diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp | 1033 |
1 files changed, 1033 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp new file mode 100644 index 000000000000..e09f2e760f55 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/ScheduleDAGSDNodes.cpp @@ -0,0 +1,1033 @@ +//===--- ScheduleDAGSDNodes.cpp - Implement the ScheduleDAGSDNodes class --===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This implements the ScheduleDAG class, which is a base class used by +// scheduling implementation classes. +// +//===----------------------------------------------------------------------===// + +#include "ScheduleDAGSDNodes.h" +#include "InstrEmitter.h" +#include "SDNodeDbgValue.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/SelectionDAG.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +using namespace llvm; + +#define DEBUG_TYPE "pre-RA-sched" + +STATISTIC(LoadsClustered, "Number of loads clustered together"); + +// This allows the latency-based scheduler to notice high latency instructions +// without a target itinerary. The choice of number here has more to do with +// balancing scheduler heuristics than with the actual machine latency. +static cl::opt<int> HighLatencyCycles( + "sched-high-latency-cycles", cl::Hidden, cl::init(10), + cl::desc("Roughly estimate the number of cycles that 'long latency'" + "instructions take for targets with no itinerary")); + +ScheduleDAGSDNodes::ScheduleDAGSDNodes(MachineFunction &mf) + : ScheduleDAG(mf), BB(nullptr), DAG(nullptr), + InstrItins(mf.getSubtarget().getInstrItineraryData()) {} + +/// Run - perform scheduling. +/// +void ScheduleDAGSDNodes::Run(SelectionDAG *dag, MachineBasicBlock *bb) { + BB = bb; + DAG = dag; + + // Clear the scheduler's SUnit DAG. + ScheduleDAG::clearDAG(); + Sequence.clear(); + + // Invoke the target's selection of scheduler. + Schedule(); +} + +/// NewSUnit - Creates a new SUnit and return a ptr to it. +/// +SUnit *ScheduleDAGSDNodes::newSUnit(SDNode *N) { +#ifndef NDEBUG + const SUnit *Addr = nullptr; + if (!SUnits.empty()) + Addr = &SUnits[0]; +#endif + SUnits.emplace_back(N, (unsigned)SUnits.size()); + assert((Addr == nullptr || Addr == &SUnits[0]) && + "SUnits std::vector reallocated on the fly!"); + SUnits.back().OrigNode = &SUnits.back(); + SUnit *SU = &SUnits.back(); + const TargetLowering &TLI = DAG->getTargetLoweringInfo(); + if (!N || + (N->isMachineOpcode() && + N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF)) + SU->SchedulingPref = Sched::None; + else + SU->SchedulingPref = TLI.getSchedulingPreference(N); + return SU; +} + +SUnit *ScheduleDAGSDNodes::Clone(SUnit *Old) { + SUnit *SU = newSUnit(Old->getNode()); + SU->OrigNode = Old->OrigNode; + SU->Latency = Old->Latency; + SU->isVRegCycle = Old->isVRegCycle; + SU->isCall = Old->isCall; + SU->isCallOp = Old->isCallOp; + SU->isTwoAddress = Old->isTwoAddress; + SU->isCommutable = Old->isCommutable; + SU->hasPhysRegDefs = Old->hasPhysRegDefs; + SU->hasPhysRegClobbers = Old->hasPhysRegClobbers; + SU->isScheduleHigh = Old->isScheduleHigh; + SU->isScheduleLow = Old->isScheduleLow; + SU->SchedulingPref = Old->SchedulingPref; + Old->isCloned = true; + return SU; +} + +/// CheckForPhysRegDependency - Check if the dependency between def and use of +/// a specified operand is a physical register dependency. If so, returns the +/// register and the cost of copying the register. +static void CheckForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, + const TargetRegisterInfo *TRI, + const TargetInstrInfo *TII, + unsigned &PhysReg, int &Cost) { + if (Op != 2 || User->getOpcode() != ISD::CopyToReg) + return; + + unsigned Reg = cast<RegisterSDNode>(User->getOperand(1))->getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) + return; + + unsigned ResNo = User->getOperand(2).getResNo(); + if (Def->getOpcode() == ISD::CopyFromReg && + cast<RegisterSDNode>(Def->getOperand(1))->getReg() == Reg) { + PhysReg = Reg; + } else if (Def->isMachineOpcode()) { + const MCInstrDesc &II = TII->get(Def->getMachineOpcode()); + if (ResNo >= II.getNumDefs() && + II.ImplicitDefs[ResNo - II.getNumDefs()] == Reg) + PhysReg = Reg; + } + + if (PhysReg != 0) { + const TargetRegisterClass *RC = + TRI->getMinimalPhysRegClass(Reg, Def->getSimpleValueType(ResNo)); + Cost = RC->getCopyCost(); + } +} + +// Helper for AddGlue to clone node operands. +static void CloneNodeWithValues(SDNode *N, SelectionDAG *DAG, ArrayRef<EVT> VTs, + SDValue ExtraOper = SDValue()) { + SmallVector<SDValue, 8> Ops(N->op_begin(), N->op_end()); + if (ExtraOper.getNode()) + Ops.push_back(ExtraOper); + + SDVTList VTList = DAG->getVTList(VTs); + MachineSDNode *MN = dyn_cast<MachineSDNode>(N); + + // Store memory references. + SmallVector<MachineMemOperand *, 2> MMOs; + if (MN) + MMOs.assign(MN->memoperands_begin(), MN->memoperands_end()); + + DAG->MorphNodeTo(N, N->getOpcode(), VTList, Ops); + + // Reset the memory references + if (MN) + DAG->setNodeMemRefs(MN, MMOs); +} + +static bool AddGlue(SDNode *N, SDValue Glue, bool AddGlue, SelectionDAG *DAG) { + SDNode *GlueDestNode = Glue.getNode(); + + // Don't add glue from a node to itself. + if (GlueDestNode == N) return false; + + // Don't add a glue operand to something that already uses glue. + if (GlueDestNode && + N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { + return false; + } + // Don't add glue to something that already has a glue value. + if (N->getValueType(N->getNumValues() - 1) == MVT::Glue) return false; + + SmallVector<EVT, 4> VTs(N->value_begin(), N->value_end()); + if (AddGlue) + VTs.push_back(MVT::Glue); + + CloneNodeWithValues(N, DAG, VTs, Glue); + + return true; +} + +// Cleanup after unsuccessful AddGlue. Use the standard method of morphing the +// node even though simply shrinking the value list is sufficient. +static void RemoveUnusedGlue(SDNode *N, SelectionDAG *DAG) { + assert((N->getValueType(N->getNumValues() - 1) == MVT::Glue && + !N->hasAnyUseOfValue(N->getNumValues() - 1)) && + "expected an unused glue value"); + + CloneNodeWithValues(N, DAG, + makeArrayRef(N->value_begin(), N->getNumValues() - 1)); +} + +/// ClusterNeighboringLoads - Force nearby loads together by "gluing" them. +/// This function finds loads of the same base and different offsets. If the +/// offsets are not far apart (target specific), it add MVT::Glue inputs and +/// outputs to ensure they are scheduled together and in order. This +/// optimization may benefit some targets by improving cache locality. +void ScheduleDAGSDNodes::ClusterNeighboringLoads(SDNode *Node) { + SDNode *Chain = nullptr; + unsigned NumOps = Node->getNumOperands(); + if (Node->getOperand(NumOps-1).getValueType() == MVT::Other) + Chain = Node->getOperand(NumOps-1).getNode(); + if (!Chain) + return; + + // Skip any load instruction that has a tied input. There may be an additional + // dependency requiring a different order than by increasing offsets, and the + // added glue may introduce a cycle. + auto hasTiedInput = [this](const SDNode *N) { + const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); + for (unsigned I = 0; I != MCID.getNumOperands(); ++I) { + if (MCID.getOperandConstraint(I, MCOI::TIED_TO) != -1) + return true; + } + + return false; + }; + + // Look for other loads of the same chain. Find loads that are loading from + // the same base pointer and different offsets. + SmallPtrSet<SDNode*, 16> Visited; + SmallVector<int64_t, 4> Offsets; + DenseMap<long long, SDNode*> O2SMap; // Map from offset to SDNode. + bool Cluster = false; + SDNode *Base = Node; + + if (hasTiedInput(Base)) + return; + + // This algorithm requires a reasonably low use count before finding a match + // to avoid uselessly blowing up compile time in large blocks. + unsigned UseCount = 0; + for (SDNode::use_iterator I = Chain->use_begin(), E = Chain->use_end(); + I != E && UseCount < 100; ++I, ++UseCount) { + SDNode *User = *I; + if (User == Node || !Visited.insert(User).second) + continue; + int64_t Offset1, Offset2; + if (!TII->areLoadsFromSameBasePtr(Base, User, Offset1, Offset2) || + Offset1 == Offset2 || + hasTiedInput(User)) { + // FIXME: Should be ok if they addresses are identical. But earlier + // optimizations really should have eliminated one of the loads. + continue; + } + if (O2SMap.insert(std::make_pair(Offset1, Base)).second) + Offsets.push_back(Offset1); + O2SMap.insert(std::make_pair(Offset2, User)); + Offsets.push_back(Offset2); + if (Offset2 < Offset1) + Base = User; + Cluster = true; + // Reset UseCount to allow more matches. + UseCount = 0; + } + + if (!Cluster) + return; + + // Sort them in increasing order. + llvm::sort(Offsets); + + // Check if the loads are close enough. + SmallVector<SDNode*, 4> Loads; + unsigned NumLoads = 0; + int64_t BaseOff = Offsets[0]; + SDNode *BaseLoad = O2SMap[BaseOff]; + Loads.push_back(BaseLoad); + for (unsigned i = 1, e = Offsets.size(); i != e; ++i) { + int64_t Offset = Offsets[i]; + SDNode *Load = O2SMap[Offset]; + if (!TII->shouldScheduleLoadsNear(BaseLoad, Load, BaseOff, Offset,NumLoads)) + break; // Stop right here. Ignore loads that are further away. + Loads.push_back(Load); + ++NumLoads; + } + + if (NumLoads == 0) + return; + + // Cluster loads by adding MVT::Glue outputs and inputs. This also + // ensure they are scheduled in order of increasing addresses. + SDNode *Lead = Loads[0]; + SDValue InGlue = SDValue(nullptr, 0); + if (AddGlue(Lead, InGlue, true, DAG)) + InGlue = SDValue(Lead, Lead->getNumValues() - 1); + for (unsigned I = 1, E = Loads.size(); I != E; ++I) { + bool OutGlue = I < E - 1; + SDNode *Load = Loads[I]; + + // If AddGlue fails, we could leave an unsused glue value. This should not + // cause any + if (AddGlue(Load, InGlue, OutGlue, DAG)) { + if (OutGlue) + InGlue = SDValue(Load, Load->getNumValues() - 1); + + ++LoadsClustered; + } + else if (!OutGlue && InGlue.getNode()) + RemoveUnusedGlue(InGlue.getNode(), DAG); + } +} + +/// ClusterNodes - Cluster certain nodes which should be scheduled together. +/// +void ScheduleDAGSDNodes::ClusterNodes() { + for (SDNode &NI : DAG->allnodes()) { + SDNode *Node = &NI; + if (!Node || !Node->isMachineOpcode()) + continue; + + unsigned Opc = Node->getMachineOpcode(); + const MCInstrDesc &MCID = TII->get(Opc); + if (MCID.mayLoad()) + // Cluster loads from "near" addresses into combined SUnits. + ClusterNeighboringLoads(Node); + } +} + +void ScheduleDAGSDNodes::BuildSchedUnits() { + // During scheduling, the NodeId field of SDNode is used to map SDNodes + // to their associated SUnits by holding SUnits table indices. A value + // of -1 means the SDNode does not yet have an associated SUnit. + unsigned NumNodes = 0; + for (SDNode &NI : DAG->allnodes()) { + NI.setNodeId(-1); + ++NumNodes; + } + + // Reserve entries in the vector for each of the SUnits we are creating. This + // ensure that reallocation of the vector won't happen, so SUnit*'s won't get + // invalidated. + // FIXME: Multiply by 2 because we may clone nodes during scheduling. + // This is a temporary workaround. + SUnits.reserve(NumNodes * 2); + + // Add all nodes in depth first order. + SmallVector<SDNode*, 64> Worklist; + SmallPtrSet<SDNode*, 32> Visited; + Worklist.push_back(DAG->getRoot().getNode()); + Visited.insert(DAG->getRoot().getNode()); + + SmallVector<SUnit*, 8> CallSUnits; + while (!Worklist.empty()) { + SDNode *NI = Worklist.pop_back_val(); + + // Add all operands to the worklist unless they've already been added. + for (const SDValue &Op : NI->op_values()) + if (Visited.insert(Op.getNode()).second) + Worklist.push_back(Op.getNode()); + + if (isPassiveNode(NI)) // Leaf node, e.g. a TargetImmediate. + continue; + + // If this node has already been processed, stop now. + if (NI->getNodeId() != -1) continue; + + SUnit *NodeSUnit = newSUnit(NI); + + // See if anything is glued to this node, if so, add them to glued + // nodes. Nodes can have at most one glue input and one glue output. Glue + // is required to be the last operand and result of a node. + + // Scan up to find glued preds. + SDNode *N = NI; + while (N->getNumOperands() && + N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue) { + N = N->getOperand(N->getNumOperands()-1).getNode(); + assert(N->getNodeId() == -1 && "Node already inserted!"); + N->setNodeId(NodeSUnit->NodeNum); + if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) + NodeSUnit->isCall = true; + } + + // Scan down to find any glued succs. + N = NI; + while (N->getValueType(N->getNumValues()-1) == MVT::Glue) { + SDValue GlueVal(N, N->getNumValues()-1); + + // There are either zero or one users of the Glue result. + bool HasGlueUse = false; + for (SDNode::use_iterator UI = N->use_begin(), E = N->use_end(); + UI != E; ++UI) + if (GlueVal.isOperandOf(*UI)) { + HasGlueUse = true; + assert(N->getNodeId() == -1 && "Node already inserted!"); + N->setNodeId(NodeSUnit->NodeNum); + N = *UI; + if (N->isMachineOpcode() && TII->get(N->getMachineOpcode()).isCall()) + NodeSUnit->isCall = true; + break; + } + if (!HasGlueUse) break; + } + + if (NodeSUnit->isCall) + CallSUnits.push_back(NodeSUnit); + + // Schedule zero-latency TokenFactor below any nodes that may increase the + // schedule height. Otherwise, ancestors of the TokenFactor may appear to + // have false stalls. + if (NI->getOpcode() == ISD::TokenFactor) + NodeSUnit->isScheduleLow = true; + + // If there are glue operands involved, N is now the bottom-most node + // of the sequence of nodes that are glued together. + // Update the SUnit. + NodeSUnit->setNode(N); + assert(N->getNodeId() == -1 && "Node already inserted!"); + N->setNodeId(NodeSUnit->NodeNum); + + // Compute NumRegDefsLeft. This must be done before AddSchedEdges. + InitNumRegDefsLeft(NodeSUnit); + + // Assign the Latency field of NodeSUnit using target-provided information. + computeLatency(NodeSUnit); + } + + // Find all call operands. + while (!CallSUnits.empty()) { + SUnit *SU = CallSUnits.pop_back_val(); + for (const SDNode *SUNode = SU->getNode(); SUNode; + SUNode = SUNode->getGluedNode()) { + if (SUNode->getOpcode() != ISD::CopyToReg) + continue; + SDNode *SrcN = SUNode->getOperand(2).getNode(); + if (isPassiveNode(SrcN)) continue; // Not scheduled. + SUnit *SrcSU = &SUnits[SrcN->getNodeId()]; + SrcSU->isCallOp = true; + } + } +} + +void ScheduleDAGSDNodes::AddSchedEdges() { + const TargetSubtargetInfo &ST = MF.getSubtarget(); + + // Check to see if the scheduler cares about latencies. + bool UnitLatencies = forceUnitLatencies(); + + // Pass 2: add the preds, succs, etc. + for (unsigned su = 0, e = SUnits.size(); su != e; ++su) { + SUnit *SU = &SUnits[su]; + SDNode *MainNode = SU->getNode(); + + if (MainNode->isMachineOpcode()) { + unsigned Opc = MainNode->getMachineOpcode(); + const MCInstrDesc &MCID = TII->get(Opc); + for (unsigned i = 0; i != MCID.getNumOperands(); ++i) { + if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) { + SU->isTwoAddress = true; + break; + } + } + if (MCID.isCommutable()) + SU->isCommutable = true; + } + + // Find all predecessors and successors of the group. + for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { + if (N->isMachineOpcode() && + TII->get(N->getMachineOpcode()).getImplicitDefs()) { + SU->hasPhysRegClobbers = true; + unsigned NumUsed = InstrEmitter::CountResults(N); + while (NumUsed != 0 && !N->hasAnyUseOfValue(NumUsed - 1)) + --NumUsed; // Skip over unused values at the end. + if (NumUsed > TII->get(N->getMachineOpcode()).getNumDefs()) + SU->hasPhysRegDefs = true; + } + + for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { + SDNode *OpN = N->getOperand(i).getNode(); + if (isPassiveNode(OpN)) continue; // Not scheduled. + SUnit *OpSU = &SUnits[OpN->getNodeId()]; + assert(OpSU && "Node has no SUnit!"); + if (OpSU == SU) continue; // In the same group. + + EVT OpVT = N->getOperand(i).getValueType(); + assert(OpVT != MVT::Glue && "Glued nodes should be in same sunit!"); + bool isChain = OpVT == MVT::Other; + + unsigned PhysReg = 0; + int Cost = 1; + // Determine if this is a physical register dependency. + CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost); + assert((PhysReg == 0 || !isChain) && + "Chain dependence via physreg data?"); + // FIXME: See ScheduleDAGSDNodes::EmitCopyFromReg. For now, scheduler + // emits a copy from the physical register to a virtual register unless + // it requires a cross class copy (cost < 0). That means we are only + // treating "expensive to copy" register dependency as physical register + // dependency. This may change in the future though. + if (Cost >= 0 && !StressSched) + PhysReg = 0; + + // If this is a ctrl dep, latency is 1. + unsigned OpLatency = isChain ? 1 : OpSU->Latency; + // Special-case TokenFactor chains as zero-latency. + if(isChain && OpN->getOpcode() == ISD::TokenFactor) + OpLatency = 0; + + SDep Dep = isChain ? SDep(OpSU, SDep::Barrier) + : SDep(OpSU, SDep::Data, PhysReg); + Dep.setLatency(OpLatency); + if (!isChain && !UnitLatencies) { + computeOperandLatency(OpN, N, i, Dep); + ST.adjustSchedDependency(OpSU, SU, Dep); + } + + if (!SU->addPred(Dep) && !Dep.isCtrl() && OpSU->NumRegDefsLeft > 1) { + // Multiple register uses are combined in the same SUnit. For example, + // we could have a set of glued nodes with all their defs consumed by + // another set of glued nodes. Register pressure tracking sees this as + // a single use, so to keep pressure balanced we reduce the defs. + // + // We can't tell (without more book-keeping) if this results from + // glued nodes or duplicate operands. As long as we don't reduce + // NumRegDefsLeft to zero, we handle the common cases well. + --OpSU->NumRegDefsLeft; + } + } + } + } +} + +/// BuildSchedGraph - Build the SUnit graph from the selection dag that we +/// are input. This SUnit graph is similar to the SelectionDAG, but +/// excludes nodes that aren't interesting to scheduling, and represents +/// glued together nodes with a single SUnit. +void ScheduleDAGSDNodes::BuildSchedGraph(AliasAnalysis *AA) { + // Cluster certain nodes which should be scheduled together. + ClusterNodes(); + // Populate the SUnits array. + BuildSchedUnits(); + // Compute all the scheduling dependencies between nodes. + AddSchedEdges(); +} + +// Initialize NumNodeDefs for the current Node's opcode. +void ScheduleDAGSDNodes::RegDefIter::InitNodeNumDefs() { + // Check for phys reg copy. + if (!Node) + return; + + if (!Node->isMachineOpcode()) { + if (Node->getOpcode() == ISD::CopyFromReg) + NodeNumDefs = 1; + else + NodeNumDefs = 0; + return; + } + unsigned POpc = Node->getMachineOpcode(); + if (POpc == TargetOpcode::IMPLICIT_DEF) { + // No register need be allocated for this. + NodeNumDefs = 0; + return; + } + if (POpc == TargetOpcode::PATCHPOINT && + Node->getValueType(0) == MVT::Other) { + // PATCHPOINT is defined to have one result, but it might really have none + // if we're not using CallingConv::AnyReg. Don't mistake the chain for a + // real definition. + NodeNumDefs = 0; + return; + } + unsigned NRegDefs = SchedDAG->TII->get(Node->getMachineOpcode()).getNumDefs(); + // Some instructions define regs that are not represented in the selection DAG + // (e.g. unused flags). See tMOVi8. Make sure we don't access past NumValues. + NodeNumDefs = std::min(Node->getNumValues(), NRegDefs); + DefIdx = 0; +} + +// Construct a RegDefIter for this SUnit and find the first valid value. +ScheduleDAGSDNodes::RegDefIter::RegDefIter(const SUnit *SU, + const ScheduleDAGSDNodes *SD) + : SchedDAG(SD), Node(SU->getNode()), DefIdx(0), NodeNumDefs(0) { + InitNodeNumDefs(); + Advance(); +} + +// Advance to the next valid value defined by the SUnit. +void ScheduleDAGSDNodes::RegDefIter::Advance() { + for (;Node;) { // Visit all glued nodes. + for (;DefIdx < NodeNumDefs; ++DefIdx) { + if (!Node->hasAnyUseOfValue(DefIdx)) + continue; + ValueType = Node->getSimpleValueType(DefIdx); + ++DefIdx; + return; // Found a normal regdef. + } + Node = Node->getGluedNode(); + if (!Node) { + return; // No values left to visit. + } + InitNodeNumDefs(); + } +} + +void ScheduleDAGSDNodes::InitNumRegDefsLeft(SUnit *SU) { + assert(SU->NumRegDefsLeft == 0 && "expect a new node"); + for (RegDefIter I(SU, this); I.IsValid(); I.Advance()) { + assert(SU->NumRegDefsLeft < USHRT_MAX && "overflow is ok but unexpected"); + ++SU->NumRegDefsLeft; + } +} + +void ScheduleDAGSDNodes::computeLatency(SUnit *SU) { + SDNode *N = SU->getNode(); + + // TokenFactor operands are considered zero latency, and some schedulers + // (e.g. Top-Down list) may rely on the fact that operand latency is nonzero + // whenever node latency is nonzero. + if (N && N->getOpcode() == ISD::TokenFactor) { + SU->Latency = 0; + return; + } + + // Check to see if the scheduler cares about latencies. + if (forceUnitLatencies()) { + SU->Latency = 1; + return; + } + + if (!InstrItins || InstrItins->isEmpty()) { + if (N && N->isMachineOpcode() && + TII->isHighLatencyDef(N->getMachineOpcode())) + SU->Latency = HighLatencyCycles; + else + SU->Latency = 1; + return; + } + + // Compute the latency for the node. We use the sum of the latencies for + // all nodes glued together into this SUnit. + SU->Latency = 0; + for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) + if (N->isMachineOpcode()) + SU->Latency += TII->getInstrLatency(InstrItins, N); +} + +void ScheduleDAGSDNodes::computeOperandLatency(SDNode *Def, SDNode *Use, + unsigned OpIdx, SDep& dep) const{ + // Check to see if the scheduler cares about latencies. + if (forceUnitLatencies()) + return; + + if (dep.getKind() != SDep::Data) + return; + + unsigned DefIdx = Use->getOperand(OpIdx).getResNo(); + if (Use->isMachineOpcode()) + // Adjust the use operand index by num of defs. + OpIdx += TII->get(Use->getMachineOpcode()).getNumDefs(); + int Latency = TII->getOperandLatency(InstrItins, Def, DefIdx, Use, OpIdx); + if (Latency > 1 && Use->getOpcode() == ISD::CopyToReg && + !BB->succ_empty()) { + unsigned Reg = cast<RegisterSDNode>(Use->getOperand(1))->getReg(); + if (TargetRegisterInfo::isVirtualRegister(Reg)) + // This copy is a liveout value. It is likely coalesced, so reduce the + // latency so not to penalize the def. + // FIXME: need target specific adjustment here? + Latency = (Latency > 1) ? Latency - 1 : 1; + } + if (Latency >= 0) + dep.setLatency(Latency); +} + +void ScheduleDAGSDNodes::dumpNode(const SUnit &SU) const { +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + dumpNodeName(SU); + dbgs() << ": "; + + if (!SU.getNode()) { + dbgs() << "PHYS REG COPY\n"; + return; + } + + SU.getNode()->dump(DAG); + dbgs() << "\n"; + SmallVector<SDNode *, 4> GluedNodes; + for (SDNode *N = SU.getNode()->getGluedNode(); N; N = N->getGluedNode()) + GluedNodes.push_back(N); + while (!GluedNodes.empty()) { + dbgs() << " "; + GluedNodes.back()->dump(DAG); + dbgs() << "\n"; + GluedNodes.pop_back(); + } +#endif +} + +void ScheduleDAGSDNodes::dump() const { +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + if (EntrySU.getNode() != nullptr) + dumpNodeAll(EntrySU); + for (const SUnit &SU : SUnits) + dumpNodeAll(SU); + if (ExitSU.getNode() != nullptr) + dumpNodeAll(ExitSU); +#endif +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void ScheduleDAGSDNodes::dumpSchedule() const { + for (unsigned i = 0, e = Sequence.size(); i != e; i++) { + if (SUnit *SU = Sequence[i]) + dumpNode(*SU); + else + dbgs() << "**** NOOP ****\n"; + } +} +#endif + +#ifndef NDEBUG +/// VerifyScheduledSequence - Verify that all SUnits were scheduled and that +/// their state is consistent with the nodes listed in Sequence. +/// +void ScheduleDAGSDNodes::VerifyScheduledSequence(bool isBottomUp) { + unsigned ScheduledNodes = ScheduleDAG::VerifyScheduledDAG(isBottomUp); + unsigned Noops = 0; + for (unsigned i = 0, e = Sequence.size(); i != e; ++i) + if (!Sequence[i]) + ++Noops; + assert(Sequence.size() - Noops == ScheduledNodes && + "The number of nodes scheduled doesn't match the expected number!"); +} +#endif // NDEBUG + +/// ProcessSDDbgValues - Process SDDbgValues associated with this node. +static void +ProcessSDDbgValues(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, + SmallVectorImpl<std::pair<unsigned, MachineInstr*> > &Orders, + DenseMap<SDValue, unsigned> &VRBaseMap, unsigned Order) { + if (!N->getHasDebugValue()) + return; + + // Opportunistically insert immediate dbg_value uses, i.e. those with the same + // source order number as N. + MachineBasicBlock *BB = Emitter.getBlock(); + MachineBasicBlock::iterator InsertPos = Emitter.getInsertPos(); + for (auto DV : DAG->GetDbgValues(N)) { + if (DV->isEmitted()) + continue; + unsigned DVOrder = DV->getOrder(); + if (!Order || DVOrder == Order) { + MachineInstr *DbgMI = Emitter.EmitDbgValue(DV, VRBaseMap); + if (DbgMI) { + Orders.push_back({DVOrder, DbgMI}); + BB->insert(InsertPos, DbgMI); + } + } + } +} + +// ProcessSourceNode - Process nodes with source order numbers. These are added +// to a vector which EmitSchedule uses to determine how to insert dbg_value +// instructions in the right order. +static void +ProcessSourceNode(SDNode *N, SelectionDAG *DAG, InstrEmitter &Emitter, + DenseMap<SDValue, unsigned> &VRBaseMap, + SmallVectorImpl<std::pair<unsigned, MachineInstr *>> &Orders, + SmallSet<unsigned, 8> &Seen, MachineInstr *NewInsn) { + unsigned Order = N->getIROrder(); + if (!Order || Seen.count(Order)) { + // Process any valid SDDbgValues even if node does not have any order + // assigned. + ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, 0); + return; + } + + // If a new instruction was generated for this Order number, record it. + // Otherwise, leave this order number unseen: we will either find later + // instructions for it, or leave it unseen if there were no instructions at + // all. + if (NewInsn) { + Seen.insert(Order); + Orders.push_back({Order, NewInsn}); + } + + // Even if no instruction was generated, a Value may have become defined via + // earlier nodes. Try to process them now. + ProcessSDDbgValues(N, DAG, Emitter, Orders, VRBaseMap, Order); +} + +void ScheduleDAGSDNodes:: +EmitPhysRegCopy(SUnit *SU, DenseMap<SUnit*, unsigned> &VRBaseMap, + MachineBasicBlock::iterator InsertPos) { + for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); + I != E; ++I) { + if (I->isCtrl()) continue; // ignore chain preds + if (I->getSUnit()->CopyDstRC) { + // Copy to physical register. + DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit()); + assert(VRI != VRBaseMap.end() && "Node emitted out of order - late"); + // Find the destination physical register. + unsigned Reg = 0; + for (SUnit::const_succ_iterator II = SU->Succs.begin(), + EE = SU->Succs.end(); II != EE; ++II) { + if (II->isCtrl()) continue; // ignore chain preds + if (II->getReg()) { + Reg = II->getReg(); + break; + } + } + BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), Reg) + .addReg(VRI->second); + } else { + // Copy from physical register. + assert(I->getReg() && "Unknown physical register!"); + unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC); + bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second; + (void)isNew; // Silence compiler warning. + assert(isNew && "Node emitted out of order - early"); + BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase) + .addReg(I->getReg()); + } + break; + } +} + +/// EmitSchedule - Emit the machine code in scheduled order. Return the new +/// InsertPos and MachineBasicBlock that contains this insertion +/// point. ScheduleDAGSDNodes holds a BB pointer for convenience, but this does +/// not necessarily refer to returned BB. The emitter may split blocks. +MachineBasicBlock *ScheduleDAGSDNodes:: +EmitSchedule(MachineBasicBlock::iterator &InsertPos) { + InstrEmitter Emitter(BB, InsertPos); + DenseMap<SDValue, unsigned> VRBaseMap; + DenseMap<SUnit*, unsigned> CopyVRBaseMap; + SmallVector<std::pair<unsigned, MachineInstr*>, 32> Orders; + SmallSet<unsigned, 8> Seen; + bool HasDbg = DAG->hasDebugValues(); + + // Emit a node, and determine where its first instruction is for debuginfo. + // Zero, one, or multiple instructions can be created when emitting a node. + auto EmitNode = + [&](SDNode *Node, bool IsClone, bool IsCloned, + DenseMap<SDValue, unsigned> &VRBaseMap) -> MachineInstr * { + // Fetch instruction prior to this, or end() if nonexistant. + auto GetPrevInsn = [&](MachineBasicBlock::iterator I) { + if (I == BB->begin()) + return BB->end(); + else + return std::prev(Emitter.getInsertPos()); + }; + + MachineBasicBlock::iterator Before = GetPrevInsn(Emitter.getInsertPos()); + Emitter.EmitNode(Node, IsClone, IsCloned, VRBaseMap); + MachineBasicBlock::iterator After = GetPrevInsn(Emitter.getInsertPos()); + + // If the iterator did not change, no instructions were inserted. + if (Before == After) + return nullptr; + + MachineInstr *MI; + if (Before == BB->end()) { + // There were no prior instructions; the new ones must start at the + // beginning of the block. + MI = &Emitter.getBlock()->instr_front(); + } else { + // Return first instruction after the pre-existing instructions. + MI = &*std::next(Before); + } + + if (MI->isCall() && DAG->getTarget().Options.EnableDebugEntryValues) + MF.addCallArgsForwardingRegs(MI, DAG->getSDCallSiteInfo(Node)); + + return MI; + }; + + // If this is the first BB, emit byval parameter dbg_value's. + if (HasDbg && BB->getParent()->begin() == MachineFunction::iterator(BB)) { + SDDbgInfo::DbgIterator PDI = DAG->ByvalParmDbgBegin(); + SDDbgInfo::DbgIterator PDE = DAG->ByvalParmDbgEnd(); + for (; PDI != PDE; ++PDI) { + MachineInstr *DbgMI= Emitter.EmitDbgValue(*PDI, VRBaseMap); + if (DbgMI) { + BB->insert(InsertPos, DbgMI); + // We re-emit the dbg_value closer to its use, too, after instructions + // are emitted to the BB. + (*PDI)->clearIsEmitted(); + } + } + } + + for (unsigned i = 0, e = Sequence.size(); i != e; i++) { + SUnit *SU = Sequence[i]; + if (!SU) { + // Null SUnit* is a noop. + TII->insertNoop(*Emitter.getBlock(), InsertPos); + continue; + } + + // For pre-regalloc scheduling, create instructions corresponding to the + // SDNode and any glued SDNodes and append them to the block. + if (!SU->getNode()) { + // Emit a copy. + EmitPhysRegCopy(SU, CopyVRBaseMap, InsertPos); + continue; + } + + SmallVector<SDNode *, 4> GluedNodes; + for (SDNode *N = SU->getNode()->getGluedNode(); N; N = N->getGluedNode()) + GluedNodes.push_back(N); + while (!GluedNodes.empty()) { + SDNode *N = GluedNodes.back(); + auto NewInsn = EmitNode(N, SU->OrigNode != SU, SU->isCloned, VRBaseMap); + // Remember the source order of the inserted instruction. + if (HasDbg) + ProcessSourceNode(N, DAG, Emitter, VRBaseMap, Orders, Seen, NewInsn); + + if (MDNode *MD = DAG->getHeapAllocSite(N)) { + if (NewInsn && NewInsn->isCall()) + MF.addCodeViewHeapAllocSite(NewInsn, MD); + } + + GluedNodes.pop_back(); + } + auto NewInsn = + EmitNode(SU->getNode(), SU->OrigNode != SU, SU->isCloned, VRBaseMap); + // Remember the source order of the inserted instruction. + if (HasDbg) + ProcessSourceNode(SU->getNode(), DAG, Emitter, VRBaseMap, Orders, Seen, + NewInsn); + if (MDNode *MD = DAG->getHeapAllocSite(SU->getNode())) { + if (NewInsn && NewInsn->isCall()) + MF.addCodeViewHeapAllocSite(NewInsn, MD); + } + } + + // Insert all the dbg_values which have not already been inserted in source + // order sequence. + if (HasDbg) { + MachineBasicBlock::iterator BBBegin = BB->getFirstNonPHI(); + + // Sort the source order instructions and use the order to insert debug + // values. Use stable_sort so that DBG_VALUEs are inserted in the same order + // regardless of the host's implementation fo std::sort. + llvm::stable_sort(Orders, less_first()); + std::stable_sort(DAG->DbgBegin(), DAG->DbgEnd(), + [](const SDDbgValue *LHS, const SDDbgValue *RHS) { + return LHS->getOrder() < RHS->getOrder(); + }); + + SDDbgInfo::DbgIterator DI = DAG->DbgBegin(); + SDDbgInfo::DbgIterator DE = DAG->DbgEnd(); + // Now emit the rest according to source order. + unsigned LastOrder = 0; + for (unsigned i = 0, e = Orders.size(); i != e && DI != DE; ++i) { + unsigned Order = Orders[i].first; + MachineInstr *MI = Orders[i].second; + // Insert all SDDbgValue's whose order(s) are before "Order". + assert(MI); + for (; DI != DE; ++DI) { + if ((*DI)->getOrder() < LastOrder || (*DI)->getOrder() >= Order) + break; + if ((*DI)->isEmitted()) + continue; + + MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap); + if (DbgMI) { + if (!LastOrder) + // Insert to start of the BB (after PHIs). + BB->insert(BBBegin, DbgMI); + else { + // Insert at the instruction, which may be in a different + // block, if the block was split by a custom inserter. + MachineBasicBlock::iterator Pos = MI; + MI->getParent()->insert(Pos, DbgMI); + } + } + } + LastOrder = Order; + } + // Add trailing DbgValue's before the terminator. FIXME: May want to add + // some of them before one or more conditional branches? + SmallVector<MachineInstr*, 8> DbgMIs; + for (; DI != DE; ++DI) { + if ((*DI)->isEmitted()) + continue; + assert((*DI)->getOrder() >= LastOrder && + "emitting DBG_VALUE out of order"); + if (MachineInstr *DbgMI = Emitter.EmitDbgValue(*DI, VRBaseMap)) + DbgMIs.push_back(DbgMI); + } + + MachineBasicBlock *InsertBB = Emitter.getBlock(); + MachineBasicBlock::iterator Pos = InsertBB->getFirstTerminator(); + InsertBB->insert(Pos, DbgMIs.begin(), DbgMIs.end()); + + SDDbgInfo::DbgLabelIterator DLI = DAG->DbgLabelBegin(); + SDDbgInfo::DbgLabelIterator DLE = DAG->DbgLabelEnd(); + // Now emit the rest according to source order. + LastOrder = 0; + for (const auto &InstrOrder : Orders) { + unsigned Order = InstrOrder.first; + MachineInstr *MI = InstrOrder.second; + if (!MI) + continue; + + // Insert all SDDbgLabel's whose order(s) are before "Order". + for (; DLI != DLE && + (*DLI)->getOrder() >= LastOrder && (*DLI)->getOrder() < Order; + ++DLI) { + MachineInstr *DbgMI = Emitter.EmitDbgLabel(*DLI); + if (DbgMI) { + if (!LastOrder) + // Insert to start of the BB (after PHIs). + BB->insert(BBBegin, DbgMI); + else { + // Insert at the instruction, which may be in a different + // block, if the block was split by a custom inserter. + MachineBasicBlock::iterator Pos = MI; + MI->getParent()->insert(Pos, DbgMI); + } + } + } + if (DLI == DLE) + break; + + LastOrder = Order; + } + } + + InsertPos = Emitter.getInsertPos(); + return Emitter.getBlock(); +} + +/// Return the basic block label. +std::string ScheduleDAGSDNodes::getDAGName() const { + return "sunit-dag." + BB->getFullName(); +} |