diff options
author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
---|---|---|
committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp | |
parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp')
-rw-r--r-- | contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp | 1361 |
1 files changed, 1361 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp new file mode 100644 index 000000000000..74d77d328019 --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Target/AMDGPU/SIFoldOperands.cpp @@ -0,0 +1,1361 @@ +//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +/// \file +//===----------------------------------------------------------------------===// +// + +#include "AMDGPU.h" +#include "AMDGPUSubtarget.h" +#include "SIInstrInfo.h" +#include "SIMachineFunctionInfo.h" +#include "MCTargetDesc/AMDGPUMCTargetDesc.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" + +#define DEBUG_TYPE "si-fold-operands" +using namespace llvm; + +namespace { + +struct FoldCandidate { + MachineInstr *UseMI; + union { + MachineOperand *OpToFold; + uint64_t ImmToFold; + int FrameIndexToFold; + }; + int ShrinkOpcode; + unsigned char UseOpNo; + MachineOperand::MachineOperandType Kind; + bool Commuted; + + FoldCandidate(MachineInstr *MI, unsigned OpNo, MachineOperand *FoldOp, + bool Commuted_ = false, + int ShrinkOp = -1) : + UseMI(MI), OpToFold(nullptr), ShrinkOpcode(ShrinkOp), UseOpNo(OpNo), + Kind(FoldOp->getType()), + Commuted(Commuted_) { + if (FoldOp->isImm()) { + ImmToFold = FoldOp->getImm(); + } else if (FoldOp->isFI()) { + FrameIndexToFold = FoldOp->getIndex(); + } else { + assert(FoldOp->isReg() || FoldOp->isGlobal()); + OpToFold = FoldOp; + } + } + + bool isFI() const { + return Kind == MachineOperand::MO_FrameIndex; + } + + bool isImm() const { + return Kind == MachineOperand::MO_Immediate; + } + + bool isReg() const { + return Kind == MachineOperand::MO_Register; + } + + bool isGlobal() const { return Kind == MachineOperand::MO_GlobalAddress; } + + bool isCommuted() const { + return Commuted; + } + + bool needsShrink() const { + return ShrinkOpcode != -1; + } + + int getShrinkOpcode() const { + return ShrinkOpcode; + } +}; + +class SIFoldOperands : public MachineFunctionPass { +public: + static char ID; + MachineRegisterInfo *MRI; + const SIInstrInfo *TII; + const SIRegisterInfo *TRI; + const GCNSubtarget *ST; + const SIMachineFunctionInfo *MFI; + + void foldOperand(MachineOperand &OpToFold, + MachineInstr *UseMI, + int UseOpIdx, + SmallVectorImpl<FoldCandidate> &FoldList, + SmallVectorImpl<MachineInstr *> &CopiesToReplace) const; + + void foldInstOperand(MachineInstr &MI, MachineOperand &OpToFold) const; + + const MachineOperand *isClamp(const MachineInstr &MI) const; + bool tryFoldClamp(MachineInstr &MI); + + std::pair<const MachineOperand *, int> isOMod(const MachineInstr &MI) const; + bool tryFoldOMod(MachineInstr &MI); + +public: + SIFoldOperands() : MachineFunctionPass(ID) { + initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry()); + } + + bool runOnMachineFunction(MachineFunction &MF) override; + + StringRef getPassName() const override { return "SI Fold Operands"; } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + MachineFunctionPass::getAnalysisUsage(AU); + } +}; + +} // End anonymous namespace. + +INITIALIZE_PASS(SIFoldOperands, DEBUG_TYPE, + "SI Fold Operands", false, false) + +char SIFoldOperands::ID = 0; + +char &llvm::SIFoldOperandsID = SIFoldOperands::ID; + +// Wrapper around isInlineConstant that understands special cases when +// instruction types are replaced during operand folding. +static bool isInlineConstantIfFolded(const SIInstrInfo *TII, + const MachineInstr &UseMI, + unsigned OpNo, + const MachineOperand &OpToFold) { + if (TII->isInlineConstant(UseMI, OpNo, OpToFold)) + return true; + + unsigned Opc = UseMI.getOpcode(); + switch (Opc) { + case AMDGPU::V_MAC_F32_e64: + case AMDGPU::V_MAC_F16_e64: + case AMDGPU::V_FMAC_F32_e64: { + // Special case for mac. Since this is replaced with mad when folded into + // src2, we need to check the legality for the final instruction. + int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); + if (static_cast<int>(OpNo) == Src2Idx) { + bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; + bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; + + unsigned Opc = IsFMA ? + AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); + const MCInstrDesc &MadDesc = TII->get(Opc); + return TII->isInlineConstant(OpToFold, MadDesc.OpInfo[OpNo].OperandType); + } + return false; + } + default: + return false; + } +} + +// TODO: Add heuristic that the frame index might not fit in the addressing mode +// immediate offset to avoid materializing in loops. +static bool frameIndexMayFold(const SIInstrInfo *TII, + const MachineInstr &UseMI, + int OpNo, + const MachineOperand &OpToFold) { + return OpToFold.isFI() && + (TII->isMUBUF(UseMI) || TII->isFLATScratch(UseMI)) && + OpNo == AMDGPU::getNamedOperandIdx(UseMI.getOpcode(), AMDGPU::OpName::vaddr); +} + +FunctionPass *llvm::createSIFoldOperandsPass() { + return new SIFoldOperands(); +} + +static bool updateOperand(FoldCandidate &Fold, + const SIInstrInfo &TII, + const TargetRegisterInfo &TRI, + const GCNSubtarget &ST) { + MachineInstr *MI = Fold.UseMI; + MachineOperand &Old = MI->getOperand(Fold.UseOpNo); + assert(Old.isReg()); + + if (Fold.isImm()) { + if (MI->getDesc().TSFlags & SIInstrFlags::IsPacked && + !(MI->getDesc().TSFlags & SIInstrFlags::IsMAI) && + AMDGPU::isInlinableLiteralV216(static_cast<uint16_t>(Fold.ImmToFold), + ST.hasInv2PiInlineImm())) { + // Set op_sel/op_sel_hi on this operand or bail out if op_sel is + // already set. + unsigned Opcode = MI->getOpcode(); + int OpNo = MI->getOperandNo(&Old); + int ModIdx = -1; + if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0)) + ModIdx = AMDGPU::OpName::src0_modifiers; + else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1)) + ModIdx = AMDGPU::OpName::src1_modifiers; + else if (OpNo == AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2)) + ModIdx = AMDGPU::OpName::src2_modifiers; + assert(ModIdx != -1); + ModIdx = AMDGPU::getNamedOperandIdx(Opcode, ModIdx); + MachineOperand &Mod = MI->getOperand(ModIdx); + unsigned Val = Mod.getImm(); + if ((Val & SISrcMods::OP_SEL_0) || !(Val & SISrcMods::OP_SEL_1)) + return false; + // Only apply the following transformation if that operand requries + // a packed immediate. + switch (TII.get(Opcode).OpInfo[OpNo].OperandType) { + case AMDGPU::OPERAND_REG_IMM_V2FP16: + case AMDGPU::OPERAND_REG_IMM_V2INT16: + case AMDGPU::OPERAND_REG_INLINE_C_V2FP16: + case AMDGPU::OPERAND_REG_INLINE_C_V2INT16: + // If upper part is all zero we do not need op_sel_hi. + if (!isUInt<16>(Fold.ImmToFold)) { + if (!(Fold.ImmToFold & 0xffff)) { + Mod.setImm(Mod.getImm() | SISrcMods::OP_SEL_0); + Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); + Old.ChangeToImmediate((Fold.ImmToFold >> 16) & 0xffff); + return true; + } + Mod.setImm(Mod.getImm() & ~SISrcMods::OP_SEL_1); + Old.ChangeToImmediate(Fold.ImmToFold & 0xffff); + return true; + } + break; + default: + break; + } + } + } + + if ((Fold.isImm() || Fold.isFI() || Fold.isGlobal()) && Fold.needsShrink()) { + MachineBasicBlock *MBB = MI->getParent(); + auto Liveness = MBB->computeRegisterLiveness(&TRI, AMDGPU::VCC, MI); + if (Liveness != MachineBasicBlock::LQR_Dead) + return false; + + MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); + int Op32 = Fold.getShrinkOpcode(); + MachineOperand &Dst0 = MI->getOperand(0); + MachineOperand &Dst1 = MI->getOperand(1); + assert(Dst0.isDef() && Dst1.isDef()); + + bool HaveNonDbgCarryUse = !MRI.use_nodbg_empty(Dst1.getReg()); + + const TargetRegisterClass *Dst0RC = MRI.getRegClass(Dst0.getReg()); + unsigned NewReg0 = MRI.createVirtualRegister(Dst0RC); + + MachineInstr *Inst32 = TII.buildShrunkInst(*MI, Op32); + + if (HaveNonDbgCarryUse) { + BuildMI(*MBB, MI, MI->getDebugLoc(), TII.get(AMDGPU::COPY), Dst1.getReg()) + .addReg(AMDGPU::VCC, RegState::Kill); + } + + // Keep the old instruction around to avoid breaking iterators, but + // replace it with a dummy instruction to remove uses. + // + // FIXME: We should not invert how this pass looks at operands to avoid + // this. Should track set of foldable movs instead of looking for uses + // when looking at a use. + Dst0.setReg(NewReg0); + for (unsigned I = MI->getNumOperands() - 1; I > 0; --I) + MI->RemoveOperand(I); + MI->setDesc(TII.get(AMDGPU::IMPLICIT_DEF)); + + if (Fold.isCommuted()) + TII.commuteInstruction(*Inst32, false); + return true; + } + + assert(!Fold.needsShrink() && "not handled"); + + if (Fold.isImm()) { + Old.ChangeToImmediate(Fold.ImmToFold); + return true; + } + + if (Fold.isGlobal()) { + Old.ChangeToGA(Fold.OpToFold->getGlobal(), Fold.OpToFold->getOffset(), + Fold.OpToFold->getTargetFlags()); + return true; + } + + if (Fold.isFI()) { + Old.ChangeToFrameIndex(Fold.FrameIndexToFold); + return true; + } + + MachineOperand *New = Fold.OpToFold; + Old.substVirtReg(New->getReg(), New->getSubReg(), TRI); + Old.setIsUndef(New->isUndef()); + return true; +} + +static bool isUseMIInFoldList(ArrayRef<FoldCandidate> FoldList, + const MachineInstr *MI) { + for (auto Candidate : FoldList) { + if (Candidate.UseMI == MI) + return true; + } + return false; +} + +static bool tryAddToFoldList(SmallVectorImpl<FoldCandidate> &FoldList, + MachineInstr *MI, unsigned OpNo, + MachineOperand *OpToFold, + const SIInstrInfo *TII) { + if (!TII->isOperandLegal(*MI, OpNo, OpToFold)) { + // Special case for v_mac_{f16, f32}_e64 if we are trying to fold into src2 + unsigned Opc = MI->getOpcode(); + if ((Opc == AMDGPU::V_MAC_F32_e64 || Opc == AMDGPU::V_MAC_F16_e64 || + Opc == AMDGPU::V_FMAC_F32_e64) && + (int)OpNo == AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)) { + bool IsFMA = Opc == AMDGPU::V_FMAC_F32_e64; + bool IsF32 = Opc == AMDGPU::V_MAC_F32_e64; + unsigned NewOpc = IsFMA ? + AMDGPU::V_FMA_F32 : (IsF32 ? AMDGPU::V_MAD_F32 : AMDGPU::V_MAD_F16); + + // Check if changing this to a v_mad_{f16, f32} instruction will allow us + // to fold the operand. + MI->setDesc(TII->get(NewOpc)); + bool FoldAsMAD = tryAddToFoldList(FoldList, MI, OpNo, OpToFold, TII); + if (FoldAsMAD) { + MI->untieRegOperand(OpNo); + return true; + } + MI->setDesc(TII->get(Opc)); + } + + // Special case for s_setreg_b32 + if (Opc == AMDGPU::S_SETREG_B32 && OpToFold->isImm()) { + MI->setDesc(TII->get(AMDGPU::S_SETREG_IMM32_B32)); + FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); + return true; + } + + // If we are already folding into another operand of MI, then + // we can't commute the instruction, otherwise we risk making the + // other fold illegal. + if (isUseMIInFoldList(FoldList, MI)) + return false; + + unsigned CommuteOpNo = OpNo; + + // Operand is not legal, so try to commute the instruction to + // see if this makes it possible to fold. + unsigned CommuteIdx0 = TargetInstrInfo::CommuteAnyOperandIndex; + unsigned CommuteIdx1 = TargetInstrInfo::CommuteAnyOperandIndex; + bool CanCommute = TII->findCommutedOpIndices(*MI, CommuteIdx0, CommuteIdx1); + + if (CanCommute) { + if (CommuteIdx0 == OpNo) + CommuteOpNo = CommuteIdx1; + else if (CommuteIdx1 == OpNo) + CommuteOpNo = CommuteIdx0; + } + + + // One of operands might be an Imm operand, and OpNo may refer to it after + // the call of commuteInstruction() below. Such situations are avoided + // here explicitly as OpNo must be a register operand to be a candidate + // for memory folding. + if (CanCommute && (!MI->getOperand(CommuteIdx0).isReg() || + !MI->getOperand(CommuteIdx1).isReg())) + return false; + + if (!CanCommute || + !TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1)) + return false; + + if (!TII->isOperandLegal(*MI, CommuteOpNo, OpToFold)) { + if ((Opc == AMDGPU::V_ADD_I32_e64 || + Opc == AMDGPU::V_SUB_I32_e64 || + Opc == AMDGPU::V_SUBREV_I32_e64) && // FIXME + (OpToFold->isImm() || OpToFold->isFI() || OpToFold->isGlobal())) { + MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); + + // Verify the other operand is a VGPR, otherwise we would violate the + // constant bus restriction. + unsigned OtherIdx = CommuteOpNo == CommuteIdx0 ? CommuteIdx1 : CommuteIdx0; + MachineOperand &OtherOp = MI->getOperand(OtherIdx); + if (!OtherOp.isReg() || + !TII->getRegisterInfo().isVGPR(MRI, OtherOp.getReg())) + return false; + + assert(MI->getOperand(1).isDef()); + + // Make sure to get the 32-bit version of the commuted opcode. + unsigned MaybeCommutedOpc = MI->getOpcode(); + int Op32 = AMDGPU::getVOPe32(MaybeCommutedOpc); + + FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true, + Op32)); + return true; + } + + TII->commuteInstruction(*MI, false, CommuteIdx0, CommuteIdx1); + return false; + } + + FoldList.push_back(FoldCandidate(MI, CommuteOpNo, OpToFold, true)); + return true; + } + + FoldList.push_back(FoldCandidate(MI, OpNo, OpToFold)); + return true; +} + +// If the use operand doesn't care about the value, this may be an operand only +// used for register indexing, in which case it is unsafe to fold. +static bool isUseSafeToFold(const SIInstrInfo *TII, + const MachineInstr &MI, + const MachineOperand &UseMO) { + return !UseMO.isUndef() && !TII->isSDWA(MI); + //return !MI.hasRegisterImplicitUseOperand(UseMO.getReg()); +} + +static bool tryToFoldACImm(const SIInstrInfo *TII, + const MachineOperand &OpToFold, + MachineInstr *UseMI, + unsigned UseOpIdx, + SmallVectorImpl<FoldCandidate> &FoldList) { + const MCInstrDesc &Desc = UseMI->getDesc(); + const MCOperandInfo *OpInfo = Desc.OpInfo; + if (!OpInfo || UseOpIdx >= Desc.getNumOperands()) + return false; + + uint8_t OpTy = OpInfo[UseOpIdx].OperandType; + if (OpTy < AMDGPU::OPERAND_REG_INLINE_AC_FIRST || + OpTy > AMDGPU::OPERAND_REG_INLINE_AC_LAST) + return false; + + if (OpToFold.isImm() && TII->isInlineConstant(OpToFold, OpTy)) { + UseMI->getOperand(UseOpIdx).ChangeToImmediate(OpToFold.getImm()); + return true; + } + + if (!OpToFold.isReg()) + return false; + + unsigned UseReg = OpToFold.getReg(); + if (!TargetRegisterInfo::isVirtualRegister(UseReg)) + return false; + + if (llvm::find_if(FoldList, [UseMI](const FoldCandidate &FC) { + return FC.UseMI == UseMI; }) != FoldList.end()) + return false; + + MachineRegisterInfo &MRI = UseMI->getParent()->getParent()->getRegInfo(); + const MachineInstr *Def = MRI.getUniqueVRegDef(UseReg); + if (!Def || !Def->isRegSequence()) + return false; + + int64_t Imm; + MachineOperand *Op; + for (unsigned I = 1, E = Def->getNumExplicitOperands(); I < E; I += 2) { + const MachineOperand &Sub = Def->getOperand(I); + if (!Sub.isReg() || Sub.getSubReg()) + return false; + MachineInstr *SubDef = MRI.getUniqueVRegDef(Sub.getReg()); + while (SubDef && !SubDef->isMoveImmediate() && + !SubDef->getOperand(1).isImm() && TII->isFoldableCopy(*SubDef)) + SubDef = MRI.getUniqueVRegDef(SubDef->getOperand(1).getReg()); + if (!SubDef || !SubDef->isMoveImmediate() || !SubDef->getOperand(1).isImm()) + return false; + Op = &SubDef->getOperand(1); + auto SubImm = Op->getImm(); + if (I == 1) { + if (!TII->isInlineConstant(SubDef->getOperand(1), OpTy)) + return false; + + Imm = SubImm; + continue; + } + if (Imm != SubImm) + return false; // Can only fold splat constants + } + + FoldList.push_back(FoldCandidate(UseMI, UseOpIdx, Op)); + return true; +} + +void SIFoldOperands::foldOperand( + MachineOperand &OpToFold, + MachineInstr *UseMI, + int UseOpIdx, + SmallVectorImpl<FoldCandidate> &FoldList, + SmallVectorImpl<MachineInstr *> &CopiesToReplace) const { + const MachineOperand &UseOp = UseMI->getOperand(UseOpIdx); + + if (!isUseSafeToFold(TII, *UseMI, UseOp)) + return; + + // FIXME: Fold operands with subregs. + if (UseOp.isReg() && OpToFold.isReg()) { + if (UseOp.isImplicit() || UseOp.getSubReg() != AMDGPU::NoSubRegister) + return; + + // Don't fold subregister extracts into tied operands, only if it is a full + // copy since a subregister use tied to a full register def doesn't really + // make sense. e.g. don't fold: + // + // %1 = COPY %0:sub1 + // %2<tied3> = V_MAC_{F16, F32} %3, %4, %1<tied0> + // + // into + // %2<tied3> = V_MAC_{F16, F32} %3, %4, %0:sub1<tied0> + if (UseOp.isTied() && OpToFold.getSubReg() != AMDGPU::NoSubRegister) + return; + } + + // Special case for REG_SEQUENCE: We can't fold literals into + // REG_SEQUENCE instructions, so we have to fold them into the + // uses of REG_SEQUENCE. + if (UseMI->isRegSequence()) { + unsigned RegSeqDstReg = UseMI->getOperand(0).getReg(); + unsigned RegSeqDstSubReg = UseMI->getOperand(UseOpIdx + 1).getImm(); + + MachineRegisterInfo::use_iterator Next; + for (MachineRegisterInfo::use_iterator + RSUse = MRI->use_begin(RegSeqDstReg), RSE = MRI->use_end(); + RSUse != RSE; RSUse = Next) { + Next = std::next(RSUse); + + MachineInstr *RSUseMI = RSUse->getParent(); + + if (tryToFoldACImm(TII, UseMI->getOperand(0), RSUseMI, + RSUse.getOperandNo(), FoldList)) + continue; + + if (RSUse->getSubReg() != RegSeqDstSubReg) + continue; + + foldOperand(OpToFold, RSUseMI, RSUse.getOperandNo(), FoldList, + CopiesToReplace); + } + + return; + } + + if (tryToFoldACImm(TII, OpToFold, UseMI, UseOpIdx, FoldList)) + return; + + if (frameIndexMayFold(TII, *UseMI, UseOpIdx, OpToFold)) { + // Sanity check that this is a stack access. + // FIXME: Should probably use stack pseudos before frame lowering. + MachineOperand *SOff = TII->getNamedOperand(*UseMI, AMDGPU::OpName::soffset); + if (!SOff->isReg() || (SOff->getReg() != MFI->getScratchWaveOffsetReg() && + SOff->getReg() != MFI->getStackPtrOffsetReg())) + return; + + if (TII->getNamedOperand(*UseMI, AMDGPU::OpName::srsrc)->getReg() != + MFI->getScratchRSrcReg()) + return; + + // A frame index will resolve to a positive constant, so it should always be + // safe to fold the addressing mode, even pre-GFX9. + UseMI->getOperand(UseOpIdx).ChangeToFrameIndex(OpToFold.getIndex()); + SOff->setReg(MFI->getStackPtrOffsetReg()); + return; + } + + bool FoldingImmLike = + OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); + + if (FoldingImmLike && UseMI->isCopy()) { + unsigned DestReg = UseMI->getOperand(0).getReg(); + const TargetRegisterClass *DestRC + = TargetRegisterInfo::isVirtualRegister(DestReg) ? + MRI->getRegClass(DestReg) : + TRI->getPhysRegClass(DestReg); + + unsigned SrcReg = UseMI->getOperand(1).getReg(); + if (TargetRegisterInfo::isVirtualRegister(DestReg) && + TargetRegisterInfo::isVirtualRegister(SrcReg)) { + const TargetRegisterClass * SrcRC = MRI->getRegClass(SrcReg); + if (TRI->isSGPRClass(SrcRC) && TRI->hasVectorRegisters(DestRC)) { + MachineRegisterInfo::use_iterator NextUse; + SmallVector<FoldCandidate, 4> CopyUses; + for (MachineRegisterInfo::use_iterator + Use = MRI->use_begin(DestReg), E = MRI->use_end(); + Use != E; Use = NextUse) { + NextUse = std::next(Use); + FoldCandidate FC = FoldCandidate(Use->getParent(), + Use.getOperandNo(), &UseMI->getOperand(1)); + CopyUses.push_back(FC); + } + for (auto & F : CopyUses) { + foldOperand(*F.OpToFold, F.UseMI, F.UseOpNo, + FoldList, CopiesToReplace); + } + } + } + + if (DestRC == &AMDGPU::AGPR_32RegClass && + TII->isInlineConstant(OpToFold, AMDGPU::OPERAND_REG_INLINE_C_INT32)) { + UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); + UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); + CopiesToReplace.push_back(UseMI); + return; + } + + // In order to fold immediates into copies, we need to change the + // copy to a MOV. + + unsigned MovOp = TII->getMovOpcode(DestRC); + if (MovOp == AMDGPU::COPY) + return; + + UseMI->setDesc(TII->get(MovOp)); + CopiesToReplace.push_back(UseMI); + } else { + if (UseMI->isCopy() && OpToFold.isReg() && + TargetRegisterInfo::isVirtualRegister(UseMI->getOperand(0).getReg()) && + TRI->isVectorRegister(*MRI, UseMI->getOperand(0).getReg()) && + TRI->isVectorRegister(*MRI, UseMI->getOperand(1).getReg()) && + !UseMI->getOperand(1).getSubReg()) { + unsigned Size = TII->getOpSize(*UseMI, 1); + UseMI->getOperand(1).setReg(OpToFold.getReg()); + UseMI->getOperand(1).setSubReg(OpToFold.getSubReg()); + UseMI->getOperand(1).setIsKill(false); + CopiesToReplace.push_back(UseMI); + OpToFold.setIsKill(false); + if (Size != 4) + return; + if (TRI->isAGPR(*MRI, UseMI->getOperand(0).getReg()) && + TRI->isVGPR(*MRI, UseMI->getOperand(1).getReg())) + UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_WRITE_B32)); + else if (TRI->isVGPR(*MRI, UseMI->getOperand(0).getReg()) && + TRI->isAGPR(*MRI, UseMI->getOperand(1).getReg())) + UseMI->setDesc(TII->get(AMDGPU::V_ACCVGPR_READ_B32)); + return; + } + + unsigned UseOpc = UseMI->getOpcode(); + if (UseOpc == AMDGPU::V_READFIRSTLANE_B32 || + (UseOpc == AMDGPU::V_READLANE_B32 && + (int)UseOpIdx == + AMDGPU::getNamedOperandIdx(UseOpc, AMDGPU::OpName::src0))) { + // %vgpr = V_MOV_B32 imm + // %sgpr = V_READFIRSTLANE_B32 %vgpr + // => + // %sgpr = S_MOV_B32 imm + if (FoldingImmLike) { + if (execMayBeModifiedBeforeUse(*MRI, + UseMI->getOperand(UseOpIdx).getReg(), + *OpToFold.getParent(), + *UseMI)) + return; + + UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32)); + + // FIXME: ChangeToImmediate should clear subreg + UseMI->getOperand(1).setSubReg(0); + if (OpToFold.isImm()) + UseMI->getOperand(1).ChangeToImmediate(OpToFold.getImm()); + else + UseMI->getOperand(1).ChangeToFrameIndex(OpToFold.getIndex()); + UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) + return; + } + + if (OpToFold.isReg() && TRI->isSGPRReg(*MRI, OpToFold.getReg())) { + if (execMayBeModifiedBeforeUse(*MRI, + UseMI->getOperand(UseOpIdx).getReg(), + *OpToFold.getParent(), + *UseMI)) + return; + + // %vgpr = COPY %sgpr0 + // %sgpr1 = V_READFIRSTLANE_B32 %vgpr + // => + // %sgpr1 = COPY %sgpr0 + UseMI->setDesc(TII->get(AMDGPU::COPY)); + UseMI->RemoveOperand(2); // Remove exec read (or src1 for readlane) + return; + } + } + + const MCInstrDesc &UseDesc = UseMI->getDesc(); + + // Don't fold into target independent nodes. Target independent opcodes + // don't have defined register classes. + if (UseDesc.isVariadic() || + UseOp.isImplicit() || + UseDesc.OpInfo[UseOpIdx].RegClass == -1) + return; + } + + if (!FoldingImmLike) { + tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); + + // FIXME: We could try to change the instruction from 64-bit to 32-bit + // to enable more folding opportunites. The shrink operands pass + // already does this. + return; + } + + + const MCInstrDesc &FoldDesc = OpToFold.getParent()->getDesc(); + const TargetRegisterClass *FoldRC = + TRI->getRegClass(FoldDesc.OpInfo[0].RegClass); + + // Split 64-bit constants into 32-bits for folding. + if (UseOp.getSubReg() && AMDGPU::getRegBitWidth(FoldRC->getID()) == 64) { + unsigned UseReg = UseOp.getReg(); + const TargetRegisterClass *UseRC = MRI->getRegClass(UseReg); + + if (AMDGPU::getRegBitWidth(UseRC->getID()) != 64) + return; + + APInt Imm(64, OpToFold.getImm()); + if (UseOp.getSubReg() == AMDGPU::sub0) { + Imm = Imm.getLoBits(32); + } else { + assert(UseOp.getSubReg() == AMDGPU::sub1); + Imm = Imm.getHiBits(32); + } + + MachineOperand ImmOp = MachineOperand::CreateImm(Imm.getSExtValue()); + tryAddToFoldList(FoldList, UseMI, UseOpIdx, &ImmOp, TII); + return; + } + + + + tryAddToFoldList(FoldList, UseMI, UseOpIdx, &OpToFold, TII); +} + +static bool evalBinaryInstruction(unsigned Opcode, int32_t &Result, + uint32_t LHS, uint32_t RHS) { + switch (Opcode) { + case AMDGPU::V_AND_B32_e64: + case AMDGPU::V_AND_B32_e32: + case AMDGPU::S_AND_B32: + Result = LHS & RHS; + return true; + case AMDGPU::V_OR_B32_e64: + case AMDGPU::V_OR_B32_e32: + case AMDGPU::S_OR_B32: + Result = LHS | RHS; + return true; + case AMDGPU::V_XOR_B32_e64: + case AMDGPU::V_XOR_B32_e32: + case AMDGPU::S_XOR_B32: + Result = LHS ^ RHS; + return true; + case AMDGPU::V_LSHL_B32_e64: + case AMDGPU::V_LSHL_B32_e32: + case AMDGPU::S_LSHL_B32: + // The instruction ignores the high bits for out of bounds shifts. + Result = LHS << (RHS & 31); + return true; + case AMDGPU::V_LSHLREV_B32_e64: + case AMDGPU::V_LSHLREV_B32_e32: + Result = RHS << (LHS & 31); + return true; + case AMDGPU::V_LSHR_B32_e64: + case AMDGPU::V_LSHR_B32_e32: + case AMDGPU::S_LSHR_B32: + Result = LHS >> (RHS & 31); + return true; + case AMDGPU::V_LSHRREV_B32_e64: + case AMDGPU::V_LSHRREV_B32_e32: + Result = RHS >> (LHS & 31); + return true; + case AMDGPU::V_ASHR_I32_e64: + case AMDGPU::V_ASHR_I32_e32: + case AMDGPU::S_ASHR_I32: + Result = static_cast<int32_t>(LHS) >> (RHS & 31); + return true; + case AMDGPU::V_ASHRREV_I32_e64: + case AMDGPU::V_ASHRREV_I32_e32: + Result = static_cast<int32_t>(RHS) >> (LHS & 31); + return true; + default: + return false; + } +} + +static unsigned getMovOpc(bool IsScalar) { + return IsScalar ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; +} + +/// Remove any leftover implicit operands from mutating the instruction. e.g. +/// if we replace an s_and_b32 with a copy, we don't need the implicit scc def +/// anymore. +static void stripExtraCopyOperands(MachineInstr &MI) { + const MCInstrDesc &Desc = MI.getDesc(); + unsigned NumOps = Desc.getNumOperands() + + Desc.getNumImplicitUses() + + Desc.getNumImplicitDefs(); + + for (unsigned I = MI.getNumOperands() - 1; I >= NumOps; --I) + MI.RemoveOperand(I); +} + +static void mutateCopyOp(MachineInstr &MI, const MCInstrDesc &NewDesc) { + MI.setDesc(NewDesc); + stripExtraCopyOperands(MI); +} + +static MachineOperand *getImmOrMaterializedImm(MachineRegisterInfo &MRI, + MachineOperand &Op) { + if (Op.isReg()) { + // If this has a subregister, it obviously is a register source. + if (Op.getSubReg() != AMDGPU::NoSubRegister || + !TargetRegisterInfo::isVirtualRegister(Op.getReg())) + return &Op; + + MachineInstr *Def = MRI.getVRegDef(Op.getReg()); + if (Def && Def->isMoveImmediate()) { + MachineOperand &ImmSrc = Def->getOperand(1); + if (ImmSrc.isImm()) + return &ImmSrc; + } + } + + return &Op; +} + +// Try to simplify operations with a constant that may appear after instruction +// selection. +// TODO: See if a frame index with a fixed offset can fold. +static bool tryConstantFoldOp(MachineRegisterInfo &MRI, + const SIInstrInfo *TII, + MachineInstr *MI, + MachineOperand *ImmOp) { + unsigned Opc = MI->getOpcode(); + if (Opc == AMDGPU::V_NOT_B32_e64 || Opc == AMDGPU::V_NOT_B32_e32 || + Opc == AMDGPU::S_NOT_B32) { + MI->getOperand(1).ChangeToImmediate(~ImmOp->getImm()); + mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_NOT_B32))); + return true; + } + + int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); + if (Src1Idx == -1) + return false; + + int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); + MachineOperand *Src0 = getImmOrMaterializedImm(MRI, MI->getOperand(Src0Idx)); + MachineOperand *Src1 = getImmOrMaterializedImm(MRI, MI->getOperand(Src1Idx)); + + if (!Src0->isImm() && !Src1->isImm()) + return false; + + if (MI->getOpcode() == AMDGPU::V_LSHL_OR_B32) { + if (Src0->isImm() && Src0->getImm() == 0) { + // v_lshl_or_b32 0, X, Y -> copy Y + // v_lshl_or_b32 0, X, K -> v_mov_b32 K + bool UseCopy = TII->getNamedOperand(*MI, AMDGPU::OpName::src2)->isReg(); + MI->RemoveOperand(Src1Idx); + MI->RemoveOperand(Src0Idx); + + MI->setDesc(TII->get(UseCopy ? AMDGPU::COPY : AMDGPU::V_MOV_B32_e32)); + return true; + } + } + + // and k0, k1 -> v_mov_b32 (k0 & k1) + // or k0, k1 -> v_mov_b32 (k0 | k1) + // xor k0, k1 -> v_mov_b32 (k0 ^ k1) + if (Src0->isImm() && Src1->isImm()) { + int32_t NewImm; + if (!evalBinaryInstruction(Opc, NewImm, Src0->getImm(), Src1->getImm())) + return false; + + const SIRegisterInfo &TRI = TII->getRegisterInfo(); + bool IsSGPR = TRI.isSGPRReg(MRI, MI->getOperand(0).getReg()); + + // Be careful to change the right operand, src0 may belong to a different + // instruction. + MI->getOperand(Src0Idx).ChangeToImmediate(NewImm); + MI->RemoveOperand(Src1Idx); + mutateCopyOp(*MI, TII->get(getMovOpc(IsSGPR))); + return true; + } + + if (!MI->isCommutable()) + return false; + + if (Src0->isImm() && !Src1->isImm()) { + std::swap(Src0, Src1); + std::swap(Src0Idx, Src1Idx); + } + + int32_t Src1Val = static_cast<int32_t>(Src1->getImm()); + if (Opc == AMDGPU::V_OR_B32_e64 || + Opc == AMDGPU::V_OR_B32_e32 || + Opc == AMDGPU::S_OR_B32) { + if (Src1Val == 0) { + // y = or x, 0 => y = copy x + MI->RemoveOperand(Src1Idx); + mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); + } else if (Src1Val == -1) { + // y = or x, -1 => y = v_mov_b32 -1 + MI->RemoveOperand(Src1Idx); + mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_OR_B32))); + } else + return false; + + return true; + } + + if (MI->getOpcode() == AMDGPU::V_AND_B32_e64 || + MI->getOpcode() == AMDGPU::V_AND_B32_e32 || + MI->getOpcode() == AMDGPU::S_AND_B32) { + if (Src1Val == 0) { + // y = and x, 0 => y = v_mov_b32 0 + MI->RemoveOperand(Src0Idx); + mutateCopyOp(*MI, TII->get(getMovOpc(Opc == AMDGPU::S_AND_B32))); + } else if (Src1Val == -1) { + // y = and x, -1 => y = copy x + MI->RemoveOperand(Src1Idx); + mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); + stripExtraCopyOperands(*MI); + } else + return false; + + return true; + } + + if (MI->getOpcode() == AMDGPU::V_XOR_B32_e64 || + MI->getOpcode() == AMDGPU::V_XOR_B32_e32 || + MI->getOpcode() == AMDGPU::S_XOR_B32) { + if (Src1Val == 0) { + // y = xor x, 0 => y = copy x + MI->RemoveOperand(Src1Idx); + mutateCopyOp(*MI, TII->get(AMDGPU::COPY)); + return true; + } + } + + return false; +} + +// Try to fold an instruction into a simpler one +static bool tryFoldInst(const SIInstrInfo *TII, + MachineInstr *MI) { + unsigned Opc = MI->getOpcode(); + + if (Opc == AMDGPU::V_CNDMASK_B32_e32 || + Opc == AMDGPU::V_CNDMASK_B32_e64 || + Opc == AMDGPU::V_CNDMASK_B64_PSEUDO) { + const MachineOperand *Src0 = TII->getNamedOperand(*MI, AMDGPU::OpName::src0); + const MachineOperand *Src1 = TII->getNamedOperand(*MI, AMDGPU::OpName::src1); + int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1_modifiers); + int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0_modifiers); + if (Src1->isIdenticalTo(*Src0) && + (Src1ModIdx == -1 || !MI->getOperand(Src1ModIdx).getImm()) && + (Src0ModIdx == -1 || !MI->getOperand(Src0ModIdx).getImm())) { + LLVM_DEBUG(dbgs() << "Folded " << *MI << " into "); + auto &NewDesc = + TII->get(Src0->isReg() ? (unsigned)AMDGPU::COPY : getMovOpc(false)); + int Src2Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2); + if (Src2Idx != -1) + MI->RemoveOperand(Src2Idx); + MI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1)); + if (Src1ModIdx != -1) + MI->RemoveOperand(Src1ModIdx); + if (Src0ModIdx != -1) + MI->RemoveOperand(Src0ModIdx); + mutateCopyOp(*MI, NewDesc); + LLVM_DEBUG(dbgs() << *MI << '\n'); + return true; + } + } + + return false; +} + +void SIFoldOperands::foldInstOperand(MachineInstr &MI, + MachineOperand &OpToFold) const { + // We need mutate the operands of new mov instructions to add implicit + // uses of EXEC, but adding them invalidates the use_iterator, so defer + // this. + SmallVector<MachineInstr *, 4> CopiesToReplace; + SmallVector<FoldCandidate, 4> FoldList; + MachineOperand &Dst = MI.getOperand(0); + + bool FoldingImm = OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); + if (FoldingImm) { + unsigned NumLiteralUses = 0; + MachineOperand *NonInlineUse = nullptr; + int NonInlineUseOpNo = -1; + + MachineRegisterInfo::use_iterator NextUse; + for (MachineRegisterInfo::use_iterator + Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); + Use != E; Use = NextUse) { + NextUse = std::next(Use); + MachineInstr *UseMI = Use->getParent(); + unsigned OpNo = Use.getOperandNo(); + + // Folding the immediate may reveal operations that can be constant + // folded or replaced with a copy. This can happen for example after + // frame indices are lowered to constants or from splitting 64-bit + // constants. + // + // We may also encounter cases where one or both operands are + // immediates materialized into a register, which would ordinarily not + // be folded due to multiple uses or operand constraints. + + if (OpToFold.isImm() && tryConstantFoldOp(*MRI, TII, UseMI, &OpToFold)) { + LLVM_DEBUG(dbgs() << "Constant folded " << *UseMI << '\n'); + + // Some constant folding cases change the same immediate's use to a new + // instruction, e.g. and x, 0 -> 0. Make sure we re-visit the user + // again. The same constant folded instruction could also have a second + // use operand. + NextUse = MRI->use_begin(Dst.getReg()); + FoldList.clear(); + continue; + } + + // Try to fold any inline immediate uses, and then only fold other + // constants if they have one use. + // + // The legality of the inline immediate must be checked based on the use + // operand, not the defining instruction, because 32-bit instructions + // with 32-bit inline immediate sources may be used to materialize + // constants used in 16-bit operands. + // + // e.g. it is unsafe to fold: + // s_mov_b32 s0, 1.0 // materializes 0x3f800000 + // v_add_f16 v0, v1, s0 // 1.0 f16 inline immediate sees 0x00003c00 + + // Folding immediates with more than one use will increase program size. + // FIXME: This will also reduce register usage, which may be better + // in some cases. A better heuristic is needed. + if (isInlineConstantIfFolded(TII, *UseMI, OpNo, OpToFold)) { + foldOperand(OpToFold, UseMI, OpNo, FoldList, CopiesToReplace); + } else if (frameIndexMayFold(TII, *UseMI, OpNo, OpToFold)) { + foldOperand(OpToFold, UseMI, OpNo, FoldList, + CopiesToReplace); + } else { + if (++NumLiteralUses == 1) { + NonInlineUse = &*Use; + NonInlineUseOpNo = OpNo; + } + } + } + + if (NumLiteralUses == 1) { + MachineInstr *UseMI = NonInlineUse->getParent(); + foldOperand(OpToFold, UseMI, NonInlineUseOpNo, FoldList, CopiesToReplace); + } + } else { + // Folding register. + SmallVector <MachineRegisterInfo::use_iterator, 4> UsesToProcess; + for (MachineRegisterInfo::use_iterator + Use = MRI->use_begin(Dst.getReg()), E = MRI->use_end(); + Use != E; ++Use) { + UsesToProcess.push_back(Use); + } + for (auto U : UsesToProcess) { + MachineInstr *UseMI = U->getParent(); + + foldOperand(OpToFold, UseMI, U.getOperandNo(), + FoldList, CopiesToReplace); + } + } + + MachineFunction *MF = MI.getParent()->getParent(); + // Make sure we add EXEC uses to any new v_mov instructions created. + for (MachineInstr *Copy : CopiesToReplace) + Copy->addImplicitDefUseOperands(*MF); + + for (FoldCandidate &Fold : FoldList) { + if (updateOperand(Fold, *TII, *TRI, *ST)) { + // Clear kill flags. + if (Fold.isReg()) { + assert(Fold.OpToFold && Fold.OpToFold->isReg()); + // FIXME: Probably shouldn't bother trying to fold if not an + // SGPR. PeepholeOptimizer can eliminate redundant VGPR->VGPR + // copies. + MRI->clearKillFlags(Fold.OpToFold->getReg()); + } + LLVM_DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " + << static_cast<int>(Fold.UseOpNo) << " of " + << *Fold.UseMI << '\n'); + tryFoldInst(TII, Fold.UseMI); + } else if (Fold.isCommuted()) { + // Restoring instruction's original operand order if fold has failed. + TII->commuteInstruction(*Fold.UseMI, false); + } + } +} + +// Clamp patterns are canonically selected to v_max_* instructions, so only +// handle them. +const MachineOperand *SIFoldOperands::isClamp(const MachineInstr &MI) const { + unsigned Op = MI.getOpcode(); + switch (Op) { + case AMDGPU::V_MAX_F32_e64: + case AMDGPU::V_MAX_F16_e64: + case AMDGPU::V_MAX_F64: + case AMDGPU::V_PK_MAX_F16: { + if (!TII->getNamedOperand(MI, AMDGPU::OpName::clamp)->getImm()) + return nullptr; + + // Make sure sources are identical. + const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); + const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); + if (!Src0->isReg() || !Src1->isReg() || + Src0->getReg() != Src1->getReg() || + Src0->getSubReg() != Src1->getSubReg() || + Src0->getSubReg() != AMDGPU::NoSubRegister) + return nullptr; + + // Can't fold up if we have modifiers. + if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) + return nullptr; + + unsigned Src0Mods + = TII->getNamedOperand(MI, AMDGPU::OpName::src0_modifiers)->getImm(); + unsigned Src1Mods + = TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers)->getImm(); + + // Having a 0 op_sel_hi would require swizzling the output in the source + // instruction, which we can't do. + unsigned UnsetMods = (Op == AMDGPU::V_PK_MAX_F16) ? SISrcMods::OP_SEL_1 + : 0u; + if (Src0Mods != UnsetMods && Src1Mods != UnsetMods) + return nullptr; + return Src0; + } + default: + return nullptr; + } +} + +// We obviously have multiple uses in a clamp since the register is used twice +// in the same instruction. +static bool hasOneNonDBGUseInst(const MachineRegisterInfo &MRI, unsigned Reg) { + int Count = 0; + for (auto I = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end(); + I != E; ++I) { + if (++Count > 1) + return false; + } + + return true; +} + +// FIXME: Clamp for v_mad_mixhi_f16 handled during isel. +bool SIFoldOperands::tryFoldClamp(MachineInstr &MI) { + const MachineOperand *ClampSrc = isClamp(MI); + if (!ClampSrc || !hasOneNonDBGUseInst(*MRI, ClampSrc->getReg())) + return false; + + MachineInstr *Def = MRI->getVRegDef(ClampSrc->getReg()); + + // The type of clamp must be compatible. + if (TII->getClampMask(*Def) != TII->getClampMask(MI)) + return false; + + MachineOperand *DefClamp = TII->getNamedOperand(*Def, AMDGPU::OpName::clamp); + if (!DefClamp) + return false; + + LLVM_DEBUG(dbgs() << "Folding clamp " << *DefClamp << " into " << *Def + << '\n'); + + // Clamp is applied after omod, so it is OK if omod is set. + DefClamp->setImm(1); + MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); + MI.eraseFromParent(); + return true; +} + +static int getOModValue(unsigned Opc, int64_t Val) { + switch (Opc) { + case AMDGPU::V_MUL_F32_e64: { + switch (static_cast<uint32_t>(Val)) { + case 0x3f000000: // 0.5 + return SIOutMods::DIV2; + case 0x40000000: // 2.0 + return SIOutMods::MUL2; + case 0x40800000: // 4.0 + return SIOutMods::MUL4; + default: + return SIOutMods::NONE; + } + } + case AMDGPU::V_MUL_F16_e64: { + switch (static_cast<uint16_t>(Val)) { + case 0x3800: // 0.5 + return SIOutMods::DIV2; + case 0x4000: // 2.0 + return SIOutMods::MUL2; + case 0x4400: // 4.0 + return SIOutMods::MUL4; + default: + return SIOutMods::NONE; + } + } + default: + llvm_unreachable("invalid mul opcode"); + } +} + +// FIXME: Does this really not support denormals with f16? +// FIXME: Does this need to check IEEE mode bit? SNaNs are generally not +// handled, so will anything other than that break? +std::pair<const MachineOperand *, int> +SIFoldOperands::isOMod(const MachineInstr &MI) const { + unsigned Op = MI.getOpcode(); + switch (Op) { + case AMDGPU::V_MUL_F32_e64: + case AMDGPU::V_MUL_F16_e64: { + // If output denormals are enabled, omod is ignored. + if ((Op == AMDGPU::V_MUL_F32_e64 && ST->hasFP32Denormals()) || + (Op == AMDGPU::V_MUL_F16_e64 && ST->hasFP16Denormals())) + return std::make_pair(nullptr, SIOutMods::NONE); + + const MachineOperand *RegOp = nullptr; + const MachineOperand *ImmOp = nullptr; + const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); + const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); + if (Src0->isImm()) { + ImmOp = Src0; + RegOp = Src1; + } else if (Src1->isImm()) { + ImmOp = Src1; + RegOp = Src0; + } else + return std::make_pair(nullptr, SIOutMods::NONE); + + int OMod = getOModValue(Op, ImmOp->getImm()); + if (OMod == SIOutMods::NONE || + TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) || + TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) || + TII->hasModifiersSet(MI, AMDGPU::OpName::omod) || + TII->hasModifiersSet(MI, AMDGPU::OpName::clamp)) + return std::make_pair(nullptr, SIOutMods::NONE); + + return std::make_pair(RegOp, OMod); + } + case AMDGPU::V_ADD_F32_e64: + case AMDGPU::V_ADD_F16_e64: { + // If output denormals are enabled, omod is ignored. + if ((Op == AMDGPU::V_ADD_F32_e64 && ST->hasFP32Denormals()) || + (Op == AMDGPU::V_ADD_F16_e64 && ST->hasFP16Denormals())) + return std::make_pair(nullptr, SIOutMods::NONE); + + // Look through the DAGCombiner canonicalization fmul x, 2 -> fadd x, x + const MachineOperand *Src0 = TII->getNamedOperand(MI, AMDGPU::OpName::src0); + const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1); + + if (Src0->isReg() && Src1->isReg() && Src0->getReg() == Src1->getReg() && + Src0->getSubReg() == Src1->getSubReg() && + !TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers) && + !TII->hasModifiersSet(MI, AMDGPU::OpName::src1_modifiers) && + !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp) && + !TII->hasModifiersSet(MI, AMDGPU::OpName::omod)) + return std::make_pair(Src0, SIOutMods::MUL2); + + return std::make_pair(nullptr, SIOutMods::NONE); + } + default: + return std::make_pair(nullptr, SIOutMods::NONE); + } +} + +// FIXME: Does this need to check IEEE bit on function? +bool SIFoldOperands::tryFoldOMod(MachineInstr &MI) { + const MachineOperand *RegOp; + int OMod; + std::tie(RegOp, OMod) = isOMod(MI); + if (OMod == SIOutMods::NONE || !RegOp->isReg() || + RegOp->getSubReg() != AMDGPU::NoSubRegister || + !hasOneNonDBGUseInst(*MRI, RegOp->getReg())) + return false; + + MachineInstr *Def = MRI->getVRegDef(RegOp->getReg()); + MachineOperand *DefOMod = TII->getNamedOperand(*Def, AMDGPU::OpName::omod); + if (!DefOMod || DefOMod->getImm() != SIOutMods::NONE) + return false; + + // Clamp is applied after omod. If the source already has clamp set, don't + // fold it. + if (TII->hasModifiersSet(*Def, AMDGPU::OpName::clamp)) + return false; + + LLVM_DEBUG(dbgs() << "Folding omod " << MI << " into " << *Def << '\n'); + + DefOMod->setImm(OMod); + MRI->replaceRegWith(MI.getOperand(0).getReg(), Def->getOperand(0).getReg()); + MI.eraseFromParent(); + return true; +} + +bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) { + if (skipFunction(MF.getFunction())) + return false; + + MRI = &MF.getRegInfo(); + ST = &MF.getSubtarget<GCNSubtarget>(); + TII = ST->getInstrInfo(); + TRI = &TII->getRegisterInfo(); + MFI = MF.getInfo<SIMachineFunctionInfo>(); + + // omod is ignored by hardware if IEEE bit is enabled. omod also does not + // correctly handle signed zeros. + // + // FIXME: Also need to check strictfp + bool IsIEEEMode = MFI->getMode().IEEE; + bool HasNSZ = MFI->hasNoSignedZerosFPMath(); + + for (MachineBasicBlock *MBB : depth_first(&MF)) { + MachineBasicBlock::iterator I, Next; + for (I = MBB->begin(); I != MBB->end(); I = Next) { + Next = std::next(I); + MachineInstr &MI = *I; + + tryFoldInst(TII, &MI); + + if (!TII->isFoldableCopy(MI)) { + // TODO: Omod might be OK if there is NSZ only on the source + // instruction, and not the omod multiply. + if (IsIEEEMode || (!HasNSZ && !MI.getFlag(MachineInstr::FmNsz)) || + !tryFoldOMod(MI)) + tryFoldClamp(MI); + continue; + } + + MachineOperand &OpToFold = MI.getOperand(1); + bool FoldingImm = + OpToFold.isImm() || OpToFold.isFI() || OpToFold.isGlobal(); + + // FIXME: We could also be folding things like TargetIndexes. + if (!FoldingImm && !OpToFold.isReg()) + continue; + + if (OpToFold.isReg() && + !TargetRegisterInfo::isVirtualRegister(OpToFold.getReg())) + continue; + + // Prevent folding operands backwards in the function. For example, + // the COPY opcode must not be replaced by 1 in this example: + // + // %3 = COPY %vgpr0; VGPR_32:%3 + // ... + // %vgpr0 = V_MOV_B32_e32 1, implicit %exec + MachineOperand &Dst = MI.getOperand(0); + if (Dst.isReg() && + !TargetRegisterInfo::isVirtualRegister(Dst.getReg())) + continue; + + foldInstOperand(MI, OpToFold); + } + } + return false; +} |