summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp1361
1 files changed, 1361 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp
new file mode 100644
index 000000000000..74d77d328019
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp
@@ -0,0 +1,1361 @@
+//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+/// \file
+//===----------------------------------------------------------------------===//
+//
+
+#include "AMDGPU.h"
+#include "AMDGPUSubtarget.h"
+#include "SIInstrInfo.h"
+#include "SIMachineFunctionInfo.h"
+#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+
+#define DEBUG_TYPE "si-fold-operands"
+using namespace llvm;
+
+namespace {
+
+struct FoldCandidate {
+ MachineInstr *UseMI;
+ union {
+ MachineOperand *OpToFold;
+ uint64_t ImmToFold;
+ int FrameIndexToFold;
+ };
+ int ShrinkOpcode;
+ unsigned char UseOpNo;
+ MachineOperand::MachineOperandType Kind;
+ bool Commuted;
+
+ FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp,
+ bool Commuted_ = false,
+ int ShrinkOp = -1) :
+ UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo),
+ Kind(FoldOp->getType()),
+ Commuted(Commuted_) {
+ if (FoldOp->isImm()) {
+ ImmToFold = FoldOp->getImm();
+ } else if (FoldOp->isFI()) {
+ FrameIndexToFold = FoldOp->getIndex();
+ } else {
+ assert(FoldOp->isReg() || FoldOp->isGlobal());
+ OpToFold = FoldOp;
+ }
+ }
+
+ bool isFI() const {
+ return Kind == MachineOperand::MO_FrameIndex;
+ }
+
+ bool isImm() const {
+ return Kind == MachineOperand::MO_Immediate;
+ }
+
+ bool isReg() const {
+ return Kind == MachineOperand::MO_Register;
+ }
+
+ bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; }
+
+ bool isCommuted() const {
+ return Commuted;
+ }
+
+ bool needsShrink() const {
+ return ShrinkOpcode != -1;
+ }
+
+ int getShrinkOpcode() const {
+ return ShrinkOpcode;
+ }
+};
+
+class SIFoldOperands : public MachineFunctionPass {
+public:
+ static char ID;
+ MachineRegisterInfo *MRI;
+ const SIInstrInfo *TII;
+ const SIRegisterInfo *TRI;
+ const GCNSubtarget *ST;
+ const SIMachineFunctionInfo *MFI;
+
+ void foldOperand(MachineOperand &OpToFold,
+ MachineInstr *UseMI,
+ int UseOpIdx,
+ SmallVectorImpl<FoldCandidate> &FoldList,
+ SmallVectorImpl<MachineInstr *> &CopiesToReplace) const;
+
+ void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const;
+
+ const MachineOperand *isClamp(const MachineInstr &MI) const;
+ bool tryFoldClamp(MachineInstr &MI);
+
+ std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const;
+ bool tryFoldOMod(MachineInstr &MI);
+
+public:
+ SIFoldOperands() : MachineFunctionPass(ID) {
+ initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ StringRef getPassName() const override { return "SI Fold Operands"; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+};
+
+} // End anonymous namespace.
+
+INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE,
+ "SI Fold Operands", false, false)
+
+char SIFoldOperands::ID = 0;
+
+char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
+
+// Wrapper around isInlineConstant that understands special cases when
+// instruction types are replaced during operand folding.
+static bool isInlineConstantIfFolded(const SIInstrInfo *TII,
+ const MachineInstr &UseMI,
+ unsigned OpNo,
+ const MachineOperand &OpToFold) {
+ if (TII->isInlineConstant(UseMI, OpNo, OpToFold))
+ return true;
+
+ unsigned Opc = UseMI.getOpcode();
+ switch (Opc) {
+ case AMDGPU::V_MAC_F32_e64:
+ case AMDGPU::V_MAC_F16_e64:
+ case AMDGPU::V_FMAC_F32_e64: {
+ // Special case for mac. Since this is replaced with mad when folded into
+ // src2, we need to check the legality for the final instruction.
+ int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
+ if (static_cast<int>(OpNo) == Src2Idx) {
+ bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
+ bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
+
+ unsigned Opc = IsFMA ?
+ AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
+ const MCInstrDesc &MadDesc = TII->get(Opc);
+ return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType);
+ }
+ return false;
+ }
+ default:
+ return false;
+ }
+}
+
+// TODO: Add heuristic that the frame index might not fit in the addressing mode
+// immediate offset to avoid materializing in loops.
+static bool frameIndexMayFold(const SIInstrInfo *TII,
+ const MachineInstr &UseMI,
+ int OpNo,
+ const MachineOperand &OpToFold) {
+ return OpToFold.isFI() &&
+ (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) &&
+ OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr);
+}
+
+FunctionPass *llvm::createSIFoldOperandsPass() {
+ return new SIFoldOperands();
+}
+
+static bool updateOperand(FoldCandidate &Fold,
+ const SIInstrInfo &TII,
+ const TargetRegisterInfo &TRI,
+ const GCNSubtarget &ST) {
+ MachineInstr *MI = Fold.UseMI;
+ MachineOperand &Old = MI->getOperand(Fold.UseOpNo);
+ assert(Old.isReg());
+
+ if (Fold.isImm()) {
+ if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked &&
+ !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) &&
+ AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold),
+ ST.hasInv2PiInlineImm())) {
+ // Set op_sel/op_sel_hi on this operand or bail out if op_sel is
+ // already set.
+ unsigned Opcode = MI->getOpcode();
+ int OpNo = MI->getOperandNo(&Old);
+ int ModIdx = -1;
+ if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0))
+ ModIdx = AMDGPU::OpName::src0_modifiers;
+ else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1))
+ ModIdx = AMDGPU::OpName::src1_modifiers;
+ else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2))
+ ModIdx = AMDGPU::OpName::src2_modifiers;
+ assert(ModIdx != -1);
+ ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx);
+ MachineOperand &Mod = MI->getOperand(ModIdx);
+ unsigned Val = Mod.getImm();
+ if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1))
+ return false;
+ // Only apply the following transformation if that operand requries
+ // a packed immediate.
+ switch (TII.get(Opcode).OpInfo[OpNo].OperandType) {
+ case AMDGPU::OPERAND_REG_IMM_V2FP16:
+ case AMDGPU::OPERAND_REG_IMM_V2INT16:
+ case AMDGPU::OPERAND_REG_INLINE_C_V2FP16:
+ case AMDGPU::OPERAND_REG_INLINE_C_V2INT16:
+ // If upper part is all zero we do not need op_sel_hi.
+ if (!isUInt<16>(Fold.ImmToFold)) {
+ if (!(Fold.ImmToFold & 0xffff)) {
+ Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0);
+ Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
+ Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff);
+ return true;
+ }
+ Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1);
+ Old.ChangeToImmediate(Fold.ImmToFold & 0xffff);
+ return true;
+ }
+ break;
+ default:
+ break;
+ }
+ }
+ }
+
+ if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) {
+ MachineBasicBlock *MBB = MI->getParent();
+ auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI);
+ if (Liveness != MachineBasicBlock::LQR_Dead)
+ return false;
+
+ MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
+ int Op32 = Fold.getShrinkOpcode();
+ MachineOperand &Dst0 = MI->getOperand(0);
+ MachineOperand &Dst1 = MI->getOperand(1);
+ assert(Dst0.isDef() && Dst1.isDef());
+
+ bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg());
+
+ const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg());
+ unsigned NewReg0 = MRI.createVirtualRegister(Dst0RC);
+
+ MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32);
+
+ if (HaveNonDbgCarryUse) {
+ BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg())
+ .addReg(AMDGPU::VCC, RegState::Kill);
+ }
+
+ // Keep the old instruction around to avoid breaking iterators, but
+ // replace it with a dummy instruction to remove uses.
+ //
+ // FIXME: We should not invert how this pass looks at operands to avoid
+ // this. Should track set of foldable movs instead of looking for uses
+ // when looking at a use.
+ Dst0.setReg(NewReg0);
+ for (unsigned I = MI->getNumOperands() - 1; I > 0; --I)
+ MI->RemoveOperand(I);
+ MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF));
+
+ if (Fold.isCommuted())
+ TII.commuteInstruction(*Inst32, false);
+ return true;
+ }
+
+ assert(!Fold.needsShrink() && "not handled");
+
+ if (Fold.isImm()) {
+ Old.ChangeToImmediate(Fold.ImmToFold);
+ return true;
+ }
+
+ if (Fold.isGlobal()) {
+ Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(),
+ Fold.OpToFold->getTargetFlags());
+ return true;
+ }
+
+ if (Fold.isFI()) {
+ Old.ChangeToFrameIndex(Fold.FrameIndexToFold);
+ return true;
+ }
+
+ MachineOperand *New = Fold.OpToFold;
+ Old.substVirtReg(New->getReg(), New->getSubReg(), TRI);
+ Old.setIsUndef(New->isUndef());
+ return true;
+}
+
+static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList,
+ const MachineInstr *MI) {
+ for (auto Candidate : FoldList) {
+ if (Candidate.UseMI == MI)
+ return true;
+ }
+ return false;
+}
+
+static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList,
+ MachineInstr *MI, unsigned OpNo,
+ MachineOperand *OpToFold,
+ const SIInstrInfo *TII) {
+ if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) {
+ // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2
+ unsigned Opc = MI->getOpcode();
+ if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 ||
+ Opc == AMDGPU::V_FMAC_F32_e64) &&
+ (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) {
+ bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64;
+ bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64;
+ unsigned NewOpc = IsFMA ?
+ AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16);
+
+ // Check if changing this to a v_mad_{f16, f32} instruction will allow us
+ // to fold the operand.
+ MI->setDesc(TII->get(NewOpc));
+ bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII);
+ if (FoldAsMAD) {
+ MI->untieRegOperand(OpNo);
+ return true;
+ }
+ MI->setDesc(TII->get(Opc));
+ }
+
+ // Special case for s_setreg_b32
+ if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) {
+ MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32));
+ FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
+ return true;
+ }
+
+ // If we are already folding into another operand of MI, then
+ // we can't commute the instruction, otherwise we risk making the
+ // other fold illegal.
+ if (isUseMIInFoldList(FoldList, MI))
+ return false;
+
+ unsigned CommuteOpNo = OpNo;
+
+ // Operand is not legal, so try to commute the instruction to
+ // see if this makes it possible to fold.
+ unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex;
+ unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex;
+ bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1);
+
+ if (CanCommute) {
+ if (CommuteIdx0 == OpNo)
+ CommuteOpNo = CommuteIdx1;
+ else if (CommuteIdx1 == OpNo)
+ CommuteOpNo = CommuteIdx0;
+ }
+
+
+ // One of operands might be an Imm operand, and OpNo may refer to it after
+ // the call of commuteInstruction() below. Such situations are avoided
+ // here explicitly as OpNo must be a register operand to be a candidate
+ // for memory folding.
+ if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() ||
+ !MI->getOperand(CommuteIdx1).isReg()))
+ return false;
+
+ if (!CanCommute ||
+ !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1))
+ return false;
+
+ if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) {
+ if ((Opc == AMDGPU::V_ADD_I32_e64 ||
+ Opc == AMDGPU::V_SUB_I32_e64 ||
+ Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME
+ (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) {
+ MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
+
+ // Verify the other operand is a VGPR, otherwise we would violate the
+ // constant bus restriction.
+ unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0;
+ MachineOperand &OtherOp = MI->getOperand(OtherIdx);
+ if (!OtherOp.isReg() ||
+ !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg()))
+ return false;
+
+ assert(MI->getOperand(1).isDef());
+
+ // Make sure to get the 32-bit version of the commuted opcode.
+ unsigned MaybeCommutedOpc = MI->getOpcode();
+ int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc);
+
+ FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true,
+ Op32));
+ return true;
+ }
+
+ TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1);
+ return false;
+ }
+
+ FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true));
+ return true;
+ }
+
+ FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold));
+ return true;
+}
+
+// If the use operand doesn't care about the value, this may be an operand only
+// used for register indexing, in which case it is unsafe to fold.
+static bool isUseSafeToFold(const SIInstrInfo *TII,
+ const MachineInstr &MI,
+ const MachineOperand &UseMO) {
+ return !UseMO.isUndef() && !TII->isSDWA(MI);
+ //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg());
+}
+
+static bool tryToFoldACImm(const SIInstrInfo *TII,
+ const MachineOperand &OpToFold,
+ MachineInstr *UseMI,
+ unsigned UseOpIdx,
+ SmallVectorImpl<FoldCandidate> &FoldList) {
+ const MCInstrDesc &Desc = UseMI->getDesc();
+ const MCOperandInfo *OpInfo = Desc.OpInfo;
+ if (!OpInfo || UseOpIdx >= Desc.getNumOperands())
+ return false;
+
+ uint8_t OpTy = OpInfo[UseOpIdx].OperandType;
+ if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST ||
+ OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST)
+ return false;
+
+ if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy)) {
+ UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm());
+ return true;
+ }
+
+ if (!OpToFold.isReg())
+ return false;
+
+ unsigned UseReg = OpToFold.getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(UseReg))
+ return false;
+
+ if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) {
+ return FC.UseMI == UseMI; }) != FoldList.end())
+ return false;
+
+ MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo();
+ const MachineInstr *Def = MRI.getUniqueVRegDef(UseReg);
+ if (!Def || !Def->isRegSequence())
+ return false;
+
+ int64_t Imm;
+ MachineOperand *Op;
+ for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) {
+ const MachineOperand &Sub = Def->getOperand(I);
+ if (!Sub.isReg() || Sub.getSubReg())
+ return false;
+ MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub.getReg());
+ while (SubDef && !SubDef->isMoveImmediate() &&
+ !SubDef->getOperand(1).isImm() && TII->isFoldableCopy(*SubDef))
+ SubDef = MRI.getUniqueVRegDef(SubDef->getOperand(1).getReg());
+ if (!SubDef || !SubDef->isMoveImmediate() || !SubDef->getOperand(1).isImm())
+ return false;
+ Op = &SubDef->getOperand(1);
+ auto SubImm = Op->getImm();
+ if (I == 1) {
+ if (!TII->isInlineConstant(SubDef->getOperand(1), OpTy))
+ return false;
+
+ Imm = SubImm;
+ continue;
+ }
+ if (Imm != SubImm)
+ return false; // Can only fold splat constants
+ }
+
+ FoldList.push_back(FoldCandidate(UseMI, UseOpIdx, Op));
+ return true;
+}
+
+void SIFoldOperands::foldOperand(
+ MachineOperand &OpToFold,
+ MachineInstr *UseMI,
+ int UseOpIdx,
+ SmallVectorImpl<FoldCandidate> &FoldList,
+ SmallVectorImpl<MachineInstr *> &CopiesToReplace) const {
+ const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx);
+
+ if (!isUseSafeToFold(TII, *UseMI, UseOp))
+ return;
+
+ // FIXME: Fold operands with subregs.
+ if (UseOp.isReg() && OpToFold.isReg()) {
+ if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister)
+ return;
+
+ // Don't fold subregister extracts into tied operands, only if it is a full
+ // copy since a subregister use tied to a full register def doesn't really
+ // make sense. e.g. don't fold:
+ //
+ // %1 = COPY %0:sub1
+ // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0>
+ //
+ // into
+ // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0>
+ if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister)
+ return;
+ }
+
+ // Special case for REG_SEQUENCE: We can't fold literals into
+ // REG_SEQUENCE instructions, so we have to fold them into the
+ // uses of REG_SEQUENCE.
+ if (UseMI->isRegSequence()) {
+ unsigned RegSeqDstReg = UseMI->getOperand(0).getReg();
+ unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm();
+
+ MachineRegisterInfo::use_iterator Next;
+ for (MachineRegisterInfo::use_iterator
+ RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end();
+ RSUse != RSE; RSUse = Next) {
+ Next = std::next(RSUse);
+
+ MachineInstr *RSUseMI = RSUse->getParent();
+
+ if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI,
+ RSUse.getOperandNo(), FoldList))
+ continue;
+
+ if (RSUse->getSubReg() != RegSeqDstSubReg)
+ continue;
+
+ foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList,
+ CopiesToReplace);
+ }
+
+ return;
+ }
+
+ if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList))
+ return;
+
+ if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) {
+ // Sanity check that this is a stack access.
+ // FIXME: Should probably use stack pseudos before frame lowering.
+ MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset);
+ if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() &&
+ SOff->getReg() != MFI->getStackPtrOffsetReg()))
+ return;
+
+ if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() !=
+ MFI->getScratchRSrcReg())
+ return;
+
+ // A frame index will resolve to a positive constant, so it should always be
+ // safe to fold the addressing mode, even pre-GFX9.
+ UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex());
+ SOff->setReg(MFI->getStackPtrOffsetReg());
+ return;
+ }
+
+ bool FoldingImmLike =
+ OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
+
+ if (FoldingImmLike && UseMI->isCopy()) {
+ unsigned DestReg = UseMI->getOperand(0).getReg();
+ const TargetRegisterClass *DestRC
+ = TargetRegisterInfo::isVirtualRegister(DestReg) ?
+ MRI->getRegClass(DestReg) :
+ TRI->getPhysRegClass(DestReg);
+
+ unsigned SrcReg = UseMI->getOperand(1).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(DestReg) &&
+ TargetRegisterInfo::isVirtualRegister(SrcReg)) {
+ const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg);
+ if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) {
+ MachineRegisterInfo::use_iterator NextUse;
+ SmallVector<FoldCandidate, 4> CopyUses;
+ for (MachineRegisterInfo::use_iterator
+ Use = MRI->use_begin(DestReg), E = MRI->use_end();
+ Use != E; Use = NextUse) {
+ NextUse = std::next(Use);
+ FoldCandidate FC = FoldCandidate(Use->getParent(),
+ Use.getOperandNo(), &UseMI->getOperand(1));
+ CopyUses.push_back(FC);
+ }
+ for (auto & F : CopyUses) {
+ foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo,
+ FoldList, CopiesToReplace);
+ }
+ }
+ }
+
+ if (DestRC == &AMDGPU::AGPR_32RegClass &&
+ TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) {
+ UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
+ UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
+ CopiesToReplace.push_back(UseMI);
+ return;
+ }
+
+ // In order to fold immediates into copies, we need to change the
+ // copy to a MOV.
+
+ unsigned MovOp = TII->getMovOpcode(DestRC);
+ if (MovOp == AMDGPU::COPY)
+ return;
+
+ UseMI->setDesc(TII->get(MovOp));
+ CopiesToReplace.push_back(UseMI);
+ } else {
+ if (UseMI->isCopy() && OpToFold.isReg() &&
+ TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(0).getReg()) &&
+ TRI->isVectorRegister(*MRI, UseMI->getOperand(0).getReg()) &&
+ TRI->isVectorRegister(*MRI, UseMI->getOperand(1).getReg()) &&
+ !UseMI->getOperand(1).getSubReg()) {
+ unsigned Size = TII->getOpSize(*UseMI, 1);
+ UseMI->getOperand(1).setReg(OpToFold.getReg());
+ UseMI->getOperand(1).setSubReg(OpToFold.getSubReg());
+ UseMI->getOperand(1).setIsKill(false);
+ CopiesToReplace.push_back(UseMI);
+ OpToFold.setIsKill(false);
+ if (Size != 4)
+ return;
+ if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) &&
+ TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg()))
+ UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32));
+ else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) &&
+ TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg()))
+ UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32));
+ return;
+ }
+
+ unsigned UseOpc = UseMI->getOpcode();
+ if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 ||
+ (UseOpc == AMDGPU::V_READLANE_B32 &&
+ (int)UseOpIdx ==
+ AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) {
+ // %vgpr = V_MOV_B32 imm
+ // %sgpr = V_READFIRSTLANE_B32 %vgpr
+ // =>
+ // %sgpr = S_MOV_B32 imm
+ if (FoldingImmLike) {
+ if (execMayBeModifiedBeforeUse(*MRI,
+ UseMI->getOperand(UseOpIdx).getReg(),
+ *OpToFold.getParent(),
+ *UseMI))
+ return;
+
+ UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
+
+ // FIXME: ChangeToImmediate should clear subreg
+ UseMI->getOperand(1).setSubReg(0);
+ if (OpToFold.isImm())
+ UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm());
+ else
+ UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex());
+ UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
+ return;
+ }
+
+ if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) {
+ if (execMayBeModifiedBeforeUse(*MRI,
+ UseMI->getOperand(UseOpIdx).getReg(),
+ *OpToFold.getParent(),
+ *UseMI))
+ return;
+
+ // %vgpr = COPY %sgpr0
+ // %sgpr1 = V_READFIRSTLANE_B32 %vgpr
+ // =>
+ // %sgpr1 = COPY %sgpr0
+ UseMI->setDesc(TII->get(AMDGPU::COPY));
+ UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane)
+ return;
+ }
+ }
+
+ const MCInstrDesc &UseDesc = UseMI->getDesc();
+
+ // Don't fold into target independent nodes. Target independent opcodes
+ // don't have defined register classes.
+ if (UseDesc.isVariadic() ||
+ UseOp.isImplicit() ||
+ UseDesc.OpInfo[UseOpIdx].RegClass == -1)
+ return;
+ }
+
+ if (!FoldingImmLike) {
+ tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
+
+ // FIXME: We could try to change the instruction from 64-bit to 32-bit
+ // to enable more folding opportunites. The shrink operands pass
+ // already does this.
+ return;
+ }
+
+
+ const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc();
+ const TargetRegisterClass *FoldRC =
+ TRI->getRegClass(FoldDesc.OpInfo[0].RegClass);
+
+ // Split 64-bit constants into 32-bits for folding.
+ if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) {
+ unsigned UseReg = UseOp.getReg();
+ const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg);
+
+ if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64)
+ return;
+
+ APInt Imm(64, OpToFold.getImm());
+ if (UseOp.getSubReg() == AMDGPU::sub0) {
+ Imm = Imm.getLoBits(32);
+ } else {
+ assert(UseOp.getSubReg() == AMDGPU::sub1);
+ Imm = Imm.getHiBits(32);
+ }
+
+ MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue());
+ tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII);
+ return;
+ }
+
+
+
+ tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII);
+}
+
+static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result,
+ uint32_t LHS, uint32_t RHS) {
+ switch (Opcode) {
+ case AMDGPU::V_AND_B32_e64:
+ case AMDGPU::V_AND_B32_e32:
+ case AMDGPU::S_AND_B32:
+ Result = LHS & RHS;
+ return true;
+ case AMDGPU::V_OR_B32_e64:
+ case AMDGPU::V_OR_B32_e32:
+ case AMDGPU::S_OR_B32:
+ Result = LHS | RHS;
+ return true;
+ case AMDGPU::V_XOR_B32_e64:
+ case AMDGPU::V_XOR_B32_e32:
+ case AMDGPU::S_XOR_B32:
+ Result = LHS ^ RHS;
+ return true;
+ case AMDGPU::V_LSHL_B32_e64:
+ case AMDGPU::V_LSHL_B32_e32:
+ case AMDGPU::S_LSHL_B32:
+ // The instruction ignores the high bits for out of bounds shifts.
+ Result = LHS << (RHS & 31);
+ return true;
+ case AMDGPU::V_LSHLREV_B32_e64:
+ case AMDGPU::V_LSHLREV_B32_e32:
+ Result = RHS << (LHS & 31);
+ return true;
+ case AMDGPU::V_LSHR_B32_e64:
+ case AMDGPU::V_LSHR_B32_e32:
+ case AMDGPU::S_LSHR_B32:
+ Result = LHS >> (RHS & 31);
+ return true;
+ case AMDGPU::V_LSHRREV_B32_e64:
+ case AMDGPU::V_LSHRREV_B32_e32:
+ Result = RHS >> (LHS & 31);
+ return true;
+ case AMDGPU::V_ASHR_I32_e64:
+ case AMDGPU::V_ASHR_I32_e32:
+ case AMDGPU::S_ASHR_I32:
+ Result = static_cast<int32_t>(LHS) >> (RHS & 31);
+ return true;
+ case AMDGPU::V_ASHRREV_I32_e64:
+ case AMDGPU::V_ASHRREV_I32_e32:
+ Result = static_cast<int32_t>(RHS) >> (LHS & 31);
+ return true;
+ default:
+ return false;
+ }
+}
+
+static unsigned getMovOpc(bool IsScalar) {
+ return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32;
+}
+
+/// Remove any leftover implicit operands from mutating the instruction. e.g.
+/// if we replace an s_and_b32 with a copy, we don't need the implicit scc def
+/// anymore.
+static void stripExtraCopyOperands(MachineInstr &MI) {
+ const MCInstrDesc &Desc = MI.getDesc();
+ unsigned NumOps = Desc.getNumOperands() +
+ Desc.getNumImplicitUses() +
+ Desc.getNumImplicitDefs();
+
+ for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I)
+ MI.RemoveOperand(I);
+}
+
+static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) {
+ MI.setDesc(NewDesc);
+ stripExtraCopyOperands(MI);
+}
+
+static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI,
+ MachineOperand &Op) {
+ if (Op.isReg()) {
+ // If this has a subregister, it obviously is a register source.
+ if (Op.getSubReg() != AMDGPU::NoSubRegister ||
+ !TargetRegisterInfo::isVirtualRegister(Op.getReg()))
+ return &Op;
+
+ MachineInstr *Def = MRI.getVRegDef(Op.getReg());
+ if (Def && Def->isMoveImmediate()) {
+ MachineOperand &ImmSrc = Def->getOperand(1);
+ if (ImmSrc.isImm())
+ return &ImmSrc;
+ }
+ }
+
+ return &Op;
+}
+
+// Try to simplify operations with a constant that may appear after instruction
+// selection.
+// TODO: See if a frame index with a fixed offset can fold.
+static bool tryConstantFoldOp(MachineRegisterInfo &MRI,
+ const SIInstrInfo *TII,
+ MachineInstr *MI,
+ MachineOperand *ImmOp) {
+ unsigned Opc = MI->getOpcode();
+ if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 ||
+ Opc == AMDGPU::S_NOT_B32) {
+ MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm());
+ mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32)));
+ return true;
+ }
+
+ int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1);
+ if (Src1Idx == -1)
+ return false;
+
+ int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0);
+ MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx));
+ MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx));
+
+ if (!Src0->isImm() && !Src1->isImm())
+ return false;
+
+ if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) {
+ if (Src0->isImm() && Src0->getImm() == 0) {
+ // v_lshl_or_b32 0, X, Y -> copy Y
+ // v_lshl_or_b32 0, X, K -> v_mov_b32 K
+ bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg();
+ MI->RemoveOperand(Src1Idx);
+ MI->RemoveOperand(Src0Idx);
+
+ MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32));
+ return true;
+ }
+ }
+
+ // and k0, k1 -> v_mov_b32 (k0 & k1)
+ // or k0, k1 -> v_mov_b32 (k0 | k1)
+ // xor k0, k1 -> v_mov_b32 (k0 ^ k1)
+ if (Src0->isImm() && Src1->isImm()) {
+ int32_t NewImm;
+ if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm()))
+ return false;
+
+ const SIRegisterInfo &TRI = TII->getRegisterInfo();
+ bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg());
+
+ // Be careful to change the right operand, src0 may belong to a different
+ // instruction.
+ MI->getOperand(Src0Idx).ChangeToImmediate(NewImm);
+ MI->RemoveOperand(Src1Idx);
+ mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR)));
+ return true;
+ }
+
+ if (!MI->isCommutable())
+ return false;
+
+ if (Src0->isImm() && !Src1->isImm()) {
+ std::swap(Src0, Src1);
+ std::swap(Src0Idx, Src1Idx);
+ }
+
+ int32_t Src1Val = static_cast<int32_t>(Src1->getImm());
+ if (Opc == AMDGPU::V_OR_B32_e64 ||
+ Opc == AMDGPU::V_OR_B32_e32 ||
+ Opc == AMDGPU::S_OR_B32) {
+ if (Src1Val == 0) {
+ // y = or x, 0 => y = copy x
+ MI->RemoveOperand(Src1Idx);
+ mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
+ } else if (Src1Val == -1) {
+ // y = or x, -1 => y = v_mov_b32 -1
+ MI->RemoveOperand(Src1Idx);
+ mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32)));
+ } else
+ return false;
+
+ return true;
+ }
+
+ if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 ||
+ MI->getOpcode() == AMDGPU::V_AND_B32_e32 ||
+ MI->getOpcode() == AMDGPU::S_AND_B32) {
+ if (Src1Val == 0) {
+ // y = and x, 0 => y = v_mov_b32 0
+ MI->RemoveOperand(Src0Idx);
+ mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32)));
+ } else if (Src1Val == -1) {
+ // y = and x, -1 => y = copy x
+ MI->RemoveOperand(Src1Idx);
+ mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
+ stripExtraCopyOperands(*MI);
+ } else
+ return false;
+
+ return true;
+ }
+
+ if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 ||
+ MI->getOpcode() == AMDGPU::V_XOR_B32_e32 ||
+ MI->getOpcode() == AMDGPU::S_XOR_B32) {
+ if (Src1Val == 0) {
+ // y = xor x, 0 => y = copy x
+ MI->RemoveOperand(Src1Idx);
+ mutateCopyOp(*MI, TII->get(AMDGPU::COPY));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// Try to fold an instruction into a simpler one
+static bool tryFoldInst(const SIInstrInfo *TII,
+ MachineInstr *MI) {
+ unsigned Opc = MI->getOpcode();
+
+ if (Opc == AMDGPU::V_CNDMASK_B32_e32 ||
+ Opc == AMDGPU::V_CNDMASK_B32_e64 ||
+ Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) {
+ const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0);
+ const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1);
+ int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers);
+ int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers);
+ if (Src1->isIdenticalTo(*Src0) &&
+ (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) &&
+ (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) {
+ LLVM_DEBUG(dbgs() << "Folded " << *MI << " into ");
+ auto &NewDesc =
+ TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false));
+ int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2);
+ if (Src2Idx != -1)
+ MI->RemoveOperand(Src2Idx);
+ MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1));
+ if (Src1ModIdx != -1)
+ MI->RemoveOperand(Src1ModIdx);
+ if (Src0ModIdx != -1)
+ MI->RemoveOperand(Src0ModIdx);
+ mutateCopyOp(*MI, NewDesc);
+ LLVM_DEBUG(dbgs() << *MI << '\n');
+ return true;
+ }
+ }
+
+ return false;
+}
+
+void SIFoldOperands::foldInstOperand(MachineInstr &MI,
+ MachineOperand &OpToFold) const {
+ // We need mutate the operands of new mov instructions to add implicit
+ // uses of EXEC, but adding them invalidates the use_iterator, so defer
+ // this.
+ SmallVector<MachineInstr *, 4> CopiesToReplace;
+ SmallVector<FoldCandidate, 4> FoldList;
+ MachineOperand &Dst = MI.getOperand(0);
+
+ bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
+ if (FoldingImm) {
+ unsigned NumLiteralUses = 0;
+ MachineOperand *NonInlineUse = nullptr;
+ int NonInlineUseOpNo = -1;
+
+ MachineRegisterInfo::use_iterator NextUse;
+ for (MachineRegisterInfo::use_iterator
+ Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
+ Use != E; Use = NextUse) {
+ NextUse = std::next(Use);
+ MachineInstr *UseMI = Use->getParent();
+ unsigned OpNo = Use.getOperandNo();
+
+ // Folding the immediate may reveal operations that can be constant
+ // folded or replaced with a copy. This can happen for example after
+ // frame indices are lowered to constants or from splitting 64-bit
+ // constants.
+ //
+ // We may also encounter cases where one or both operands are
+ // immediates materialized into a register, which would ordinarily not
+ // be folded due to multiple uses or operand constraints.
+
+ if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) {
+ LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n');
+
+ // Some constant folding cases change the same immediate's use to a new
+ // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user
+ // again. The same constant folded instruction could also have a second
+ // use operand.
+ NextUse = MRI->use_begin(Dst.getReg());
+ FoldList.clear();
+ continue;
+ }
+
+ // Try to fold any inline immediate uses, and then only fold other
+ // constants if they have one use.
+ //
+ // The legality of the inline immediate must be checked based on the use
+ // operand, not the defining instruction, because 32-bit instructions
+ // with 32-bit inline immediate sources may be used to materialize
+ // constants used in 16-bit operands.
+ //
+ // e.g. it is unsafe to fold:
+ // s_mov_b32 s0, 1.0 // materializes 0x3f800000
+ // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00
+
+ // Folding immediates with more than one use will increase program size.
+ // FIXME: This will also reduce register usage, which may be better
+ // in some cases. A better heuristic is needed.
+ if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) {
+ foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace);
+ } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) {
+ foldOperand(OpToFold, UseMI, OpNo, FoldList,
+ CopiesToReplace);
+ } else {
+ if (++NumLiteralUses == 1) {
+ NonInlineUse = &*Use;
+ NonInlineUseOpNo = OpNo;
+ }
+ }
+ }
+
+ if (NumLiteralUses == 1) {
+ MachineInstr *UseMI = NonInlineUse->getParent();
+ foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace);
+ }
+ } else {
+ // Folding register.
+ SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess;
+ for (MachineRegisterInfo::use_iterator
+ Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end();
+ Use != E; ++Use) {
+ UsesToProcess.push_back(Use);
+ }
+ for (auto U : UsesToProcess) {
+ MachineInstr *UseMI = U->getParent();
+
+ foldOperand(OpToFold, UseMI, U.getOperandNo(),
+ FoldList, CopiesToReplace);
+ }
+ }
+
+ MachineFunction *MF = MI.getParent()->getParent();
+ // Make sure we add EXEC uses to any new v_mov instructions created.
+ for (MachineInstr *Copy : CopiesToReplace)
+ Copy->addImplicitDefUseOperands(*MF);
+
+ for (FoldCandidate &Fold : FoldList) {
+ if (updateOperand(Fold, *TII, *TRI, *ST)) {
+ // Clear kill flags.
+ if (Fold.isReg()) {
+ assert(Fold.OpToFold && Fold.OpToFold->isReg());
+ // FIXME: Probably shouldn't bother trying to fold if not an
+ // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR
+ // copies.
+ MRI->clearKillFlags(Fold.OpToFold->getReg());
+ }
+ LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo "
+ << static_cast<int>(Fold.UseOpNo) << " of "
+ << *Fold.UseMI << '\n');
+ tryFoldInst(TII, Fold.UseMI);
+ } else if (Fold.isCommuted()) {
+ // Restoring instruction's original operand order if fold has failed.
+ TII->commuteInstruction(*Fold.UseMI, false);
+ }
+ }
+}
+
+// Clamp patterns are canonically selected to v_max_* instructions, so only
+// handle them.
+const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const {
+ unsigned Op = MI.getOpcode();
+ switch (Op) {
+ case AMDGPU::V_MAX_F32_e64:
+ case AMDGPU::V_MAX_F16_e64:
+ case AMDGPU::V_MAX_F64:
+ case AMDGPU::V_PK_MAX_F16: {
+ if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm())
+ return nullptr;
+
+ // Make sure sources are identical.
+ const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
+ const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
+ if (!Src0->isReg() || !Src1->isReg() ||
+ Src0->getReg() != Src1->getReg() ||
+ Src0->getSubReg() != Src1->getSubReg() ||
+ Src0->getSubReg() != AMDGPU::NoSubRegister)
+ return nullptr;
+
+ // Can't fold up if we have modifiers.
+ if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
+ return nullptr;
+
+ unsigned Src0Mods
+ = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm();
+ unsigned Src1Mods
+ = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm();
+
+ // Having a 0 op_sel_hi would require swizzling the output in the source
+ // instruction, which we can't do.
+ unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1
+ : 0u;
+ if (Src0Mods != UnsetMods && Src1Mods != UnsetMods)
+ return nullptr;
+ return Src0;
+ }
+ default:
+ return nullptr;
+ }
+}
+
+// We obviously have multiple uses in a clamp since the register is used twice
+// in the same instruction.
+static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) {
+ int Count = 0;
+ for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
+ I != E; ++I) {
+ if (++Count > 1)
+ return false;
+ }
+
+ return true;
+}
+
+// FIXME: Clamp for v_mad_mixhi_f16 handled during isel.
+bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) {
+ const MachineOperand *ClampSrc = isClamp(MI);
+ if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg()))
+ return false;
+
+ MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg());
+
+ // The type of clamp must be compatible.
+ if (TII->getClampMask(*Def) != TII->getClampMask(MI))
+ return false;
+
+ MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp);
+ if (!DefClamp)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def
+ << '\n');
+
+ // Clamp is applied after omod, so it is OK if omod is set.
+ DefClamp->setImm(1);
+ MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
+ MI.eraseFromParent();
+ return true;
+}
+
+static int getOModValue(unsigned Opc, int64_t Val) {
+ switch (Opc) {
+ case AMDGPU::V_MUL_F32_e64: {
+ switch (static_cast<uint32_t>(Val)) {
+ case 0x3f000000: // 0.5
+ return SIOutMods::DIV2;
+ case 0x40000000: // 2.0
+ return SIOutMods::MUL2;
+ case 0x40800000: // 4.0
+ return SIOutMods::MUL4;
+ default:
+ return SIOutMods::NONE;
+ }
+ }
+ case AMDGPU::V_MUL_F16_e64: {
+ switch (static_cast<uint16_t>(Val)) {
+ case 0x3800: // 0.5
+ return SIOutMods::DIV2;
+ case 0x4000: // 2.0
+ return SIOutMods::MUL2;
+ case 0x4400: // 4.0
+ return SIOutMods::MUL4;
+ default:
+ return SIOutMods::NONE;
+ }
+ }
+ default:
+ llvm_unreachable("invalid mul opcode");
+ }
+}
+
+// FIXME: Does this really not support denormals with f16?
+// FIXME: Does this need to check IEEE mode bit? SNaNs are generally not
+// handled, so will anything other than that break?
+std::pair<const MachineOperand *, int>
+SIFoldOperands::isOMod(const MachineInstr &MI) const {
+ unsigned Op = MI.getOpcode();
+ switch (Op) {
+ case AMDGPU::V_MUL_F32_e64:
+ case AMDGPU::V_MUL_F16_e64: {
+ // If output denormals are enabled, omod is ignored.
+ if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) ||
+ (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals()))
+ return std::make_pair(nullptr, SIOutMods::NONE);
+
+ const MachineOperand *RegOp = nullptr;
+ const MachineOperand *ImmOp = nullptr;
+ const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
+ const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
+ if (Src0->isImm()) {
+ ImmOp = Src0;
+ RegOp = Src1;
+ } else if (Src1->isImm()) {
+ ImmOp = Src1;
+ RegOp = Src0;
+ } else
+ return std::make_pair(nullptr, SIOutMods::NONE);
+
+ int OMod = getOModValue(Op, ImmOp->getImm());
+ if (OMod == SIOutMods::NONE ||
+ TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) ||
+ TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) ||
+ TII->hasModifiersSet(MI, AMDGPU::OpName::omod) ||
+ TII->hasModifiersSet(MI, AMDGPU::OpName::clamp))
+ return std::make_pair(nullptr, SIOutMods::NONE);
+
+ return std::make_pair(RegOp, OMod);
+ }
+ case AMDGPU::V_ADD_F32_e64:
+ case AMDGPU::V_ADD_F16_e64: {
+ // If output denormals are enabled, omod is ignored.
+ if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) ||
+ (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals()))
+ return std::make_pair(nullptr, SIOutMods::NONE);
+
+ // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x
+ const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0);
+ const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
+
+ if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() &&
+ Src0->getSubReg() == Src1->getSubReg() &&
+ !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) &&
+ !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) &&
+ !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) &&
+ !TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
+ return std::make_pair(Src0, SIOutMods::MUL2);
+
+ return std::make_pair(nullptr, SIOutMods::NONE);
+ }
+ default:
+ return std::make_pair(nullptr, SIOutMods::NONE);
+ }
+}
+
+// FIXME: Does this need to check IEEE bit on function?
+bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) {
+ const MachineOperand *RegOp;
+ int OMod;
+ std::tie(RegOp, OMod) = isOMod(MI);
+ if (OMod == SIOutMods::NONE || !RegOp->isReg() ||
+ RegOp->getSubReg() != AMDGPU::NoSubRegister ||
+ !hasOneNonDBGUseInst(*MRI, RegOp->getReg()))
+ return false;
+
+ MachineInstr *Def = MRI->getVRegDef(RegOp->getReg());
+ MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod);
+ if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE)
+ return false;
+
+ // Clamp is applied after omod. If the source already has clamp set, don't
+ // fold it.
+ if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n');
+
+ DefOMod->setImm(OMod);
+ MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg());
+ MI.eraseFromParent();
+ return true;
+}
+
+bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
+ if (skipFunction(MF.getFunction()))
+ return false;
+
+ MRI = &MF.getRegInfo();
+ ST = &MF.getSubtarget<GCNSubtarget>();
+ TII = ST->getInstrInfo();
+ TRI = &TII->getRegisterInfo();
+ MFI = MF.getInfo<SIMachineFunctionInfo>();
+
+ // omod is ignored by hardware if IEEE bit is enabled. omod also does not
+ // correctly handle signed zeros.
+ //
+ // FIXME: Also need to check strictfp
+ bool IsIEEEMode = MFI->getMode().IEEE;
+ bool HasNSZ = MFI->hasNoSignedZerosFPMath();
+
+ for (MachineBasicBlock *MBB : depth_first(&MF)) {
+ MachineBasicBlock::iterator I, Next;
+ for (I = MBB->begin(); I != MBB->end(); I = Next) {
+ Next = std::next(I);
+ MachineInstr &MI = *I;
+
+ tryFoldInst(TII, &MI);
+
+ if (!TII->isFoldableCopy(MI)) {
+ // TODO: Omod might be OK if there is NSZ only on the source
+ // instruction, and not the omod multiply.
+ if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) ||
+ !tryFoldOMod(MI))
+ tryFoldClamp(MI);
+ continue;
+ }
+
+ MachineOperand &OpToFold = MI.getOperand(1);
+ bool FoldingImm =
+ OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal();
+
+ // FIXME: We could also be folding things like TargetIndexes.
+ if (!FoldingImm && !OpToFold.isReg())
+ continue;
+
+ if (OpToFold.isReg() &&
+ !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()))
+ continue;
+
+ // Prevent folding operands backwards in the function. For example,
+ // the COPY opcode must not be replaced by 1 in this example:
+ //
+ // %3 = COPY %vgpr0; VGPR_32:%3
+ // ...
+ // %vgpr0 = V_MOV_B32_e32 1, implicit %exec
+ MachineOperand &Dst = MI.getOperand(0);
+ if (Dst.isReg() &&
+ !TargetRegisterInfo::isVirtualRegister(Dst.getReg()))
+ continue;
+
+ foldInstOperand(MI, OpToFold);
+ }
+ }
+ return false;
+}