summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp582
1 files changed, 582 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp
new file mode 100644
index 000000000000..8a92e7d923fb
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAtomicOptimizer.cpp
@@ -0,0 +1,582 @@
+//===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This pass optimizes atomic operations by using a single lane of a wavefront
+/// to perform the atomic operation, thus reducing contention on that memory
+/// location.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+
+#define DEBUG_TYPE "amdgpu-atomic-optimizer"
+
+using namespace llvm;
+
+namespace {
+
+enum DPP_CTRL {
+ DPP_ROW_SR1 = 0x111,
+ DPP_ROW_SR2 = 0x112,
+ DPP_ROW_SR3 = 0x113,
+ DPP_ROW_SR4 = 0x114,
+ DPP_ROW_SR8 = 0x118,
+ DPP_WF_SR1 = 0x138,
+ DPP_ROW_BCAST15 = 0x142,
+ DPP_ROW_BCAST31 = 0x143
+};
+
+struct ReplacementInfo {
+ Instruction *I;
+ AtomicRMWInst::BinOp Op;
+ unsigned ValIdx;
+ bool ValDivergent;
+};
+
+class AMDGPUAtomicOptimizer : public FunctionPass,
+ public InstVisitor<AMDGPUAtomicOptimizer> {
+private:
+ SmallVector<ReplacementInfo, 8> ToReplace;
+ const LegacyDivergenceAnalysis *DA;
+ const DataLayout *DL;
+ DominatorTree *DT;
+ bool HasDPP;
+ bool IsPixelShader;
+
+ void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
+ bool ValDivergent) const;
+
+public:
+ static char ID;
+
+ AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
+
+ bool runOnFunction(Function &F) override;
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addRequired<LegacyDivergenceAnalysis>();
+ AU.addRequired<TargetPassConfig>();
+ }
+
+ void visitAtomicRMWInst(AtomicRMWInst &I);
+ void visitIntrinsicInst(IntrinsicInst &I);
+};
+
+} // namespace
+
+char AMDGPUAtomicOptimizer::ID = 0;
+
+char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
+
+bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
+ if (skipFunction(F)) {
+ return false;
+ }
+
+ DA = &getAnalysis<LegacyDivergenceAnalysis>();
+ DL = &F.getParent()->getDataLayout();
+ DominatorTreeWrapperPass *const DTW =
+ getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+ DT = DTW ? &DTW->getDomTree() : nullptr;
+ const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
+ const TargetMachine &TM = TPC.getTM<TargetMachine>();
+ const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
+ HasDPP = ST.hasDPP();
+ IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
+
+ visit(F);
+
+ const bool Changed = !ToReplace.empty();
+
+ for (ReplacementInfo &Info : ToReplace) {
+ optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
+ }
+
+ ToReplace.clear();
+
+ return Changed;
+}
+
+void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
+ // Early exit for unhandled address space atomic instructions.
+ switch (I.getPointerAddressSpace()) {
+ default:
+ return;
+ case AMDGPUAS::GLOBAL_ADDRESS:
+ case AMDGPUAS::LOCAL_ADDRESS:
+ break;
+ }
+
+ AtomicRMWInst::BinOp Op = I.getOperation();
+
+ switch (Op) {
+ default:
+ return;
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Xor:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ break;
+ }
+
+ const unsigned PtrIdx = 0;
+ const unsigned ValIdx = 1;
+
+ // If the pointer operand is divergent, then each lane is doing an atomic
+ // operation on a different address, and we cannot optimize that.
+ if (DA->isDivergent(I.getOperand(PtrIdx))) {
+ return;
+ }
+
+ const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
+
+ // If the value operand is divergent, each lane is contributing a different
+ // value to the atomic calculation. We can only optimize divergent values if
+ // we have DPP available on our subtarget, and the atomic operation is 32
+ // bits.
+ if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
+ return;
+ }
+
+ // If we get here, we can optimize the atomic using a single wavefront-wide
+ // atomic operation to do the calculation for the entire wavefront, so
+ // remember the instruction so we can come back to it.
+ const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
+
+ ToReplace.push_back(Info);
+}
+
+void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
+ AtomicRMWInst::BinOp Op;
+
+ switch (I.getIntrinsicID()) {
+ default:
+ return;
+ case Intrinsic::amdgcn_buffer_atomic_add:
+ case Intrinsic::amdgcn_struct_buffer_atomic_add:
+ case Intrinsic::amdgcn_raw_buffer_atomic_add:
+ Op = AtomicRMWInst::Add;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_sub:
+ case Intrinsic::amdgcn_struct_buffer_atomic_sub:
+ case Intrinsic::amdgcn_raw_buffer_atomic_sub:
+ Op = AtomicRMWInst::Sub;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_and:
+ case Intrinsic::amdgcn_struct_buffer_atomic_and:
+ case Intrinsic::amdgcn_raw_buffer_atomic_and:
+ Op = AtomicRMWInst::And;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_or:
+ case Intrinsic::amdgcn_struct_buffer_atomic_or:
+ case Intrinsic::amdgcn_raw_buffer_atomic_or:
+ Op = AtomicRMWInst::Or;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_xor:
+ case Intrinsic::amdgcn_struct_buffer_atomic_xor:
+ case Intrinsic::amdgcn_raw_buffer_atomic_xor:
+ Op = AtomicRMWInst::Xor;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_smin:
+ case Intrinsic::amdgcn_struct_buffer_atomic_smin:
+ case Intrinsic::amdgcn_raw_buffer_atomic_smin:
+ Op = AtomicRMWInst::Min;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_umin:
+ case Intrinsic::amdgcn_struct_buffer_atomic_umin:
+ case Intrinsic::amdgcn_raw_buffer_atomic_umin:
+ Op = AtomicRMWInst::UMin;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_smax:
+ case Intrinsic::amdgcn_struct_buffer_atomic_smax:
+ case Intrinsic::amdgcn_raw_buffer_atomic_smax:
+ Op = AtomicRMWInst::Max;
+ break;
+ case Intrinsic::amdgcn_buffer_atomic_umax:
+ case Intrinsic::amdgcn_struct_buffer_atomic_umax:
+ case Intrinsic::amdgcn_raw_buffer_atomic_umax:
+ Op = AtomicRMWInst::UMax;
+ break;
+ }
+
+ const unsigned ValIdx = 0;
+
+ const bool ValDivergent = DA->isDivergent(I.getOperand(ValIdx));
+
+ // If the value operand is divergent, each lane is contributing a different
+ // value to the atomic calculation. We can only optimize divergent values if
+ // we have DPP available on our subtarget, and the atomic operation is 32
+ // bits.
+ if (ValDivergent && (!HasDPP || (DL->getTypeSizeInBits(I.getType()) != 32))) {
+ return;
+ }
+
+ // If any of the other arguments to the intrinsic are divergent, we can't
+ // optimize the operation.
+ for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
+ if (DA->isDivergent(I.getOperand(Idx))) {
+ return;
+ }
+ }
+
+ // If we get here, we can optimize the atomic using a single wavefront-wide
+ // atomic operation to do the calculation for the entire wavefront, so
+ // remember the instruction so we can come back to it.
+ const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
+
+ ToReplace.push_back(Info);
+}
+
+// Use the builder to create the non-atomic counterpart of the specified
+// atomicrmw binary op.
+static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
+ Value *LHS, Value *RHS) {
+ CmpInst::Predicate Pred;
+
+ switch (Op) {
+ default:
+ llvm_unreachable("Unhandled atomic op");
+ case AtomicRMWInst::Add:
+ return B.CreateBinOp(Instruction::Add, LHS, RHS);
+ case AtomicRMWInst::Sub:
+ return B.CreateBinOp(Instruction::Sub, LHS, RHS);
+ case AtomicRMWInst::And:
+ return B.CreateBinOp(Instruction::And, LHS, RHS);
+ case AtomicRMWInst::Or:
+ return B.CreateBinOp(Instruction::Or, LHS, RHS);
+ case AtomicRMWInst::Xor:
+ return B.CreateBinOp(Instruction::Xor, LHS, RHS);
+
+ case AtomicRMWInst::Max:
+ Pred = CmpInst::ICMP_SGT;
+ break;
+ case AtomicRMWInst::Min:
+ Pred = CmpInst::ICMP_SLT;
+ break;
+ case AtomicRMWInst::UMax:
+ Pred = CmpInst::ICMP_UGT;
+ break;
+ case AtomicRMWInst::UMin:
+ Pred = CmpInst::ICMP_ULT;
+ break;
+ }
+ Value *Cond = B.CreateICmp(Pred, LHS, RHS);
+ return B.CreateSelect(Cond, LHS, RHS);
+}
+
+static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
+ unsigned BitWidth) {
+ switch (Op) {
+ default:
+ llvm_unreachable("Unhandled atomic op");
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Xor:
+ case AtomicRMWInst::UMax:
+ return APInt::getMinValue(BitWidth);
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::UMin:
+ return APInt::getMaxValue(BitWidth);
+ case AtomicRMWInst::Max:
+ return APInt::getSignedMinValue(BitWidth);
+ case AtomicRMWInst::Min:
+ return APInt::getSignedMaxValue(BitWidth);
+ }
+}
+
+void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
+ AtomicRMWInst::BinOp Op,
+ unsigned ValIdx,
+ bool ValDivergent) const {
+ // Start building just before the instruction.
+ IRBuilder<> B(&I);
+
+ // If we are in a pixel shader, because of how we have to mask out helper
+ // lane invocations, we need to record the entry and exit BB's.
+ BasicBlock *PixelEntryBB = nullptr;
+ BasicBlock *PixelExitBB = nullptr;
+
+ // If we're optimizing an atomic within a pixel shader, we need to wrap the
+ // entire atomic operation in a helper-lane check. We do not want any helper
+ // lanes that are around only for the purposes of derivatives to take part
+ // in any cross-lane communication, and we use a branch on whether the lane is
+ // live to do this.
+ if (IsPixelShader) {
+ // Record I's original position as the entry block.
+ PixelEntryBB = I.getParent();
+
+ Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
+ Instruction *const NonHelperTerminator =
+ SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
+
+ // Record I's new position as the exit block.
+ PixelExitBB = I.getParent();
+
+ I.moveBefore(NonHelperTerminator);
+ B.SetInsertPoint(&I);
+ }
+
+ Type *const Ty = I.getType();
+ const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
+ Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
+
+ // This is the value in the atomic operation we need to combine in order to
+ // reduce the number of atomic operations.
+ Value *const V = I.getOperand(ValIdx);
+
+ // We need to know how many lanes are active within the wavefront, and we do
+ // this by doing a ballot of active lanes.
+ CallInst *const Ballot = B.CreateIntrinsic(
+ Intrinsic::amdgcn_icmp, {B.getInt64Ty(), B.getInt32Ty()},
+ {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)});
+
+ // We need to know how many lanes are active within the wavefront that are
+ // below us. If we counted each lane linearly starting from 0, a lane is
+ // below us only if its associated index was less than ours. We do this by
+ // using the mbcnt intrinsic.
+ Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
+ Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
+ Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
+ CallInst *const PartialMbcnt = B.CreateIntrinsic(
+ Intrinsic::amdgcn_mbcnt_lo, {}, {ExtractLo, B.getInt32(0)});
+ Value *const Mbcnt =
+ B.CreateIntCast(B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {},
+ {ExtractHi, PartialMbcnt}),
+ Ty, false);
+
+ Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));
+
+ Value *ExclScan = nullptr;
+ Value *NewV = nullptr;
+
+ // If we have a divergent value in each lane, we need to combine the value
+ // using DPP.
+ if (ValDivergent) {
+ // First we need to set all inactive invocations to the identity value, so
+ // that they can correctly contribute to the final result.
+ CallInst *const SetInactive =
+ B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
+
+ CallInst *const FirstDPP =
+ B.CreateIntrinsic(Intrinsic::amdgcn_update_dpp, Ty,
+ {Identity, SetInactive, B.getInt32(DPP_WF_SR1),
+ B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
+ ExclScan = FirstDPP;
+
+ const unsigned Iters = 7;
+ const unsigned DPPCtrl[Iters] = {
+ DPP_ROW_SR1, DPP_ROW_SR2, DPP_ROW_SR3, DPP_ROW_SR4,
+ DPP_ROW_SR8, DPP_ROW_BCAST15, DPP_ROW_BCAST31};
+ const unsigned RowMask[Iters] = {0xf, 0xf, 0xf, 0xf, 0xf, 0xa, 0xc};
+ const unsigned BankMask[Iters] = {0xf, 0xf, 0xf, 0xe, 0xc, 0xf, 0xf};
+
+ // This loop performs an exclusive scan across the wavefront, with all lanes
+ // active (by using the WWM intrinsic).
+ for (unsigned Idx = 0; Idx < Iters; Idx++) {
+ Value *const UpdateValue = Idx < 3 ? FirstDPP : ExclScan;
+ CallInst *const DPP = B.CreateIntrinsic(
+ Intrinsic::amdgcn_update_dpp, Ty,
+ {Identity, UpdateValue, B.getInt32(DPPCtrl[Idx]),
+ B.getInt32(RowMask[Idx]), B.getInt32(BankMask[Idx]), B.getFalse()});
+
+ ExclScan = buildNonAtomicBinOp(B, Op, ExclScan, DPP);
+ }
+
+ NewV = buildNonAtomicBinOp(B, Op, SetInactive, ExclScan);
+
+ // Read the value from the last lane, which has accumlated the values of
+ // each active lane in the wavefront. This will be our new value which we
+ // will provide to the atomic operation.
+ if (TyBitWidth == 64) {
+ Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
+ Value *const ExtractHi =
+ B.CreateTrunc(B.CreateLShr(NewV, B.getInt64(32)), B.getInt32Ty());
+ CallInst *const ReadLaneLo = B.CreateIntrinsic(
+ Intrinsic::amdgcn_readlane, {}, {ExtractLo, B.getInt32(63)});
+ CallInst *const ReadLaneHi = B.CreateIntrinsic(
+ Intrinsic::amdgcn_readlane, {}, {ExtractHi, B.getInt32(63)});
+ Value *const PartialInsert = B.CreateInsertElement(
+ UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
+ Value *const Insert =
+ B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
+ NewV = B.CreateBitCast(Insert, Ty);
+ } else if (TyBitWidth == 32) {
+ NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
+ {NewV, B.getInt32(63)});
+ } else {
+ llvm_unreachable("Unhandled atomic bit width");
+ }
+
+ // Finally mark the readlanes in the WWM section.
+ NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
+ } else {
+ switch (Op) {
+ default:
+ llvm_unreachable("Unhandled atomic op");
+
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub: {
+ // The new value we will be contributing to the atomic operation is the
+ // old value times the number of active lanes.
+ Value *const Ctpop = B.CreateIntCast(
+ B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
+ NewV = B.CreateMul(V, Ctpop);
+ break;
+ }
+
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ // These operations with a uniform value are idempotent: doing the atomic
+ // operation multiple times has the same effect as doing it once.
+ NewV = V;
+ break;
+
+ case AtomicRMWInst::Xor:
+ // The new value we will be contributing to the atomic operation is the
+ // old value times the parity of the number of active lanes.
+ Value *const Ctpop = B.CreateIntCast(
+ B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
+ NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1));
+ break;
+ }
+ }
+
+ // We only want a single lane to enter our new control flow, and we do this
+ // by checking if there are any active lanes below us. Only one lane will
+ // have 0 active lanes below us, so that will be the only one to progress.
+ Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0));
+
+ // Store I's original basic block before we split the block.
+ BasicBlock *const EntryBB = I.getParent();
+
+ // We need to introduce some new control flow to force a single lane to be
+ // active. We do this by splitting I's basic block at I, and introducing the
+ // new block such that:
+ // entry --> single_lane -\
+ // \------------------> exit
+ Instruction *const SingleLaneTerminator =
+ SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
+
+ // Move the IR builder into single_lane next.
+ B.SetInsertPoint(SingleLaneTerminator);
+
+ // Clone the original atomic operation into single lane, replacing the
+ // original value with our newly created one.
+ Instruction *const NewI = I.clone();
+ B.Insert(NewI);
+ NewI->setOperand(ValIdx, NewV);
+
+ // Move the IR builder into exit next, and start inserting just before the
+ // original instruction.
+ B.SetInsertPoint(&I);
+
+ // Create a PHI node to get our new atomic result into the exit block.
+ PHINode *const PHI = B.CreatePHI(Ty, 2);
+ PHI->addIncoming(UndefValue::get(Ty), EntryBB);
+ PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
+
+ // We need to broadcast the value who was the lowest active lane (the first
+ // lane) to all other lanes in the wavefront. We use an intrinsic for this,
+ // but have to handle 64-bit broadcasts with two calls to this intrinsic.
+ Value *BroadcastI = nullptr;
+
+ if (TyBitWidth == 64) {
+ Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
+ Value *const ExtractHi =
+ B.CreateTrunc(B.CreateLShr(PHI, B.getInt64(32)), B.getInt32Ty());
+ CallInst *const ReadFirstLaneLo =
+ B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
+ CallInst *const ReadFirstLaneHi =
+ B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
+ Value *const PartialInsert = B.CreateInsertElement(
+ UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
+ Value *const Insert =
+ B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
+ BroadcastI = B.CreateBitCast(Insert, Ty);
+ } else if (TyBitWidth == 32) {
+
+ BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
+ } else {
+ llvm_unreachable("Unhandled atomic bit width");
+ }
+
+ // Now that we have the result of our single atomic operation, we need to
+ // get our individual lane's slice into the result. We use the lane offset we
+ // previously calculated combined with the atomic result value we got from the
+ // first lane, to get our lane's index into the atomic result.
+ Value *LaneOffset = nullptr;
+ if (ValDivergent) {
+ LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan);
+ } else {
+ switch (Op) {
+ default:
+ llvm_unreachable("Unhandled atomic op");
+ case AtomicRMWInst::Add:
+ case AtomicRMWInst::Sub:
+ LaneOffset = B.CreateMul(V, Mbcnt);
+ break;
+ case AtomicRMWInst::And:
+ case AtomicRMWInst::Or:
+ case AtomicRMWInst::Max:
+ case AtomicRMWInst::Min:
+ case AtomicRMWInst::UMax:
+ case AtomicRMWInst::UMin:
+ LaneOffset = B.CreateSelect(Cond, Identity, V);
+ break;
+ case AtomicRMWInst::Xor:
+ LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1));
+ break;
+ }
+ }
+ Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
+
+ if (IsPixelShader) {
+ // Need a final PHI to reconverge to above the helper lane branch mask.
+ B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
+
+ PHINode *const PHI = B.CreatePHI(Ty, 2);
+ PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
+ PHI->addIncoming(Result, I.getParent());
+ I.replaceAllUsesWith(PHI);
+ } else {
+ // Replace the original atomic instruction with the new one.
+ I.replaceAllUsesWith(Result);
+ }
+
+ // And delete the original.
+ I.eraseFromParent();
+}
+
+INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
+ "AMDGPU atomic optimizations", false, false)
+INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
+INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
+INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
+ "AMDGPU atomic optimizations", false, false)
+
+FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
+ return new AMDGPUAtomicOptimizer();
+}