summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/CodeGen/ShrinkWrap.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/CodeGen/ShrinkWrap.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/CodeGen/ShrinkWrap.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/CodeGen/ShrinkWrap.cpp618
1 files changed, 618 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/CodeGen/ShrinkWrap.cpp b/contrib/llvm-project/llvm/lib/CodeGen/ShrinkWrap.cpp
new file mode 100644
index 000000000000..2db0ea570598
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/CodeGen/ShrinkWrap.cpp
@@ -0,0 +1,618 @@
+//===- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass looks for safe point where the prologue and epilogue can be
+// inserted.
+// The safe point for the prologue (resp. epilogue) is called Save
+// (resp. Restore).
+// A point is safe for prologue (resp. epilogue) if and only if
+// it 1) dominates (resp. post-dominates) all the frame related operations and
+// between 2) two executions of the Save (resp. Restore) point there is an
+// execution of the Restore (resp. Save) point.
+//
+// For instance, the following points are safe:
+// for (int i = 0; i < 10; ++i) {
+// Save
+// ...
+// Restore
+// }
+// Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
+// And the following points are not:
+// for (int i = 0; i < 10; ++i) {
+// Save
+// ...
+// }
+// for (int i = 0; i < 10; ++i) {
+// ...
+// Restore
+// }
+// Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
+//
+// This pass also ensures that the safe points are 3) cheaper than the regular
+// entry and exits blocks.
+//
+// Property #1 is ensured via the use of MachineDominatorTree and
+// MachinePostDominatorTree.
+// Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
+// points must be in the same loop.
+// Property #3 is ensured via the MachineBlockFrequencyInfo.
+//
+// If this pass found points matching all these properties, then
+// MachineFrameInfo is updated with this information.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/CFG.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/RegisterClassInfo.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <cassert>
+#include <cstdint>
+#include <memory>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "shrink-wrap"
+
+STATISTIC(NumFunc, "Number of functions");
+STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
+STATISTIC(NumCandidatesDropped,
+ "Number of shrink-wrapping candidates dropped because of frequency");
+
+static cl::opt<cl::boolOrDefault>
+EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
+ cl::desc("enable the shrink-wrapping pass"));
+
+namespace {
+
+/// Class to determine where the safe point to insert the
+/// prologue and epilogue are.
+/// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
+/// shrink-wrapping term for prologue/epilogue placement, this pass
+/// does not rely on expensive data-flow analysis. Instead we use the
+/// dominance properties and loop information to decide which point
+/// are safe for such insertion.
+class ShrinkWrap : public MachineFunctionPass {
+ /// Hold callee-saved information.
+ RegisterClassInfo RCI;
+ MachineDominatorTree *MDT;
+ MachinePostDominatorTree *MPDT;
+
+ /// Current safe point found for the prologue.
+ /// The prologue will be inserted before the first instruction
+ /// in this basic block.
+ MachineBasicBlock *Save;
+
+ /// Current safe point found for the epilogue.
+ /// The epilogue will be inserted before the first terminator instruction
+ /// in this basic block.
+ MachineBasicBlock *Restore;
+
+ /// Hold the information of the basic block frequency.
+ /// Use to check the profitability of the new points.
+ MachineBlockFrequencyInfo *MBFI;
+
+ /// Hold the loop information. Used to determine if Save and Restore
+ /// are in the same loop.
+ MachineLoopInfo *MLI;
+
+ // Emit remarks.
+ MachineOptimizationRemarkEmitter *ORE = nullptr;
+
+ /// Frequency of the Entry block.
+ uint64_t EntryFreq;
+
+ /// Current opcode for frame setup.
+ unsigned FrameSetupOpcode;
+
+ /// Current opcode for frame destroy.
+ unsigned FrameDestroyOpcode;
+
+ /// Stack pointer register, used by llvm.{savestack,restorestack}
+ unsigned SP;
+
+ /// Entry block.
+ const MachineBasicBlock *Entry;
+
+ using SetOfRegs = SmallSetVector<unsigned, 16>;
+
+ /// Registers that need to be saved for the current function.
+ mutable SetOfRegs CurrentCSRs;
+
+ /// Current MachineFunction.
+ MachineFunction *MachineFunc;
+
+ /// Check if \p MI uses or defines a callee-saved register or
+ /// a frame index. If this is the case, this means \p MI must happen
+ /// after Save and before Restore.
+ bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
+
+ const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
+ if (CurrentCSRs.empty()) {
+ BitVector SavedRegs;
+ const TargetFrameLowering *TFI =
+ MachineFunc->getSubtarget().getFrameLowering();
+
+ TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
+
+ for (int Reg = SavedRegs.find_first(); Reg != -1;
+ Reg = SavedRegs.find_next(Reg))
+ CurrentCSRs.insert((unsigned)Reg);
+ }
+ return CurrentCSRs;
+ }
+
+ /// Update the Save and Restore points such that \p MBB is in
+ /// the region that is dominated by Save and post-dominated by Restore
+ /// and Save and Restore still match the safe point definition.
+ /// Such point may not exist and Save and/or Restore may be null after
+ /// this call.
+ void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
+
+ /// Initialize the pass for \p MF.
+ void init(MachineFunction &MF) {
+ RCI.runOnMachineFunction(MF);
+ MDT = &getAnalysis<MachineDominatorTree>();
+ MPDT = &getAnalysis<MachinePostDominatorTree>();
+ Save = nullptr;
+ Restore = nullptr;
+ MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
+ MLI = &getAnalysis<MachineLoopInfo>();
+ ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
+ EntryFreq = MBFI->getEntryFreq();
+ const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
+ const TargetInstrInfo &TII = *Subtarget.getInstrInfo();
+ FrameSetupOpcode = TII.getCallFrameSetupOpcode();
+ FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
+ SP = Subtarget.getTargetLowering()->getStackPointerRegisterToSaveRestore();
+ Entry = &MF.front();
+ CurrentCSRs.clear();
+ MachineFunc = &MF;
+
+ ++NumFunc;
+ }
+
+ /// Check whether or not Save and Restore points are still interesting for
+ /// shrink-wrapping.
+ bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
+
+ /// Check if shrink wrapping is enabled for this target and function.
+ static bool isShrinkWrapEnabled(const MachineFunction &MF);
+
+public:
+ static char ID;
+
+ ShrinkWrap() : MachineFunctionPass(ID) {
+ initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachinePostDominatorTree>();
+ AU.addRequired<MachineLoopInfo>();
+ AU.addRequired<MachineOptimizationRemarkEmitterPass>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoVRegs);
+ }
+
+ StringRef getPassName() const override { return "Shrink Wrapping analysis"; }
+
+ /// Perform the shrink-wrapping analysis and update
+ /// the MachineFrameInfo attached to \p MF with the results.
+ bool runOnMachineFunction(MachineFunction &MF) override;
+};
+
+} // end anonymous namespace
+
+char ShrinkWrap::ID = 0;
+
+char &llvm::ShrinkWrapID = ShrinkWrap::ID;
+
+INITIALIZE_PASS_BEGIN(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineOptimizationRemarkEmitterPass)
+INITIALIZE_PASS_END(ShrinkWrap, DEBUG_TYPE, "Shrink Wrap Pass", false, false)
+
+bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
+ RegScavenger *RS) const {
+ // This prevents premature stack popping when occurs a indirect stack
+ // access. It is overly aggressive for the moment.
+ // TODO: - Obvious non-stack loads and store, such as global values,
+ // are known to not access the stack.
+ // - Further, data dependency and alias analysis can validate
+ // that load and stores never derive from the stack pointer.
+ if (MI.mayLoadOrStore())
+ return true;
+
+ if (MI.getOpcode() == FrameSetupOpcode ||
+ MI.getOpcode() == FrameDestroyOpcode) {
+ LLVM_DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
+ return true;
+ }
+ for (const MachineOperand &MO : MI.operands()) {
+ bool UseOrDefCSR = false;
+ if (MO.isReg()) {
+ // Ignore instructions like DBG_VALUE which don't read/def the register.
+ if (!MO.isDef() && !MO.readsReg())
+ continue;
+ unsigned PhysReg = MO.getReg();
+ if (!PhysReg)
+ continue;
+ assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
+ "Unallocated register?!");
+ // The stack pointer is not normally described as a callee-saved register
+ // in calling convention definitions, so we need to watch for it
+ // separately. An SP mentioned by a call instruction, we can ignore,
+ // though, as it's harmless and we do not want to effectively disable tail
+ // calls by forcing the restore point to post-dominate them.
+ UseOrDefCSR = (!MI.isCall() && PhysReg == SP) ||
+ RCI.getLastCalleeSavedAlias(PhysReg);
+ } else if (MO.isRegMask()) {
+ // Check if this regmask clobbers any of the CSRs.
+ for (unsigned Reg : getCurrentCSRs(RS)) {
+ if (MO.clobbersPhysReg(Reg)) {
+ UseOrDefCSR = true;
+ break;
+ }
+ }
+ }
+ // Skip FrameIndex operands in DBG_VALUE instructions.
+ if (UseOrDefCSR || (MO.isFI() && !MI.isDebugValue())) {
+ LLVM_DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
+ << MO.isFI() << "): " << MI << '\n');
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Helper function to find the immediate (post) dominator.
+template <typename ListOfBBs, typename DominanceAnalysis>
+static MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
+ DominanceAnalysis &Dom) {
+ MachineBasicBlock *IDom = &Block;
+ for (MachineBasicBlock *BB : BBs) {
+ IDom = Dom.findNearestCommonDominator(IDom, BB);
+ if (!IDom)
+ break;
+ }
+ if (IDom == &Block)
+ return nullptr;
+ return IDom;
+}
+
+void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
+ RegScavenger *RS) {
+ // Get rid of the easy cases first.
+ if (!Save)
+ Save = &MBB;
+ else
+ Save = MDT->findNearestCommonDominator(Save, &MBB);
+
+ if (!Save) {
+ LLVM_DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
+ return;
+ }
+
+ if (!Restore)
+ Restore = &MBB;
+ else if (MPDT->getNode(&MBB)) // If the block is not in the post dom tree, it
+ // means the block never returns. If that's the
+ // case, we don't want to call
+ // `findNearestCommonDominator`, which will
+ // return `Restore`.
+ Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
+ else
+ Restore = nullptr; // Abort, we can't find a restore point in this case.
+
+ // Make sure we would be able to insert the restore code before the
+ // terminator.
+ if (Restore == &MBB) {
+ for (const MachineInstr &Terminator : MBB.terminators()) {
+ if (!useOrDefCSROrFI(Terminator, RS))
+ continue;
+ // One of the terminator needs to happen before the restore point.
+ if (MBB.succ_empty()) {
+ Restore = nullptr; // Abort, we can't find a restore point in this case.
+ break;
+ }
+ // Look for a restore point that post-dominates all the successors.
+ // The immediate post-dominator is what we are looking for.
+ Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
+ break;
+ }
+ }
+
+ if (!Restore) {
+ LLVM_DEBUG(
+ dbgs() << "Restore point needs to be spanned on several blocks\n");
+ return;
+ }
+
+ // Make sure Save and Restore are suitable for shrink-wrapping:
+ // 1. all path from Save needs to lead to Restore before exiting.
+ // 2. all path to Restore needs to go through Save from Entry.
+ // We achieve that by making sure that:
+ // A. Save dominates Restore.
+ // B. Restore post-dominates Save.
+ // C. Save and Restore are in the same loop.
+ bool SaveDominatesRestore = false;
+ bool RestorePostDominatesSave = false;
+ while (Save && Restore &&
+ (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
+ !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
+ // Post-dominance is not enough in loops to ensure that all uses/defs
+ // are after the prologue and before the epilogue at runtime.
+ // E.g.,
+ // while(1) {
+ // Save
+ // Restore
+ // if (...)
+ // break;
+ // use/def CSRs
+ // }
+ // All the uses/defs of CSRs are dominated by Save and post-dominated
+ // by Restore. However, the CSRs uses are still reachable after
+ // Restore and before Save are executed.
+ //
+ // For now, just push the restore/save points outside of loops.
+ // FIXME: Refine the criteria to still find interesting cases
+ // for loops.
+ MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
+ // Fix (A).
+ if (!SaveDominatesRestore) {
+ Save = MDT->findNearestCommonDominator(Save, Restore);
+ continue;
+ }
+ // Fix (B).
+ if (!RestorePostDominatesSave)
+ Restore = MPDT->findNearestCommonDominator(Restore, Save);
+
+ // Fix (C).
+ if (Save && Restore &&
+ (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
+ if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
+ // Push Save outside of this loop if immediate dominator is different
+ // from save block. If immediate dominator is not different, bail out.
+ Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
+ if (!Save)
+ break;
+ } else {
+ // If the loop does not exit, there is no point in looking
+ // for a post-dominator outside the loop.
+ SmallVector<MachineBasicBlock*, 4> ExitBlocks;
+ MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
+ // Push Restore outside of this loop.
+ // Look for the immediate post-dominator of the loop exits.
+ MachineBasicBlock *IPdom = Restore;
+ for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
+ IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
+ if (!IPdom)
+ break;
+ }
+ // If the immediate post-dominator is not in a less nested loop,
+ // then we are stuck in a program with an infinite loop.
+ // In that case, we will not find a safe point, hence, bail out.
+ if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
+ Restore = IPdom;
+ else {
+ Restore = nullptr;
+ break;
+ }
+ }
+ }
+ }
+}
+
+static bool giveUpWithRemarks(MachineOptimizationRemarkEmitter *ORE,
+ StringRef RemarkName, StringRef RemarkMessage,
+ const DiagnosticLocation &Loc,
+ const MachineBasicBlock *MBB) {
+ ORE->emit([&]() {
+ return MachineOptimizationRemarkMissed(DEBUG_TYPE, RemarkName, Loc, MBB)
+ << RemarkMessage;
+ });
+
+ LLVM_DEBUG(dbgs() << RemarkMessage << '\n');
+ return false;
+}
+
+bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()) || MF.empty() || !isShrinkWrapEnabled(MF))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
+
+ init(MF);
+
+ ReversePostOrderTraversal<MachineBasicBlock *> RPOT(&*MF.begin());
+ if (containsIrreducibleCFG<MachineBasicBlock *>(RPOT, *MLI)) {
+ // If MF is irreducible, a block may be in a loop without
+ // MachineLoopInfo reporting it. I.e., we may use the
+ // post-dominance property in loops, which lead to incorrect
+ // results. Moreover, we may miss that the prologue and
+ // epilogue are not in the same loop, leading to unbalanced
+ // construction/deconstruction of the stack frame.
+ return giveUpWithRemarks(ORE, "UnsupportedIrreducibleCFG",
+ "Irreducible CFGs are not supported yet.",
+ MF.getFunction().getSubprogram(), &MF.front());
+ }
+
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ std::unique_ptr<RegScavenger> RS(
+ TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
+
+ for (MachineBasicBlock &MBB : MF) {
+ LLVM_DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' '
+ << MBB.getName() << '\n');
+
+ if (MBB.isEHFuncletEntry())
+ return giveUpWithRemarks(ORE, "UnsupportedEHFunclets",
+ "EH Funclets are not supported yet.",
+ MBB.front().getDebugLoc(), &MBB);
+
+ if (MBB.isEHPad()) {
+ // Push the prologue and epilogue outside of
+ // the region that may throw by making sure
+ // that all the landing pads are at least at the
+ // boundary of the save and restore points.
+ // The problem with exceptions is that the throw
+ // is not properly modeled and in particular, a
+ // basic block can jump out from the middle.
+ updateSaveRestorePoints(MBB, RS.get());
+ if (!ArePointsInteresting()) {
+ LLVM_DEBUG(dbgs() << "EHPad prevents shrink-wrapping\n");
+ return false;
+ }
+ continue;
+ }
+
+ for (const MachineInstr &MI : MBB) {
+ if (!useOrDefCSROrFI(MI, RS.get()))
+ continue;
+ // Save (resp. restore) point must dominate (resp. post dominate)
+ // MI. Look for the proper basic block for those.
+ updateSaveRestorePoints(MBB, RS.get());
+ // If we are at a point where we cannot improve the placement of
+ // save/restore instructions, just give up.
+ if (!ArePointsInteresting()) {
+ LLVM_DEBUG(dbgs() << "No Shrink wrap candidate found\n");
+ return false;
+ }
+ // No need to look for other instructions, this basic block
+ // will already be part of the handled region.
+ break;
+ }
+ }
+ if (!ArePointsInteresting()) {
+ // If the points are not interesting at this point, then they must be null
+ // because it means we did not encounter any frame/CSR related code.
+ // Otherwise, we would have returned from the previous loop.
+ assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
+ LLVM_DEBUG(dbgs() << "Nothing to shrink-wrap\n");
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
+ << '\n');
+
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
+ do {
+ LLVM_DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
+ << Save->getNumber() << ' ' << Save->getName() << ' '
+ << MBFI->getBlockFreq(Save).getFrequency()
+ << "\nRestore: " << Restore->getNumber() << ' '
+ << Restore->getName() << ' '
+ << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
+
+ bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
+ if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
+ EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
+ ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
+ TFI->canUseAsEpilogue(*Restore)))
+ break;
+ LLVM_DEBUG(
+ dbgs() << "New points are too expensive or invalid for the target\n");
+ MachineBasicBlock *NewBB;
+ if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
+ Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
+ if (!Save)
+ break;
+ NewBB = Save;
+ } else {
+ // Restore is expensive.
+ Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
+ if (!Restore)
+ break;
+ NewBB = Restore;
+ }
+ updateSaveRestorePoints(*NewBB, RS.get());
+ } while (Save && Restore);
+
+ if (!ArePointsInteresting()) {
+ ++NumCandidatesDropped;
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: "
+ << Save->getNumber() << ' ' << Save->getName()
+ << "\nRestore: " << Restore->getNumber() << ' '
+ << Restore->getName() << '\n');
+
+ MachineFrameInfo &MFI = MF.getFrameInfo();
+ MFI.setSavePoint(Save);
+ MFI.setRestorePoint(Restore);
+ ++NumCandidates;
+ return false;
+}
+
+bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
+ const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
+
+ switch (EnableShrinkWrapOpt) {
+ case cl::BOU_UNSET:
+ return TFI->enableShrinkWrapping(MF) &&
+ // Windows with CFI has some limitations that make it impossible
+ // to use shrink-wrapping.
+ !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
+ // Sanitizers look at the value of the stack at the location
+ // of the crash. Since a crash can happen anywhere, the
+ // frame must be lowered before anything else happen for the
+ // sanitizers to be able to get a correct stack frame.
+ !(MF.getFunction().hasFnAttribute(Attribute::SanitizeAddress) ||
+ MF.getFunction().hasFnAttribute(Attribute::SanitizeThread) ||
+ MF.getFunction().hasFnAttribute(Attribute::SanitizeMemory) ||
+ MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress));
+ // If EnableShrinkWrap is set, it takes precedence on whatever the
+ // target sets. The rational is that we assume we want to test
+ // something related to shrink-wrapping.
+ case cl::BOU_TRUE:
+ return true;
+ case cl::BOU_FALSE:
+ return false;
+ }
+ llvm_unreachable("Invalid shrink-wrapping state");
+}