summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp3664
1 files changed, 3664 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
new file mode 100644
index 000000000000..bdf9f2c166e1
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGISel.cpp
@@ -0,0 +1,3664 @@
+//===- SelectionDAGISel.cpp - Implement the SelectionDAGISel class --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This implements the SelectionDAGISel class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/SelectionDAGISel.h"
+#include "ScheduleDAGSDNodes.h"
+#include "SelectionDAGBuilder.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/BranchProbabilityInfo.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/Analysis/EHPersonalities.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/CodeGen/FastISel.h"
+#include "llvm/CodeGen/FunctionLoweringInfo.h"
+#include "llvm/CodeGen/GCMetadata.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachinePassRegistry.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/SchedulerRegistry.h"
+#include "llvm/CodeGen/SelectionDAG.h"
+#include "llvm/CodeGen/SelectionDAGNodes.h"
+#include "llvm/CodeGen/StackProtector.h"
+#include "llvm/CodeGen/SwiftErrorValueTracking.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DiagnosticInfo.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstIterator.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/BranchProbability.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/Timer.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetIntrinsicInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetOptions.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <string>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "isel"
+
+STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on");
+STATISTIC(NumFastIselSuccess, "Number of instructions fast isel selected");
+STATISTIC(NumFastIselBlocks, "Number of blocks selected entirely by fast isel");
+STATISTIC(NumDAGBlocks, "Number of blocks selected using DAG");
+STATISTIC(NumDAGIselRetries,"Number of times dag isel has to try another path");
+STATISTIC(NumEntryBlocks, "Number of entry blocks encountered");
+STATISTIC(NumFastIselFailLowerArguments,
+ "Number of entry blocks where fast isel failed to lower arguments");
+
+static cl::opt<int> EnableFastISelAbort(
+ "fast-isel-abort", cl::Hidden,
+ cl::desc("Enable abort calls when \"fast\" instruction selection "
+ "fails to lower an instruction: 0 disable the abort, 1 will "
+ "abort but for args, calls and terminators, 2 will also "
+ "abort for argument lowering, and 3 will never fallback "
+ "to SelectionDAG."));
+
+static cl::opt<bool> EnableFastISelFallbackReport(
+ "fast-isel-report-on-fallback", cl::Hidden,
+ cl::desc("Emit a diagnostic when \"fast\" instruction selection "
+ "falls back to SelectionDAG."));
+
+static cl::opt<bool>
+UseMBPI("use-mbpi",
+ cl::desc("use Machine Branch Probability Info"),
+ cl::init(true), cl::Hidden);
+
+#ifndef NDEBUG
+static cl::opt<std::string>
+FilterDAGBasicBlockName("filter-view-dags", cl::Hidden,
+ cl::desc("Only display the basic block whose name "
+ "matches this for all view-*-dags options"));
+static cl::opt<bool>
+ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before the first "
+ "dag combine pass"));
+static cl::opt<bool>
+ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before legalize types"));
+static cl::opt<bool>
+ViewLegalizeDAGs("view-legalize-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before legalize"));
+static cl::opt<bool>
+ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before the second "
+ "dag combine pass"));
+static cl::opt<bool>
+ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden,
+ cl::desc("Pop up a window to show dags before the post legalize types"
+ " dag combine pass"));
+static cl::opt<bool>
+ViewISelDAGs("view-isel-dags", cl::Hidden,
+ cl::desc("Pop up a window to show isel dags as they are selected"));
+static cl::opt<bool>
+ViewSchedDAGs("view-sched-dags", cl::Hidden,
+ cl::desc("Pop up a window to show sched dags as they are processed"));
+static cl::opt<bool>
+ViewSUnitDAGs("view-sunit-dags", cl::Hidden,
+ cl::desc("Pop up a window to show SUnit dags after they are processed"));
+#else
+static const bool ViewDAGCombine1 = false,
+ ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false,
+ ViewDAGCombine2 = false,
+ ViewDAGCombineLT = false,
+ ViewISelDAGs = false, ViewSchedDAGs = false,
+ ViewSUnitDAGs = false;
+#endif
+
+//===---------------------------------------------------------------------===//
+///
+/// RegisterScheduler class - Track the registration of instruction schedulers.
+///
+//===---------------------------------------------------------------------===//
+MachinePassRegistry<RegisterScheduler::FunctionPassCtor>
+ RegisterScheduler::Registry;
+
+//===---------------------------------------------------------------------===//
+///
+/// ISHeuristic command line option for instruction schedulers.
+///
+//===---------------------------------------------------------------------===//
+static cl::opt<RegisterScheduler::FunctionPassCtor, false,
+ RegisterPassParser<RegisterScheduler>>
+ISHeuristic("pre-RA-sched",
+ cl::init(&createDefaultScheduler), cl::Hidden,
+ cl::desc("Instruction schedulers available (before register"
+ " allocation):"));
+
+static RegisterScheduler
+defaultListDAGScheduler("default", "Best scheduler for the target",
+ createDefaultScheduler);
+
+namespace llvm {
+
+ //===--------------------------------------------------------------------===//
+ /// This class is used by SelectionDAGISel to temporarily override
+ /// the optimization level on a per-function basis.
+ class OptLevelChanger {
+ SelectionDAGISel &IS;
+ CodeGenOpt::Level SavedOptLevel;
+ bool SavedFastISel;
+
+ public:
+ OptLevelChanger(SelectionDAGISel &ISel,
+ CodeGenOpt::Level NewOptLevel) : IS(ISel) {
+ SavedOptLevel = IS.OptLevel;
+ if (NewOptLevel == SavedOptLevel)
+ return;
+ IS.OptLevel = NewOptLevel;
+ IS.TM.setOptLevel(NewOptLevel);
+ LLVM_DEBUG(dbgs() << "\nChanging optimization level for Function "
+ << IS.MF->getFunction().getName() << "\n");
+ LLVM_DEBUG(dbgs() << "\tBefore: -O" << SavedOptLevel << " ; After: -O"
+ << NewOptLevel << "\n");
+ SavedFastISel = IS.TM.Options.EnableFastISel;
+ if (NewOptLevel == CodeGenOpt::None) {
+ IS.TM.setFastISel(IS.TM.getO0WantsFastISel());
+ LLVM_DEBUG(
+ dbgs() << "\tFastISel is "
+ << (IS.TM.Options.EnableFastISel ? "enabled" : "disabled")
+ << "\n");
+ }
+ }
+
+ ~OptLevelChanger() {
+ if (IS.OptLevel == SavedOptLevel)
+ return;
+ LLVM_DEBUG(dbgs() << "\nRestoring optimization level for Function "
+ << IS.MF->getFunction().getName() << "\n");
+ LLVM_DEBUG(dbgs() << "\tBefore: -O" << IS.OptLevel << " ; After: -O"
+ << SavedOptLevel << "\n");
+ IS.OptLevel = SavedOptLevel;
+ IS.TM.setOptLevel(SavedOptLevel);
+ IS.TM.setFastISel(SavedFastISel);
+ }
+ };
+
+ //===--------------------------------------------------------------------===//
+ /// createDefaultScheduler - This creates an instruction scheduler appropriate
+ /// for the target.
+ ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS,
+ CodeGenOpt::Level OptLevel) {
+ const TargetLowering *TLI = IS->TLI;
+ const TargetSubtargetInfo &ST = IS->MF->getSubtarget();
+
+ // Try first to see if the Target has its own way of selecting a scheduler
+ if (auto *SchedulerCtor = ST.getDAGScheduler(OptLevel)) {
+ return SchedulerCtor(IS, OptLevel);
+ }
+
+ if (OptLevel == CodeGenOpt::None ||
+ (ST.enableMachineScheduler() && ST.enableMachineSchedDefaultSched()) ||
+ TLI->getSchedulingPreference() == Sched::Source)
+ return createSourceListDAGScheduler(IS, OptLevel);
+ if (TLI->getSchedulingPreference() == Sched::RegPressure)
+ return createBURRListDAGScheduler(IS, OptLevel);
+ if (TLI->getSchedulingPreference() == Sched::Hybrid)
+ return createHybridListDAGScheduler(IS, OptLevel);
+ if (TLI->getSchedulingPreference() == Sched::VLIW)
+ return createVLIWDAGScheduler(IS, OptLevel);
+ assert(TLI->getSchedulingPreference() == Sched::ILP &&
+ "Unknown sched type!");
+ return createILPListDAGScheduler(IS, OptLevel);
+ }
+
+} // end namespace llvm
+
+// EmitInstrWithCustomInserter - This method should be implemented by targets
+// that mark instructions with the 'usesCustomInserter' flag. These
+// instructions are special in various ways, which require special support to
+// insert. The specified MachineInstr is created but not inserted into any
+// basic blocks, and this method is called to expand it into a sequence of
+// instructions, potentially also creating new basic blocks and control flow.
+// When new basic blocks are inserted and the edges from MBB to its successors
+// are modified, the method should insert pairs of <OldSucc, NewSucc> into the
+// DenseMap.
+MachineBasicBlock *
+TargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI,
+ MachineBasicBlock *MBB) const {
+#ifndef NDEBUG
+ dbgs() << "If a target marks an instruction with "
+ "'usesCustomInserter', it must implement "
+ "TargetLowering::EmitInstrWithCustomInserter!";
+#endif
+ llvm_unreachable(nullptr);
+}
+
+void TargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
+ SDNode *Node) const {
+ assert(!MI.hasPostISelHook() &&
+ "If a target marks an instruction with 'hasPostISelHook', "
+ "it must implement TargetLowering::AdjustInstrPostInstrSelection!");
+}
+
+//===----------------------------------------------------------------------===//
+// SelectionDAGISel code
+//===----------------------------------------------------------------------===//
+
+SelectionDAGISel::SelectionDAGISel(TargetMachine &tm,
+ CodeGenOpt::Level OL) :
+ MachineFunctionPass(ID), TM(tm),
+ FuncInfo(new FunctionLoweringInfo()),
+ SwiftError(new SwiftErrorValueTracking()),
+ CurDAG(new SelectionDAG(tm, OL)),
+ SDB(new SelectionDAGBuilder(*CurDAG, *FuncInfo, *SwiftError, OL)),
+ AA(), GFI(),
+ OptLevel(OL),
+ DAGSize(0) {
+ initializeGCModuleInfoPass(*PassRegistry::getPassRegistry());
+ initializeBranchProbabilityInfoWrapperPassPass(
+ *PassRegistry::getPassRegistry());
+ initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
+ initializeTargetLibraryInfoWrapperPassPass(
+ *PassRegistry::getPassRegistry());
+ }
+
+SelectionDAGISel::~SelectionDAGISel() {
+ delete SDB;
+ delete CurDAG;
+ delete FuncInfo;
+ delete SwiftError;
+}
+
+void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
+ if (OptLevel != CodeGenOpt::None)
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addRequired<GCModuleInfo>();
+ AU.addRequired<StackProtector>();
+ AU.addPreserved<GCModuleInfo>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ if (UseMBPI && OptLevel != CodeGenOpt::None)
+ AU.addRequired<BranchProbabilityInfoWrapperPass>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+}
+
+/// SplitCriticalSideEffectEdges - Look for critical edges with a PHI value that
+/// may trap on it. In this case we have to split the edge so that the path
+/// through the predecessor block that doesn't go to the phi block doesn't
+/// execute the possibly trapping instruction. If available, we pass domtree
+/// and loop info to be updated when we split critical edges. This is because
+/// SelectionDAGISel preserves these analyses.
+/// This is required for correctness, so it must be done at -O0.
+///
+static void SplitCriticalSideEffectEdges(Function &Fn, DominatorTree *DT,
+ LoopInfo *LI) {
+ // Loop for blocks with phi nodes.
+ for (BasicBlock &BB : Fn) {
+ PHINode *PN = dyn_cast<PHINode>(BB.begin());
+ if (!PN) continue;
+
+ ReprocessBlock:
+ // For each block with a PHI node, check to see if any of the input values
+ // are potentially trapping constant expressions. Constant expressions are
+ // the only potentially trapping value that can occur as the argument to a
+ // PHI.
+ for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I)); ++I)
+ for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+ ConstantExpr *CE = dyn_cast<ConstantExpr>(PN->getIncomingValue(i));
+ if (!CE || !CE->canTrap()) continue;
+
+ // The only case we have to worry about is when the edge is critical.
+ // Since this block has a PHI Node, we assume it has multiple input
+ // edges: check to see if the pred has multiple successors.
+ BasicBlock *Pred = PN->getIncomingBlock(i);
+ if (Pred->getTerminator()->getNumSuccessors() == 1)
+ continue;
+
+ // Okay, we have to split this edge.
+ SplitCriticalEdge(
+ Pred->getTerminator(), GetSuccessorNumber(Pred, &BB),
+ CriticalEdgeSplittingOptions(DT, LI).setMergeIdenticalEdges());
+ goto ReprocessBlock;
+ }
+ }
+}
+
+static void computeUsesMSVCFloatingPoint(const Triple &TT, const Function &F,
+ MachineModuleInfo &MMI) {
+ // Only needed for MSVC
+ if (!TT.isWindowsMSVCEnvironment())
+ return;
+
+ // If it's already set, nothing to do.
+ if (MMI.usesMSVCFloatingPoint())
+ return;
+
+ for (const Instruction &I : instructions(F)) {
+ if (I.getType()->isFPOrFPVectorTy()) {
+ MMI.setUsesMSVCFloatingPoint(true);
+ return;
+ }
+ for (const auto &Op : I.operands()) {
+ if (Op->getType()->isFPOrFPVectorTy()) {
+ MMI.setUsesMSVCFloatingPoint(true);
+ return;
+ }
+ }
+ }
+}
+
+bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) {
+ // If we already selected that function, we do not need to run SDISel.
+ if (mf.getProperties().hasProperty(
+ MachineFunctionProperties::Property::Selected))
+ return false;
+ // Do some sanity-checking on the command-line options.
+ assert((!EnableFastISelAbort || TM.Options.EnableFastISel) &&
+ "-fast-isel-abort > 0 requires -fast-isel");
+
+ const Function &Fn = mf.getFunction();
+ MF = &mf;
+
+ // Reset the target options before resetting the optimization
+ // level below.
+ // FIXME: This is a horrible hack and should be processed via
+ // codegen looking at the optimization level explicitly when
+ // it wants to look at it.
+ TM.resetTargetOptions(Fn);
+ // Reset OptLevel to None for optnone functions.
+ CodeGenOpt::Level NewOptLevel = OptLevel;
+ if (OptLevel != CodeGenOpt::None && skipFunction(Fn))
+ NewOptLevel = CodeGenOpt::None;
+ OptLevelChanger OLC(*this, NewOptLevel);
+
+ TII = MF->getSubtarget().getInstrInfo();
+ TLI = MF->getSubtarget().getTargetLowering();
+ RegInfo = &MF->getRegInfo();
+ LibInfo = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
+ GFI = Fn.hasGC() ? &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn) : nullptr;
+ ORE = make_unique<OptimizationRemarkEmitter>(&Fn);
+ auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
+ auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
+ LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
+
+ LLVM_DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n");
+
+ SplitCriticalSideEffectEdges(const_cast<Function &>(Fn), DT, LI);
+
+ CurDAG->init(*MF, *ORE, this, LibInfo,
+ getAnalysisIfAvailable<LegacyDivergenceAnalysis>());
+ FuncInfo->set(Fn, *MF, CurDAG);
+ SwiftError->setFunction(*MF);
+
+ // Now get the optional analyzes if we want to.
+ // This is based on the possibly changed OptLevel (after optnone is taken
+ // into account). That's unfortunate but OK because it just means we won't
+ // ask for passes that have been required anyway.
+
+ if (UseMBPI && OptLevel != CodeGenOpt::None)
+ FuncInfo->BPI = &getAnalysis<BranchProbabilityInfoWrapperPass>().getBPI();
+ else
+ FuncInfo->BPI = nullptr;
+
+ if (OptLevel != CodeGenOpt::None)
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+ else
+ AA = nullptr;
+
+ SDB->init(GFI, AA, LibInfo);
+
+ MF->setHasInlineAsm(false);
+
+ FuncInfo->SplitCSR = false;
+
+ // We split CSR if the target supports it for the given function
+ // and the function has only return exits.
+ if (OptLevel != CodeGenOpt::None && TLI->supportSplitCSR(MF)) {
+ FuncInfo->SplitCSR = true;
+
+ // Collect all the return blocks.
+ for (const BasicBlock &BB : Fn) {
+ if (!succ_empty(&BB))
+ continue;
+
+ const Instruction *Term = BB.getTerminator();
+ if (isa<UnreachableInst>(Term) || isa<ReturnInst>(Term))
+ continue;
+
+ // Bail out if the exit block is not Return nor Unreachable.
+ FuncInfo->SplitCSR = false;
+ break;
+ }
+ }
+
+ MachineBasicBlock *EntryMBB = &MF->front();
+ if (FuncInfo->SplitCSR)
+ // This performs initialization so lowering for SplitCSR will be correct.
+ TLI->initializeSplitCSR(EntryMBB);
+
+ SelectAllBasicBlocks(Fn);
+ if (FastISelFailed && EnableFastISelFallbackReport) {
+ DiagnosticInfoISelFallback DiagFallback(Fn);
+ Fn.getContext().diagnose(DiagFallback);
+ }
+
+ // Replace forward-declared registers with the registers containing
+ // the desired value.
+ // Note: it is important that this happens **before** the call to
+ // EmitLiveInCopies, since implementations can skip copies of unused
+ // registers. If we don't apply the reg fixups before, some registers may
+ // appear as unused and will be skipped, resulting in bad MI.
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ for (DenseMap<unsigned, unsigned>::iterator I = FuncInfo->RegFixups.begin(),
+ E = FuncInfo->RegFixups.end();
+ I != E; ++I) {
+ unsigned From = I->first;
+ unsigned To = I->second;
+ // If To is also scheduled to be replaced, find what its ultimate
+ // replacement is.
+ while (true) {
+ DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
+ if (J == E)
+ break;
+ To = J->second;
+ }
+ // Make sure the new register has a sufficiently constrained register class.
+ if (TargetRegisterInfo::isVirtualRegister(From) &&
+ TargetRegisterInfo::isVirtualRegister(To))
+ MRI.constrainRegClass(To, MRI.getRegClass(From));
+ // Replace it.
+
+ // Replacing one register with another won't touch the kill flags.
+ // We need to conservatively clear the kill flags as a kill on the old
+ // register might dominate existing uses of the new register.
+ if (!MRI.use_empty(To))
+ MRI.clearKillFlags(From);
+ MRI.replaceRegWith(From, To);
+ }
+
+ // If the first basic block in the function has live ins that need to be
+ // copied into vregs, emit the copies into the top of the block before
+ // emitting the code for the block.
+ const TargetRegisterInfo &TRI = *MF->getSubtarget().getRegisterInfo();
+ RegInfo->EmitLiveInCopies(EntryMBB, TRI, *TII);
+
+ // Insert copies in the entry block and the return blocks.
+ if (FuncInfo->SplitCSR) {
+ SmallVector<MachineBasicBlock*, 4> Returns;
+ // Collect all the return blocks.
+ for (MachineBasicBlock &MBB : mf) {
+ if (!MBB.succ_empty())
+ continue;
+
+ MachineBasicBlock::iterator Term = MBB.getFirstTerminator();
+ if (Term != MBB.end() && Term->isReturn()) {
+ Returns.push_back(&MBB);
+ continue;
+ }
+ }
+ TLI->insertCopiesSplitCSR(EntryMBB, Returns);
+ }
+
+ DenseMap<unsigned, unsigned> LiveInMap;
+ if (!FuncInfo->ArgDbgValues.empty())
+ for (std::pair<unsigned, unsigned> LI : RegInfo->liveins())
+ if (LI.second)
+ LiveInMap.insert(LI);
+
+ // Insert DBG_VALUE instructions for function arguments to the entry block.
+ for (unsigned i = 0, e = FuncInfo->ArgDbgValues.size(); i != e; ++i) {
+ MachineInstr *MI = FuncInfo->ArgDbgValues[e-i-1];
+ bool hasFI = MI->getOperand(0).isFI();
+ Register Reg =
+ hasFI ? TRI.getFrameRegister(*MF) : MI->getOperand(0).getReg();
+ if (TargetRegisterInfo::isPhysicalRegister(Reg))
+ EntryMBB->insert(EntryMBB->begin(), MI);
+ else {
+ MachineInstr *Def = RegInfo->getVRegDef(Reg);
+ if (Def) {
+ MachineBasicBlock::iterator InsertPos = Def;
+ // FIXME: VR def may not be in entry block.
+ Def->getParent()->insert(std::next(InsertPos), MI);
+ } else
+ LLVM_DEBUG(dbgs() << "Dropping debug info for dead vreg"
+ << TargetRegisterInfo::virtReg2Index(Reg) << "\n");
+ }
+
+ // If Reg is live-in then update debug info to track its copy in a vreg.
+ DenseMap<unsigned, unsigned>::iterator LDI = LiveInMap.find(Reg);
+ if (LDI != LiveInMap.end()) {
+ assert(!hasFI && "There's no handling of frame pointer updating here yet "
+ "- add if needed");
+ MachineInstr *Def = RegInfo->getVRegDef(LDI->second);
+ MachineBasicBlock::iterator InsertPos = Def;
+ const MDNode *Variable = MI->getDebugVariable();
+ const MDNode *Expr = MI->getDebugExpression();
+ DebugLoc DL = MI->getDebugLoc();
+ bool IsIndirect = MI->isIndirectDebugValue();
+ if (IsIndirect)
+ assert(MI->getOperand(1).getImm() == 0 &&
+ "DBG_VALUE with nonzero offset");
+ assert(cast<DILocalVariable>(Variable)->isValidLocationForIntrinsic(DL) &&
+ "Expected inlined-at fields to agree");
+ // Def is never a terminator here, so it is ok to increment InsertPos.
+ BuildMI(*EntryMBB, ++InsertPos, DL, TII->get(TargetOpcode::DBG_VALUE),
+ IsIndirect, LDI->second, Variable, Expr);
+
+ // If this vreg is directly copied into an exported register then
+ // that COPY instructions also need DBG_VALUE, if it is the only
+ // user of LDI->second.
+ MachineInstr *CopyUseMI = nullptr;
+ for (MachineRegisterInfo::use_instr_iterator
+ UI = RegInfo->use_instr_begin(LDI->second),
+ E = RegInfo->use_instr_end(); UI != E; ) {
+ MachineInstr *UseMI = &*(UI++);
+ if (UseMI->isDebugValue()) continue;
+ if (UseMI->isCopy() && !CopyUseMI && UseMI->getParent() == EntryMBB) {
+ CopyUseMI = UseMI; continue;
+ }
+ // Otherwise this is another use or second copy use.
+ CopyUseMI = nullptr; break;
+ }
+ if (CopyUseMI) {
+ // Use MI's debug location, which describes where Variable was
+ // declared, rather than whatever is attached to CopyUseMI.
+ MachineInstr *NewMI =
+ BuildMI(*MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
+ CopyUseMI->getOperand(0).getReg(), Variable, Expr);
+ MachineBasicBlock::iterator Pos = CopyUseMI;
+ EntryMBB->insertAfter(Pos, NewMI);
+ }
+ }
+ }
+
+ // Determine if there are any calls in this machine function.
+ MachineFrameInfo &MFI = MF->getFrameInfo();
+ for (const auto &MBB : *MF) {
+ if (MFI.hasCalls() && MF->hasInlineAsm())
+ break;
+
+ for (const auto &MI : MBB) {
+ const MCInstrDesc &MCID = TII->get(MI.getOpcode());
+ if ((MCID.isCall() && !MCID.isReturn()) ||
+ MI.isStackAligningInlineAsm()) {
+ MFI.setHasCalls(true);
+ }
+ if (MI.isInlineAsm()) {
+ MF->setHasInlineAsm(true);
+ }
+ }
+ }
+
+ // Determine if there is a call to setjmp in the machine function.
+ MF->setExposesReturnsTwice(Fn.callsFunctionThatReturnsTwice());
+
+ // Determine if floating point is used for msvc
+ computeUsesMSVCFloatingPoint(TM.getTargetTriple(), Fn, MF->getMMI());
+
+ // Replace forward-declared registers with the registers containing
+ // the desired value.
+ for (DenseMap<unsigned, unsigned>::iterator
+ I = FuncInfo->RegFixups.begin(), E = FuncInfo->RegFixups.end();
+ I != E; ++I) {
+ unsigned From = I->first;
+ unsigned To = I->second;
+ // If To is also scheduled to be replaced, find what its ultimate
+ // replacement is.
+ while (true) {
+ DenseMap<unsigned, unsigned>::iterator J = FuncInfo->RegFixups.find(To);
+ if (J == E) break;
+ To = J->second;
+ }
+ // Make sure the new register has a sufficiently constrained register class.
+ if (TargetRegisterInfo::isVirtualRegister(From) &&
+ TargetRegisterInfo::isVirtualRegister(To))
+ MRI.constrainRegClass(To, MRI.getRegClass(From));
+ // Replace it.
+
+
+ // Replacing one register with another won't touch the kill flags.
+ // We need to conservatively clear the kill flags as a kill on the old
+ // register might dominate existing uses of the new register.
+ if (!MRI.use_empty(To))
+ MRI.clearKillFlags(From);
+ MRI.replaceRegWith(From, To);
+ }
+
+ TLI->finalizeLowering(*MF);
+
+ // Release function-specific state. SDB and CurDAG are already cleared
+ // at this point.
+ FuncInfo->clear();
+
+ LLVM_DEBUG(dbgs() << "*** MachineFunction at end of ISel ***\n");
+ LLVM_DEBUG(MF->print(dbgs()));
+
+ return true;
+}
+
+static void reportFastISelFailure(MachineFunction &MF,
+ OptimizationRemarkEmitter &ORE,
+ OptimizationRemarkMissed &R,
+ bool ShouldAbort) {
+ // Print the function name explicitly if we don't have a debug location (which
+ // makes the diagnostic less useful) or if we're going to emit a raw error.
+ if (!R.getLocation().isValid() || ShouldAbort)
+ R << (" (in function: " + MF.getName() + ")").str();
+
+ if (ShouldAbort)
+ report_fatal_error(R.getMsg());
+
+ ORE.emit(R);
+}
+
+void SelectionDAGISel::SelectBasicBlock(BasicBlock::const_iterator Begin,
+ BasicBlock::const_iterator End,
+ bool &HadTailCall) {
+ // Allow creating illegal types during DAG building for the basic block.
+ CurDAG->NewNodesMustHaveLegalTypes = false;
+
+ // Lower the instructions. If a call is emitted as a tail call, cease emitting
+ // nodes for this block.
+ for (BasicBlock::const_iterator I = Begin; I != End && !SDB->HasTailCall; ++I) {
+ if (!ElidedArgCopyInstrs.count(&*I))
+ SDB->visit(*I);
+ }
+
+ // Make sure the root of the DAG is up-to-date.
+ CurDAG->setRoot(SDB->getControlRoot());
+ HadTailCall = SDB->HasTailCall;
+ SDB->resolveOrClearDbgInfo();
+ SDB->clear();
+
+ // Final step, emit the lowered DAG as machine code.
+ CodeGenAndEmitDAG();
+}
+
+void SelectionDAGISel::ComputeLiveOutVRegInfo() {
+ SmallPtrSet<SDNode*, 16> VisitedNodes;
+ SmallVector<SDNode*, 128> Worklist;
+
+ Worklist.push_back(CurDAG->getRoot().getNode());
+
+ KnownBits Known;
+
+ do {
+ SDNode *N = Worklist.pop_back_val();
+
+ // If we've already seen this node, ignore it.
+ if (!VisitedNodes.insert(N).second)
+ continue;
+
+ // Otherwise, add all chain operands to the worklist.
+ for (const SDValue &Op : N->op_values())
+ if (Op.getValueType() == MVT::Other)
+ Worklist.push_back(Op.getNode());
+
+ // If this is a CopyToReg with a vreg dest, process it.
+ if (N->getOpcode() != ISD::CopyToReg)
+ continue;
+
+ unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(DestReg))
+ continue;
+
+ // Ignore non-integer values.
+ SDValue Src = N->getOperand(2);
+ EVT SrcVT = Src.getValueType();
+ if (!SrcVT.isInteger())
+ continue;
+
+ unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src);
+ Known = CurDAG->computeKnownBits(Src);
+ FuncInfo->AddLiveOutRegInfo(DestReg, NumSignBits, Known);
+ } while (!Worklist.empty());
+}
+
+void SelectionDAGISel::CodeGenAndEmitDAG() {
+ StringRef GroupName = "sdag";
+ StringRef GroupDescription = "Instruction Selection and Scheduling";
+ std::string BlockName;
+ bool MatchFilterBB = false; (void)MatchFilterBB;
+#ifndef NDEBUG
+ TargetTransformInfo &TTI =
+ getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*FuncInfo->Fn);
+#endif
+
+ // Pre-type legalization allow creation of any node types.
+ CurDAG->NewNodesMustHaveLegalTypes = false;
+
+#ifndef NDEBUG
+ MatchFilterBB = (FilterDAGBasicBlockName.empty() ||
+ FilterDAGBasicBlockName ==
+ FuncInfo->MBB->getBasicBlock()->getName());
+#endif
+#ifdef NDEBUG
+ if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs ||
+ ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs ||
+ ViewSUnitDAGs)
+#endif
+ {
+ BlockName =
+ (MF->getName() + ":" + FuncInfo->MBB->getBasicBlock()->getName()).str();
+ }
+ LLVM_DEBUG(dbgs() << "Initial selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+
+ if (ViewDAGCombine1 && MatchFilterBB)
+ CurDAG->viewGraph("dag-combine1 input for " + BlockName);
+
+ // Run the DAG combiner in pre-legalize mode.
+ {
+ NamedRegionTimer T("combine1", "DAG Combining 1", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+ CurDAG->Combine(BeforeLegalizeTypes, AA, OptLevel);
+ }
+
+#ifndef NDEBUG
+ if (TTI.hasBranchDivergence())
+ CurDAG->VerifyDAGDiverence();
+#endif
+
+ LLVM_DEBUG(dbgs() << "Optimized lowered selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+
+ // Second step, hack on the DAG until it only uses operations and types that
+ // the target supports.
+ if (ViewLegalizeTypesDAGs && MatchFilterBB)
+ CurDAG->viewGraph("legalize-types input for " + BlockName);
+
+ bool Changed;
+ {
+ NamedRegionTimer T("legalize_types", "Type Legalization", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+ Changed = CurDAG->LegalizeTypes();
+ }
+
+#ifndef NDEBUG
+ if (TTI.hasBranchDivergence())
+ CurDAG->VerifyDAGDiverence();
+#endif
+
+ LLVM_DEBUG(dbgs() << "Type-legalized selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+
+ // Only allow creation of legal node types.
+ CurDAG->NewNodesMustHaveLegalTypes = true;
+
+ if (Changed) {
+ if (ViewDAGCombineLT && MatchFilterBB)
+ CurDAG->viewGraph("dag-combine-lt input for " + BlockName);
+
+ // Run the DAG combiner in post-type-legalize mode.
+ {
+ NamedRegionTimer T("combine_lt", "DAG Combining after legalize types",
+ GroupName, GroupDescription, TimePassesIsEnabled);
+ CurDAG->Combine(AfterLegalizeTypes, AA, OptLevel);
+ }
+
+#ifndef NDEBUG
+ if (TTI.hasBranchDivergence())
+ CurDAG->VerifyDAGDiverence();
+#endif
+
+ LLVM_DEBUG(dbgs() << "Optimized type-legalized selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+ }
+
+ {
+ NamedRegionTimer T("legalize_vec", "Vector Legalization", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+ Changed = CurDAG->LegalizeVectors();
+ }
+
+ if (Changed) {
+ LLVM_DEBUG(dbgs() << "Vector-legalized selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+
+ {
+ NamedRegionTimer T("legalize_types2", "Type Legalization 2", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+ CurDAG->LegalizeTypes();
+ }
+
+ LLVM_DEBUG(dbgs() << "Vector/type-legalized selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+
+ if (ViewDAGCombineLT && MatchFilterBB)
+ CurDAG->viewGraph("dag-combine-lv input for " + BlockName);
+
+ // Run the DAG combiner in post-type-legalize mode.
+ {
+ NamedRegionTimer T("combine_lv", "DAG Combining after legalize vectors",
+ GroupName, GroupDescription, TimePassesIsEnabled);
+ CurDAG->Combine(AfterLegalizeVectorOps, AA, OptLevel);
+ }
+
+ LLVM_DEBUG(dbgs() << "Optimized vector-legalized selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+
+#ifndef NDEBUG
+ if (TTI.hasBranchDivergence())
+ CurDAG->VerifyDAGDiverence();
+#endif
+ }
+
+ if (ViewLegalizeDAGs && MatchFilterBB)
+ CurDAG->viewGraph("legalize input for " + BlockName);
+
+ {
+ NamedRegionTimer T("legalize", "DAG Legalization", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+ CurDAG->Legalize();
+ }
+
+#ifndef NDEBUG
+ if (TTI.hasBranchDivergence())
+ CurDAG->VerifyDAGDiverence();
+#endif
+
+ LLVM_DEBUG(dbgs() << "Legalized selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+
+ if (ViewDAGCombine2 && MatchFilterBB)
+ CurDAG->viewGraph("dag-combine2 input for " + BlockName);
+
+ // Run the DAG combiner in post-legalize mode.
+ {
+ NamedRegionTimer T("combine2", "DAG Combining 2", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+ CurDAG->Combine(AfterLegalizeDAG, AA, OptLevel);
+ }
+
+#ifndef NDEBUG
+ if (TTI.hasBranchDivergence())
+ CurDAG->VerifyDAGDiverence();
+#endif
+
+ LLVM_DEBUG(dbgs() << "Optimized legalized selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+
+ if (OptLevel != CodeGenOpt::None)
+ ComputeLiveOutVRegInfo();
+
+ if (ViewISelDAGs && MatchFilterBB)
+ CurDAG->viewGraph("isel input for " + BlockName);
+
+ // Third, instruction select all of the operations to machine code, adding the
+ // code to the MachineBasicBlock.
+ {
+ NamedRegionTimer T("isel", "Instruction Selection", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+ DoInstructionSelection();
+ }
+
+ LLVM_DEBUG(dbgs() << "Selected selection DAG: "
+ << printMBBReference(*FuncInfo->MBB) << " '" << BlockName
+ << "'\n";
+ CurDAG->dump());
+
+ if (ViewSchedDAGs && MatchFilterBB)
+ CurDAG->viewGraph("scheduler input for " + BlockName);
+
+ // Schedule machine code.
+ ScheduleDAGSDNodes *Scheduler = CreateScheduler();
+ {
+ NamedRegionTimer T("sched", "Instruction Scheduling", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+ Scheduler->Run(CurDAG, FuncInfo->MBB);
+ }
+
+ if (ViewSUnitDAGs && MatchFilterBB)
+ Scheduler->viewGraph();
+
+ // Emit machine code to BB. This can change 'BB' to the last block being
+ // inserted into.
+ MachineBasicBlock *FirstMBB = FuncInfo->MBB, *LastMBB;
+ {
+ NamedRegionTimer T("emit", "Instruction Creation", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+
+ // FuncInfo->InsertPt is passed by reference and set to the end of the
+ // scheduled instructions.
+ LastMBB = FuncInfo->MBB = Scheduler->EmitSchedule(FuncInfo->InsertPt);
+ }
+
+ // If the block was split, make sure we update any references that are used to
+ // update PHI nodes later on.
+ if (FirstMBB != LastMBB)
+ SDB->UpdateSplitBlock(FirstMBB, LastMBB);
+
+ // Free the scheduler state.
+ {
+ NamedRegionTimer T("cleanup", "Instruction Scheduling Cleanup", GroupName,
+ GroupDescription, TimePassesIsEnabled);
+ delete Scheduler;
+ }
+
+ // Free the SelectionDAG state, now that we're finished with it.
+ CurDAG->clear();
+}
+
+namespace {
+
+/// ISelUpdater - helper class to handle updates of the instruction selection
+/// graph.
+class ISelUpdater : public SelectionDAG::DAGUpdateListener {
+ SelectionDAG::allnodes_iterator &ISelPosition;
+
+public:
+ ISelUpdater(SelectionDAG &DAG, SelectionDAG::allnodes_iterator &isp)
+ : SelectionDAG::DAGUpdateListener(DAG), ISelPosition(isp) {}
+
+ /// NodeDeleted - Handle nodes deleted from the graph. If the node being
+ /// deleted is the current ISelPosition node, update ISelPosition.
+ ///
+ void NodeDeleted(SDNode *N, SDNode *E) override {
+ if (ISelPosition == SelectionDAG::allnodes_iterator(N))
+ ++ISelPosition;
+ }
+};
+
+} // end anonymous namespace
+
+// This function is used to enforce the topological node id property
+// property leveraged during Instruction selection. Before selection all
+// nodes are given a non-negative id such that all nodes have a larger id than
+// their operands. As this holds transitively we can prune checks that a node N
+// is a predecessor of M another by not recursively checking through M's
+// operands if N's ID is larger than M's ID. This is significantly improves
+// performance of for various legality checks (e.g. IsLegalToFold /
+// UpdateChains).
+
+// However, when we fuse multiple nodes into a single node
+// during selection we may induce a predecessor relationship between inputs and
+// outputs of distinct nodes being merged violating the topological property.
+// Should a fused node have a successor which has yet to be selected, our
+// legality checks would be incorrect. To avoid this we mark all unselected
+// sucessor nodes, i.e. id != -1 as invalid for pruning by bit-negating (x =>
+// (-(x+1))) the ids and modify our pruning check to ignore negative Ids of M.
+// We use bit-negation to more clearly enforce that node id -1 can only be
+// achieved by selected nodes). As the conversion is reversable the original Id,
+// topological pruning can still be leveraged when looking for unselected nodes.
+// This method is call internally in all ISel replacement calls.
+void SelectionDAGISel::EnforceNodeIdInvariant(SDNode *Node) {
+ SmallVector<SDNode *, 4> Nodes;
+ Nodes.push_back(Node);
+
+ while (!Nodes.empty()) {
+ SDNode *N = Nodes.pop_back_val();
+ for (auto *U : N->uses()) {
+ auto UId = U->getNodeId();
+ if (UId > 0) {
+ InvalidateNodeId(U);
+ Nodes.push_back(U);
+ }
+ }
+ }
+}
+
+// InvalidateNodeId - As discusses in EnforceNodeIdInvariant, mark a
+// NodeId with the equivalent node id which is invalid for topological
+// pruning.
+void SelectionDAGISel::InvalidateNodeId(SDNode *N) {
+ int InvalidId = -(N->getNodeId() + 1);
+ N->setNodeId(InvalidId);
+}
+
+// getUninvalidatedNodeId - get original uninvalidated node id.
+int SelectionDAGISel::getUninvalidatedNodeId(SDNode *N) {
+ int Id = N->getNodeId();
+ if (Id < -1)
+ return -(Id + 1);
+ return Id;
+}
+
+void SelectionDAGISel::DoInstructionSelection() {
+ LLVM_DEBUG(dbgs() << "===== Instruction selection begins: "
+ << printMBBReference(*FuncInfo->MBB) << " '"
+ << FuncInfo->MBB->getName() << "'\n");
+
+ PreprocessISelDAG();
+
+ // Select target instructions for the DAG.
+ {
+ // Number all nodes with a topological order and set DAGSize.
+ DAGSize = CurDAG->AssignTopologicalOrder();
+
+ // Create a dummy node (which is not added to allnodes), that adds
+ // a reference to the root node, preventing it from being deleted,
+ // and tracking any changes of the root.
+ HandleSDNode Dummy(CurDAG->getRoot());
+ SelectionDAG::allnodes_iterator ISelPosition (CurDAG->getRoot().getNode());
+ ++ISelPosition;
+
+ // Make sure that ISelPosition gets properly updated when nodes are deleted
+ // in calls made from this function.
+ ISelUpdater ISU(*CurDAG, ISelPosition);
+
+ // The AllNodes list is now topological-sorted. Visit the
+ // nodes by starting at the end of the list (the root of the
+ // graph) and preceding back toward the beginning (the entry
+ // node).
+ while (ISelPosition != CurDAG->allnodes_begin()) {
+ SDNode *Node = &*--ISelPosition;
+ // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes,
+ // but there are currently some corner cases that it misses. Also, this
+ // makes it theoretically possible to disable the DAGCombiner.
+ if (Node->use_empty())
+ continue;
+
+#ifndef NDEBUG
+ SmallVector<SDNode *, 4> Nodes;
+ Nodes.push_back(Node);
+
+ while (!Nodes.empty()) {
+ auto N = Nodes.pop_back_val();
+ if (N->getOpcode() == ISD::TokenFactor || N->getNodeId() < 0)
+ continue;
+ for (const SDValue &Op : N->op_values()) {
+ if (Op->getOpcode() == ISD::TokenFactor)
+ Nodes.push_back(Op.getNode());
+ else {
+ // We rely on topological ordering of node ids for checking for
+ // cycles when fusing nodes during selection. All unselected nodes
+ // successors of an already selected node should have a negative id.
+ // This assertion will catch such cases. If this assertion triggers
+ // it is likely you using DAG-level Value/Node replacement functions
+ // (versus equivalent ISEL replacement) in backend-specific
+ // selections. See comment in EnforceNodeIdInvariant for more
+ // details.
+ assert(Op->getNodeId() != -1 &&
+ "Node has already selected predecessor node");
+ }
+ }
+ }
+#endif
+
+ // When we are using non-default rounding modes or FP exception behavior
+ // FP operations are represented by StrictFP pseudo-operations. For
+ // targets that do not (yet) understand strict FP operations directly,
+ // we convert them to normal FP opcodes instead at this point. This
+ // will allow them to be handled by existing target-specific instruction
+ // selectors.
+ if (Node->isStrictFPOpcode() &&
+ (TLI->getOperationAction(Node->getOpcode(), Node->getValueType(0))
+ != TargetLowering::Legal))
+ Node = CurDAG->mutateStrictFPToFP(Node);
+
+ LLVM_DEBUG(dbgs() << "\nISEL: Starting selection on root node: ";
+ Node->dump(CurDAG));
+
+ Select(Node);
+ }
+
+ CurDAG->setRoot(Dummy.getValue());
+ }
+
+ LLVM_DEBUG(dbgs() << "\n===== Instruction selection ends:\n");
+
+ PostprocessISelDAG();
+}
+
+static bool hasExceptionPointerOrCodeUser(const CatchPadInst *CPI) {
+ for (const User *U : CPI->users()) {
+ if (const IntrinsicInst *EHPtrCall = dyn_cast<IntrinsicInst>(U)) {
+ Intrinsic::ID IID = EHPtrCall->getIntrinsicID();
+ if (IID == Intrinsic::eh_exceptionpointer ||
+ IID == Intrinsic::eh_exceptioncode)
+ return true;
+ }
+ }
+ return false;
+}
+
+// wasm.landingpad.index intrinsic is for associating a landing pad index number
+// with a catchpad instruction. Retrieve the landing pad index in the intrinsic
+// and store the mapping in the function.
+static void mapWasmLandingPadIndex(MachineBasicBlock *MBB,
+ const CatchPadInst *CPI) {
+ MachineFunction *MF = MBB->getParent();
+ // In case of single catch (...), we don't emit LSDA, so we don't need
+ // this information.
+ bool IsSingleCatchAllClause =
+ CPI->getNumArgOperands() == 1 &&
+ cast<Constant>(CPI->getArgOperand(0))->isNullValue();
+ if (!IsSingleCatchAllClause) {
+ // Create a mapping from landing pad label to landing pad index.
+ bool IntrFound = false;
+ for (const User *U : CPI->users()) {
+ if (const auto *Call = dyn_cast<IntrinsicInst>(U)) {
+ Intrinsic::ID IID = Call->getIntrinsicID();
+ if (IID == Intrinsic::wasm_landingpad_index) {
+ Value *IndexArg = Call->getArgOperand(1);
+ int Index = cast<ConstantInt>(IndexArg)->getZExtValue();
+ MF->setWasmLandingPadIndex(MBB, Index);
+ IntrFound = true;
+ break;
+ }
+ }
+ }
+ assert(IntrFound && "wasm.landingpad.index intrinsic not found!");
+ (void)IntrFound;
+ }
+}
+
+/// PrepareEHLandingPad - Emit an EH_LABEL, set up live-in registers, and
+/// do other setup for EH landing-pad blocks.
+bool SelectionDAGISel::PrepareEHLandingPad() {
+ MachineBasicBlock *MBB = FuncInfo->MBB;
+ const Constant *PersonalityFn = FuncInfo->Fn->getPersonalityFn();
+ const BasicBlock *LLVMBB = MBB->getBasicBlock();
+ const TargetRegisterClass *PtrRC =
+ TLI->getRegClassFor(TLI->getPointerTy(CurDAG->getDataLayout()));
+
+ auto Pers = classifyEHPersonality(PersonalityFn);
+
+ // Catchpads have one live-in register, which typically holds the exception
+ // pointer or code.
+ if (isFuncletEHPersonality(Pers)) {
+ if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI())) {
+ if (hasExceptionPointerOrCodeUser(CPI)) {
+ // Get or create the virtual register to hold the pointer or code. Mark
+ // the live in physreg and copy into the vreg.
+ MCPhysReg EHPhysReg = TLI->getExceptionPointerRegister(PersonalityFn);
+ assert(EHPhysReg && "target lacks exception pointer register");
+ MBB->addLiveIn(EHPhysReg);
+ unsigned VReg = FuncInfo->getCatchPadExceptionPointerVReg(CPI, PtrRC);
+ BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(),
+ TII->get(TargetOpcode::COPY), VReg)
+ .addReg(EHPhysReg, RegState::Kill);
+ }
+ }
+ return true;
+ }
+
+ // Add a label to mark the beginning of the landing pad. Deletion of the
+ // landing pad can thus be detected via the MachineModuleInfo.
+ MCSymbol *Label = MF->addLandingPad(MBB);
+
+ const MCInstrDesc &II = TII->get(TargetOpcode::EH_LABEL);
+ BuildMI(*MBB, FuncInfo->InsertPt, SDB->getCurDebugLoc(), II)
+ .addSym(Label);
+
+ if (Pers == EHPersonality::Wasm_CXX) {
+ if (const auto *CPI = dyn_cast<CatchPadInst>(LLVMBB->getFirstNonPHI()))
+ mapWasmLandingPadIndex(MBB, CPI);
+ } else {
+ // Assign the call site to the landing pad's begin label.
+ MF->setCallSiteLandingPad(Label, SDB->LPadToCallSiteMap[MBB]);
+ // Mark exception register as live in.
+ if (unsigned Reg = TLI->getExceptionPointerRegister(PersonalityFn))
+ FuncInfo->ExceptionPointerVirtReg = MBB->addLiveIn(Reg, PtrRC);
+ // Mark exception selector register as live in.
+ if (unsigned Reg = TLI->getExceptionSelectorRegister(PersonalityFn))
+ FuncInfo->ExceptionSelectorVirtReg = MBB->addLiveIn(Reg, PtrRC);
+ }
+
+ return true;
+}
+
+/// isFoldedOrDeadInstruction - Return true if the specified instruction is
+/// side-effect free and is either dead or folded into a generated instruction.
+/// Return false if it needs to be emitted.
+static bool isFoldedOrDeadInstruction(const Instruction *I,
+ FunctionLoweringInfo *FuncInfo) {
+ return !I->mayWriteToMemory() && // Side-effecting instructions aren't folded.
+ !I->isTerminator() && // Terminators aren't folded.
+ !isa<DbgInfoIntrinsic>(I) && // Debug instructions aren't folded.
+ !I->isEHPad() && // EH pad instructions aren't folded.
+ !FuncInfo->isExportedInst(I); // Exported instrs must be computed.
+}
+
+/// Collect llvm.dbg.declare information. This is done after argument lowering
+/// in case the declarations refer to arguments.
+static void processDbgDeclares(FunctionLoweringInfo *FuncInfo) {
+ MachineFunction *MF = FuncInfo->MF;
+ const DataLayout &DL = MF->getDataLayout();
+ for (const BasicBlock &BB : *FuncInfo->Fn) {
+ for (const Instruction &I : BB) {
+ const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(&I);
+ if (!DI)
+ continue;
+
+ assert(DI->getVariable() && "Missing variable");
+ assert(DI->getDebugLoc() && "Missing location");
+ const Value *Address = DI->getAddress();
+ if (!Address)
+ continue;
+
+ // Look through casts and constant offset GEPs. These mostly come from
+ // inalloca.
+ APInt Offset(DL.getTypeSizeInBits(Address->getType()), 0);
+ Address = Address->stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
+
+ // Check if the variable is a static alloca or a byval or inalloca
+ // argument passed in memory. If it is not, then we will ignore this
+ // intrinsic and handle this during isel like dbg.value.
+ int FI = std::numeric_limits<int>::max();
+ if (const auto *AI = dyn_cast<AllocaInst>(Address)) {
+ auto SI = FuncInfo->StaticAllocaMap.find(AI);
+ if (SI != FuncInfo->StaticAllocaMap.end())
+ FI = SI->second;
+ } else if (const auto *Arg = dyn_cast<Argument>(Address))
+ FI = FuncInfo->getArgumentFrameIndex(Arg);
+
+ if (FI == std::numeric_limits<int>::max())
+ continue;
+
+ DIExpression *Expr = DI->getExpression();
+ if (Offset.getBoolValue())
+ Expr = DIExpression::prepend(Expr, DIExpression::ApplyOffset,
+ Offset.getZExtValue());
+ MF->setVariableDbgInfo(DI->getVariable(), Expr, FI, DI->getDebugLoc());
+ }
+ }
+}
+
+void SelectionDAGISel::SelectAllBasicBlocks(const Function &Fn) {
+ FastISelFailed = false;
+ // Initialize the Fast-ISel state, if needed.
+ FastISel *FastIS = nullptr;
+ if (TM.Options.EnableFastISel) {
+ LLVM_DEBUG(dbgs() << "Enabling fast-isel\n");
+ FastIS = TLI->createFastISel(*FuncInfo, LibInfo);
+ }
+
+ ReversePostOrderTraversal<const Function*> RPOT(&Fn);
+
+ // Lower arguments up front. An RPO iteration always visits the entry block
+ // first.
+ assert(*RPOT.begin() == &Fn.getEntryBlock());
+ ++NumEntryBlocks;
+
+ // Set up FuncInfo for ISel. Entry blocks never have PHIs.
+ FuncInfo->MBB = FuncInfo->MBBMap[&Fn.getEntryBlock()];
+ FuncInfo->InsertPt = FuncInfo->MBB->begin();
+
+ CurDAG->setFunctionLoweringInfo(FuncInfo);
+
+ if (!FastIS) {
+ LowerArguments(Fn);
+ } else {
+ // See if fast isel can lower the arguments.
+ FastIS->startNewBlock();
+ if (!FastIS->lowerArguments()) {
+ FastISelFailed = true;
+ // Fast isel failed to lower these arguments
+ ++NumFastIselFailLowerArguments;
+
+ OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
+ Fn.getSubprogram(),
+ &Fn.getEntryBlock());
+ R << "FastISel didn't lower all arguments: "
+ << ore::NV("Prototype", Fn.getType());
+ reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 1);
+
+ // Use SelectionDAG argument lowering
+ LowerArguments(Fn);
+ CurDAG->setRoot(SDB->getControlRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+ }
+
+ // If we inserted any instructions at the beginning, make a note of
+ // where they are, so we can be sure to emit subsequent instructions
+ // after them.
+ if (FuncInfo->InsertPt != FuncInfo->MBB->begin())
+ FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
+ else
+ FastIS->setLastLocalValue(nullptr);
+ }
+
+ bool Inserted = SwiftError->createEntriesInEntryBlock(SDB->getCurDebugLoc());
+
+ if (FastIS && Inserted)
+ FastIS->setLastLocalValue(&*std::prev(FuncInfo->InsertPt));
+
+ processDbgDeclares(FuncInfo);
+
+ // Iterate over all basic blocks in the function.
+ StackProtector &SP = getAnalysis<StackProtector>();
+ for (const BasicBlock *LLVMBB : RPOT) {
+ if (OptLevel != CodeGenOpt::None) {
+ bool AllPredsVisited = true;
+ for (const_pred_iterator PI = pred_begin(LLVMBB), PE = pred_end(LLVMBB);
+ PI != PE; ++PI) {
+ if (!FuncInfo->VisitedBBs.count(*PI)) {
+ AllPredsVisited = false;
+ break;
+ }
+ }
+
+ if (AllPredsVisited) {
+ for (const PHINode &PN : LLVMBB->phis())
+ FuncInfo->ComputePHILiveOutRegInfo(&PN);
+ } else {
+ for (const PHINode &PN : LLVMBB->phis())
+ FuncInfo->InvalidatePHILiveOutRegInfo(&PN);
+ }
+
+ FuncInfo->VisitedBBs.insert(LLVMBB);
+ }
+
+ BasicBlock::const_iterator const Begin =
+ LLVMBB->getFirstNonPHI()->getIterator();
+ BasicBlock::const_iterator const End = LLVMBB->end();
+ BasicBlock::const_iterator BI = End;
+
+ FuncInfo->MBB = FuncInfo->MBBMap[LLVMBB];
+ if (!FuncInfo->MBB)
+ continue; // Some blocks like catchpads have no code or MBB.
+
+ // Insert new instructions after any phi or argument setup code.
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+
+ // Setup an EH landing-pad block.
+ FuncInfo->ExceptionPointerVirtReg = 0;
+ FuncInfo->ExceptionSelectorVirtReg = 0;
+ if (LLVMBB->isEHPad())
+ if (!PrepareEHLandingPad())
+ continue;
+
+ // Before doing SelectionDAG ISel, see if FastISel has been requested.
+ if (FastIS) {
+ if (LLVMBB != &Fn.getEntryBlock())
+ FastIS->startNewBlock();
+
+ unsigned NumFastIselRemaining = std::distance(Begin, End);
+
+ // Pre-assign swifterror vregs.
+ SwiftError->preassignVRegs(FuncInfo->MBB, Begin, End);
+
+ // Do FastISel on as many instructions as possible.
+ for (; BI != Begin; --BI) {
+ const Instruction *Inst = &*std::prev(BI);
+
+ // If we no longer require this instruction, skip it.
+ if (isFoldedOrDeadInstruction(Inst, FuncInfo) ||
+ ElidedArgCopyInstrs.count(Inst)) {
+ --NumFastIselRemaining;
+ continue;
+ }
+
+ // Bottom-up: reset the insert pos at the top, after any local-value
+ // instructions.
+ FastIS->recomputeInsertPt();
+
+ // Try to select the instruction with FastISel.
+ if (FastIS->selectInstruction(Inst)) {
+ --NumFastIselRemaining;
+ ++NumFastIselSuccess;
+ // If fast isel succeeded, skip over all the folded instructions, and
+ // then see if there is a load right before the selected instructions.
+ // Try to fold the load if so.
+ const Instruction *BeforeInst = Inst;
+ while (BeforeInst != &*Begin) {
+ BeforeInst = &*std::prev(BasicBlock::const_iterator(BeforeInst));
+ if (!isFoldedOrDeadInstruction(BeforeInst, FuncInfo))
+ break;
+ }
+ if (BeforeInst != Inst && isa<LoadInst>(BeforeInst) &&
+ BeforeInst->hasOneUse() &&
+ FastIS->tryToFoldLoad(cast<LoadInst>(BeforeInst), Inst)) {
+ // If we succeeded, don't re-select the load.
+ BI = std::next(BasicBlock::const_iterator(BeforeInst));
+ --NumFastIselRemaining;
+ ++NumFastIselSuccess;
+ }
+ continue;
+ }
+
+ FastISelFailed = true;
+
+ // Then handle certain instructions as single-LLVM-Instruction blocks.
+ // We cannot separate out GCrelocates to their own blocks since we need
+ // to keep track of gc-relocates for a particular gc-statepoint. This is
+ // done by SelectionDAGBuilder::LowerAsSTATEPOINT, called before
+ // visitGCRelocate.
+ if (isa<CallInst>(Inst) && !isStatepoint(Inst) && !isGCRelocate(Inst) &&
+ !isGCResult(Inst)) {
+ OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
+ Inst->getDebugLoc(), LLVMBB);
+
+ R << "FastISel missed call";
+
+ if (R.isEnabled() || EnableFastISelAbort) {
+ std::string InstStrStorage;
+ raw_string_ostream InstStr(InstStrStorage);
+ InstStr << *Inst;
+
+ R << ": " << InstStr.str();
+ }
+
+ reportFastISelFailure(*MF, *ORE, R, EnableFastISelAbort > 2);
+
+ if (!Inst->getType()->isVoidTy() && !Inst->getType()->isTokenTy() &&
+ !Inst->use_empty()) {
+ unsigned &R = FuncInfo->ValueMap[Inst];
+ if (!R)
+ R = FuncInfo->CreateRegs(Inst);
+ }
+
+ bool HadTailCall = false;
+ MachineBasicBlock::iterator SavedInsertPt = FuncInfo->InsertPt;
+ SelectBasicBlock(Inst->getIterator(), BI, HadTailCall);
+
+ // If the call was emitted as a tail call, we're done with the block.
+ // We also need to delete any previously emitted instructions.
+ if (HadTailCall) {
+ FastIS->removeDeadCode(SavedInsertPt, FuncInfo->MBB->end());
+ --BI;
+ break;
+ }
+
+ // Recompute NumFastIselRemaining as Selection DAG instruction
+ // selection may have handled the call, input args, etc.
+ unsigned RemainingNow = std::distance(Begin, BI);
+ NumFastIselFailures += NumFastIselRemaining - RemainingNow;
+ NumFastIselRemaining = RemainingNow;
+ continue;
+ }
+
+ OptimizationRemarkMissed R("sdagisel", "FastISelFailure",
+ Inst->getDebugLoc(), LLVMBB);
+
+ bool ShouldAbort = EnableFastISelAbort;
+ if (Inst->isTerminator()) {
+ // Use a different message for terminator misses.
+ R << "FastISel missed terminator";
+ // Don't abort for terminator unless the level is really high
+ ShouldAbort = (EnableFastISelAbort > 2);
+ } else {
+ R << "FastISel missed";
+ }
+
+ if (R.isEnabled() || EnableFastISelAbort) {
+ std::string InstStrStorage;
+ raw_string_ostream InstStr(InstStrStorage);
+ InstStr << *Inst;
+ R << ": " << InstStr.str();
+ }
+
+ reportFastISelFailure(*MF, *ORE, R, ShouldAbort);
+
+ NumFastIselFailures += NumFastIselRemaining;
+ break;
+ }
+
+ FastIS->recomputeInsertPt();
+ }
+
+ if (SP.shouldEmitSDCheck(*LLVMBB)) {
+ bool FunctionBasedInstrumentation =
+ TLI->getSSPStackGuardCheck(*Fn.getParent());
+ SDB->SPDescriptor.initialize(LLVMBB, FuncInfo->MBBMap[LLVMBB],
+ FunctionBasedInstrumentation);
+ }
+
+ if (Begin != BI)
+ ++NumDAGBlocks;
+ else
+ ++NumFastIselBlocks;
+
+ if (Begin != BI) {
+ // Run SelectionDAG instruction selection on the remainder of the block
+ // not handled by FastISel. If FastISel is not run, this is the entire
+ // block.
+ bool HadTailCall;
+ SelectBasicBlock(Begin, BI, HadTailCall);
+
+ // But if FastISel was run, we already selected some of the block.
+ // If we emitted a tail-call, we need to delete any previously emitted
+ // instruction that follows it.
+ if (HadTailCall && FuncInfo->InsertPt != FuncInfo->MBB->end())
+ FastIS->removeDeadCode(FuncInfo->InsertPt, FuncInfo->MBB->end());
+ }
+
+ if (FastIS)
+ FastIS->finishBasicBlock();
+ FinishBasicBlock();
+ FuncInfo->PHINodesToUpdate.clear();
+ ElidedArgCopyInstrs.clear();
+ }
+
+ SP.copyToMachineFrameInfo(MF->getFrameInfo());
+
+ SwiftError->propagateVRegs();
+
+ delete FastIS;
+ SDB->clearDanglingDebugInfo();
+ SDB->SPDescriptor.resetPerFunctionState();
+}
+
+/// Given that the input MI is before a partial terminator sequence TSeq, return
+/// true if M + TSeq also a partial terminator sequence.
+///
+/// A Terminator sequence is a sequence of MachineInstrs which at this point in
+/// lowering copy vregs into physical registers, which are then passed into
+/// terminator instructors so we can satisfy ABI constraints. A partial
+/// terminator sequence is an improper subset of a terminator sequence (i.e. it
+/// may be the whole terminator sequence).
+static bool MIIsInTerminatorSequence(const MachineInstr &MI) {
+ // If we do not have a copy or an implicit def, we return true if and only if
+ // MI is a debug value.
+ if (!MI.isCopy() && !MI.isImplicitDef())
+ // Sometimes DBG_VALUE MI sneak in between the copies from the vregs to the
+ // physical registers if there is debug info associated with the terminator
+ // of our mbb. We want to include said debug info in our terminator
+ // sequence, so we return true in that case.
+ return MI.isDebugValue();
+
+ // We have left the terminator sequence if we are not doing one of the
+ // following:
+ //
+ // 1. Copying a vreg into a physical register.
+ // 2. Copying a vreg into a vreg.
+ // 3. Defining a register via an implicit def.
+
+ // OPI should always be a register definition...
+ MachineInstr::const_mop_iterator OPI = MI.operands_begin();
+ if (!OPI->isReg() || !OPI->isDef())
+ return false;
+
+ // Defining any register via an implicit def is always ok.
+ if (MI.isImplicitDef())
+ return true;
+
+ // Grab the copy source...
+ MachineInstr::const_mop_iterator OPI2 = OPI;
+ ++OPI2;
+ assert(OPI2 != MI.operands_end()
+ && "Should have a copy implying we should have 2 arguments.");
+
+ // Make sure that the copy dest is not a vreg when the copy source is a
+ // physical register.
+ if (!OPI2->isReg() ||
+ (!TargetRegisterInfo::isPhysicalRegister(OPI->getReg()) &&
+ TargetRegisterInfo::isPhysicalRegister(OPI2->getReg())))
+ return false;
+
+ return true;
+}
+
+/// Find the split point at which to splice the end of BB into its success stack
+/// protector check machine basic block.
+///
+/// On many platforms, due to ABI constraints, terminators, even before register
+/// allocation, use physical registers. This creates an issue for us since
+/// physical registers at this point can not travel across basic
+/// blocks. Luckily, selectiondag always moves physical registers into vregs
+/// when they enter functions and moves them through a sequence of copies back
+/// into the physical registers right before the terminator creating a
+/// ``Terminator Sequence''. This function is searching for the beginning of the
+/// terminator sequence so that we can ensure that we splice off not just the
+/// terminator, but additionally the copies that move the vregs into the
+/// physical registers.
+static MachineBasicBlock::iterator
+FindSplitPointForStackProtector(MachineBasicBlock *BB) {
+ MachineBasicBlock::iterator SplitPoint = BB->getFirstTerminator();
+ //
+ if (SplitPoint == BB->begin())
+ return SplitPoint;
+
+ MachineBasicBlock::iterator Start = BB->begin();
+ MachineBasicBlock::iterator Previous = SplitPoint;
+ --Previous;
+
+ while (MIIsInTerminatorSequence(*Previous)) {
+ SplitPoint = Previous;
+ if (Previous == Start)
+ break;
+ --Previous;
+ }
+
+ return SplitPoint;
+}
+
+void
+SelectionDAGISel::FinishBasicBlock() {
+ LLVM_DEBUG(dbgs() << "Total amount of phi nodes to update: "
+ << FuncInfo->PHINodesToUpdate.size() << "\n";
+ for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e;
+ ++i) dbgs()
+ << "Node " << i << " : (" << FuncInfo->PHINodesToUpdate[i].first
+ << ", " << FuncInfo->PHINodesToUpdate[i].second << ")\n");
+
+ // Next, now that we know what the last MBB the LLVM BB expanded is, update
+ // PHI nodes in successors.
+ for (unsigned i = 0, e = FuncInfo->PHINodesToUpdate.size(); i != e; ++i) {
+ MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[i].first);
+ assert(PHI->isPHI() &&
+ "This is not a machine PHI node that we are updating!");
+ if (!FuncInfo->MBB->isSuccessor(PHI->getParent()))
+ continue;
+ PHI.addReg(FuncInfo->PHINodesToUpdate[i].second).addMBB(FuncInfo->MBB);
+ }
+
+ // Handle stack protector.
+ if (SDB->SPDescriptor.shouldEmitFunctionBasedCheckStackProtector()) {
+ // The target provides a guard check function. There is no need to
+ // generate error handling code or to split current basic block.
+ MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
+
+ // Add load and check to the basicblock.
+ FuncInfo->MBB = ParentMBB;
+ FuncInfo->InsertPt =
+ FindSplitPointForStackProtector(ParentMBB);
+ SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ // Clear the Per-BB State.
+ SDB->SPDescriptor.resetPerBBState();
+ } else if (SDB->SPDescriptor.shouldEmitStackProtector()) {
+ MachineBasicBlock *ParentMBB = SDB->SPDescriptor.getParentMBB();
+ MachineBasicBlock *SuccessMBB = SDB->SPDescriptor.getSuccessMBB();
+
+ // Find the split point to split the parent mbb. At the same time copy all
+ // physical registers used in the tail of parent mbb into virtual registers
+ // before the split point and back into physical registers after the split
+ // point. This prevents us needing to deal with Live-ins and many other
+ // register allocation issues caused by us splitting the parent mbb. The
+ // register allocator will clean up said virtual copies later on.
+ MachineBasicBlock::iterator SplitPoint =
+ FindSplitPointForStackProtector(ParentMBB);
+
+ // Splice the terminator of ParentMBB into SuccessMBB.
+ SuccessMBB->splice(SuccessMBB->end(), ParentMBB,
+ SplitPoint,
+ ParentMBB->end());
+
+ // Add compare/jump on neq/jump to the parent BB.
+ FuncInfo->MBB = ParentMBB;
+ FuncInfo->InsertPt = ParentMBB->end();
+ SDB->visitSPDescriptorParent(SDB->SPDescriptor, ParentMBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ // CodeGen Failure MBB if we have not codegened it yet.
+ MachineBasicBlock *FailureMBB = SDB->SPDescriptor.getFailureMBB();
+ if (FailureMBB->empty()) {
+ FuncInfo->MBB = FailureMBB;
+ FuncInfo->InsertPt = FailureMBB->end();
+ SDB->visitSPDescriptorFailure(SDB->SPDescriptor);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+ }
+
+ // Clear the Per-BB State.
+ SDB->SPDescriptor.resetPerBBState();
+ }
+
+ // Lower each BitTestBlock.
+ for (auto &BTB : SDB->SL->BitTestCases) {
+ // Lower header first, if it wasn't already lowered
+ if (!BTB.Emitted) {
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = BTB.Parent;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // Emit the code
+ SDB->visitBitTestHeader(BTB, FuncInfo->MBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+ }
+
+ BranchProbability UnhandledProb = BTB.Prob;
+ for (unsigned j = 0, ej = BTB.Cases.size(); j != ej; ++j) {
+ UnhandledProb -= BTB.Cases[j].ExtraProb;
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = BTB.Cases[j].ThisBB;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // Emit the code
+
+ // If all cases cover a contiguous range, it is not necessary to jump to
+ // the default block after the last bit test fails. This is because the
+ // range check during bit test header creation has guaranteed that every
+ // case here doesn't go outside the range. In this case, there is no need
+ // to perform the last bit test, as it will always be true. Instead, make
+ // the second-to-last bit-test fall through to the target of the last bit
+ // test, and delete the last bit test.
+
+ MachineBasicBlock *NextMBB;
+ if (BTB.ContiguousRange && j + 2 == ej) {
+ // Second-to-last bit-test with contiguous range: fall through to the
+ // target of the final bit test.
+ NextMBB = BTB.Cases[j + 1].TargetBB;
+ } else if (j + 1 == ej) {
+ // For the last bit test, fall through to Default.
+ NextMBB = BTB.Default;
+ } else {
+ // Otherwise, fall through to the next bit test.
+ NextMBB = BTB.Cases[j + 1].ThisBB;
+ }
+
+ SDB->visitBitTestCase(BTB, NextMBB, UnhandledProb, BTB.Reg, BTB.Cases[j],
+ FuncInfo->MBB);
+
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ if (BTB.ContiguousRange && j + 2 == ej) {
+ // Since we're not going to use the final bit test, remove it.
+ BTB.Cases.pop_back();
+ break;
+ }
+ }
+
+ // Update PHI Nodes
+ for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
+ pi != pe; ++pi) {
+ MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
+ MachineBasicBlock *PHIBB = PHI->getParent();
+ assert(PHI->isPHI() &&
+ "This is not a machine PHI node that we are updating!");
+ // This is "default" BB. We have two jumps to it. From "header" BB and
+ // from last "case" BB, unless the latter was skipped.
+ if (PHIBB == BTB.Default) {
+ PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(BTB.Parent);
+ if (!BTB.ContiguousRange) {
+ PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
+ .addMBB(BTB.Cases.back().ThisBB);
+ }
+ }
+ // One of "cases" BB.
+ for (unsigned j = 0, ej = BTB.Cases.size();
+ j != ej; ++j) {
+ MachineBasicBlock* cBB = BTB.Cases[j].ThisBB;
+ if (cBB->isSuccessor(PHIBB))
+ PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(cBB);
+ }
+ }
+ }
+ SDB->SL->BitTestCases.clear();
+
+ // If the JumpTable record is filled in, then we need to emit a jump table.
+ // Updating the PHI nodes is tricky in this case, since we need to determine
+ // whether the PHI is a successor of the range check MBB or the jump table MBB
+ for (unsigned i = 0, e = SDB->SL->JTCases.size(); i != e; ++i) {
+ // Lower header first, if it wasn't already lowered
+ if (!SDB->SL->JTCases[i].first.Emitted) {
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = SDB->SL->JTCases[i].first.HeaderBB;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // Emit the code
+ SDB->visitJumpTableHeader(SDB->SL->JTCases[i].second,
+ SDB->SL->JTCases[i].first, FuncInfo->MBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+ }
+
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = SDB->SL->JTCases[i].second.MBB;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // Emit the code
+ SDB->visitJumpTable(SDB->SL->JTCases[i].second);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ // Update PHI Nodes
+ for (unsigned pi = 0, pe = FuncInfo->PHINodesToUpdate.size();
+ pi != pe; ++pi) {
+ MachineInstrBuilder PHI(*MF, FuncInfo->PHINodesToUpdate[pi].first);
+ MachineBasicBlock *PHIBB = PHI->getParent();
+ assert(PHI->isPHI() &&
+ "This is not a machine PHI node that we are updating!");
+ // "default" BB. We can go there only from header BB.
+ if (PHIBB == SDB->SL->JTCases[i].second.Default)
+ PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second)
+ .addMBB(SDB->SL->JTCases[i].first.HeaderBB);
+ // JT BB. Just iterate over successors here
+ if (FuncInfo->MBB->isSuccessor(PHIBB))
+ PHI.addReg(FuncInfo->PHINodesToUpdate[pi].second).addMBB(FuncInfo->MBB);
+ }
+ }
+ SDB->SL->JTCases.clear();
+
+ // If we generated any switch lowering information, build and codegen any
+ // additional DAGs necessary.
+ for (unsigned i = 0, e = SDB->SL->SwitchCases.size(); i != e; ++i) {
+ // Set the current basic block to the mbb we wish to insert the code into
+ FuncInfo->MBB = SDB->SL->SwitchCases[i].ThisBB;
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+
+ // Determine the unique successors.
+ SmallVector<MachineBasicBlock *, 2> Succs;
+ Succs.push_back(SDB->SL->SwitchCases[i].TrueBB);
+ if (SDB->SL->SwitchCases[i].TrueBB != SDB->SL->SwitchCases[i].FalseBB)
+ Succs.push_back(SDB->SL->SwitchCases[i].FalseBB);
+
+ // Emit the code. Note that this could result in FuncInfo->MBB being split.
+ SDB->visitSwitchCase(SDB->SL->SwitchCases[i], FuncInfo->MBB);
+ CurDAG->setRoot(SDB->getRoot());
+ SDB->clear();
+ CodeGenAndEmitDAG();
+
+ // Remember the last block, now that any splitting is done, for use in
+ // populating PHI nodes in successors.
+ MachineBasicBlock *ThisBB = FuncInfo->MBB;
+
+ // Handle any PHI nodes in successors of this chunk, as if we were coming
+ // from the original BB before switch expansion. Note that PHI nodes can
+ // occur multiple times in PHINodesToUpdate. We have to be very careful to
+ // handle them the right number of times.
+ for (unsigned i = 0, e = Succs.size(); i != e; ++i) {
+ FuncInfo->MBB = Succs[i];
+ FuncInfo->InsertPt = FuncInfo->MBB->end();
+ // FuncInfo->MBB may have been removed from the CFG if a branch was
+ // constant folded.
+ if (ThisBB->isSuccessor(FuncInfo->MBB)) {
+ for (MachineBasicBlock::iterator
+ MBBI = FuncInfo->MBB->begin(), MBBE = FuncInfo->MBB->end();
+ MBBI != MBBE && MBBI->isPHI(); ++MBBI) {
+ MachineInstrBuilder PHI(*MF, MBBI);
+ // This value for this PHI node is recorded in PHINodesToUpdate.
+ for (unsigned pn = 0; ; ++pn) {
+ assert(pn != FuncInfo->PHINodesToUpdate.size() &&
+ "Didn't find PHI entry!");
+ if (FuncInfo->PHINodesToUpdate[pn].first == PHI) {
+ PHI.addReg(FuncInfo->PHINodesToUpdate[pn].second).addMBB(ThisBB);
+ break;
+ }
+ }
+ }
+ }
+ }
+ }
+ SDB->SL->SwitchCases.clear();
+}
+
+/// Create the scheduler. If a specific scheduler was specified
+/// via the SchedulerRegistry, use it, otherwise select the
+/// one preferred by the target.
+///
+ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() {
+ return ISHeuristic(this, OptLevel);
+}
+
+//===----------------------------------------------------------------------===//
+// Helper functions used by the generated instruction selector.
+//===----------------------------------------------------------------------===//
+// Calls to these methods are generated by tblgen.
+
+/// CheckAndMask - The isel is trying to match something like (and X, 255). If
+/// the dag combiner simplified the 255, we still want to match. RHS is the
+/// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value
+/// specified in the .td file (e.g. 255).
+bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
+ int64_t DesiredMaskS) const {
+ const APInt &ActualMask = RHS->getAPIntValue();
+ const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
+
+ // If the actual mask exactly matches, success!
+ if (ActualMask == DesiredMask)
+ return true;
+
+ // If the actual AND mask is allowing unallowed bits, this doesn't match.
+ if (!ActualMask.isSubsetOf(DesiredMask))
+ return false;
+
+ // Otherwise, the DAG Combiner may have proven that the value coming in is
+ // either already zero or is not demanded. Check for known zero input bits.
+ APInt NeededMask = DesiredMask & ~ActualMask;
+ if (CurDAG->MaskedValueIsZero(LHS, NeededMask))
+ return true;
+
+ // TODO: check to see if missing bits are just not demanded.
+
+ // Otherwise, this pattern doesn't match.
+ return false;
+}
+
+/// CheckOrMask - The isel is trying to match something like (or X, 255). If
+/// the dag combiner simplified the 255, we still want to match. RHS is the
+/// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value
+/// specified in the .td file (e.g. 255).
+bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
+ int64_t DesiredMaskS) const {
+ const APInt &ActualMask = RHS->getAPIntValue();
+ const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS);
+
+ // If the actual mask exactly matches, success!
+ if (ActualMask == DesiredMask)
+ return true;
+
+ // If the actual AND mask is allowing unallowed bits, this doesn't match.
+ if (!ActualMask.isSubsetOf(DesiredMask))
+ return false;
+
+ // Otherwise, the DAG Combiner may have proven that the value coming in is
+ // either already zero or is not demanded. Check for known zero input bits.
+ APInt NeededMask = DesiredMask & ~ActualMask;
+ KnownBits Known = CurDAG->computeKnownBits(LHS);
+
+ // If all the missing bits in the or are already known to be set, match!
+ if (NeededMask.isSubsetOf(Known.One))
+ return true;
+
+ // TODO: check to see if missing bits are just not demanded.
+
+ // Otherwise, this pattern doesn't match.
+ return false;
+}
+
+/// SelectInlineAsmMemoryOperands - Calls to this are automatically generated
+/// by tblgen. Others should not call it.
+void SelectionDAGISel::SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops,
+ const SDLoc &DL) {
+ std::vector<SDValue> InOps;
+ std::swap(InOps, Ops);
+
+ Ops.push_back(InOps[InlineAsm::Op_InputChain]); // 0
+ Ops.push_back(InOps[InlineAsm::Op_AsmString]); // 1
+ Ops.push_back(InOps[InlineAsm::Op_MDNode]); // 2, !srcloc
+ Ops.push_back(InOps[InlineAsm::Op_ExtraInfo]); // 3 (SideEffect, AlignStack)
+
+ unsigned i = InlineAsm::Op_FirstOperand, e = InOps.size();
+ if (InOps[e-1].getValueType() == MVT::Glue)
+ --e; // Don't process a glue operand if it is here.
+
+ while (i != e) {
+ unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue();
+ if (!InlineAsm::isMemKind(Flags)) {
+ // Just skip over this operand, copying the operands verbatim.
+ Ops.insert(Ops.end(), InOps.begin()+i,
+ InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1);
+ i += InlineAsm::getNumOperandRegisters(Flags) + 1;
+ } else {
+ assert(InlineAsm::getNumOperandRegisters(Flags) == 1 &&
+ "Memory operand with multiple values?");
+
+ unsigned TiedToOperand;
+ if (InlineAsm::isUseOperandTiedToDef(Flags, TiedToOperand)) {
+ // We need the constraint ID from the operand this is tied to.
+ unsigned CurOp = InlineAsm::Op_FirstOperand;
+ Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
+ for (; TiedToOperand; --TiedToOperand) {
+ CurOp += InlineAsm::getNumOperandRegisters(Flags)+1;
+ Flags = cast<ConstantSDNode>(InOps[CurOp])->getZExtValue();
+ }
+ }
+
+ // Otherwise, this is a memory operand. Ask the target to select it.
+ std::vector<SDValue> SelOps;
+ unsigned ConstraintID = InlineAsm::getMemoryConstraintID(Flags);
+ if (SelectInlineAsmMemoryOperand(InOps[i+1], ConstraintID, SelOps))
+ report_fatal_error("Could not match memory address. Inline asm"
+ " failure!");
+
+ // Add this to the output node.
+ unsigned NewFlags =
+ InlineAsm::getFlagWord(InlineAsm::Kind_Mem, SelOps.size());
+ NewFlags = InlineAsm::getFlagWordForMem(NewFlags, ConstraintID);
+ Ops.push_back(CurDAG->getTargetConstant(NewFlags, DL, MVT::i32));
+ Ops.insert(Ops.end(), SelOps.begin(), SelOps.end());
+ i += 2;
+ }
+ }
+
+ // Add the glue input back if present.
+ if (e != InOps.size())
+ Ops.push_back(InOps.back());
+}
+
+/// findGlueUse - Return use of MVT::Glue value produced by the specified
+/// SDNode.
+///
+static SDNode *findGlueUse(SDNode *N) {
+ unsigned FlagResNo = N->getNumValues()-1;
+ for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
+ SDUse &Use = I.getUse();
+ if (Use.getResNo() == FlagResNo)
+ return Use.getUser();
+ }
+ return nullptr;
+}
+
+/// findNonImmUse - Return true if "Def" is a predecessor of "Root" via a path
+/// beyond "ImmedUse". We may ignore chains as they are checked separately.
+static bool findNonImmUse(SDNode *Root, SDNode *Def, SDNode *ImmedUse,
+ bool IgnoreChains) {
+ SmallPtrSet<const SDNode *, 16> Visited;
+ SmallVector<const SDNode *, 16> WorkList;
+ // Only check if we have non-immediate uses of Def.
+ if (ImmedUse->isOnlyUserOf(Def))
+ return false;
+
+ // We don't care about paths to Def that go through ImmedUse so mark it
+ // visited and mark non-def operands as used.
+ Visited.insert(ImmedUse);
+ for (const SDValue &Op : ImmedUse->op_values()) {
+ SDNode *N = Op.getNode();
+ // Ignore chain deps (they are validated by
+ // HandleMergeInputChains) and immediate uses
+ if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
+ continue;
+ if (!Visited.insert(N).second)
+ continue;
+ WorkList.push_back(N);
+ }
+
+ // Initialize worklist to operands of Root.
+ if (Root != ImmedUse) {
+ for (const SDValue &Op : Root->op_values()) {
+ SDNode *N = Op.getNode();
+ // Ignore chains (they are validated by HandleMergeInputChains)
+ if ((Op.getValueType() == MVT::Other && IgnoreChains) || N == Def)
+ continue;
+ if (!Visited.insert(N).second)
+ continue;
+ WorkList.push_back(N);
+ }
+ }
+
+ return SDNode::hasPredecessorHelper(Def, Visited, WorkList, 0, true);
+}
+
+/// IsProfitableToFold - Returns true if it's profitable to fold the specific
+/// operand node N of U during instruction selection that starts at Root.
+bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U,
+ SDNode *Root) const {
+ if (OptLevel == CodeGenOpt::None) return false;
+ return N.hasOneUse();
+}
+
+/// IsLegalToFold - Returns true if the specific operand node N of
+/// U can be folded during instruction selection that starts at Root.
+bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
+ CodeGenOpt::Level OptLevel,
+ bool IgnoreChains) {
+ if (OptLevel == CodeGenOpt::None) return false;
+
+ // If Root use can somehow reach N through a path that that doesn't contain
+ // U then folding N would create a cycle. e.g. In the following
+ // diagram, Root can reach N through X. If N is folded into Root, then
+ // X is both a predecessor and a successor of U.
+ //
+ // [N*] //
+ // ^ ^ //
+ // / \ //
+ // [U*] [X]? //
+ // ^ ^ //
+ // \ / //
+ // \ / //
+ // [Root*] //
+ //
+ // * indicates nodes to be folded together.
+ //
+ // If Root produces glue, then it gets (even more) interesting. Since it
+ // will be "glued" together with its glue use in the scheduler, we need to
+ // check if it might reach N.
+ //
+ // [N*] //
+ // ^ ^ //
+ // / \ //
+ // [U*] [X]? //
+ // ^ ^ //
+ // \ \ //
+ // \ | //
+ // [Root*] | //
+ // ^ | //
+ // f | //
+ // | / //
+ // [Y] / //
+ // ^ / //
+ // f / //
+ // | / //
+ // [GU] //
+ //
+ // If GU (glue use) indirectly reaches N (the load), and Root folds N
+ // (call it Fold), then X is a predecessor of GU and a successor of
+ // Fold. But since Fold and GU are glued together, this will create
+ // a cycle in the scheduling graph.
+
+ // If the node has glue, walk down the graph to the "lowest" node in the
+ // glueged set.
+ EVT VT = Root->getValueType(Root->getNumValues()-1);
+ while (VT == MVT::Glue) {
+ SDNode *GU = findGlueUse(Root);
+ if (!GU)
+ break;
+ Root = GU;
+ VT = Root->getValueType(Root->getNumValues()-1);
+
+ // If our query node has a glue result with a use, we've walked up it. If
+ // the user (which has already been selected) has a chain or indirectly uses
+ // the chain, HandleMergeInputChains will not consider it. Because of
+ // this, we cannot ignore chains in this predicate.
+ IgnoreChains = false;
+ }
+
+ return !findNonImmUse(Root, N.getNode(), U, IgnoreChains);
+}
+
+void SelectionDAGISel::Select_INLINEASM(SDNode *N, bool Branch) {
+ SDLoc DL(N);
+
+ std::vector<SDValue> Ops(N->op_begin(), N->op_end());
+ SelectInlineAsmMemoryOperands(Ops, DL);
+
+ const EVT VTs[] = {MVT::Other, MVT::Glue};
+ SDValue New = CurDAG->getNode(Branch ? ISD::INLINEASM_BR : ISD::INLINEASM, DL, VTs, Ops);
+ New->setNodeId(-1);
+ ReplaceUses(N, New.getNode());
+ CurDAG->RemoveDeadNode(N);
+}
+
+void SelectionDAGISel::Select_READ_REGISTER(SDNode *Op) {
+ SDLoc dl(Op);
+ MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
+ const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
+ unsigned Reg =
+ TLI->getRegisterByName(RegStr->getString().data(), Op->getValueType(0),
+ *CurDAG);
+ SDValue New = CurDAG->getCopyFromReg(
+ Op->getOperand(0), dl, Reg, Op->getValueType(0));
+ New->setNodeId(-1);
+ ReplaceUses(Op, New.getNode());
+ CurDAG->RemoveDeadNode(Op);
+}
+
+void SelectionDAGISel::Select_WRITE_REGISTER(SDNode *Op) {
+ SDLoc dl(Op);
+ MDNodeSDNode *MD = dyn_cast<MDNodeSDNode>(Op->getOperand(1));
+ const MDString *RegStr = dyn_cast<MDString>(MD->getMD()->getOperand(0));
+ unsigned Reg = TLI->getRegisterByName(RegStr->getString().data(),
+ Op->getOperand(2).getValueType(),
+ *CurDAG);
+ SDValue New = CurDAG->getCopyToReg(
+ Op->getOperand(0), dl, Reg, Op->getOperand(2));
+ New->setNodeId(-1);
+ ReplaceUses(Op, New.getNode());
+ CurDAG->RemoveDeadNode(Op);
+}
+
+void SelectionDAGISel::Select_UNDEF(SDNode *N) {
+ CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF, N->getValueType(0));
+}
+
+/// GetVBR - decode a vbr encoding whose top bit is set.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline uint64_t
+GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) {
+ assert(Val >= 128 && "Not a VBR");
+ Val &= 127; // Remove first vbr bit.
+
+ unsigned Shift = 7;
+ uint64_t NextBits;
+ do {
+ NextBits = MatcherTable[Idx++];
+ Val |= (NextBits&127) << Shift;
+ Shift += 7;
+ } while (NextBits & 128);
+
+ return Val;
+}
+
+/// When a match is complete, this method updates uses of interior chain results
+/// to use the new results.
+void SelectionDAGISel::UpdateChains(
+ SDNode *NodeToMatch, SDValue InputChain,
+ SmallVectorImpl<SDNode *> &ChainNodesMatched, bool isMorphNodeTo) {
+ SmallVector<SDNode*, 4> NowDeadNodes;
+
+ // Now that all the normal results are replaced, we replace the chain and
+ // glue results if present.
+ if (!ChainNodesMatched.empty()) {
+ assert(InputChain.getNode() &&
+ "Matched input chains but didn't produce a chain");
+ // Loop over all of the nodes we matched that produced a chain result.
+ // Replace all the chain results with the final chain we ended up with.
+ for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) {
+ SDNode *ChainNode = ChainNodesMatched[i];
+ // If ChainNode is null, it's because we replaced it on a previous
+ // iteration and we cleared it out of the map. Just skip it.
+ if (!ChainNode)
+ continue;
+
+ assert(ChainNode->getOpcode() != ISD::DELETED_NODE &&
+ "Deleted node left in chain");
+
+ // Don't replace the results of the root node if we're doing a
+ // MorphNodeTo.
+ if (ChainNode == NodeToMatch && isMorphNodeTo)
+ continue;
+
+ SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1);
+ if (ChainVal.getValueType() == MVT::Glue)
+ ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2);
+ assert(ChainVal.getValueType() == MVT::Other && "Not a chain?");
+ SelectionDAG::DAGNodeDeletedListener NDL(
+ *CurDAG, [&](SDNode *N, SDNode *E) {
+ std::replace(ChainNodesMatched.begin(), ChainNodesMatched.end(), N,
+ static_cast<SDNode *>(nullptr));
+ });
+ if (ChainNode->getOpcode() != ISD::TokenFactor)
+ ReplaceUses(ChainVal, InputChain);
+
+ // If the node became dead and we haven't already seen it, delete it.
+ if (ChainNode != NodeToMatch && ChainNode->use_empty() &&
+ !std::count(NowDeadNodes.begin(), NowDeadNodes.end(), ChainNode))
+ NowDeadNodes.push_back(ChainNode);
+ }
+ }
+
+ if (!NowDeadNodes.empty())
+ CurDAG->RemoveDeadNodes(NowDeadNodes);
+
+ LLVM_DEBUG(dbgs() << "ISEL: Match complete!\n");
+}
+
+/// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains
+/// operation for when the pattern matched at least one node with a chains. The
+/// input vector contains a list of all of the chained nodes that we match. We
+/// must determine if this is a valid thing to cover (i.e. matching it won't
+/// induce cycles in the DAG) and if so, creating a TokenFactor node. that will
+/// be used as the input node chain for the generated nodes.
+static SDValue
+HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched,
+ SelectionDAG *CurDAG) {
+
+ SmallPtrSet<const SDNode *, 16> Visited;
+ SmallVector<const SDNode *, 8> Worklist;
+ SmallVector<SDValue, 3> InputChains;
+ unsigned int Max = 8192;
+
+ // Quick exit on trivial merge.
+ if (ChainNodesMatched.size() == 1)
+ return ChainNodesMatched[0]->getOperand(0);
+
+ // Add chains that aren't already added (internal). Peek through
+ // token factors.
+ std::function<void(const SDValue)> AddChains = [&](const SDValue V) {
+ if (V.getValueType() != MVT::Other)
+ return;
+ if (V->getOpcode() == ISD::EntryToken)
+ return;
+ if (!Visited.insert(V.getNode()).second)
+ return;
+ if (V->getOpcode() == ISD::TokenFactor) {
+ for (const SDValue &Op : V->op_values())
+ AddChains(Op);
+ } else
+ InputChains.push_back(V);
+ };
+
+ for (auto *N : ChainNodesMatched) {
+ Worklist.push_back(N);
+ Visited.insert(N);
+ }
+
+ while (!Worklist.empty())
+ AddChains(Worklist.pop_back_val()->getOperand(0));
+
+ // Skip the search if there are no chain dependencies.
+ if (InputChains.size() == 0)
+ return CurDAG->getEntryNode();
+
+ // If one of these chains is a successor of input, we must have a
+ // node that is both the predecessor and successor of the
+ // to-be-merged nodes. Fail.
+ Visited.clear();
+ for (SDValue V : InputChains)
+ Worklist.push_back(V.getNode());
+
+ for (auto *N : ChainNodesMatched)
+ if (SDNode::hasPredecessorHelper(N, Visited, Worklist, Max, true))
+ return SDValue();
+
+ // Return merged chain.
+ if (InputChains.size() == 1)
+ return InputChains[0];
+ return CurDAG->getNode(ISD::TokenFactor, SDLoc(ChainNodesMatched[0]),
+ MVT::Other, InputChains);
+}
+
+/// MorphNode - Handle morphing a node in place for the selector.
+SDNode *SelectionDAGISel::
+MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList,
+ ArrayRef<SDValue> Ops, unsigned EmitNodeInfo) {
+ // It is possible we're using MorphNodeTo to replace a node with no
+ // normal results with one that has a normal result (or we could be
+ // adding a chain) and the input could have glue and chains as well.
+ // In this case we need to shift the operands down.
+ // FIXME: This is a horrible hack and broken in obscure cases, no worse
+ // than the old isel though.
+ int OldGlueResultNo = -1, OldChainResultNo = -1;
+
+ unsigned NTMNumResults = Node->getNumValues();
+ if (Node->getValueType(NTMNumResults-1) == MVT::Glue) {
+ OldGlueResultNo = NTMNumResults-1;
+ if (NTMNumResults != 1 &&
+ Node->getValueType(NTMNumResults-2) == MVT::Other)
+ OldChainResultNo = NTMNumResults-2;
+ } else if (Node->getValueType(NTMNumResults-1) == MVT::Other)
+ OldChainResultNo = NTMNumResults-1;
+
+ // Call the underlying SelectionDAG routine to do the transmogrification. Note
+ // that this deletes operands of the old node that become dead.
+ SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops);
+
+ // MorphNodeTo can operate in two ways: if an existing node with the
+ // specified operands exists, it can just return it. Otherwise, it
+ // updates the node in place to have the requested operands.
+ if (Res == Node) {
+ // If we updated the node in place, reset the node ID. To the isel,
+ // this should be just like a newly allocated machine node.
+ Res->setNodeId(-1);
+ }
+
+ unsigned ResNumResults = Res->getNumValues();
+ // Move the glue if needed.
+ if ((EmitNodeInfo & OPFL_GlueOutput) && OldGlueResultNo != -1 &&
+ (unsigned)OldGlueResultNo != ResNumResults-1)
+ ReplaceUses(SDValue(Node, OldGlueResultNo),
+ SDValue(Res, ResNumResults - 1));
+
+ if ((EmitNodeInfo & OPFL_GlueOutput) != 0)
+ --ResNumResults;
+
+ // Move the chain reference if needed.
+ if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 &&
+ (unsigned)OldChainResultNo != ResNumResults-1)
+ ReplaceUses(SDValue(Node, OldChainResultNo),
+ SDValue(Res, ResNumResults - 1));
+
+ // Otherwise, no replacement happened because the node already exists. Replace
+ // Uses of the old node with the new one.
+ if (Res != Node) {
+ ReplaceNode(Node, Res);
+ } else {
+ EnforceNodeIdInvariant(Res);
+ }
+
+ return Res;
+}
+
+/// CheckSame - Implements OP_CheckSame.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N,
+ const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
+ // Accept if it is exactly the same as a previously recorded node.
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckSame");
+ return N == RecordedNodes[RecNo].first;
+}
+
+/// CheckChildSame - Implements OP_CheckChildXSame.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckChildSame(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N,
+ const SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes,
+ unsigned ChildNo) {
+ if (ChildNo >= N.getNumOperands())
+ return false; // Match fails if out of range child #.
+ return ::CheckSame(MatcherTable, MatcherIndex, N.getOperand(ChildNo),
+ RecordedNodes);
+}
+
+/// CheckPatternPredicate - Implements OP_CheckPatternPredicate.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ const SelectionDAGISel &SDISel) {
+ return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]);
+}
+
+/// CheckNodePredicate - Implements OP_CheckNodePredicate.
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ const SelectionDAGISel &SDISel, SDNode *N) {
+ return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]);
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDNode *N) {
+ uint16_t Opc = MatcherTable[MatcherIndex++];
+ Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
+ return N->getOpcode() == Opc;
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, SDValue N,
+ const TargetLowering *TLI, const DataLayout &DL) {
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ if (N.getValueType() == VT) return true;
+
+ // Handle the case when VT is iPTR.
+ return VT == MVT::iPTR && N.getValueType() == TLI->getPointerTy(DL);
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, const TargetLowering *TLI, const DataLayout &DL,
+ unsigned ChildNo) {
+ if (ChildNo >= N.getNumOperands())
+ return false; // Match fails if out of range child #.
+ return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI,
+ DL);
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N) {
+ return cast<CondCodeSDNode>(N)->get() ==
+ (ISD::CondCode)MatcherTable[MatcherIndex++];
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckChild2CondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N) {
+ if (2 >= N.getNumOperands())
+ return false;
+ return ::CheckCondCode(MatcherTable, MatcherIndex, N.getOperand(2));
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, const TargetLowering *TLI, const DataLayout &DL) {
+ MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ if (cast<VTSDNode>(N)->getVT() == VT)
+ return true;
+
+ // Handle the case when VT is iPTR.
+ return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI->getPointerTy(DL);
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N) {
+ int64_t Val = MatcherTable[MatcherIndex++];
+ if (Val & 128)
+ Val = GetVBR(Val, MatcherTable, MatcherIndex);
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N);
+ return C && C->getSExtValue() == Val;
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckChildInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, unsigned ChildNo) {
+ if (ChildNo >= N.getNumOperands())
+ return false; // Match fails if out of range child #.
+ return ::CheckInteger(MatcherTable, MatcherIndex, N.getOperand(ChildNo));
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, const SelectionDAGISel &SDISel) {
+ int64_t Val = MatcherTable[MatcherIndex++];
+ if (Val & 128)
+ Val = GetVBR(Val, MatcherTable, MatcherIndex);
+
+ if (N->getOpcode() != ISD::AND) return false;
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ return C && SDISel.CheckAndMask(N.getOperand(0), C, Val);
+}
+
+LLVM_ATTRIBUTE_ALWAYS_INLINE static inline bool
+CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex,
+ SDValue N, const SelectionDAGISel &SDISel) {
+ int64_t Val = MatcherTable[MatcherIndex++];
+ if (Val & 128)
+ Val = GetVBR(Val, MatcherTable, MatcherIndex);
+
+ if (N->getOpcode() != ISD::OR) return false;
+
+ ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ return C && SDISel.CheckOrMask(N.getOperand(0), C, Val);
+}
+
+/// IsPredicateKnownToFail - If we know how and can do so without pushing a
+/// scope, evaluate the current node. If the current predicate is known to
+/// fail, set Result=true and return anything. If the current predicate is
+/// known to pass, set Result=false and return the MatcherIndex to continue
+/// with. If the current predicate is unknown, set Result=false and return the
+/// MatcherIndex to continue with.
+static unsigned IsPredicateKnownToFail(const unsigned char *Table,
+ unsigned Index, SDValue N,
+ bool &Result,
+ const SelectionDAGISel &SDISel,
+ SmallVectorImpl<std::pair<SDValue, SDNode*>> &RecordedNodes) {
+ switch (Table[Index++]) {
+ default:
+ Result = false;
+ return Index-1; // Could not evaluate this predicate.
+ case SelectionDAGISel::OPC_CheckSame:
+ Result = !::CheckSame(Table, Index, N, RecordedNodes);
+ return Index;
+ case SelectionDAGISel::OPC_CheckChild0Same:
+ case SelectionDAGISel::OPC_CheckChild1Same:
+ case SelectionDAGISel::OPC_CheckChild2Same:
+ case SelectionDAGISel::OPC_CheckChild3Same:
+ Result = !::CheckChildSame(Table, Index, N, RecordedNodes,
+ Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Same);
+ return Index;
+ case SelectionDAGISel::OPC_CheckPatternPredicate:
+ Result = !::CheckPatternPredicate(Table, Index, SDISel);
+ return Index;
+ case SelectionDAGISel::OPC_CheckPredicate:
+ Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode());
+ return Index;
+ case SelectionDAGISel::OPC_CheckOpcode:
+ Result = !::CheckOpcode(Table, Index, N.getNode());
+ return Index;
+ case SelectionDAGISel::OPC_CheckType:
+ Result = !::CheckType(Table, Index, N, SDISel.TLI,
+ SDISel.CurDAG->getDataLayout());
+ return Index;
+ case SelectionDAGISel::OPC_CheckTypeRes: {
+ unsigned Res = Table[Index++];
+ Result = !::CheckType(Table, Index, N.getValue(Res), SDISel.TLI,
+ SDISel.CurDAG->getDataLayout());
+ return Index;
+ }
+ case SelectionDAGISel::OPC_CheckChild0Type:
+ case SelectionDAGISel::OPC_CheckChild1Type:
+ case SelectionDAGISel::OPC_CheckChild2Type:
+ case SelectionDAGISel::OPC_CheckChild3Type:
+ case SelectionDAGISel::OPC_CheckChild4Type:
+ case SelectionDAGISel::OPC_CheckChild5Type:
+ case SelectionDAGISel::OPC_CheckChild6Type:
+ case SelectionDAGISel::OPC_CheckChild7Type:
+ Result = !::CheckChildType(
+ Table, Index, N, SDISel.TLI, SDISel.CurDAG->getDataLayout(),
+ Table[Index - 1] - SelectionDAGISel::OPC_CheckChild0Type);
+ return Index;
+ case SelectionDAGISel::OPC_CheckCondCode:
+ Result = !::CheckCondCode(Table, Index, N);
+ return Index;
+ case SelectionDAGISel::OPC_CheckChild2CondCode:
+ Result = !::CheckChild2CondCode(Table, Index, N);
+ return Index;
+ case SelectionDAGISel::OPC_CheckValueType:
+ Result = !::CheckValueType(Table, Index, N, SDISel.TLI,
+ SDISel.CurDAG->getDataLayout());
+ return Index;
+ case SelectionDAGISel::OPC_CheckInteger:
+ Result = !::CheckInteger(Table, Index, N);
+ return Index;
+ case SelectionDAGISel::OPC_CheckChild0Integer:
+ case SelectionDAGISel::OPC_CheckChild1Integer:
+ case SelectionDAGISel::OPC_CheckChild2Integer:
+ case SelectionDAGISel::OPC_CheckChild3Integer:
+ case SelectionDAGISel::OPC_CheckChild4Integer:
+ Result = !::CheckChildInteger(Table, Index, N,
+ Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Integer);
+ return Index;
+ case SelectionDAGISel::OPC_CheckAndImm:
+ Result = !::CheckAndImm(Table, Index, N, SDISel);
+ return Index;
+ case SelectionDAGISel::OPC_CheckOrImm:
+ Result = !::CheckOrImm(Table, Index, N, SDISel);
+ return Index;
+ }
+}
+
+namespace {
+
+struct MatchScope {
+ /// FailIndex - If this match fails, this is the index to continue with.
+ unsigned FailIndex;
+
+ /// NodeStack - The node stack when the scope was formed.
+ SmallVector<SDValue, 4> NodeStack;
+
+ /// NumRecordedNodes - The number of recorded nodes when the scope was formed.
+ unsigned NumRecordedNodes;
+
+ /// NumMatchedMemRefs - The number of matched memref entries.
+ unsigned NumMatchedMemRefs;
+
+ /// InputChain/InputGlue - The current chain/glue
+ SDValue InputChain, InputGlue;
+
+ /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty.
+ bool HasChainNodesMatched;
+};
+
+/// \A DAG update listener to keep the matching state
+/// (i.e. RecordedNodes and MatchScope) uptodate if the target is allowed to
+/// change the DAG while matching. X86 addressing mode matcher is an example
+/// for this.
+class MatchStateUpdater : public SelectionDAG::DAGUpdateListener
+{
+ SDNode **NodeToMatch;
+ SmallVectorImpl<std::pair<SDValue, SDNode *>> &RecordedNodes;
+ SmallVectorImpl<MatchScope> &MatchScopes;
+
+public:
+ MatchStateUpdater(SelectionDAG &DAG, SDNode **NodeToMatch,
+ SmallVectorImpl<std::pair<SDValue, SDNode *>> &RN,
+ SmallVectorImpl<MatchScope> &MS)
+ : SelectionDAG::DAGUpdateListener(DAG), NodeToMatch(NodeToMatch),
+ RecordedNodes(RN), MatchScopes(MS) {}
+
+ void NodeDeleted(SDNode *N, SDNode *E) override {
+ // Some early-returns here to avoid the search if we deleted the node or
+ // if the update comes from MorphNodeTo (MorphNodeTo is the last thing we
+ // do, so it's unnecessary to update matching state at that point).
+ // Neither of these can occur currently because we only install this
+ // update listener during matching a complex patterns.
+ if (!E || E->isMachineOpcode())
+ return;
+ // Check if NodeToMatch was updated.
+ if (N == *NodeToMatch)
+ *NodeToMatch = E;
+ // Performing linear search here does not matter because we almost never
+ // run this code. You'd have to have a CSE during complex pattern
+ // matching.
+ for (auto &I : RecordedNodes)
+ if (I.first.getNode() == N)
+ I.first.setNode(E);
+
+ for (auto &I : MatchScopes)
+ for (auto &J : I.NodeStack)
+ if (J.getNode() == N)
+ J.setNode(E);
+ }
+};
+
+} // end anonymous namespace
+
+void SelectionDAGISel::SelectCodeCommon(SDNode *NodeToMatch,
+ const unsigned char *MatcherTable,
+ unsigned TableSize) {
+ // FIXME: Should these even be selected? Handle these cases in the caller?
+ switch (NodeToMatch->getOpcode()) {
+ default:
+ break;
+ case ISD::EntryToken: // These nodes remain the same.
+ case ISD::BasicBlock:
+ case ISD::Register:
+ case ISD::RegisterMask:
+ case ISD::HANDLENODE:
+ case ISD::MDNODE_SDNODE:
+ case ISD::TargetConstant:
+ case ISD::TargetConstantFP:
+ case ISD::TargetConstantPool:
+ case ISD::TargetFrameIndex:
+ case ISD::TargetExternalSymbol:
+ case ISD::MCSymbol:
+ case ISD::TargetBlockAddress:
+ case ISD::TargetJumpTable:
+ case ISD::TargetGlobalTLSAddress:
+ case ISD::TargetGlobalAddress:
+ case ISD::TokenFactor:
+ case ISD::CopyFromReg:
+ case ISD::CopyToReg:
+ case ISD::EH_LABEL:
+ case ISD::ANNOTATION_LABEL:
+ case ISD::LIFETIME_START:
+ case ISD::LIFETIME_END:
+ NodeToMatch->setNodeId(-1); // Mark selected.
+ return;
+ case ISD::AssertSext:
+ case ISD::AssertZext:
+ ReplaceUses(SDValue(NodeToMatch, 0), NodeToMatch->getOperand(0));
+ CurDAG->RemoveDeadNode(NodeToMatch);
+ return;
+ case ISD::INLINEASM:
+ case ISD::INLINEASM_BR:
+ Select_INLINEASM(NodeToMatch,
+ NodeToMatch->getOpcode() == ISD::INLINEASM_BR);
+ return;
+ case ISD::READ_REGISTER:
+ Select_READ_REGISTER(NodeToMatch);
+ return;
+ case ISD::WRITE_REGISTER:
+ Select_WRITE_REGISTER(NodeToMatch);
+ return;
+ case ISD::UNDEF:
+ Select_UNDEF(NodeToMatch);
+ return;
+ }
+
+ assert(!NodeToMatch->isMachineOpcode() && "Node already selected!");
+
+ // Set up the node stack with NodeToMatch as the only node on the stack.
+ SmallVector<SDValue, 8> NodeStack;
+ SDValue N = SDValue(NodeToMatch, 0);
+ NodeStack.push_back(N);
+
+ // MatchScopes - Scopes used when matching, if a match failure happens, this
+ // indicates where to continue checking.
+ SmallVector<MatchScope, 8> MatchScopes;
+
+ // RecordedNodes - This is the set of nodes that have been recorded by the
+ // state machine. The second value is the parent of the node, or null if the
+ // root is recorded.
+ SmallVector<std::pair<SDValue, SDNode*>, 8> RecordedNodes;
+
+ // MatchedMemRefs - This is the set of MemRef's we've seen in the input
+ // pattern.
+ SmallVector<MachineMemOperand*, 2> MatchedMemRefs;
+
+ // These are the current input chain and glue for use when generating nodes.
+ // Various Emit operations change these. For example, emitting a copytoreg
+ // uses and updates these.
+ SDValue InputChain, InputGlue;
+
+ // ChainNodesMatched - If a pattern matches nodes that have input/output
+ // chains, the OPC_EmitMergeInputChains operation is emitted which indicates
+ // which ones they are. The result is captured into this list so that we can
+ // update the chain results when the pattern is complete.
+ SmallVector<SDNode*, 3> ChainNodesMatched;
+
+ LLVM_DEBUG(dbgs() << "ISEL: Starting pattern match\n");
+
+ // Determine where to start the interpreter. Normally we start at opcode #0,
+ // but if the state machine starts with an OPC_SwitchOpcode, then we
+ // accelerate the first lookup (which is guaranteed to be hot) with the
+ // OpcodeOffset table.
+ unsigned MatcherIndex = 0;
+
+ if (!OpcodeOffset.empty()) {
+ // Already computed the OpcodeOffset table, just index into it.
+ if (N.getOpcode() < OpcodeOffset.size())
+ MatcherIndex = OpcodeOffset[N.getOpcode()];
+ LLVM_DEBUG(dbgs() << " Initial Opcode index to " << MatcherIndex << "\n");
+
+ } else if (MatcherTable[0] == OPC_SwitchOpcode) {
+ // Otherwise, the table isn't computed, but the state machine does start
+ // with an OPC_SwitchOpcode instruction. Populate the table now, since this
+ // is the first time we're selecting an instruction.
+ unsigned Idx = 1;
+ while (true) {
+ // Get the size of this case.
+ unsigned CaseSize = MatcherTable[Idx++];
+ if (CaseSize & 128)
+ CaseSize = GetVBR(CaseSize, MatcherTable, Idx);
+ if (CaseSize == 0) break;
+
+ // Get the opcode, add the index to the table.
+ uint16_t Opc = MatcherTable[Idx++];
+ Opc |= (unsigned short)MatcherTable[Idx++] << 8;
+ if (Opc >= OpcodeOffset.size())
+ OpcodeOffset.resize((Opc+1)*2);
+ OpcodeOffset[Opc] = Idx;
+ Idx += CaseSize;
+ }
+
+ // Okay, do the lookup for the first opcode.
+ if (N.getOpcode() < OpcodeOffset.size())
+ MatcherIndex = OpcodeOffset[N.getOpcode()];
+ }
+
+ while (true) {
+ assert(MatcherIndex < TableSize && "Invalid index");
+#ifndef NDEBUG
+ unsigned CurrentOpcodeIndex = MatcherIndex;
+#endif
+ BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++];
+ switch (Opcode) {
+ case OPC_Scope: {
+ // Okay, the semantics of this operation are that we should push a scope
+ // then evaluate the first child. However, pushing a scope only to have
+ // the first check fail (which then pops it) is inefficient. If we can
+ // determine immediately that the first check (or first several) will
+ // immediately fail, don't even bother pushing a scope for them.
+ unsigned FailIndex;
+
+ while (true) {
+ unsigned NumToSkip = MatcherTable[MatcherIndex++];
+ if (NumToSkip & 128)
+ NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
+ // Found the end of the scope with no match.
+ if (NumToSkip == 0) {
+ FailIndex = 0;
+ break;
+ }
+
+ FailIndex = MatcherIndex+NumToSkip;
+
+ unsigned MatcherIndexOfPredicate = MatcherIndex;
+ (void)MatcherIndexOfPredicate; // silence warning.
+
+ // If we can't evaluate this predicate without pushing a scope (e.g. if
+ // it is a 'MoveParent') or if the predicate succeeds on this node, we
+ // push the scope and evaluate the full predicate chain.
+ bool Result;
+ MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N,
+ Result, *this, RecordedNodes);
+ if (!Result)
+ break;
+
+ LLVM_DEBUG(
+ dbgs() << " Skipped scope entry (due to false predicate) at "
+ << "index " << MatcherIndexOfPredicate << ", continuing at "
+ << FailIndex << "\n");
+ ++NumDAGIselRetries;
+
+ // Otherwise, we know that this case of the Scope is guaranteed to fail,
+ // move to the next case.
+ MatcherIndex = FailIndex;
+ }
+
+ // If the whole scope failed to match, bail.
+ if (FailIndex == 0) break;
+
+ // Push a MatchScope which indicates where to go if the first child fails
+ // to match.
+ MatchScope NewEntry;
+ NewEntry.FailIndex = FailIndex;
+ NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end());
+ NewEntry.NumRecordedNodes = RecordedNodes.size();
+ NewEntry.NumMatchedMemRefs = MatchedMemRefs.size();
+ NewEntry.InputChain = InputChain;
+ NewEntry.InputGlue = InputGlue;
+ NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty();
+ MatchScopes.push_back(NewEntry);
+ continue;
+ }
+ case OPC_RecordNode: {
+ // Remember this node, it may end up being an operand in the pattern.
+ SDNode *Parent = nullptr;
+ if (NodeStack.size() > 1)
+ Parent = NodeStack[NodeStack.size()-2].getNode();
+ RecordedNodes.push_back(std::make_pair(N, Parent));
+ continue;
+ }
+
+ case OPC_RecordChild0: case OPC_RecordChild1:
+ case OPC_RecordChild2: case OPC_RecordChild3:
+ case OPC_RecordChild4: case OPC_RecordChild5:
+ case OPC_RecordChild6: case OPC_RecordChild7: {
+ unsigned ChildNo = Opcode-OPC_RecordChild0;
+ if (ChildNo >= N.getNumOperands())
+ break; // Match fails if out of range child #.
+
+ RecordedNodes.push_back(std::make_pair(N->getOperand(ChildNo),
+ N.getNode()));
+ continue;
+ }
+ case OPC_RecordMemRef:
+ if (auto *MN = dyn_cast<MemSDNode>(N))
+ MatchedMemRefs.push_back(MN->getMemOperand());
+ else {
+ LLVM_DEBUG(dbgs() << "Expected MemSDNode "; N->dump(CurDAG);
+ dbgs() << '\n');
+ }
+
+ continue;
+
+ case OPC_CaptureGlueInput:
+ // If the current node has an input glue, capture it in InputGlue.
+ if (N->getNumOperands() != 0 &&
+ N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Glue)
+ InputGlue = N->getOperand(N->getNumOperands()-1);
+ continue;
+
+ case OPC_MoveChild: {
+ unsigned ChildNo = MatcherTable[MatcherIndex++];
+ if (ChildNo >= N.getNumOperands())
+ break; // Match fails if out of range child #.
+ N = N.getOperand(ChildNo);
+ NodeStack.push_back(N);
+ continue;
+ }
+
+ case OPC_MoveChild0: case OPC_MoveChild1:
+ case OPC_MoveChild2: case OPC_MoveChild3:
+ case OPC_MoveChild4: case OPC_MoveChild5:
+ case OPC_MoveChild6: case OPC_MoveChild7: {
+ unsigned ChildNo = Opcode-OPC_MoveChild0;
+ if (ChildNo >= N.getNumOperands())
+ break; // Match fails if out of range child #.
+ N = N.getOperand(ChildNo);
+ NodeStack.push_back(N);
+ continue;
+ }
+
+ case OPC_MoveParent:
+ // Pop the current node off the NodeStack.
+ NodeStack.pop_back();
+ assert(!NodeStack.empty() && "Node stack imbalance!");
+ N = NodeStack.back();
+ continue;
+
+ case OPC_CheckSame:
+ if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break;
+ continue;
+
+ case OPC_CheckChild0Same: case OPC_CheckChild1Same:
+ case OPC_CheckChild2Same: case OPC_CheckChild3Same:
+ if (!::CheckChildSame(MatcherTable, MatcherIndex, N, RecordedNodes,
+ Opcode-OPC_CheckChild0Same))
+ break;
+ continue;
+
+ case OPC_CheckPatternPredicate:
+ if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break;
+ continue;
+ case OPC_CheckPredicate:
+ if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this,
+ N.getNode()))
+ break;
+ continue;
+ case OPC_CheckPredicateWithOperands: {
+ unsigned OpNum = MatcherTable[MatcherIndex++];
+ SmallVector<SDValue, 8> Operands;
+
+ for (unsigned i = 0; i < OpNum; ++i)
+ Operands.push_back(RecordedNodes[MatcherTable[MatcherIndex++]].first);
+
+ unsigned PredNo = MatcherTable[MatcherIndex++];
+ if (!CheckNodePredicateWithOperands(N.getNode(), PredNo, Operands))
+ break;
+ continue;
+ }
+ case OPC_CheckComplexPat: {
+ unsigned CPNum = MatcherTable[MatcherIndex++];
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat");
+
+ // If target can modify DAG during matching, keep the matching state
+ // consistent.
+ std::unique_ptr<MatchStateUpdater> MSU;
+ if (ComplexPatternFuncMutatesDAG())
+ MSU.reset(new MatchStateUpdater(*CurDAG, &NodeToMatch, RecordedNodes,
+ MatchScopes));
+
+ if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo].second,
+ RecordedNodes[RecNo].first, CPNum,
+ RecordedNodes))
+ break;
+ continue;
+ }
+ case OPC_CheckOpcode:
+ if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break;
+ continue;
+
+ case OPC_CheckType:
+ if (!::CheckType(MatcherTable, MatcherIndex, N, TLI,
+ CurDAG->getDataLayout()))
+ break;
+ continue;
+
+ case OPC_CheckTypeRes: {
+ unsigned Res = MatcherTable[MatcherIndex++];
+ if (!::CheckType(MatcherTable, MatcherIndex, N.getValue(Res), TLI,
+ CurDAG->getDataLayout()))
+ break;
+ continue;
+ }
+
+ case OPC_SwitchOpcode: {
+ unsigned CurNodeOpcode = N.getOpcode();
+ unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
+ unsigned CaseSize;
+ while (true) {
+ // Get the size of this case.
+ CaseSize = MatcherTable[MatcherIndex++];
+ if (CaseSize & 128)
+ CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
+ if (CaseSize == 0) break;
+
+ uint16_t Opc = MatcherTable[MatcherIndex++];
+ Opc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
+
+ // If the opcode matches, then we will execute this case.
+ if (CurNodeOpcode == Opc)
+ break;
+
+ // Otherwise, skip over this case.
+ MatcherIndex += CaseSize;
+ }
+
+ // If no cases matched, bail out.
+ if (CaseSize == 0) break;
+
+ // Otherwise, execute the case we found.
+ LLVM_DEBUG(dbgs() << " OpcodeSwitch from " << SwitchStart << " to "
+ << MatcherIndex << "\n");
+ continue;
+ }
+
+ case OPC_SwitchType: {
+ MVT CurNodeVT = N.getSimpleValueType();
+ unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart;
+ unsigned CaseSize;
+ while (true) {
+ // Get the size of this case.
+ CaseSize = MatcherTable[MatcherIndex++];
+ if (CaseSize & 128)
+ CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex);
+ if (CaseSize == 0) break;
+
+ MVT CaseVT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ if (CaseVT == MVT::iPTR)
+ CaseVT = TLI->getPointerTy(CurDAG->getDataLayout());
+
+ // If the VT matches, then we will execute this case.
+ if (CurNodeVT == CaseVT)
+ break;
+
+ // Otherwise, skip over this case.
+ MatcherIndex += CaseSize;
+ }
+
+ // If no cases matched, bail out.
+ if (CaseSize == 0) break;
+
+ // Otherwise, execute the case we found.
+ LLVM_DEBUG(dbgs() << " TypeSwitch[" << EVT(CurNodeVT).getEVTString()
+ << "] from " << SwitchStart << " to " << MatcherIndex
+ << '\n');
+ continue;
+ }
+ case OPC_CheckChild0Type: case OPC_CheckChild1Type:
+ case OPC_CheckChild2Type: case OPC_CheckChild3Type:
+ case OPC_CheckChild4Type: case OPC_CheckChild5Type:
+ case OPC_CheckChild6Type: case OPC_CheckChild7Type:
+ if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI,
+ CurDAG->getDataLayout(),
+ Opcode - OPC_CheckChild0Type))
+ break;
+ continue;
+ case OPC_CheckCondCode:
+ if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break;
+ continue;
+ case OPC_CheckChild2CondCode:
+ if (!::CheckChild2CondCode(MatcherTable, MatcherIndex, N)) break;
+ continue;
+ case OPC_CheckValueType:
+ if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI,
+ CurDAG->getDataLayout()))
+ break;
+ continue;
+ case OPC_CheckInteger:
+ if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break;
+ continue;
+ case OPC_CheckChild0Integer: case OPC_CheckChild1Integer:
+ case OPC_CheckChild2Integer: case OPC_CheckChild3Integer:
+ case OPC_CheckChild4Integer:
+ if (!::CheckChildInteger(MatcherTable, MatcherIndex, N,
+ Opcode-OPC_CheckChild0Integer)) break;
+ continue;
+ case OPC_CheckAndImm:
+ if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break;
+ continue;
+ case OPC_CheckOrImm:
+ if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break;
+ continue;
+ case OPC_CheckImmAllOnesV:
+ if (!ISD::isBuildVectorAllOnes(N.getNode())) break;
+ continue;
+ case OPC_CheckImmAllZerosV:
+ if (!ISD::isBuildVectorAllZeros(N.getNode())) break;
+ continue;
+
+ case OPC_CheckFoldableChainNode: {
+ assert(NodeStack.size() != 1 && "No parent node");
+ // Verify that all intermediate nodes between the root and this one have
+ // a single use.
+ bool HasMultipleUses = false;
+ for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i)
+ if (!NodeStack[i].getNode()->hasOneUse()) {
+ HasMultipleUses = true;
+ break;
+ }
+ if (HasMultipleUses) break;
+
+ // Check to see that the target thinks this is profitable to fold and that
+ // we can fold it without inducing cycles in the graph.
+ if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(),
+ NodeToMatch) ||
+ !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(),
+ NodeToMatch, OptLevel,
+ true/*We validate our own chains*/))
+ break;
+
+ continue;
+ }
+ case OPC_EmitInteger: {
+ MVT::SimpleValueType VT =
+ (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ int64_t Val = MatcherTable[MatcherIndex++];
+ if (Val & 128)
+ Val = GetVBR(Val, MatcherTable, MatcherIndex);
+ RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
+ CurDAG->getTargetConstant(Val, SDLoc(NodeToMatch),
+ VT), nullptr));
+ continue;
+ }
+ case OPC_EmitRegister: {
+ MVT::SimpleValueType VT =
+ (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ unsigned RegNo = MatcherTable[MatcherIndex++];
+ RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
+ CurDAG->getRegister(RegNo, VT), nullptr));
+ continue;
+ }
+ case OPC_EmitRegister2: {
+ // For targets w/ more than 256 register names, the register enum
+ // values are stored in two bytes in the matcher table (just like
+ // opcodes).
+ MVT::SimpleValueType VT =
+ (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ unsigned RegNo = MatcherTable[MatcherIndex++];
+ RegNo |= MatcherTable[MatcherIndex++] << 8;
+ RecordedNodes.push_back(std::pair<SDValue, SDNode*>(
+ CurDAG->getRegister(RegNo, VT), nullptr));
+ continue;
+ }
+
+ case OPC_EmitConvertToTarget: {
+ // Convert from IMM/FPIMM to target version.
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitConvertToTarget");
+ SDValue Imm = RecordedNodes[RecNo].first;
+
+ if (Imm->getOpcode() == ISD::Constant) {
+ const ConstantInt *Val=cast<ConstantSDNode>(Imm)->getConstantIntValue();
+ Imm = CurDAG->getTargetConstant(*Val, SDLoc(NodeToMatch),
+ Imm.getValueType());
+ } else if (Imm->getOpcode() == ISD::ConstantFP) {
+ const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue();
+ Imm = CurDAG->getTargetConstantFP(*Val, SDLoc(NodeToMatch),
+ Imm.getValueType());
+ }
+
+ RecordedNodes.push_back(std::make_pair(Imm, RecordedNodes[RecNo].second));
+ continue;
+ }
+
+ case OPC_EmitMergeInputChains1_0: // OPC_EmitMergeInputChains, 1, 0
+ case OPC_EmitMergeInputChains1_1: // OPC_EmitMergeInputChains, 1, 1
+ case OPC_EmitMergeInputChains1_2: { // OPC_EmitMergeInputChains, 1, 2
+ // These are space-optimized forms of OPC_EmitMergeInputChains.
+ assert(!InputChain.getNode() &&
+ "EmitMergeInputChains should be the first chain producing node");
+ assert(ChainNodesMatched.empty() &&
+ "Should only have one EmitMergeInputChains per match");
+
+ // Read all of the chained nodes.
+ unsigned RecNo = Opcode - OPC_EmitMergeInputChains1_0;
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
+ ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
+
+ // FIXME: What if other value results of the node have uses not matched
+ // by this pattern?
+ if (ChainNodesMatched.back() != NodeToMatch &&
+ !RecordedNodes[RecNo].first.hasOneUse()) {
+ ChainNodesMatched.clear();
+ break;
+ }
+
+ // Merge the input chains if they are not intra-pattern references.
+ InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
+
+ if (!InputChain.getNode())
+ break; // Failed to merge.
+ continue;
+ }
+
+ case OPC_EmitMergeInputChains: {
+ assert(!InputChain.getNode() &&
+ "EmitMergeInputChains should be the first chain producing node");
+ // This node gets a list of nodes we matched in the input that have
+ // chains. We want to token factor all of the input chains to these nodes
+ // together. However, if any of the input chains is actually one of the
+ // nodes matched in this pattern, then we have an intra-match reference.
+ // Ignore these because the newly token factored chain should not refer to
+ // the old nodes.
+ unsigned NumChains = MatcherTable[MatcherIndex++];
+ assert(NumChains != 0 && "Can't TF zero chains");
+
+ assert(ChainNodesMatched.empty() &&
+ "Should only have one EmitMergeInputChains per match");
+
+ // Read all of the chained nodes.
+ for (unsigned i = 0; i != NumChains; ++i) {
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitMergeInputChains");
+ ChainNodesMatched.push_back(RecordedNodes[RecNo].first.getNode());
+
+ // FIXME: What if other value results of the node have uses not matched
+ // by this pattern?
+ if (ChainNodesMatched.back() != NodeToMatch &&
+ !RecordedNodes[RecNo].first.hasOneUse()) {
+ ChainNodesMatched.clear();
+ break;
+ }
+ }
+
+ // If the inner loop broke out, the match fails.
+ if (ChainNodesMatched.empty())
+ break;
+
+ // Merge the input chains if they are not intra-pattern references.
+ InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG);
+
+ if (!InputChain.getNode())
+ break; // Failed to merge.
+
+ continue;
+ }
+
+ case OPC_EmitCopyToReg: {
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitCopyToReg");
+ unsigned DestPhysReg = MatcherTable[MatcherIndex++];
+
+ if (!InputChain.getNode())
+ InputChain = CurDAG->getEntryNode();
+
+ InputChain = CurDAG->getCopyToReg(InputChain, SDLoc(NodeToMatch),
+ DestPhysReg, RecordedNodes[RecNo].first,
+ InputGlue);
+
+ InputGlue = InputChain.getValue(1);
+ continue;
+ }
+
+ case OPC_EmitNodeXForm: {
+ unsigned XFormNo = MatcherTable[MatcherIndex++];
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitNodeXForm");
+ SDValue Res = RunSDNodeXForm(RecordedNodes[RecNo].first, XFormNo);
+ RecordedNodes.push_back(std::pair<SDValue,SDNode*>(Res, nullptr));
+ continue;
+ }
+ case OPC_Coverage: {
+ // This is emitted right before MorphNode/EmitNode.
+ // So it should be safe to assume that this node has been selected
+ unsigned index = MatcherTable[MatcherIndex++];
+ index |= (MatcherTable[MatcherIndex++] << 8);
+ dbgs() << "COVERED: " << getPatternForIndex(index) << "\n";
+ dbgs() << "INCLUDED: " << getIncludePathForIndex(index) << "\n";
+ continue;
+ }
+
+ case OPC_EmitNode: case OPC_MorphNodeTo:
+ case OPC_EmitNode0: case OPC_EmitNode1: case OPC_EmitNode2:
+ case OPC_MorphNodeTo0: case OPC_MorphNodeTo1: case OPC_MorphNodeTo2: {
+ uint16_t TargetOpc = MatcherTable[MatcherIndex++];
+ TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8;
+ unsigned EmitNodeInfo = MatcherTable[MatcherIndex++];
+ // Get the result VT list.
+ unsigned NumVTs;
+ // If this is one of the compressed forms, get the number of VTs based
+ // on the Opcode. Otherwise read the next byte from the table.
+ if (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2)
+ NumVTs = Opcode - OPC_MorphNodeTo0;
+ else if (Opcode >= OPC_EmitNode0 && Opcode <= OPC_EmitNode2)
+ NumVTs = Opcode - OPC_EmitNode0;
+ else
+ NumVTs = MatcherTable[MatcherIndex++];
+ SmallVector<EVT, 4> VTs;
+ for (unsigned i = 0; i != NumVTs; ++i) {
+ MVT::SimpleValueType VT =
+ (MVT::SimpleValueType)MatcherTable[MatcherIndex++];
+ if (VT == MVT::iPTR)
+ VT = TLI->getPointerTy(CurDAG->getDataLayout()).SimpleTy;
+ VTs.push_back(VT);
+ }
+
+ if (EmitNodeInfo & OPFL_Chain)
+ VTs.push_back(MVT::Other);
+ if (EmitNodeInfo & OPFL_GlueOutput)
+ VTs.push_back(MVT::Glue);
+
+ // This is hot code, so optimize the two most common cases of 1 and 2
+ // results.
+ SDVTList VTList;
+ if (VTs.size() == 1)
+ VTList = CurDAG->getVTList(VTs[0]);
+ else if (VTs.size() == 2)
+ VTList = CurDAG->getVTList(VTs[0], VTs[1]);
+ else
+ VTList = CurDAG->getVTList(VTs);
+
+ // Get the operand list.
+ unsigned NumOps = MatcherTable[MatcherIndex++];
+ SmallVector<SDValue, 8> Ops;
+ for (unsigned i = 0; i != NumOps; ++i) {
+ unsigned RecNo = MatcherTable[MatcherIndex++];
+ if (RecNo & 128)
+ RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex);
+
+ assert(RecNo < RecordedNodes.size() && "Invalid EmitNode");
+ Ops.push_back(RecordedNodes[RecNo].first);
+ }
+
+ // If there are variadic operands to add, handle them now.
+ if (EmitNodeInfo & OPFL_VariadicInfo) {
+ // Determine the start index to copy from.
+ unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo);
+ FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0;
+ assert(NodeToMatch->getNumOperands() >= FirstOpToCopy &&
+ "Invalid variadic node");
+ // Copy all of the variadic operands, not including a potential glue
+ // input.
+ for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands();
+ i != e; ++i) {
+ SDValue V = NodeToMatch->getOperand(i);
+ if (V.getValueType() == MVT::Glue) break;
+ Ops.push_back(V);
+ }
+ }
+
+ // If this has chain/glue inputs, add them.
+ if (EmitNodeInfo & OPFL_Chain)
+ Ops.push_back(InputChain);
+ if ((EmitNodeInfo & OPFL_GlueInput) && InputGlue.getNode() != nullptr)
+ Ops.push_back(InputGlue);
+
+ // Create the node.
+ MachineSDNode *Res = nullptr;
+ bool IsMorphNodeTo = Opcode == OPC_MorphNodeTo ||
+ (Opcode >= OPC_MorphNodeTo0 && Opcode <= OPC_MorphNodeTo2);
+ if (!IsMorphNodeTo) {
+ // If this is a normal EmitNode command, just create the new node and
+ // add the results to the RecordedNodes list.
+ Res = CurDAG->getMachineNode(TargetOpc, SDLoc(NodeToMatch),
+ VTList, Ops);
+
+ // Add all the non-glue/non-chain results to the RecordedNodes list.
+ for (unsigned i = 0, e = VTs.size(); i != e; ++i) {
+ if (VTs[i] == MVT::Other || VTs[i] == MVT::Glue) break;
+ RecordedNodes.push_back(std::pair<SDValue,SDNode*>(SDValue(Res, i),
+ nullptr));
+ }
+ } else {
+ assert(NodeToMatch->getOpcode() != ISD::DELETED_NODE &&
+ "NodeToMatch was removed partway through selection");
+ SelectionDAG::DAGNodeDeletedListener NDL(*CurDAG, [&](SDNode *N,
+ SDNode *E) {
+ CurDAG->salvageDebugInfo(*N);
+ auto &Chain = ChainNodesMatched;
+ assert((!E || !is_contained(Chain, N)) &&
+ "Chain node replaced during MorphNode");
+ Chain.erase(std::remove(Chain.begin(), Chain.end(), N), Chain.end());
+ });
+ Res = cast<MachineSDNode>(MorphNode(NodeToMatch, TargetOpc, VTList,
+ Ops, EmitNodeInfo));
+ }
+
+ // If the node had chain/glue results, update our notion of the current
+ // chain and glue.
+ if (EmitNodeInfo & OPFL_GlueOutput) {
+ InputGlue = SDValue(Res, VTs.size()-1);
+ if (EmitNodeInfo & OPFL_Chain)
+ InputChain = SDValue(Res, VTs.size()-2);
+ } else if (EmitNodeInfo & OPFL_Chain)
+ InputChain = SDValue(Res, VTs.size()-1);
+
+ // If the OPFL_MemRefs glue is set on this node, slap all of the
+ // accumulated memrefs onto it.
+ //
+ // FIXME: This is vastly incorrect for patterns with multiple outputs
+ // instructions that access memory and for ComplexPatterns that match
+ // loads.
+ if (EmitNodeInfo & OPFL_MemRefs) {
+ // Only attach load or store memory operands if the generated
+ // instruction may load or store.
+ const MCInstrDesc &MCID = TII->get(TargetOpc);
+ bool mayLoad = MCID.mayLoad();
+ bool mayStore = MCID.mayStore();
+
+ // We expect to have relatively few of these so just filter them into a
+ // temporary buffer so that we can easily add them to the instruction.
+ SmallVector<MachineMemOperand *, 4> FilteredMemRefs;
+ for (MachineMemOperand *MMO : MatchedMemRefs) {
+ if (MMO->isLoad()) {
+ if (mayLoad)
+ FilteredMemRefs.push_back(MMO);
+ } else if (MMO->isStore()) {
+ if (mayStore)
+ FilteredMemRefs.push_back(MMO);
+ } else {
+ FilteredMemRefs.push_back(MMO);
+ }
+ }
+
+ CurDAG->setNodeMemRefs(Res, FilteredMemRefs);
+ }
+
+ LLVM_DEBUG(if (!MatchedMemRefs.empty() && Res->memoperands_empty()) dbgs()
+ << " Dropping mem operands\n";
+ dbgs() << " " << (IsMorphNodeTo ? "Morphed" : "Created")
+ << " node: ";
+ Res->dump(CurDAG););
+
+ // If this was a MorphNodeTo then we're completely done!
+ if (IsMorphNodeTo) {
+ // Update chain uses.
+ UpdateChains(Res, InputChain, ChainNodesMatched, true);
+ return;
+ }
+ continue;
+ }
+
+ case OPC_CompleteMatch: {
+ // The match has been completed, and any new nodes (if any) have been
+ // created. Patch up references to the matched dag to use the newly
+ // created nodes.
+ unsigned NumResults = MatcherTable[MatcherIndex++];
+
+ for (unsigned i = 0; i != NumResults; ++i) {
+ unsigned ResSlot = MatcherTable[MatcherIndex++];
+ if (ResSlot & 128)
+ ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex);
+
+ assert(ResSlot < RecordedNodes.size() && "Invalid CompleteMatch");
+ SDValue Res = RecordedNodes[ResSlot].first;
+
+ assert(i < NodeToMatch->getNumValues() &&
+ NodeToMatch->getValueType(i) != MVT::Other &&
+ NodeToMatch->getValueType(i) != MVT::Glue &&
+ "Invalid number of results to complete!");
+ assert((NodeToMatch->getValueType(i) == Res.getValueType() ||
+ NodeToMatch->getValueType(i) == MVT::iPTR ||
+ Res.getValueType() == MVT::iPTR ||
+ NodeToMatch->getValueType(i).getSizeInBits() ==
+ Res.getValueSizeInBits()) &&
+ "invalid replacement");
+ ReplaceUses(SDValue(NodeToMatch, i), Res);
+ }
+
+ // Update chain uses.
+ UpdateChains(NodeToMatch, InputChain, ChainNodesMatched, false);
+
+ // If the root node defines glue, we need to update it to the glue result.
+ // TODO: This never happens in our tests and I think it can be removed /
+ // replaced with an assert, but if we do it this the way the change is
+ // NFC.
+ if (NodeToMatch->getValueType(NodeToMatch->getNumValues() - 1) ==
+ MVT::Glue &&
+ InputGlue.getNode())
+ ReplaceUses(SDValue(NodeToMatch, NodeToMatch->getNumValues() - 1),
+ InputGlue);
+
+ assert(NodeToMatch->use_empty() &&
+ "Didn't replace all uses of the node?");
+ CurDAG->RemoveDeadNode(NodeToMatch);
+
+ return;
+ }
+ }
+
+ // If the code reached this point, then the match failed. See if there is
+ // another child to try in the current 'Scope', otherwise pop it until we
+ // find a case to check.
+ LLVM_DEBUG(dbgs() << " Match failed at index " << CurrentOpcodeIndex
+ << "\n");
+ ++NumDAGIselRetries;
+ while (true) {
+ if (MatchScopes.empty()) {
+ CannotYetSelect(NodeToMatch);
+ return;
+ }
+
+ // Restore the interpreter state back to the point where the scope was
+ // formed.
+ MatchScope &LastScope = MatchScopes.back();
+ RecordedNodes.resize(LastScope.NumRecordedNodes);
+ NodeStack.clear();
+ NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end());
+ N = NodeStack.back();
+
+ if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size())
+ MatchedMemRefs.resize(LastScope.NumMatchedMemRefs);
+ MatcherIndex = LastScope.FailIndex;
+
+ LLVM_DEBUG(dbgs() << " Continuing at " << MatcherIndex << "\n");
+
+ InputChain = LastScope.InputChain;
+ InputGlue = LastScope.InputGlue;
+ if (!LastScope.HasChainNodesMatched)
+ ChainNodesMatched.clear();
+
+ // Check to see what the offset is at the new MatcherIndex. If it is zero
+ // we have reached the end of this scope, otherwise we have another child
+ // in the current scope to try.
+ unsigned NumToSkip = MatcherTable[MatcherIndex++];
+ if (NumToSkip & 128)
+ NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex);
+
+ // If we have another child in this scope to match, update FailIndex and
+ // try it.
+ if (NumToSkip != 0) {
+ LastScope.FailIndex = MatcherIndex+NumToSkip;
+ break;
+ }
+
+ // End of this scope, pop it and try the next child in the containing
+ // scope.
+ MatchScopes.pop_back();
+ }
+ }
+}
+
+bool SelectionDAGISel::isOrEquivalentToAdd(const SDNode *N) const {
+ assert(N->getOpcode() == ISD::OR && "Unexpected opcode");
+ auto *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
+ if (!C)
+ return false;
+
+ // Detect when "or" is used to add an offset to a stack object.
+ if (auto *FN = dyn_cast<FrameIndexSDNode>(N->getOperand(0))) {
+ MachineFrameInfo &MFI = MF->getFrameInfo();
+ unsigned A = MFI.getObjectAlignment(FN->getIndex());
+ assert(isPowerOf2_32(A) && "Unexpected alignment");
+ int32_t Off = C->getSExtValue();
+ // If the alleged offset fits in the zero bits guaranteed by
+ // the alignment, then this or is really an add.
+ return (Off >= 0) && (((A - 1) & Off) == unsigned(Off));
+ }
+ return false;
+}
+
+void SelectionDAGISel::CannotYetSelect(SDNode *N) {
+ std::string msg;
+ raw_string_ostream Msg(msg);
+ Msg << "Cannot select: ";
+
+ if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN &&
+ N->getOpcode() != ISD::INTRINSIC_WO_CHAIN &&
+ N->getOpcode() != ISD::INTRINSIC_VOID) {
+ N->printrFull(Msg, CurDAG);
+ Msg << "\nIn function: " << MF->getName();
+ } else {
+ bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other;
+ unsigned iid =
+ cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue();
+ if (iid < Intrinsic::num_intrinsics)
+ Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid, None);
+ else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo())
+ Msg << "target intrinsic %" << TII->getName(iid);
+ else
+ Msg << "unknown intrinsic #" << iid;
+ }
+ report_fatal_error(Msg.str());
+}
+
+char SelectionDAGISel::ID = 0;