationOf(cast<UsingShadowDecl>(D), Shadow, Ctx);
+
+ return D->getDeclName() &&
+ D->getDeclName() == cast<NamedDecl>(Other)->getDeclName();
+}
+
+template<typename ForwardIterator>
+static NamedDecl *findInstantiationOf(ASTContext &Ctx,
+ NamedDecl *D,
+ ForwardIterator first,
+ ForwardIterator last) {
+ for (; first != last; ++first)
+ if (isInstantiationOf(Ctx, D, *first))
+ return cast<NamedDecl>(*first);
+
+ return nullptr;
+}
+
+/// Finds the instantiation of the given declaration context
+/// within the current instantiation.
+///
+/// \returns NULL if there was an error
+DeclContext *Sema::FindInstantiatedContext(SourceLocation Loc, DeclContext* DC,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ if (NamedDecl *D = dyn_cast<NamedDecl>(DC)) {
+ Decl* ID = FindInstantiatedDecl(Loc, D, TemplateArgs, true);
+ return cast_or_null<DeclContext>(ID);
+ } else return DC;
+}
+
+/// Find the instantiation of the given declaration within the
+/// current instantiation.
+///
+/// This routine is intended to be used when \p D is a declaration
+/// referenced from within a template, that needs to mapped into the
+/// corresponding declaration within an instantiation. For example,
+/// given:
+///
+/// \code
+/// template<typename T>
+/// struct X {
+/// enum Kind {
+/// KnownValue = sizeof(T)
+/// };
+///
+/// bool getKind() const { return KnownValue; }
+/// };
+///
+/// template struct X<int>;
+/// \endcode
+///
+/// In the instantiation of <tt>X<int>::getKind()</tt>, we need to map the
+/// \p EnumConstantDecl for \p KnownValue (which refers to
+/// <tt>X<T>::<Kind>::KnownValue</tt>) to its instantiation
+/// (<tt>X<int>::<Kind>::KnownValue</tt>). \p FindInstantiatedDecl performs
+/// this mapping from within the instantiation of <tt>X<int></tt>.
+NamedDecl *Sema::FindInstantiatedDecl(SourceLocation Loc, NamedDecl *D,
+ const MultiLevelTemplateArgumentList &TemplateArgs,
+ bool FindingInstantiatedContext) {
+ DeclContext *ParentDC = D->getDeclContext();
+ // FIXME: Parmeters of pointer to functions (y below) that are themselves
+ // parameters (p below) can have their ParentDC set to the translation-unit
+ // - thus we can not consistently check if the ParentDC of such a parameter
+ // is Dependent or/and a FunctionOrMethod.
+ // For e.g. this code, during Template argument deduction tries to
+ // find an instantiated decl for (T y) when the ParentDC for y is
+ // the translation unit.
+ // e.g. template <class T> void Foo(auto (*p)(T y) -> decltype(y())) {}
+ // float baz(float(*)()) { return 0.0; }
+ // Foo(baz);
+ // The better fix here is perhaps to ensure that a ParmVarDecl, by the time
+ // it gets here, always has a FunctionOrMethod as its ParentDC??
+ // For now:
+ // - as long as we have a ParmVarDecl whose parent is non-dependent and
+ // whose type is not instantiation dependent, do nothing to the decl
+ // - otherwise find its instantiated decl.
+ if (isa<ParmVarDecl>(D) && !ParentDC->isDependentContext() &&
+ !cast<ParmVarDecl>(D)->getType()->isInstantiationDependentType())
+ return D;
+ if (isa<ParmVarDecl>(D) || isa<NonTypeTemplateParmDecl>(D) ||
+ isa<TemplateTypeParmDecl>(D) || isa<TemplateTemplateParmDecl>(D) ||
+ ((ParentDC->isFunctionOrMethod() ||
+ isa<OMPDeclareReductionDecl>(ParentDC) ||
+ isa<OMPDeclareMapperDecl>(ParentDC)) &&
+ ParentDC->isDependentContext()) ||
+ (isa<CXXRecordDecl>(D) && cast<CXXRecordDecl>(D)->isLambda())) {
+ // D is a local of some kind. Look into the map of local
+ // declarations to their instantiations.
+ if (CurrentInstantiationScope) {
+ if (auto Found = CurrentInstantiationScope->findInstantiationOf(D)) {
+ if (Decl *FD = Found->dyn_cast<Decl *>())
+ return cast<NamedDecl>(FD);
+
+ int PackIdx = ArgumentPackSubstitutionIndex;
+ assert(PackIdx != -1 &&
+ "found declaration pack but not pack expanding");
+ typedef LocalInstantiationScope::DeclArgumentPack DeclArgumentPack;
+ return cast<NamedDecl>((*Found->get<DeclArgumentPack *>())[PackIdx]);
+ }
+ }
+
+ // If we're performing a partial substitution during template argument
+ // deduction, we may not have values for template parameters yet. They
+ // just map to themselves.
+ if (isa<NonTypeTemplateParmDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
+ isa<TemplateTemplateParmDecl>(D))
+ return D;
+
+ if (D->isInvalidDecl())
+ return nullptr;
+
+ // Normally this function only searches for already instantiated declaration
+ // however we have to make an exclusion for local types used before
+ // definition as in the code:
+ //
+ // template<typename T> void f1() {
+ // void g1(struct x1);
+ // struct x1 {};
+ // }
+ //
+ // In this case instantiation of the type of 'g1' requires definition of
+ // 'x1', which is defined later. Error recovery may produce an enum used
+ // before definition. In these cases we need to instantiate relevant
+ // declarations here.
+ bool NeedInstantiate = false;
+ if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D))
+ NeedInstantiate = RD->isLocalClass();
+ else
+ NeedInstantiate = isa<EnumDecl>(D);
+ if (NeedInstantiate) {
+ Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
+ CurrentInstantiationScope->InstantiatedLocal(D, Inst);
+ return cast<TypeDecl>(Inst);
+ }
+
+ // If we didn't find the decl, then we must have a label decl that hasn't
+ // been found yet. Lazily instantiate it and return it now.
+ assert(isa<LabelDecl>(D));
+
+ Decl *Inst = SubstDecl(D, CurContext, TemplateArgs);
+ assert(Inst && "Failed to instantiate label??");
+
+ CurrentInstantiationScope->InstantiatedLocal(D, Inst);
+ return cast<LabelDecl>(Inst);
+ }
+
+ // For variable template specializations, update those that are still
+ // type-dependent.
+ if (VarTemplateSpecializationDecl *VarSpec =
+ dyn_cast<VarTemplateSpecializationDecl>(D)) {
+ bool InstantiationDependent = false;
+ const TemplateArgumentListInfo &VarTemplateArgs =
+ VarSpec->getTemplateArgsInfo();
+ if (TemplateSpecializationType::anyDependentTemplateArguments(
+ VarTemplateArgs, InstantiationDependent))
+ D = cast<NamedDecl>(
+ SubstDecl(D, VarSpec->getDeclContext(), TemplateArgs));
+ return D;
+ }
+
+ if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
+ if (!Record->isDependentContext())
+ return D;
+
+ // Determine whether this record is the "templated" declaration describing
+ // a class template or class template partial specialization.
+ ClassTemplateDecl *ClassTemplate = Record->getDescribedClassTemplate();
+ if (ClassTemplate)
+ ClassTemplate = ClassTemplate->getCanonicalDecl();
+ else if (ClassTemplatePartialSpecializationDecl *PartialSpec
+ = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record))
+ ClassTemplate = PartialSpec->getSpecializedTemplate()->getCanonicalDecl();
+
+ // Walk the current context to find either the record or an instantiation of
+ // it.
+ DeclContext *DC = CurContext;
+ while (!DC->isFileContext()) {
+ // If we're performing substitution while we're inside the template
+ // definition, we'll find our own context. We're done.
+ if (DC->Equals(Record))
+ return Record;
+
+ if (CXXRecordDecl *InstRecord = dyn_cast<CXXRecordDecl>(DC)) {
+ // Check whether we're in the process of instantiating a class template
+ // specialization of the template we're mapping.
+ if (ClassTemplateSpecializationDecl *InstSpec
+ = dyn_cast<ClassTemplateSpecializationDecl>(InstRecord)){
+ ClassTemplateDecl *SpecTemplate = InstSpec->getSpecializedTemplate();
+ if (ClassTemplate && isInstantiationOf(ClassTemplate, SpecTemplate))
+ return InstRecord;
+ }
+
+ // Check whether we're in the process of instantiating a member class.
+ if (isInstantiationOf(Record, InstRecord))
+ return InstRecord;
+ }
+
+ // Move to the outer template scope.
+ if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC)) {
+ if (FD->getFriendObjectKind() && FD->getDeclContext()->isFileContext()){
+ DC = FD->getLexicalDeclContext();
+ continue;
+ }
+ // An implicit deduction guide acts as if it's within the class template
+ // specialization described by its name and first N template params.
+ auto *Guide = dyn_cast<CXXDeductionGuideDecl>(FD);
+ if (Guide && Guide->isImplicit()) {
+ TemplateDecl *TD = Guide->getDeducedTemplate();
+ // Convert the arguments to an "as-written" list.
+ TemplateArgumentListInfo Args(Loc, Loc);
+ for (TemplateArgument Arg : TemplateArgs.getInnermost().take_front(
+ TD->getTemplateParameters()->size())) {
+ ArrayRef<TemplateArgument> Unpacked(Arg);
+ if (Arg.getKind() == TemplateArgument::Pack)
+ Unpacked = Arg.pack_elements();
+ for (TemplateArgument UnpackedArg : Unpacked)
+ Args.addArgument(
+ getTrivialTemplateArgumentLoc(UnpackedArg, QualType(), Loc));
+ }
+ QualType T = CheckTemplateIdType(TemplateName(TD), Loc, Args);
+ if (T.isNull())
+ return nullptr;
+ auto *SubstRecord = T->getAsCXXRecordDecl();
+ assert(SubstRecord && "class template id not a class type?");
+ // Check that this template-id names the primary template and not a
+ // partial or explicit specialization. (In the latter cases, it's
+ // meaningless to attempt to find an instantiation of D within the
+ // specialization.)
+ // FIXME: The standard doesn't say what should happen here.
+ if (FindingInstantiatedContext &&
+ usesPartialOrExplicitSpecialization(
+ Loc, cast<ClassTemplateSpecializationDecl>(SubstRecord))) {
+ Diag(Loc, diag::err_specialization_not_primary_template)
+ << T << (SubstRecord->getTemplateSpecializationKind() ==
+ TSK_ExplicitSpecialization);
+ return nullptr;
+ }
+ DC = SubstRecord;
+ continue;
+ }
+ }
+
+ DC = DC->getParent();
+ }
+
+ // Fall through to deal with other dependent record types (e.g.,
+ // anonymous unions in class templates).
+ }
+
+ if (!ParentDC->isDependentContext())
+ return D;
+
+ ParentDC = FindInstantiatedContext(Loc, ParentDC, TemplateArgs);
+ if (!ParentDC)
+ return nullptr;
+
+ if (ParentDC != D->getDeclContext()) {
+ // We performed some kind of instantiation in the parent context,
+ // so now we need to look into the instantiated parent context to
+ // find the instantiation of the declaration D.
+
+ // If our context used to be dependent, we may need to instantiate
+ // it before performing lookup into that context.
+ bool IsBeingInstantiated = false;
+ if (CXXRecordDecl *Spec = dyn_cast<CXXRecordDecl>(ParentDC)) {
+ if (!Spec->isDependentContext()) {
+ QualType T = Context.getTypeDeclType(Spec);
+ const RecordType *Tag = T->getAs<RecordType>();
+ assert(Tag && "type of non-dependent record is not a RecordType");
+ if (Tag->isBeingDefined())
+ IsBeingInstantiated = true;
+ if (!Tag->isBeingDefined() &&
+ RequireCompleteType(Loc, T, diag::err_incomplete_type))
+ return nullptr;
+
+ ParentDC = Tag->getDecl();
+ }
+ }
+
+ NamedDecl *Result = nullptr;
+ // FIXME: If the name is a dependent name, this lookup won't necessarily
+ // find it. Does that ever matter?
+ if (auto Name = D->getDeclName()) {
+ DeclarationNameInfo NameInfo(Name, D->getLocation());
+ Name = SubstDeclarationNameInfo(NameInfo, TemplateArgs).getName();
+ if (!Name)
+ return nullptr;
+ DeclContext::lookup_result Found = ParentDC->lookup(Name);
+ Result = findInstantiationOf(Context, D, Found.begin(), Found.end());
+ } else {
+ // Since we don't have a name for the entity we're looking for,
+ // our only option is to walk through all of the declarations to
+ // find that name. This will occur in a few cases:
+ //
+ // - anonymous struct/union within a template
+ // - unnamed class/struct/union/enum within a template
+ //
+ // FIXME: Find a better way to find these instantiations!
+ Result = findInstantiationOf(Context, D,
+ ParentDC->decls_begin(),
+ ParentDC->decls_end());
+ }
+
+ if (!Result) {
+ if (isa<UsingShadowDecl>(D)) {
+ // UsingShadowDecls can instantiate to nothing because of using hiding.
+ } else if (Diags.hasErrorOccurred()) {
+ // We've already complained about something, so most likely this
+ // declaration failed to instantiate. There's no point in complaining
+ // further, since this is normal in invalid code.
+ } else if (IsBeingInstantiated) {
+ // The class in which this member exists is currently being
+ // instantiated, and we haven't gotten around to instantiating this
+ // member yet. This can happen when the code uses forward declarations
+ // of member classes, and introduces ordering dependencies via
+ // template instantiation.
+ Diag(Loc, diag::err_member_not_yet_instantiated)
+ << D->getDeclName()
+ << Context.getTypeDeclType(cast<CXXRecordDecl>(ParentDC));
+ Diag(D->getLocation(), diag::note_non_instantiated_member_here);
+ } else if (EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) {
+ // This enumeration constant was found when the template was defined,
+ // but can't be found in the instantiation. This can happen if an
+ // unscoped enumeration member is explicitly specialized.
+ EnumDecl *Enum = cast<EnumDecl>(ED->getLexicalDeclContext());
+ EnumDecl *Spec = cast<EnumDecl>(FindInstantiatedDecl(Loc, Enum,
+ TemplateArgs));
+ assert(Spec->getTemplateSpecializationKind() ==
+ TSK_ExplicitSpecialization);
+ Diag(Loc, diag::err_enumerator_does_not_exist)
+ << D->getDeclName()
+ << Context.getTypeDeclType(cast<TypeDecl>(Spec->getDeclContext()));
+ Diag(Spec->getLocation(), diag::note_enum_specialized_here)
+ << Context.getTypeDeclType(Spec);
+ } else {
+ // We should have found something, but didn't.
+ llvm_unreachable("Unable to find instantiation of declaration!");
+ }
+ }
+
+ D = Result;
+ }
+
+ return D;
+}
+
+/// Performs template instantiation for all implicit template
+/// instantiations we have seen until this point.
+void Sema::PerformPendingInstantiations(bool LocalOnly) {
+ while (!PendingLocalImplicitInstantiations.empty() ||
+ (!LocalOnly && !PendingInstantiations.empty())) {
+ PendingImplicitInstantiation Inst;
+
+ if (PendingLocalImplicitInstantiations.empty()) {
+ Inst = PendingInstantiations.front();
+ PendingInstantiations.pop_front();
+ } else {
+ Inst = PendingLocalImplicitInstantiations.front();
+ PendingLocalImplicitInstantiations.pop_front();
+ }
+
+ // Instantiate function definitions
+ if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Inst.first)) {
+ bool DefinitionRequired = Function->getTemplateSpecializationKind() ==
+ TSK_ExplicitInstantiationDefinition;
+ if (Function->isMultiVersion()) {
+ getASTContext().forEachMultiversionedFunctionVersion(
+ Function, [this, Inst, DefinitionRequired](FunctionDecl *CurFD) {
+ InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, CurFD, true,
+ DefinitionRequired, true);
+ if (CurFD->isDefined())
+ CurFD->setInstantiationIsPending(false);
+ });
+ } else {
+ InstantiateFunctionDefinition(/*FIXME:*/ Inst.second, Function, true,
+ DefinitionRequired, true);
+ if (Function->isDefined())
+ Function->setInstantiationIsPending(false);
+ }
+ continue;
+ }
+
+ // Instantiate variable definitions
+ VarDecl *Var = cast<VarDecl>(Inst.first);
+
+ assert((Var->isStaticDataMember() ||
+ isa<VarTemplateSpecializationDecl>(Var)) &&
+ "Not a static data member, nor a variable template"
+ " specialization?");
+
+ // Don't try to instantiate declarations if the most recent redeclaration
+ // is invalid.
+ if (Var->getMostRecentDecl()->isInvalidDecl())
+ continue;
+
+ // Check if the most recent declaration has changed the specialization kind
+ // and removed the need for implicit instantiation.
+ switch (Var->getMostRecentDecl()
+ ->getTemplateSpecializationKindForInstantiation()) {
+ case TSK_Undeclared:
+ llvm_unreachable("Cannot instantitiate an undeclared specialization.");
+ case TSK_ExplicitInstantiationDeclaration:
+ case TSK_ExplicitSpecialization:
+ continue; // No longer need to instantiate this type.
+ case TSK_ExplicitInstantiationDefinition:
+ // We only need an instantiation if the pending instantiation *is* the
+ // explicit instantiation.
+ if (Var != Var->getMostRecentDecl())
+ continue;
+ break;
+ case TSK_ImplicitInstantiation:
+ break;
+ }
+
+ PrettyDeclStackTraceEntry CrashInfo(Context, Var, SourceLocation(),
+ "instantiating variable definition");
+ bool DefinitionRequired = Var->getTemplateSpecializationKind() ==
+ TSK_ExplicitInstantiationDefinition;
+
+ // Instantiate static data member definitions or variable template
+ // specializations.
+ InstantiateVariableDefinition(/*FIXME:*/ Inst.second, Var, true,
+ DefinitionRequired, true);
+ }
+}
+
+void Sema::PerformDependentDiagnostics(const DeclContext *Pattern,
+ const MultiLevelTemplateArgumentList &TemplateArgs) {
+ for (auto DD : Pattern->ddiags()) {
+ switch (DD->getKind()) {
+ case DependentDiagnostic::Access:
+ HandleDependentAccessCheck(*DD, TemplateArgs);
+ break;
+ }
+ }
+}