summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp1053
1 files changed, 1053 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp
new file mode 100644
index 000000000000..b750c6b5f6d2
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/AMDGPUCodeGenPrepare.cpp
@@ -0,0 +1,1053 @@
+//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This pass does misc. AMDGPU optimizations on IR before instruction
+/// selection.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "AMDGPUTargetMachine.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/AssumptionCache.h"
+#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstVisitor.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include <cassert>
+#include <iterator>
+
+#define DEBUG_TYPE "amdgpu-codegenprepare"
+
+using namespace llvm;
+
+namespace {
+
+static cl::opt<bool> WidenLoads(
+ "amdgpu-codegenprepare-widen-constant-loads",
+ cl::desc("Widen sub-dword constant address space loads in AMDGPUCodeGenPrepare"),
+ cl::ReallyHidden,
+ cl::init(true));
+
+class AMDGPUCodeGenPrepare : public FunctionPass,
+ public InstVisitor<AMDGPUCodeGenPrepare, bool> {
+ const GCNSubtarget *ST = nullptr;
+ AssumptionCache *AC = nullptr;
+ LegacyDivergenceAnalysis *DA = nullptr;
+ Module *Mod = nullptr;
+ const DataLayout *DL = nullptr;
+ bool HasUnsafeFPMath = false;
+
+ /// Copies exact/nsw/nuw flags (if any) from binary operation \p I to
+ /// binary operation \p V.
+ ///
+ /// \returns Binary operation \p V.
+ /// \returns \p T's base element bit width.
+ unsigned getBaseElementBitWidth(const Type *T) const;
+
+ /// \returns Equivalent 32 bit integer type for given type \p T. For example,
+ /// if \p T is i7, then i32 is returned; if \p T is <3 x i12>, then <3 x i32>
+ /// is returned.
+ Type *getI32Ty(IRBuilder<> &B, const Type *T) const;
+
+ /// \returns True if binary operation \p I is a signed binary operation, false
+ /// otherwise.
+ bool isSigned(const BinaryOperator &I) const;
+
+ /// \returns True if the condition of 'select' operation \p I comes from a
+ /// signed 'icmp' operation, false otherwise.
+ bool isSigned(const SelectInst &I) const;
+
+ /// \returns True if type \p T needs to be promoted to 32 bit integer type,
+ /// false otherwise.
+ bool needsPromotionToI32(const Type *T) const;
+
+ /// Promotes uniform binary operation \p I to equivalent 32 bit binary
+ /// operation.
+ ///
+ /// \details \p I's base element bit width must be greater than 1 and less
+ /// than or equal 16. Promotion is done by sign or zero extending operands to
+ /// 32 bits, replacing \p I with equivalent 32 bit binary operation, and
+ /// truncating the result of 32 bit binary operation back to \p I's original
+ /// type. Division operation is not promoted.
+ ///
+ /// \returns True if \p I is promoted to equivalent 32 bit binary operation,
+ /// false otherwise.
+ bool promoteUniformOpToI32(BinaryOperator &I) const;
+
+ /// Promotes uniform 'icmp' operation \p I to 32 bit 'icmp' operation.
+ ///
+ /// \details \p I's base element bit width must be greater than 1 and less
+ /// than or equal 16. Promotion is done by sign or zero extending operands to
+ /// 32 bits, and replacing \p I with 32 bit 'icmp' operation.
+ ///
+ /// \returns True.
+ bool promoteUniformOpToI32(ICmpInst &I) const;
+
+ /// Promotes uniform 'select' operation \p I to 32 bit 'select'
+ /// operation.
+ ///
+ /// \details \p I's base element bit width must be greater than 1 and less
+ /// than or equal 16. Promotion is done by sign or zero extending operands to
+ /// 32 bits, replacing \p I with 32 bit 'select' operation, and truncating the
+ /// result of 32 bit 'select' operation back to \p I's original type.
+ ///
+ /// \returns True.
+ bool promoteUniformOpToI32(SelectInst &I) const;
+
+ /// Promotes uniform 'bitreverse' intrinsic \p I to 32 bit 'bitreverse'
+ /// intrinsic.
+ ///
+ /// \details \p I's base element bit width must be greater than 1 and less
+ /// than or equal 16. Promotion is done by zero extending the operand to 32
+ /// bits, replacing \p I with 32 bit 'bitreverse' intrinsic, shifting the
+ /// result of 32 bit 'bitreverse' intrinsic to the right with zero fill (the
+ /// shift amount is 32 minus \p I's base element bit width), and truncating
+ /// the result of the shift operation back to \p I's original type.
+ ///
+ /// \returns True.
+ bool promoteUniformBitreverseToI32(IntrinsicInst &I) const;
+
+
+ unsigned numBitsUnsigned(Value *Op, unsigned ScalarSize) const;
+ unsigned numBitsSigned(Value *Op, unsigned ScalarSize) const;
+ bool isI24(Value *V, unsigned ScalarSize) const;
+ bool isU24(Value *V, unsigned ScalarSize) const;
+
+ /// Replace mul instructions with llvm.amdgcn.mul.u24 or llvm.amdgcn.mul.s24.
+ /// SelectionDAG has an issue where an and asserting the bits are known
+ bool replaceMulWithMul24(BinaryOperator &I) const;
+
+ /// Expands 24 bit div or rem.
+ Value* expandDivRem24(IRBuilder<> &Builder, BinaryOperator &I,
+ Value *Num, Value *Den,
+ bool IsDiv, bool IsSigned) const;
+
+ /// Expands 32 bit div or rem.
+ Value* expandDivRem32(IRBuilder<> &Builder, BinaryOperator &I,
+ Value *Num, Value *Den) const;
+
+ /// Widen a scalar load.
+ ///
+ /// \details \p Widen scalar load for uniform, small type loads from constant
+ // memory / to a full 32-bits and then truncate the input to allow a scalar
+ // load instead of a vector load.
+ //
+ /// \returns True.
+
+ bool canWidenScalarExtLoad(LoadInst &I) const;
+
+public:
+ static char ID;
+
+ AMDGPUCodeGenPrepare() : FunctionPass(ID) {}
+
+ bool visitFDiv(BinaryOperator &I);
+
+ bool visitInstruction(Instruction &I) { return false; }
+ bool visitBinaryOperator(BinaryOperator &I);
+ bool visitLoadInst(LoadInst &I);
+ bool visitICmpInst(ICmpInst &I);
+ bool visitSelectInst(SelectInst &I);
+
+ bool visitIntrinsicInst(IntrinsicInst &I);
+ bool visitBitreverseIntrinsicInst(IntrinsicInst &I);
+
+ bool doInitialization(Module &M) override;
+ bool runOnFunction(Function &F) override;
+
+ StringRef getPassName() const override { return "AMDGPU IR optimizations"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AssumptionCacheTracker>();
+ AU.addRequired<LegacyDivergenceAnalysis>();
+ AU.setPreservesAll();
+ }
+};
+
+} // end anonymous namespace
+
+unsigned AMDGPUCodeGenPrepare::getBaseElementBitWidth(const Type *T) const {
+ assert(needsPromotionToI32(T) && "T does not need promotion to i32");
+
+ if (T->isIntegerTy())
+ return T->getIntegerBitWidth();
+ return cast<VectorType>(T)->getElementType()->getIntegerBitWidth();
+}
+
+Type *AMDGPUCodeGenPrepare::getI32Ty(IRBuilder<> &B, const Type *T) const {
+ assert(needsPromotionToI32(T) && "T does not need promotion to i32");
+
+ if (T->isIntegerTy())
+ return B.getInt32Ty();
+ return VectorType::get(B.getInt32Ty(), cast<VectorType>(T)->getNumElements());
+}
+
+bool AMDGPUCodeGenPrepare::isSigned(const BinaryOperator &I) const {
+ return I.getOpcode() == Instruction::AShr ||
+ I.getOpcode() == Instruction::SDiv || I.getOpcode() == Instruction::SRem;
+}
+
+bool AMDGPUCodeGenPrepare::isSigned(const SelectInst &I) const {
+ return isa<ICmpInst>(I.getOperand(0)) ?
+ cast<ICmpInst>(I.getOperand(0))->isSigned() : false;
+}
+
+bool AMDGPUCodeGenPrepare::needsPromotionToI32(const Type *T) const {
+ const IntegerType *IntTy = dyn_cast<IntegerType>(T);
+ if (IntTy && IntTy->getBitWidth() > 1 && IntTy->getBitWidth() <= 16)
+ return true;
+
+ if (const VectorType *VT = dyn_cast<VectorType>(T)) {
+ // TODO: The set of packed operations is more limited, so may want to
+ // promote some anyway.
+ if (ST->hasVOP3PInsts())
+ return false;
+
+ return needsPromotionToI32(VT->getElementType());
+ }
+
+ return false;
+}
+
+// Return true if the op promoted to i32 should have nsw set.
+static bool promotedOpIsNSW(const Instruction &I) {
+ switch (I.getOpcode()) {
+ case Instruction::Shl:
+ case Instruction::Add:
+ case Instruction::Sub:
+ return true;
+ case Instruction::Mul:
+ return I.hasNoUnsignedWrap();
+ default:
+ return false;
+ }
+}
+
+// Return true if the op promoted to i32 should have nuw set.
+static bool promotedOpIsNUW(const Instruction &I) {
+ switch (I.getOpcode()) {
+ case Instruction::Shl:
+ case Instruction::Add:
+ case Instruction::Mul:
+ return true;
+ case Instruction::Sub:
+ return I.hasNoUnsignedWrap();
+ default:
+ return false;
+ }
+}
+
+bool AMDGPUCodeGenPrepare::canWidenScalarExtLoad(LoadInst &I) const {
+ Type *Ty = I.getType();
+ const DataLayout &DL = Mod->getDataLayout();
+ int TySize = DL.getTypeSizeInBits(Ty);
+ unsigned Align = I.getAlignment() ?
+ I.getAlignment() : DL.getABITypeAlignment(Ty);
+
+ return I.isSimple() && TySize < 32 && Align >= 4 && DA->isUniform(&I);
+}
+
+bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(BinaryOperator &I) const {
+ assert(needsPromotionToI32(I.getType()) &&
+ "I does not need promotion to i32");
+
+ if (I.getOpcode() == Instruction::SDiv ||
+ I.getOpcode() == Instruction::UDiv ||
+ I.getOpcode() == Instruction::SRem ||
+ I.getOpcode() == Instruction::URem)
+ return false;
+
+ IRBuilder<> Builder(&I);
+ Builder.SetCurrentDebugLocation(I.getDebugLoc());
+
+ Type *I32Ty = getI32Ty(Builder, I.getType());
+ Value *ExtOp0 = nullptr;
+ Value *ExtOp1 = nullptr;
+ Value *ExtRes = nullptr;
+ Value *TruncRes = nullptr;
+
+ if (isSigned(I)) {
+ ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
+ ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
+ } else {
+ ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
+ ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
+ }
+
+ ExtRes = Builder.CreateBinOp(I.getOpcode(), ExtOp0, ExtOp1);
+ if (Instruction *Inst = dyn_cast<Instruction>(ExtRes)) {
+ if (promotedOpIsNSW(cast<Instruction>(I)))
+ Inst->setHasNoSignedWrap();
+
+ if (promotedOpIsNUW(cast<Instruction>(I)))
+ Inst->setHasNoUnsignedWrap();
+
+ if (const auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
+ Inst->setIsExact(ExactOp->isExact());
+ }
+
+ TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
+
+ I.replaceAllUsesWith(TruncRes);
+ I.eraseFromParent();
+
+ return true;
+}
+
+bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(ICmpInst &I) const {
+ assert(needsPromotionToI32(I.getOperand(0)->getType()) &&
+ "I does not need promotion to i32");
+
+ IRBuilder<> Builder(&I);
+ Builder.SetCurrentDebugLocation(I.getDebugLoc());
+
+ Type *I32Ty = getI32Ty(Builder, I.getOperand(0)->getType());
+ Value *ExtOp0 = nullptr;
+ Value *ExtOp1 = nullptr;
+ Value *NewICmp = nullptr;
+
+ if (I.isSigned()) {
+ ExtOp0 = Builder.CreateSExt(I.getOperand(0), I32Ty);
+ ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
+ } else {
+ ExtOp0 = Builder.CreateZExt(I.getOperand(0), I32Ty);
+ ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
+ }
+ NewICmp = Builder.CreateICmp(I.getPredicate(), ExtOp0, ExtOp1);
+
+ I.replaceAllUsesWith(NewICmp);
+ I.eraseFromParent();
+
+ return true;
+}
+
+bool AMDGPUCodeGenPrepare::promoteUniformOpToI32(SelectInst &I) const {
+ assert(needsPromotionToI32(I.getType()) &&
+ "I does not need promotion to i32");
+
+ IRBuilder<> Builder(&I);
+ Builder.SetCurrentDebugLocation(I.getDebugLoc());
+
+ Type *I32Ty = getI32Ty(Builder, I.getType());
+ Value *ExtOp1 = nullptr;
+ Value *ExtOp2 = nullptr;
+ Value *ExtRes = nullptr;
+ Value *TruncRes = nullptr;
+
+ if (isSigned(I)) {
+ ExtOp1 = Builder.CreateSExt(I.getOperand(1), I32Ty);
+ ExtOp2 = Builder.CreateSExt(I.getOperand(2), I32Ty);
+ } else {
+ ExtOp1 = Builder.CreateZExt(I.getOperand(1), I32Ty);
+ ExtOp2 = Builder.CreateZExt(I.getOperand(2), I32Ty);
+ }
+ ExtRes = Builder.CreateSelect(I.getOperand(0), ExtOp1, ExtOp2);
+ TruncRes = Builder.CreateTrunc(ExtRes, I.getType());
+
+ I.replaceAllUsesWith(TruncRes);
+ I.eraseFromParent();
+
+ return true;
+}
+
+bool AMDGPUCodeGenPrepare::promoteUniformBitreverseToI32(
+ IntrinsicInst &I) const {
+ assert(I.getIntrinsicID() == Intrinsic::bitreverse &&
+ "I must be bitreverse intrinsic");
+ assert(needsPromotionToI32(I.getType()) &&
+ "I does not need promotion to i32");
+
+ IRBuilder<> Builder(&I);
+ Builder.SetCurrentDebugLocation(I.getDebugLoc());
+
+ Type *I32Ty = getI32Ty(Builder, I.getType());
+ Function *I32 =
+ Intrinsic::getDeclaration(Mod, Intrinsic::bitreverse, { I32Ty });
+ Value *ExtOp = Builder.CreateZExt(I.getOperand(0), I32Ty);
+ Value *ExtRes = Builder.CreateCall(I32, { ExtOp });
+ Value *LShrOp =
+ Builder.CreateLShr(ExtRes, 32 - getBaseElementBitWidth(I.getType()));
+ Value *TruncRes =
+ Builder.CreateTrunc(LShrOp, I.getType());
+
+ I.replaceAllUsesWith(TruncRes);
+ I.eraseFromParent();
+
+ return true;
+}
+
+unsigned AMDGPUCodeGenPrepare::numBitsUnsigned(Value *Op,
+ unsigned ScalarSize) const {
+ KnownBits Known = computeKnownBits(Op, *DL, 0, AC);
+ return ScalarSize - Known.countMinLeadingZeros();
+}
+
+unsigned AMDGPUCodeGenPrepare::numBitsSigned(Value *Op,
+ unsigned ScalarSize) const {
+ // In order for this to be a signed 24-bit value, bit 23, must
+ // be a sign bit.
+ return ScalarSize - ComputeNumSignBits(Op, *DL, 0, AC);
+}
+
+bool AMDGPUCodeGenPrepare::isI24(Value *V, unsigned ScalarSize) const {
+ return ScalarSize >= 24 && // Types less than 24-bit should be treated
+ // as unsigned 24-bit values.
+ numBitsSigned(V, ScalarSize) < 24;
+}
+
+bool AMDGPUCodeGenPrepare::isU24(Value *V, unsigned ScalarSize) const {
+ return numBitsUnsigned(V, ScalarSize) <= 24;
+}
+
+static void extractValues(IRBuilder<> &Builder,
+ SmallVectorImpl<Value *> &Values, Value *V) {
+ VectorType *VT = dyn_cast<VectorType>(V->getType());
+ if (!VT) {
+ Values.push_back(V);
+ return;
+ }
+
+ for (int I = 0, E = VT->getNumElements(); I != E; ++I)
+ Values.push_back(Builder.CreateExtractElement(V, I));
+}
+
+static Value *insertValues(IRBuilder<> &Builder,
+ Type *Ty,
+ SmallVectorImpl<Value *> &Values) {
+ if (Values.size() == 1)
+ return Values[0];
+
+ Value *NewVal = UndefValue::get(Ty);
+ for (int I = 0, E = Values.size(); I != E; ++I)
+ NewVal = Builder.CreateInsertElement(NewVal, Values[I], I);
+
+ return NewVal;
+}
+
+bool AMDGPUCodeGenPrepare::replaceMulWithMul24(BinaryOperator &I) const {
+ if (I.getOpcode() != Instruction::Mul)
+ return false;
+
+ Type *Ty = I.getType();
+ unsigned Size = Ty->getScalarSizeInBits();
+ if (Size <= 16 && ST->has16BitInsts())
+ return false;
+
+ // Prefer scalar if this could be s_mul_i32
+ if (DA->isUniform(&I))
+ return false;
+
+ Value *LHS = I.getOperand(0);
+ Value *RHS = I.getOperand(1);
+ IRBuilder<> Builder(&I);
+ Builder.SetCurrentDebugLocation(I.getDebugLoc());
+
+ Intrinsic::ID IntrID = Intrinsic::not_intrinsic;
+
+ // TODO: Should this try to match mulhi24?
+ if (ST->hasMulU24() && isU24(LHS, Size) && isU24(RHS, Size)) {
+ IntrID = Intrinsic::amdgcn_mul_u24;
+ } else if (ST->hasMulI24() && isI24(LHS, Size) && isI24(RHS, Size)) {
+ IntrID = Intrinsic::amdgcn_mul_i24;
+ } else
+ return false;
+
+ SmallVector<Value *, 4> LHSVals;
+ SmallVector<Value *, 4> RHSVals;
+ SmallVector<Value *, 4> ResultVals;
+ extractValues(Builder, LHSVals, LHS);
+ extractValues(Builder, RHSVals, RHS);
+
+
+ IntegerType *I32Ty = Builder.getInt32Ty();
+ FunctionCallee Intrin = Intrinsic::getDeclaration(Mod, IntrID);
+ for (int I = 0, E = LHSVals.size(); I != E; ++I) {
+ Value *LHS, *RHS;
+ if (IntrID == Intrinsic::amdgcn_mul_u24) {
+ LHS = Builder.CreateZExtOrTrunc(LHSVals[I], I32Ty);
+ RHS = Builder.CreateZExtOrTrunc(RHSVals[I], I32Ty);
+ } else {
+ LHS = Builder.CreateSExtOrTrunc(LHSVals[I], I32Ty);
+ RHS = Builder.CreateSExtOrTrunc(RHSVals[I], I32Ty);
+ }
+
+ Value *Result = Builder.CreateCall(Intrin, {LHS, RHS});
+
+ if (IntrID == Intrinsic::amdgcn_mul_u24) {
+ ResultVals.push_back(Builder.CreateZExtOrTrunc(Result,
+ LHSVals[I]->getType()));
+ } else {
+ ResultVals.push_back(Builder.CreateSExtOrTrunc(Result,
+ LHSVals[I]->getType()));
+ }
+ }
+
+ I.replaceAllUsesWith(insertValues(Builder, Ty, ResultVals));
+ I.eraseFromParent();
+
+ return true;
+}
+
+static bool shouldKeepFDivF32(Value *Num, bool UnsafeDiv, bool HasDenormals) {
+ const ConstantFP *CNum = dyn_cast<ConstantFP>(Num);
+ if (!CNum)
+ return HasDenormals;
+
+ if (UnsafeDiv)
+ return true;
+
+ bool IsOne = CNum->isExactlyValue(+1.0) || CNum->isExactlyValue(-1.0);
+
+ // Reciprocal f32 is handled separately without denormals.
+ return HasDenormals ^ IsOne;
+}
+
+// Insert an intrinsic for fast fdiv for safe math situations where we can
+// reduce precision. Leave fdiv for situations where the generic node is
+// expected to be optimized.
+bool AMDGPUCodeGenPrepare::visitFDiv(BinaryOperator &FDiv) {
+ Type *Ty = FDiv.getType();
+
+ if (!Ty->getScalarType()->isFloatTy())
+ return false;
+
+ MDNode *FPMath = FDiv.getMetadata(LLVMContext::MD_fpmath);
+ if (!FPMath)
+ return false;
+
+ const FPMathOperator *FPOp = cast<const FPMathOperator>(&FDiv);
+ float ULP = FPOp->getFPAccuracy();
+ if (ULP < 2.5f)
+ return false;
+
+ FastMathFlags FMF = FPOp->getFastMathFlags();
+ bool UnsafeDiv = HasUnsafeFPMath || FMF.isFast() ||
+ FMF.allowReciprocal();
+
+ // With UnsafeDiv node will be optimized to just rcp and mul.
+ if (UnsafeDiv)
+ return false;
+
+ IRBuilder<> Builder(FDiv.getParent(), std::next(FDiv.getIterator()), FPMath);
+ Builder.setFastMathFlags(FMF);
+ Builder.SetCurrentDebugLocation(FDiv.getDebugLoc());
+
+ Function *Decl = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_fdiv_fast);
+
+ Value *Num = FDiv.getOperand(0);
+ Value *Den = FDiv.getOperand(1);
+
+ Value *NewFDiv = nullptr;
+
+ bool HasDenormals = ST->hasFP32Denormals();
+ if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
+ NewFDiv = UndefValue::get(VT);
+
+ // FIXME: Doesn't do the right thing for cases where the vector is partially
+ // constant. This works when the scalarizer pass is run first.
+ for (unsigned I = 0, E = VT->getNumElements(); I != E; ++I) {
+ Value *NumEltI = Builder.CreateExtractElement(Num, I);
+ Value *DenEltI = Builder.CreateExtractElement(Den, I);
+ Value *NewElt;
+
+ if (shouldKeepFDivF32(NumEltI, UnsafeDiv, HasDenormals)) {
+ NewElt = Builder.CreateFDiv(NumEltI, DenEltI);
+ } else {
+ NewElt = Builder.CreateCall(Decl, { NumEltI, DenEltI });
+ }
+
+ NewFDiv = Builder.CreateInsertElement(NewFDiv, NewElt, I);
+ }
+ } else {
+ if (!shouldKeepFDivF32(Num, UnsafeDiv, HasDenormals))
+ NewFDiv = Builder.CreateCall(Decl, { Num, Den });
+ }
+
+ if (NewFDiv) {
+ FDiv.replaceAllUsesWith(NewFDiv);
+ NewFDiv->takeName(&FDiv);
+ FDiv.eraseFromParent();
+ }
+
+ return !!NewFDiv;
+}
+
+static bool hasUnsafeFPMath(const Function &F) {
+ Attribute Attr = F.getFnAttribute("unsafe-fp-math");
+ return Attr.getValueAsString() == "true";
+}
+
+static std::pair<Value*, Value*> getMul64(IRBuilder<> &Builder,
+ Value *LHS, Value *RHS) {
+ Type *I32Ty = Builder.getInt32Ty();
+ Type *I64Ty = Builder.getInt64Ty();
+
+ Value *LHS_EXT64 = Builder.CreateZExt(LHS, I64Ty);
+ Value *RHS_EXT64 = Builder.CreateZExt(RHS, I64Ty);
+ Value *MUL64 = Builder.CreateMul(LHS_EXT64, RHS_EXT64);
+ Value *Lo = Builder.CreateTrunc(MUL64, I32Ty);
+ Value *Hi = Builder.CreateLShr(MUL64, Builder.getInt64(32));
+ Hi = Builder.CreateTrunc(Hi, I32Ty);
+ return std::make_pair(Lo, Hi);
+}
+
+static Value* getMulHu(IRBuilder<> &Builder, Value *LHS, Value *RHS) {
+ return getMul64(Builder, LHS, RHS).second;
+}
+
+// The fractional part of a float is enough to accurately represent up to
+// a 24-bit signed integer.
+Value* AMDGPUCodeGenPrepare::expandDivRem24(IRBuilder<> &Builder,
+ BinaryOperator &I,
+ Value *Num, Value *Den,
+ bool IsDiv, bool IsSigned) const {
+ assert(Num->getType()->isIntegerTy(32));
+
+ const DataLayout &DL = Mod->getDataLayout();
+ unsigned LHSSignBits = ComputeNumSignBits(Num, DL, 0, AC, &I);
+ if (LHSSignBits < 9)
+ return nullptr;
+
+ unsigned RHSSignBits = ComputeNumSignBits(Den, DL, 0, AC, &I);
+ if (RHSSignBits < 9)
+ return nullptr;
+
+
+ unsigned SignBits = std::min(LHSSignBits, RHSSignBits);
+ unsigned DivBits = 32 - SignBits;
+ if (IsSigned)
+ ++DivBits;
+
+ Type *Ty = Num->getType();
+ Type *I32Ty = Builder.getInt32Ty();
+ Type *F32Ty = Builder.getFloatTy();
+ ConstantInt *One = Builder.getInt32(1);
+ Value *JQ = One;
+
+ if (IsSigned) {
+ // char|short jq = ia ^ ib;
+ JQ = Builder.CreateXor(Num, Den);
+
+ // jq = jq >> (bitsize - 2)
+ JQ = Builder.CreateAShr(JQ, Builder.getInt32(30));
+
+ // jq = jq | 0x1
+ JQ = Builder.CreateOr(JQ, One);
+ }
+
+ // int ia = (int)LHS;
+ Value *IA = Num;
+
+ // int ib, (int)RHS;
+ Value *IB = Den;
+
+ // float fa = (float)ia;
+ Value *FA = IsSigned ? Builder.CreateSIToFP(IA, F32Ty)
+ : Builder.CreateUIToFP(IA, F32Ty);
+
+ // float fb = (float)ib;
+ Value *FB = IsSigned ? Builder.CreateSIToFP(IB,F32Ty)
+ : Builder.CreateUIToFP(IB,F32Ty);
+
+ Value *RCP = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), FB);
+ Value *FQM = Builder.CreateFMul(FA, RCP);
+
+ // fq = trunc(fqm);
+ CallInst *FQ = Builder.CreateUnaryIntrinsic(Intrinsic::trunc, FQM);
+ FQ->copyFastMathFlags(Builder.getFastMathFlags());
+
+ // float fqneg = -fq;
+ Value *FQNeg = Builder.CreateFNeg(FQ);
+
+ // float fr = mad(fqneg, fb, fa);
+ Value *FR = Builder.CreateIntrinsic(Intrinsic::amdgcn_fmad_ftz,
+ {FQNeg->getType()}, {FQNeg, FB, FA}, FQ);
+
+ // int iq = (int)fq;
+ Value *IQ = IsSigned ? Builder.CreateFPToSI(FQ, I32Ty)
+ : Builder.CreateFPToUI(FQ, I32Ty);
+
+ // fr = fabs(fr);
+ FR = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FR, FQ);
+
+ // fb = fabs(fb);
+ FB = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FB, FQ);
+
+ // int cv = fr >= fb;
+ Value *CV = Builder.CreateFCmpOGE(FR, FB);
+
+ // jq = (cv ? jq : 0);
+ JQ = Builder.CreateSelect(CV, JQ, Builder.getInt32(0));
+
+ // dst = iq + jq;
+ Value *Div = Builder.CreateAdd(IQ, JQ);
+
+ Value *Res = Div;
+ if (!IsDiv) {
+ // Rem needs compensation, it's easier to recompute it
+ Value *Rem = Builder.CreateMul(Div, Den);
+ Res = Builder.CreateSub(Num, Rem);
+ }
+
+ // Truncate to number of bits this divide really is.
+ if (IsSigned) {
+ Res = Builder.CreateTrunc(Res, Builder.getIntNTy(DivBits));
+ Res = Builder.CreateSExt(Res, Ty);
+ } else {
+ ConstantInt *TruncMask = Builder.getInt32((UINT64_C(1) << DivBits) - 1);
+ Res = Builder.CreateAnd(Res, TruncMask);
+ }
+
+ return Res;
+}
+
+Value* AMDGPUCodeGenPrepare::expandDivRem32(IRBuilder<> &Builder,
+ BinaryOperator &I,
+ Value *Num, Value *Den) const {
+ Instruction::BinaryOps Opc = I.getOpcode();
+ assert(Opc == Instruction::URem || Opc == Instruction::UDiv ||
+ Opc == Instruction::SRem || Opc == Instruction::SDiv);
+
+ FastMathFlags FMF;
+ FMF.setFast();
+ Builder.setFastMathFlags(FMF);
+
+ if (isa<Constant>(Den))
+ return nullptr; // Keep it for optimization
+
+ bool IsDiv = Opc == Instruction::UDiv || Opc == Instruction::SDiv;
+ bool IsSigned = Opc == Instruction::SRem || Opc == Instruction::SDiv;
+
+ Type *Ty = Num->getType();
+ Type *I32Ty = Builder.getInt32Ty();
+ Type *F32Ty = Builder.getFloatTy();
+
+ if (Ty->getScalarSizeInBits() < 32) {
+ if (IsSigned) {
+ Num = Builder.CreateSExt(Num, I32Ty);
+ Den = Builder.CreateSExt(Den, I32Ty);
+ } else {
+ Num = Builder.CreateZExt(Num, I32Ty);
+ Den = Builder.CreateZExt(Den, I32Ty);
+ }
+ }
+
+ if (Value *Res = expandDivRem24(Builder, I, Num, Den, IsDiv, IsSigned)) {
+ Res = Builder.CreateTrunc(Res, Ty);
+ return Res;
+ }
+
+ ConstantInt *Zero = Builder.getInt32(0);
+ ConstantInt *One = Builder.getInt32(1);
+ ConstantInt *MinusOne = Builder.getInt32(~0);
+
+ Value *Sign = nullptr;
+ if (IsSigned) {
+ ConstantInt *K31 = Builder.getInt32(31);
+ Value *LHSign = Builder.CreateAShr(Num, K31);
+ Value *RHSign = Builder.CreateAShr(Den, K31);
+ // Remainder sign is the same as LHS
+ Sign = IsDiv ? Builder.CreateXor(LHSign, RHSign) : LHSign;
+
+ Num = Builder.CreateAdd(Num, LHSign);
+ Den = Builder.CreateAdd(Den, RHSign);
+
+ Num = Builder.CreateXor(Num, LHSign);
+ Den = Builder.CreateXor(Den, RHSign);
+ }
+
+ // RCP = URECIP(Den) = 2^32 / Den + e
+ // e is rounding error.
+ Value *DEN_F32 = Builder.CreateUIToFP(Den, F32Ty);
+ Value *RCP_F32 = Builder.CreateFDiv(ConstantFP::get(F32Ty, 1.0), DEN_F32);
+ Constant *UINT_MAX_PLUS_1 = ConstantFP::get(F32Ty, BitsToFloat(0x4f800000));
+ Value *RCP_SCALE = Builder.CreateFMul(RCP_F32, UINT_MAX_PLUS_1);
+ Value *RCP = Builder.CreateFPToUI(RCP_SCALE, I32Ty);
+
+ // RCP_LO, RCP_HI = mul(RCP, Den) */
+ Value *RCP_LO, *RCP_HI;
+ std::tie(RCP_LO, RCP_HI) = getMul64(Builder, RCP, Den);
+
+ // NEG_RCP_LO = -RCP_LO
+ Value *NEG_RCP_LO = Builder.CreateNeg(RCP_LO);
+
+ // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
+ Value *RCP_HI_0_CC = Builder.CreateICmpEQ(RCP_HI, Zero);
+ Value *ABS_RCP_LO = Builder.CreateSelect(RCP_HI_0_CC, NEG_RCP_LO, RCP_LO);
+
+ // Calculate the rounding error from the URECIP instruction
+ // E = mulhu(ABS_RCP_LO, RCP)
+ Value *E = getMulHu(Builder, ABS_RCP_LO, RCP);
+
+ // RCP_A_E = RCP + E
+ Value *RCP_A_E = Builder.CreateAdd(RCP, E);
+
+ // RCP_S_E = RCP - E
+ Value *RCP_S_E = Builder.CreateSub(RCP, E);
+
+ // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
+ Value *Tmp0 = Builder.CreateSelect(RCP_HI_0_CC, RCP_A_E, RCP_S_E);
+
+ // Quotient = mulhu(Tmp0, Num)
+ Value *Quotient = getMulHu(Builder, Tmp0, Num);
+
+ // Num_S_Remainder = Quotient * Den
+ Value *Num_S_Remainder = Builder.CreateMul(Quotient, Den);
+
+ // Remainder = Num - Num_S_Remainder
+ Value *Remainder = Builder.CreateSub(Num, Num_S_Remainder);
+
+ // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
+ Value *Rem_GE_Den_CC = Builder.CreateICmpUGE(Remainder, Den);
+ Value *Remainder_GE_Den = Builder.CreateSelect(Rem_GE_Den_CC, MinusOne, Zero);
+
+ // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
+ Value *Num_GE_Num_S_Rem_CC = Builder.CreateICmpUGE(Num, Num_S_Remainder);
+ Value *Remainder_GE_Zero = Builder.CreateSelect(Num_GE_Num_S_Rem_CC,
+ MinusOne, Zero);
+
+ // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
+ Value *Tmp1 = Builder.CreateAnd(Remainder_GE_Den, Remainder_GE_Zero);
+ Value *Tmp1_0_CC = Builder.CreateICmpEQ(Tmp1, Zero);
+
+ Value *Res;
+ if (IsDiv) {
+ // Quotient_A_One = Quotient + 1
+ Value *Quotient_A_One = Builder.CreateAdd(Quotient, One);
+
+ // Quotient_S_One = Quotient - 1
+ Value *Quotient_S_One = Builder.CreateSub(Quotient, One);
+
+ // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
+ Value *Div = Builder.CreateSelect(Tmp1_0_CC, Quotient, Quotient_A_One);
+
+ // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
+ Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Div, Quotient_S_One);
+ } else {
+ // Remainder_S_Den = Remainder - Den
+ Value *Remainder_S_Den = Builder.CreateSub(Remainder, Den);
+
+ // Remainder_A_Den = Remainder + Den
+ Value *Remainder_A_Den = Builder.CreateAdd(Remainder, Den);
+
+ // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
+ Value *Rem = Builder.CreateSelect(Tmp1_0_CC, Remainder, Remainder_S_Den);
+
+ // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
+ Res = Builder.CreateSelect(Num_GE_Num_S_Rem_CC, Rem, Remainder_A_Den);
+ }
+
+ if (IsSigned) {
+ Res = Builder.CreateXor(Res, Sign);
+ Res = Builder.CreateSub(Res, Sign);
+ }
+
+ Res = Builder.CreateTrunc(Res, Ty);
+
+ return Res;
+}
+
+bool AMDGPUCodeGenPrepare::visitBinaryOperator(BinaryOperator &I) {
+ if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
+ DA->isUniform(&I) && promoteUniformOpToI32(I))
+ return true;
+
+ if (replaceMulWithMul24(I))
+ return true;
+
+ bool Changed = false;
+ Instruction::BinaryOps Opc = I.getOpcode();
+ Type *Ty = I.getType();
+ Value *NewDiv = nullptr;
+ if ((Opc == Instruction::URem || Opc == Instruction::UDiv ||
+ Opc == Instruction::SRem || Opc == Instruction::SDiv) &&
+ Ty->getScalarSizeInBits() <= 32) {
+ Value *Num = I.getOperand(0);
+ Value *Den = I.getOperand(1);
+ IRBuilder<> Builder(&I);
+ Builder.SetCurrentDebugLocation(I.getDebugLoc());
+
+ if (VectorType *VT = dyn_cast<VectorType>(Ty)) {
+ NewDiv = UndefValue::get(VT);
+
+ for (unsigned N = 0, E = VT->getNumElements(); N != E; ++N) {
+ Value *NumEltN = Builder.CreateExtractElement(Num, N);
+ Value *DenEltN = Builder.CreateExtractElement(Den, N);
+ Value *NewElt = expandDivRem32(Builder, I, NumEltN, DenEltN);
+ if (!NewElt)
+ NewElt = Builder.CreateBinOp(Opc, NumEltN, DenEltN);
+ NewDiv = Builder.CreateInsertElement(NewDiv, NewElt, N);
+ }
+ } else {
+ NewDiv = expandDivRem32(Builder, I, Num, Den);
+ }
+
+ if (NewDiv) {
+ I.replaceAllUsesWith(NewDiv);
+ I.eraseFromParent();
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+bool AMDGPUCodeGenPrepare::visitLoadInst(LoadInst &I) {
+ if (!WidenLoads)
+ return false;
+
+ if ((I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
+ I.getPointerAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
+ canWidenScalarExtLoad(I)) {
+ IRBuilder<> Builder(&I);
+ Builder.SetCurrentDebugLocation(I.getDebugLoc());
+
+ Type *I32Ty = Builder.getInt32Ty();
+ Type *PT = PointerType::get(I32Ty, I.getPointerAddressSpace());
+ Value *BitCast= Builder.CreateBitCast(I.getPointerOperand(), PT);
+ LoadInst *WidenLoad = Builder.CreateLoad(I32Ty, BitCast);
+ WidenLoad->copyMetadata(I);
+
+ // If we have range metadata, we need to convert the type, and not make
+ // assumptions about the high bits.
+ if (auto *Range = WidenLoad->getMetadata(LLVMContext::MD_range)) {
+ ConstantInt *Lower =
+ mdconst::extract<ConstantInt>(Range->getOperand(0));
+
+ if (Lower->getValue().isNullValue()) {
+ WidenLoad->setMetadata(LLVMContext::MD_range, nullptr);
+ } else {
+ Metadata *LowAndHigh[] = {
+ ConstantAsMetadata::get(ConstantInt::get(I32Ty, Lower->getValue().zext(32))),
+ // Don't make assumptions about the high bits.
+ ConstantAsMetadata::get(ConstantInt::get(I32Ty, 0))
+ };
+
+ WidenLoad->setMetadata(LLVMContext::MD_range,
+ MDNode::get(Mod->getContext(), LowAndHigh));
+ }
+ }
+
+ int TySize = Mod->getDataLayout().getTypeSizeInBits(I.getType());
+ Type *IntNTy = Builder.getIntNTy(TySize);
+ Value *ValTrunc = Builder.CreateTrunc(WidenLoad, IntNTy);
+ Value *ValOrig = Builder.CreateBitCast(ValTrunc, I.getType());
+ I.replaceAllUsesWith(ValOrig);
+ I.eraseFromParent();
+ return true;
+ }
+
+ return false;
+}
+
+bool AMDGPUCodeGenPrepare::visitICmpInst(ICmpInst &I) {
+ bool Changed = false;
+
+ if (ST->has16BitInsts() && needsPromotionToI32(I.getOperand(0)->getType()) &&
+ DA->isUniform(&I))
+ Changed |= promoteUniformOpToI32(I);
+
+ return Changed;
+}
+
+bool AMDGPUCodeGenPrepare::visitSelectInst(SelectInst &I) {
+ bool Changed = false;
+
+ if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
+ DA->isUniform(&I))
+ Changed |= promoteUniformOpToI32(I);
+
+ return Changed;
+}
+
+bool AMDGPUCodeGenPrepare::visitIntrinsicInst(IntrinsicInst &I) {
+ switch (I.getIntrinsicID()) {
+ case Intrinsic::bitreverse:
+ return visitBitreverseIntrinsicInst(I);
+ default:
+ return false;
+ }
+}
+
+bool AMDGPUCodeGenPrepare::visitBitreverseIntrinsicInst(IntrinsicInst &I) {
+ bool Changed = false;
+
+ if (ST->has16BitInsts() && needsPromotionToI32(I.getType()) &&
+ DA->isUniform(&I))
+ Changed |= promoteUniformBitreverseToI32(I);
+
+ return Changed;
+}
+
+bool AMDGPUCodeGenPrepare::doInitialization(Module &M) {
+ Mod = &M;
+ DL = &Mod->getDataLayout();
+ return false;
+}
+
+bool AMDGPUCodeGenPrepare::runOnFunction(Function &F) {
+ if (skipFunction(F))
+ return false;
+
+ auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
+ if (!TPC)
+ return false;
+
+ const AMDGPUTargetMachine &TM = TPC->getTM<AMDGPUTargetMachine>();
+ ST = &TM.getSubtarget<GCNSubtarget>(F);
+ AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
+ DA = &getAnalysis<LegacyDivergenceAnalysis>();
+ HasUnsafeFPMath = hasUnsafeFPMath(F);
+
+ bool MadeChange = false;
+
+ for (BasicBlock &BB : F) {
+ BasicBlock::iterator Next;
+ for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; I = Next) {
+ Next = std::next(I);
+ MadeChange |= visit(*I);
+ }
+ }
+
+ return MadeChange;
+}
+
+INITIALIZE_PASS_BEGIN(AMDGPUCodeGenPrepare, DEBUG_TYPE,
+ "AMDGPU IR optimizations", false, false)
+INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
+INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
+INITIALIZE_PASS_END(AMDGPUCodeGenPrepare, DEBUG_TYPE, "AMDGPU IR optimizations",
+ false, false)
+
+char AMDGPUCodeGenPrepare::ID = 0;
+
+FunctionPass *llvm::createAMDGPUCodeGenPreparePass() {
+ return new AMDGPUCodeGenPrepare();
+}