summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/BPF/BTFDebug.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Target/BPF/BTFDebug.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/BPF/BTFDebug.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/BPF/BTFDebug.cpp1326
1 files changed, 1326 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/BPF/BTFDebug.cpp b/contrib/llvm-project/llvm/lib/Target/BPF/BTFDebug.cpp
new file mode 100644
index 000000000000..5c542e739088
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/BPF/BTFDebug.cpp
@@ -0,0 +1,1326 @@
+//===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains support for writing BTF debug info.
+//
+//===----------------------------------------------------------------------===//
+
+#include "BTFDebug.h"
+#include "BPF.h"
+#include "BPFCORE.h"
+#include "MCTargetDesc/BPFMCTargetDesc.h"
+#include "llvm/BinaryFormat/ELF.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/MC/MCContext.h"
+#include "llvm/MC/MCObjectFileInfo.h"
+#include "llvm/MC/MCSectionELF.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/Support/LineIterator.h"
+
+using namespace llvm;
+
+static const char *BTFKindStr[] = {
+#define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
+#include "BTF.def"
+};
+
+static const DIType * stripQualifiers(const DIType *Ty) {
+ while (const auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
+ unsigned Tag = DTy->getTag();
+ if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
+ Tag != dwarf::DW_TAG_volatile_type && Tag != dwarf::DW_TAG_restrict_type)
+ break;
+ Ty = DTy->getBaseType();
+ }
+
+ return Ty;
+}
+
+/// Emit a BTF common type.
+void BTFTypeBase::emitType(MCStreamer &OS) {
+ OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
+ ")");
+ OS.EmitIntValue(BTFType.NameOff, 4);
+ OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
+ OS.EmitIntValue(BTFType.Info, 4);
+ OS.EmitIntValue(BTFType.Size, 4);
+}
+
+BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag,
+ bool NeedsFixup)
+ : DTy(DTy), NeedsFixup(NeedsFixup) {
+ switch (Tag) {
+ case dwarf::DW_TAG_pointer_type:
+ Kind = BTF::BTF_KIND_PTR;
+ break;
+ case dwarf::DW_TAG_const_type:
+ Kind = BTF::BTF_KIND_CONST;
+ break;
+ case dwarf::DW_TAG_volatile_type:
+ Kind = BTF::BTF_KIND_VOLATILE;
+ break;
+ case dwarf::DW_TAG_typedef:
+ Kind = BTF::BTF_KIND_TYPEDEF;
+ break;
+ case dwarf::DW_TAG_restrict_type:
+ Kind = BTF::BTF_KIND_RESTRICT;
+ break;
+ default:
+ llvm_unreachable("Unknown DIDerivedType Tag");
+ }
+ BTFType.Info = Kind << 24;
+}
+
+void BTFTypeDerived::completeType(BTFDebug &BDebug) {
+ if (IsCompleted)
+ return;
+ IsCompleted = true;
+
+ BTFType.NameOff = BDebug.addString(DTy->getName());
+
+ if (NeedsFixup)
+ return;
+
+ // The base type for PTR/CONST/VOLATILE could be void.
+ const DIType *ResolvedType = DTy->getBaseType();
+ if (!ResolvedType) {
+ assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
+ Kind == BTF::BTF_KIND_VOLATILE) &&
+ "Invalid null basetype");
+ BTFType.Type = 0;
+ } else {
+ BTFType.Type = BDebug.getTypeId(ResolvedType);
+ }
+}
+
+void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
+
+void BTFTypeDerived::setPointeeType(uint32_t PointeeType) {
+ BTFType.Type = PointeeType;
+}
+
+/// Represent a struct/union forward declaration.
+BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
+ Kind = BTF::BTF_KIND_FWD;
+ BTFType.Info = IsUnion << 31 | Kind << 24;
+ BTFType.Type = 0;
+}
+
+void BTFTypeFwd::completeType(BTFDebug &BDebug) {
+ if (IsCompleted)
+ return;
+ IsCompleted = true;
+
+ BTFType.NameOff = BDebug.addString(Name);
+}
+
+void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
+
+BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
+ uint32_t OffsetInBits, StringRef TypeName)
+ : Name(TypeName) {
+ // Translate IR int encoding to BTF int encoding.
+ uint8_t BTFEncoding;
+ switch (Encoding) {
+ case dwarf::DW_ATE_boolean:
+ BTFEncoding = BTF::INT_BOOL;
+ break;
+ case dwarf::DW_ATE_signed:
+ case dwarf::DW_ATE_signed_char:
+ BTFEncoding = BTF::INT_SIGNED;
+ break;
+ case dwarf::DW_ATE_unsigned:
+ case dwarf::DW_ATE_unsigned_char:
+ BTFEncoding = 0;
+ break;
+ default:
+ llvm_unreachable("Unknown BTFTypeInt Encoding");
+ }
+
+ Kind = BTF::BTF_KIND_INT;
+ BTFType.Info = Kind << 24;
+ BTFType.Size = roundupToBytes(SizeInBits);
+ IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
+}
+
+void BTFTypeInt::completeType(BTFDebug &BDebug) {
+ if (IsCompleted)
+ return;
+ IsCompleted = true;
+
+ BTFType.NameOff = BDebug.addString(Name);
+}
+
+void BTFTypeInt::emitType(MCStreamer &OS) {
+ BTFTypeBase::emitType(OS);
+ OS.AddComment("0x" + Twine::utohexstr(IntVal));
+ OS.EmitIntValue(IntVal, 4);
+}
+
+BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
+ Kind = BTF::BTF_KIND_ENUM;
+ BTFType.Info = Kind << 24 | VLen;
+ BTFType.Size = roundupToBytes(ETy->getSizeInBits());
+}
+
+void BTFTypeEnum::completeType(BTFDebug &BDebug) {
+ if (IsCompleted)
+ return;
+ IsCompleted = true;
+
+ BTFType.NameOff = BDebug.addString(ETy->getName());
+
+ DINodeArray Elements = ETy->getElements();
+ for (const auto Element : Elements) {
+ const auto *Enum = cast<DIEnumerator>(Element);
+
+ struct BTF::BTFEnum BTFEnum;
+ BTFEnum.NameOff = BDebug.addString(Enum->getName());
+ // BTF enum value is 32bit, enforce it.
+ BTFEnum.Val = static_cast<uint32_t>(Enum->getValue());
+ EnumValues.push_back(BTFEnum);
+ }
+}
+
+void BTFTypeEnum::emitType(MCStreamer &OS) {
+ BTFTypeBase::emitType(OS);
+ for (const auto &Enum : EnumValues) {
+ OS.EmitIntValue(Enum.NameOff, 4);
+ OS.EmitIntValue(Enum.Val, 4);
+ }
+}
+
+BTFTypeArray::BTFTypeArray(const DIType *Ty, uint32_t ElemTypeId,
+ uint32_t ElemSize, uint32_t NumElems)
+ : ElemTyNoQual(Ty), ElemSize(ElemSize) {
+ Kind = BTF::BTF_KIND_ARRAY;
+ BTFType.NameOff = 0;
+ BTFType.Info = Kind << 24;
+ BTFType.Size = 0;
+
+ ArrayInfo.ElemType = ElemTypeId;
+ ArrayInfo.Nelems = NumElems;
+}
+
+/// Represent a BTF array.
+void BTFTypeArray::completeType(BTFDebug &BDebug) {
+ if (IsCompleted)
+ return;
+ IsCompleted = true;
+
+ // The IR does not really have a type for the index.
+ // A special type for array index should have been
+ // created during initial type traversal. Just
+ // retrieve that type id.
+ ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();
+
+ ElemTypeNoQual = ElemTyNoQual ? BDebug.getTypeId(ElemTyNoQual)
+ : ArrayInfo.ElemType;
+}
+
+void BTFTypeArray::emitType(MCStreamer &OS) {
+ BTFTypeBase::emitType(OS);
+ OS.EmitIntValue(ArrayInfo.ElemType, 4);
+ OS.EmitIntValue(ArrayInfo.IndexType, 4);
+ OS.EmitIntValue(ArrayInfo.Nelems, 4);
+}
+
+void BTFTypeArray::getLocInfo(uint32_t Loc, uint32_t &LocOffset,
+ uint32_t &ElementTypeId) {
+ ElementTypeId = ElemTypeNoQual;
+ LocOffset = Loc * ElemSize;
+}
+
+/// Represent either a struct or a union.
+BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
+ bool HasBitField, uint32_t Vlen)
+ : STy(STy), HasBitField(HasBitField) {
+ Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
+ BTFType.Size = roundupToBytes(STy->getSizeInBits());
+ BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
+}
+
+void BTFTypeStruct::completeType(BTFDebug &BDebug) {
+ if (IsCompleted)
+ return;
+ IsCompleted = true;
+
+ BTFType.NameOff = BDebug.addString(STy->getName());
+
+ // Add struct/union members.
+ const DINodeArray Elements = STy->getElements();
+ for (const auto *Element : Elements) {
+ struct BTF::BTFMember BTFMember;
+ const auto *DDTy = cast<DIDerivedType>(Element);
+
+ BTFMember.NameOff = BDebug.addString(DDTy->getName());
+ if (HasBitField) {
+ uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
+ BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
+ } else {
+ BTFMember.Offset = DDTy->getOffsetInBits();
+ }
+ const auto *BaseTy = DDTy->getBaseType();
+ BTFMember.Type = BDebug.getTypeId(BaseTy);
+ MemberTypeNoQual.push_back(BDebug.getTypeId(stripQualifiers(BaseTy)));
+ Members.push_back(BTFMember);
+ }
+}
+
+void BTFTypeStruct::emitType(MCStreamer &OS) {
+ BTFTypeBase::emitType(OS);
+ for (const auto &Member : Members) {
+ OS.EmitIntValue(Member.NameOff, 4);
+ OS.EmitIntValue(Member.Type, 4);
+ OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
+ OS.EmitIntValue(Member.Offset, 4);
+ }
+}
+
+std::string BTFTypeStruct::getName() { return STy->getName(); }
+
+void BTFTypeStruct::getMemberInfo(uint32_t Loc, uint32_t &MemberOffset,
+ uint32_t &MemberType) {
+ MemberType = MemberTypeNoQual[Loc];
+ MemberOffset =
+ HasBitField ? Members[Loc].Offset & 0xffffff : Members[Loc].Offset;
+}
+
+uint32_t BTFTypeStruct::getStructSize() { return STy->getSizeInBits() >> 3; }
+
+/// The Func kind represents both subprogram and pointee of function
+/// pointers. If the FuncName is empty, it represents a pointee of function
+/// pointer. Otherwise, it represents a subprogram. The func arg names
+/// are empty for pointee of function pointer case, and are valid names
+/// for subprogram.
+BTFTypeFuncProto::BTFTypeFuncProto(
+ const DISubroutineType *STy, uint32_t VLen,
+ const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
+ : STy(STy), FuncArgNames(FuncArgNames) {
+ Kind = BTF::BTF_KIND_FUNC_PROTO;
+ BTFType.Info = (Kind << 24) | VLen;
+}
+
+void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
+ if (IsCompleted)
+ return;
+ IsCompleted = true;
+
+ DITypeRefArray Elements = STy->getTypeArray();
+ auto RetType = Elements[0];
+ BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
+ BTFType.NameOff = 0;
+
+ // For null parameter which is typically the last one
+ // to represent the vararg, encode the NameOff/Type to be 0.
+ for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
+ struct BTF::BTFParam Param;
+ auto Element = Elements[I];
+ if (Element) {
+ Param.NameOff = BDebug.addString(FuncArgNames[I]);
+ Param.Type = BDebug.getTypeId(Element);
+ } else {
+ Param.NameOff = 0;
+ Param.Type = 0;
+ }
+ Parameters.push_back(Param);
+ }
+}
+
+void BTFTypeFuncProto::emitType(MCStreamer &OS) {
+ BTFTypeBase::emitType(OS);
+ for (const auto &Param : Parameters) {
+ OS.EmitIntValue(Param.NameOff, 4);
+ OS.EmitIntValue(Param.Type, 4);
+ }
+}
+
+BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId)
+ : Name(FuncName) {
+ Kind = BTF::BTF_KIND_FUNC;
+ BTFType.Info = Kind << 24;
+ BTFType.Type = ProtoTypeId;
+}
+
+void BTFTypeFunc::completeType(BTFDebug &BDebug) {
+ if (IsCompleted)
+ return;
+ IsCompleted = true;
+
+ BTFType.NameOff = BDebug.addString(Name);
+}
+
+void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }
+
+BTFKindVar::BTFKindVar(StringRef VarName, uint32_t TypeId, uint32_t VarInfo)
+ : Name(VarName) {
+ Kind = BTF::BTF_KIND_VAR;
+ BTFType.Info = Kind << 24;
+ BTFType.Type = TypeId;
+ Info = VarInfo;
+}
+
+void BTFKindVar::completeType(BTFDebug &BDebug) {
+ BTFType.NameOff = BDebug.addString(Name);
+}
+
+void BTFKindVar::emitType(MCStreamer &OS) {
+ BTFTypeBase::emitType(OS);
+ OS.EmitIntValue(Info, 4);
+}
+
+BTFKindDataSec::BTFKindDataSec(AsmPrinter *AsmPrt, std::string SecName)
+ : Asm(AsmPrt), Name(SecName) {
+ Kind = BTF::BTF_KIND_DATASEC;
+ BTFType.Info = Kind << 24;
+ BTFType.Size = 0;
+}
+
+void BTFKindDataSec::completeType(BTFDebug &BDebug) {
+ BTFType.NameOff = BDebug.addString(Name);
+ BTFType.Info |= Vars.size();
+}
+
+void BTFKindDataSec::emitType(MCStreamer &OS) {
+ BTFTypeBase::emitType(OS);
+
+ for (const auto &V : Vars) {
+ OS.EmitIntValue(std::get<0>(V), 4);
+ Asm->EmitLabelReference(std::get<1>(V), 4);
+ OS.EmitIntValue(std::get<2>(V), 4);
+ }
+}
+
+uint32_t BTFStringTable::addString(StringRef S) {
+ // Check whether the string already exists.
+ for (auto &OffsetM : OffsetToIdMap) {
+ if (Table[OffsetM.second] == S)
+ return OffsetM.first;
+ }
+ // Not find, add to the string table.
+ uint32_t Offset = Size;
+ OffsetToIdMap[Offset] = Table.size();
+ Table.push_back(S);
+ Size += S.size() + 1;
+ return Offset;
+}
+
+BTFDebug::BTFDebug(AsmPrinter *AP)
+ : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
+ LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0),
+ MapDefNotCollected(true) {
+ addString("\0");
+}
+
+uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
+ const DIType *Ty) {
+ TypeEntry->setId(TypeEntries.size() + 1);
+ uint32_t Id = TypeEntry->getId();
+ DIToIdMap[Ty] = Id;
+ TypeEntries.push_back(std::move(TypeEntry));
+ return Id;
+}
+
+uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
+ TypeEntry->setId(TypeEntries.size() + 1);
+ uint32_t Id = TypeEntry->getId();
+ TypeEntries.push_back(std::move(TypeEntry));
+ return Id;
+}
+
+void BTFDebug::visitBasicType(const DIBasicType *BTy, uint32_t &TypeId) {
+ // Only int types are supported in BTF.
+ uint32_t Encoding = BTy->getEncoding();
+ if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed &&
+ Encoding != dwarf::DW_ATE_signed_char &&
+ Encoding != dwarf::DW_ATE_unsigned &&
+ Encoding != dwarf::DW_ATE_unsigned_char)
+ return;
+
+ // Create a BTF type instance for this DIBasicType and put it into
+ // DIToIdMap for cross-type reference check.
+ auto TypeEntry = llvm::make_unique<BTFTypeInt>(
+ Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
+ TypeId = addType(std::move(TypeEntry), BTy);
+}
+
+/// Handle subprogram or subroutine types.
+void BTFDebug::visitSubroutineType(
+ const DISubroutineType *STy, bool ForSubprog,
+ const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
+ uint32_t &TypeId) {
+ DITypeRefArray Elements = STy->getTypeArray();
+ uint32_t VLen = Elements.size() - 1;
+ if (VLen > BTF::MAX_VLEN)
+ return;
+
+ // Subprogram has a valid non-zero-length name, and the pointee of
+ // a function pointer has an empty name. The subprogram type will
+ // not be added to DIToIdMap as it should not be referenced by
+ // any other types.
+ auto TypeEntry = llvm::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
+ if (ForSubprog)
+ TypeId = addType(std::move(TypeEntry)); // For subprogram
+ else
+ TypeId = addType(std::move(TypeEntry), STy); // For func ptr
+
+ // Visit return type and func arg types.
+ for (const auto Element : Elements) {
+ visitTypeEntry(Element);
+ }
+}
+
+/// Handle structure/union types.
+void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct,
+ uint32_t &TypeId) {
+ const DINodeArray Elements = CTy->getElements();
+ uint32_t VLen = Elements.size();
+ if (VLen > BTF::MAX_VLEN)
+ return;
+
+ // Check whether we have any bitfield members or not
+ bool HasBitField = false;
+ for (const auto *Element : Elements) {
+ auto E = cast<DIDerivedType>(Element);
+ if (E->isBitField()) {
+ HasBitField = true;
+ break;
+ }
+ }
+
+ auto TypeEntry =
+ llvm::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
+ StructTypes.push_back(TypeEntry.get());
+ TypeId = addType(std::move(TypeEntry), CTy);
+
+ // Visit all struct members.
+ for (const auto *Element : Elements)
+ visitTypeEntry(cast<DIDerivedType>(Element));
+}
+
+void BTFDebug::visitArrayType(const DICompositeType *CTy, uint32_t &TypeId) {
+ // Visit array element type.
+ uint32_t ElemTypeId, ElemSize;
+ const DIType *ElemType = CTy->getBaseType();
+ visitTypeEntry(ElemType, ElemTypeId, false, false);
+
+ // Strip qualifiers from element type to get accurate element size.
+ ElemType = stripQualifiers(ElemType);
+ ElemSize = ElemType->getSizeInBits() >> 3;
+
+ if (!CTy->getSizeInBits()) {
+ auto TypeEntry = llvm::make_unique<BTFTypeArray>(ElemType, ElemTypeId, 0, 0);
+ ArrayTypes.push_back(TypeEntry.get());
+ ElemTypeId = addType(std::move(TypeEntry), CTy);
+ } else {
+ // Visit array dimensions.
+ DINodeArray Elements = CTy->getElements();
+ for (int I = Elements.size() - 1; I >= 0; --I) {
+ if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
+ if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
+ const DISubrange *SR = cast<DISubrange>(Element);
+ auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
+ int64_t Count = CI->getSExtValue();
+ const DIType *ArrayElemTy = (I == 0) ? ElemType : nullptr;
+
+ auto TypeEntry =
+ llvm::make_unique<BTFTypeArray>(ArrayElemTy, ElemTypeId,
+ ElemSize, Count);
+ ArrayTypes.push_back(TypeEntry.get());
+ if (I == 0)
+ ElemTypeId = addType(std::move(TypeEntry), CTy);
+ else
+ ElemTypeId = addType(std::move(TypeEntry));
+ ElemSize = ElemSize * Count;
+ }
+ }
+ }
+
+ // The array TypeId is the type id of the outermost dimension.
+ TypeId = ElemTypeId;
+
+ // The IR does not have a type for array index while BTF wants one.
+ // So create an array index type if there is none.
+ if (!ArrayIndexTypeId) {
+ auto TypeEntry = llvm::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
+ 0, "__ARRAY_SIZE_TYPE__");
+ ArrayIndexTypeId = addType(std::move(TypeEntry));
+ }
+}
+
+void BTFDebug::visitEnumType(const DICompositeType *CTy, uint32_t &TypeId) {
+ DINodeArray Elements = CTy->getElements();
+ uint32_t VLen = Elements.size();
+ if (VLen > BTF::MAX_VLEN)
+ return;
+
+ auto TypeEntry = llvm::make_unique<BTFTypeEnum>(CTy, VLen);
+ TypeId = addType(std::move(TypeEntry), CTy);
+ // No need to visit base type as BTF does not encode it.
+}
+
+/// Handle structure/union forward declarations.
+void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion,
+ uint32_t &TypeId) {
+ auto TypeEntry = llvm::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
+ TypeId = addType(std::move(TypeEntry), CTy);
+}
+
+/// Handle structure, union, array and enumeration types.
+void BTFDebug::visitCompositeType(const DICompositeType *CTy,
+ uint32_t &TypeId) {
+ auto Tag = CTy->getTag();
+ if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
+ // Handle forward declaration differently as it does not have members.
+ if (CTy->isForwardDecl())
+ visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type, TypeId);
+ else
+ visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type, TypeId);
+ } else if (Tag == dwarf::DW_TAG_array_type)
+ visitArrayType(CTy, TypeId);
+ else if (Tag == dwarf::DW_TAG_enumeration_type)
+ visitEnumType(CTy, TypeId);
+}
+
+/// Handle pointer, typedef, const, volatile, restrict and member types.
+void BTFDebug::visitDerivedType(const DIDerivedType *DTy, uint32_t &TypeId,
+ bool CheckPointer, bool SeenPointer) {
+ unsigned Tag = DTy->getTag();
+
+ /// Try to avoid chasing pointees, esp. structure pointees which may
+ /// unnecessary bring in a lot of types.
+ if (CheckPointer && !SeenPointer) {
+ SeenPointer = Tag == dwarf::DW_TAG_pointer_type;
+ }
+
+ if (CheckPointer && SeenPointer) {
+ const DIType *Base = DTy->getBaseType();
+ if (Base) {
+ if (const auto *CTy = dyn_cast<DICompositeType>(Base)) {
+ auto CTag = CTy->getTag();
+ if ((CTag == dwarf::DW_TAG_structure_type ||
+ CTag == dwarf::DW_TAG_union_type) &&
+ !CTy->isForwardDecl()) {
+ /// Find a candidate, generate a fixup. Later on the struct/union
+ /// pointee type will be replaced with either a real type or
+ /// a forward declaration.
+ auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag, true);
+ auto &Fixup = FixupDerivedTypes[CTy->getName()];
+ Fixup.first = CTag == dwarf::DW_TAG_union_type;
+ Fixup.second.push_back(TypeEntry.get());
+ TypeId = addType(std::move(TypeEntry), DTy);
+ return;
+ }
+ }
+ }
+ }
+
+ if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
+ Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
+ Tag == dwarf::DW_TAG_restrict_type) {
+ auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag, false);
+ TypeId = addType(std::move(TypeEntry), DTy);
+ } else if (Tag != dwarf::DW_TAG_member) {
+ return;
+ }
+
+ // Visit base type of pointer, typedef, const, volatile, restrict or
+ // struct/union member.
+ uint32_t TempTypeId = 0;
+ if (Tag == dwarf::DW_TAG_member)
+ visitTypeEntry(DTy->getBaseType(), TempTypeId, true, false);
+ else
+ visitTypeEntry(DTy->getBaseType(), TempTypeId, CheckPointer, SeenPointer);
+}
+
+void BTFDebug::visitTypeEntry(const DIType *Ty, uint32_t &TypeId,
+ bool CheckPointer, bool SeenPointer) {
+ if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
+ TypeId = DIToIdMap[Ty];
+ return;
+ }
+
+ if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
+ visitBasicType(BTy, TypeId);
+ else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
+ visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
+ TypeId);
+ else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
+ visitCompositeType(CTy, TypeId);
+ else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
+ visitDerivedType(DTy, TypeId, CheckPointer, SeenPointer);
+ else
+ llvm_unreachable("Unknown DIType");
+}
+
+void BTFDebug::visitTypeEntry(const DIType *Ty) {
+ uint32_t TypeId;
+ visitTypeEntry(Ty, TypeId, false, false);
+}
+
+void BTFDebug::visitMapDefType(const DIType *Ty, uint32_t &TypeId) {
+ if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end()) {
+ TypeId = DIToIdMap[Ty];
+ return;
+ }
+
+ // MapDef type is a struct type
+ const auto *CTy = dyn_cast<DICompositeType>(Ty);
+ if (!CTy)
+ return;
+
+ auto Tag = CTy->getTag();
+ if (Tag != dwarf::DW_TAG_structure_type || CTy->isForwardDecl())
+ return;
+
+ // Record this type
+ const DINodeArray Elements = CTy->getElements();
+ bool HasBitField = false;
+ for (const auto *Element : Elements) {
+ auto E = cast<DIDerivedType>(Element);
+ if (E->isBitField()) {
+ HasBitField = true;
+ break;
+ }
+ }
+
+ auto TypeEntry =
+ llvm::make_unique<BTFTypeStruct>(CTy, true, HasBitField, Elements.size());
+ StructTypes.push_back(TypeEntry.get());
+ TypeId = addType(std::move(TypeEntry), CTy);
+
+ // Visit all struct members
+ for (const auto *Element : Elements) {
+ const auto *MemberType = cast<DIDerivedType>(Element);
+ visitTypeEntry(MemberType->getBaseType());
+ }
+}
+
+/// Read file contents from the actual file or from the source
+std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
+ auto File = SP->getFile();
+ std::string FileName;
+
+ if (!File->getFilename().startswith("/") && File->getDirectory().size())
+ FileName = File->getDirectory().str() + "/" + File->getFilename().str();
+ else
+ FileName = File->getFilename();
+
+ // No need to populate the contends if it has been populated!
+ if (FileContent.find(FileName) != FileContent.end())
+ return FileName;
+
+ std::vector<std::string> Content;
+ std::string Line;
+ Content.push_back(Line); // Line 0 for empty string
+
+ std::unique_ptr<MemoryBuffer> Buf;
+ auto Source = File->getSource();
+ if (Source)
+ Buf = MemoryBuffer::getMemBufferCopy(*Source);
+ else if (ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
+ MemoryBuffer::getFile(FileName))
+ Buf = std::move(*BufOrErr);
+ if (Buf)
+ for (line_iterator I(*Buf, false), E; I != E; ++I)
+ Content.push_back(*I);
+
+ FileContent[FileName] = Content;
+ return FileName;
+}
+
+void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
+ uint32_t Line, uint32_t Column) {
+ std::string FileName = populateFileContent(SP);
+ BTFLineInfo LineInfo;
+
+ LineInfo.Label = Label;
+ LineInfo.FileNameOff = addString(FileName);
+ // If file content is not available, let LineOff = 0.
+ if (Line < FileContent[FileName].size())
+ LineInfo.LineOff = addString(FileContent[FileName][Line]);
+ else
+ LineInfo.LineOff = 0;
+ LineInfo.LineNum = Line;
+ LineInfo.ColumnNum = Column;
+ LineInfoTable[SecNameOff].push_back(LineInfo);
+}
+
+void BTFDebug::emitCommonHeader() {
+ OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
+ OS.EmitIntValue(BTF::MAGIC, 2);
+ OS.EmitIntValue(BTF::VERSION, 1);
+ OS.EmitIntValue(0, 1);
+}
+
+void BTFDebug::emitBTFSection() {
+ // Do not emit section if no types and only "" string.
+ if (!TypeEntries.size() && StringTable.getSize() == 1)
+ return;
+
+ MCContext &Ctx = OS.getContext();
+ OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));
+
+ // Emit header.
+ emitCommonHeader();
+ OS.EmitIntValue(BTF::HeaderSize, 4);
+
+ uint32_t TypeLen = 0, StrLen;
+ for (const auto &TypeEntry : TypeEntries)
+ TypeLen += TypeEntry->getSize();
+ StrLen = StringTable.getSize();
+
+ OS.EmitIntValue(0, 4);
+ OS.EmitIntValue(TypeLen, 4);
+ OS.EmitIntValue(TypeLen, 4);
+ OS.EmitIntValue(StrLen, 4);
+
+ // Emit type table.
+ for (const auto &TypeEntry : TypeEntries)
+ TypeEntry->emitType(OS);
+
+ // Emit string table.
+ uint32_t StringOffset = 0;
+ for (const auto &S : StringTable.getTable()) {
+ OS.AddComment("string offset=" + std::to_string(StringOffset));
+ OS.EmitBytes(S);
+ OS.EmitBytes(StringRef("\0", 1));
+ StringOffset += S.size() + 1;
+ }
+}
+
+void BTFDebug::emitBTFExtSection() {
+ // Do not emit section if empty FuncInfoTable and LineInfoTable.
+ if (!FuncInfoTable.size() && !LineInfoTable.size() &&
+ !OffsetRelocTable.size() && !ExternRelocTable.size())
+ return;
+
+ MCContext &Ctx = OS.getContext();
+ OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));
+
+ // Emit header.
+ emitCommonHeader();
+ OS.EmitIntValue(BTF::ExtHeaderSize, 4);
+
+ // Account for FuncInfo/LineInfo record size as well.
+ uint32_t FuncLen = 4, LineLen = 4;
+ // Do not account for optional OffsetReloc/ExternReloc.
+ uint32_t OffsetRelocLen = 0, ExternRelocLen = 0;
+ for (const auto &FuncSec : FuncInfoTable) {
+ FuncLen += BTF::SecFuncInfoSize;
+ FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
+ }
+ for (const auto &LineSec : LineInfoTable) {
+ LineLen += BTF::SecLineInfoSize;
+ LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
+ }
+ for (const auto &OffsetRelocSec : OffsetRelocTable) {
+ OffsetRelocLen += BTF::SecOffsetRelocSize;
+ OffsetRelocLen += OffsetRelocSec.second.size() * BTF::BPFOffsetRelocSize;
+ }
+ for (const auto &ExternRelocSec : ExternRelocTable) {
+ ExternRelocLen += BTF::SecExternRelocSize;
+ ExternRelocLen += ExternRelocSec.second.size() * BTF::BPFExternRelocSize;
+ }
+
+ if (OffsetRelocLen)
+ OffsetRelocLen += 4;
+ if (ExternRelocLen)
+ ExternRelocLen += 4;
+
+ OS.EmitIntValue(0, 4);
+ OS.EmitIntValue(FuncLen, 4);
+ OS.EmitIntValue(FuncLen, 4);
+ OS.EmitIntValue(LineLen, 4);
+ OS.EmitIntValue(FuncLen + LineLen, 4);
+ OS.EmitIntValue(OffsetRelocLen, 4);
+ OS.EmitIntValue(FuncLen + LineLen + OffsetRelocLen, 4);
+ OS.EmitIntValue(ExternRelocLen, 4);
+
+ // Emit func_info table.
+ OS.AddComment("FuncInfo");
+ OS.EmitIntValue(BTF::BPFFuncInfoSize, 4);
+ for (const auto &FuncSec : FuncInfoTable) {
+ OS.AddComment("FuncInfo section string offset=" +
+ std::to_string(FuncSec.first));
+ OS.EmitIntValue(FuncSec.first, 4);
+ OS.EmitIntValue(FuncSec.second.size(), 4);
+ for (const auto &FuncInfo : FuncSec.second) {
+ Asm->EmitLabelReference(FuncInfo.Label, 4);
+ OS.EmitIntValue(FuncInfo.TypeId, 4);
+ }
+ }
+
+ // Emit line_info table.
+ OS.AddComment("LineInfo");
+ OS.EmitIntValue(BTF::BPFLineInfoSize, 4);
+ for (const auto &LineSec : LineInfoTable) {
+ OS.AddComment("LineInfo section string offset=" +
+ std::to_string(LineSec.first));
+ OS.EmitIntValue(LineSec.first, 4);
+ OS.EmitIntValue(LineSec.second.size(), 4);
+ for (const auto &LineInfo : LineSec.second) {
+ Asm->EmitLabelReference(LineInfo.Label, 4);
+ OS.EmitIntValue(LineInfo.FileNameOff, 4);
+ OS.EmitIntValue(LineInfo.LineOff, 4);
+ OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
+ std::to_string(LineInfo.ColumnNum));
+ OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4);
+ }
+ }
+
+ // Emit offset reloc table.
+ if (OffsetRelocLen) {
+ OS.AddComment("OffsetReloc");
+ OS.EmitIntValue(BTF::BPFOffsetRelocSize, 4);
+ for (const auto &OffsetRelocSec : OffsetRelocTable) {
+ OS.AddComment("Offset reloc section string offset=" +
+ std::to_string(OffsetRelocSec.first));
+ OS.EmitIntValue(OffsetRelocSec.first, 4);
+ OS.EmitIntValue(OffsetRelocSec.second.size(), 4);
+ for (const auto &OffsetRelocInfo : OffsetRelocSec.second) {
+ Asm->EmitLabelReference(OffsetRelocInfo.Label, 4);
+ OS.EmitIntValue(OffsetRelocInfo.TypeID, 4);
+ OS.EmitIntValue(OffsetRelocInfo.OffsetNameOff, 4);
+ }
+ }
+ }
+
+ // Emit extern reloc table.
+ if (ExternRelocLen) {
+ OS.AddComment("ExternReloc");
+ OS.EmitIntValue(BTF::BPFExternRelocSize, 4);
+ for (const auto &ExternRelocSec : ExternRelocTable) {
+ OS.AddComment("Extern reloc section string offset=" +
+ std::to_string(ExternRelocSec.first));
+ OS.EmitIntValue(ExternRelocSec.first, 4);
+ OS.EmitIntValue(ExternRelocSec.second.size(), 4);
+ for (const auto &ExternRelocInfo : ExternRelocSec.second) {
+ Asm->EmitLabelReference(ExternRelocInfo.Label, 4);
+ OS.EmitIntValue(ExternRelocInfo.ExternNameOff, 4);
+ }
+ }
+ }
+}
+
+void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
+ auto *SP = MF->getFunction().getSubprogram();
+ auto *Unit = SP->getUnit();
+
+ if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
+ SkipInstruction = true;
+ return;
+ }
+ SkipInstruction = false;
+
+ // Collect MapDef types. Map definition needs to collect
+ // pointee types. Do it first. Otherwise, for the following
+ // case:
+ // struct m { ...};
+ // struct t {
+ // struct m *key;
+ // };
+ // foo(struct t *arg);
+ //
+ // struct mapdef {
+ // ...
+ // struct m *key;
+ // ...
+ // } __attribute__((section(".maps"))) hash_map;
+ //
+ // If subroutine foo is traversed first, a type chain
+ // "ptr->struct m(fwd)" will be created and later on
+ // when traversing mapdef, since "ptr->struct m" exists,
+ // the traversal of "struct m" will be omitted.
+ if (MapDefNotCollected) {
+ processGlobals(true);
+ MapDefNotCollected = false;
+ }
+
+ // Collect all types locally referenced in this function.
+ // Use RetainedNodes so we can collect all argument names
+ // even if the argument is not used.
+ std::unordered_map<uint32_t, StringRef> FuncArgNames;
+ for (const DINode *DN : SP->getRetainedNodes()) {
+ if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
+ // Collect function arguments for subprogram func type.
+ uint32_t Arg = DV->getArg();
+ if (Arg) {
+ visitTypeEntry(DV->getType());
+ FuncArgNames[Arg] = DV->getName();
+ }
+ }
+ }
+
+ // Construct subprogram func proto type.
+ uint32_t ProtoTypeId;
+ visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);
+
+ // Construct subprogram func type
+ auto FuncTypeEntry =
+ llvm::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId);
+ uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));
+
+ for (const auto &TypeEntry : TypeEntries)
+ TypeEntry->completeType(*this);
+
+ // Construct funcinfo and the first lineinfo for the function.
+ MCSymbol *FuncLabel = Asm->getFunctionBegin();
+ BTFFuncInfo FuncInfo;
+ FuncInfo.Label = FuncLabel;
+ FuncInfo.TypeId = FuncTypeId;
+ if (FuncLabel->isInSection()) {
+ MCSection &Section = FuncLabel->getSection();
+ const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
+ assert(SectionELF && "Null section for Function Label");
+ SecNameOff = addString(SectionELF->getSectionName());
+ } else {
+ SecNameOff = addString(".text");
+ }
+ FuncInfoTable[SecNameOff].push_back(FuncInfo);
+}
+
+void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
+ SkipInstruction = false;
+ LineInfoGenerated = false;
+ SecNameOff = 0;
+}
+
+/// On-demand populate struct types as requested from abstract member
+/// accessing.
+unsigned BTFDebug::populateStructType(const DIType *Ty) {
+ unsigned Id;
+ visitTypeEntry(Ty, Id, false, false);
+ for (const auto &TypeEntry : TypeEntries)
+ TypeEntry->completeType(*this);
+ return Id;
+}
+
+// Find struct/array debuginfo types given a type id.
+void BTFDebug::setTypeFromId(uint32_t TypeId, BTFTypeStruct **PrevStructType,
+ BTFTypeArray **PrevArrayType) {
+ for (const auto &StructType : StructTypes) {
+ if (StructType->getId() == TypeId) {
+ *PrevStructType = StructType;
+ return;
+ }
+ }
+ for (const auto &ArrayType : ArrayTypes) {
+ if (ArrayType->getId() == TypeId) {
+ *PrevArrayType = ArrayType;
+ return;
+ }
+ }
+}
+
+/// Generate a struct member offset relocation.
+void BTFDebug::generateOffsetReloc(const MachineInstr *MI,
+ const MCSymbol *ORSym, DIType *RootTy,
+ StringRef AccessPattern) {
+ BTFTypeStruct *PrevStructType = nullptr;
+ BTFTypeArray *PrevArrayType = nullptr;
+ unsigned RootId = populateStructType(RootTy);
+ setTypeFromId(RootId, &PrevStructType, &PrevArrayType);
+ unsigned RootTySize = PrevStructType->getStructSize();
+ StringRef IndexPattern = AccessPattern.substr(AccessPattern.find_first_of(':') + 1);
+
+ BTFOffsetReloc OffsetReloc;
+ OffsetReloc.Label = ORSym;
+ OffsetReloc.OffsetNameOff = addString(IndexPattern.drop_back());
+ OffsetReloc.TypeID = RootId;
+
+ uint32_t Start = 0, End = 0, Offset = 0;
+ bool FirstAccess = true;
+ for (auto C : IndexPattern) {
+ if (C != ':') {
+ End++;
+ } else {
+ std::string SubStr = IndexPattern.substr(Start, End - Start);
+ int Loc = std::stoi(SubStr);
+
+ if (FirstAccess) {
+ Offset = Loc * RootTySize;
+ FirstAccess = false;
+ } else if (PrevStructType) {
+ uint32_t MemberOffset, MemberTypeId;
+ PrevStructType->getMemberInfo(Loc, MemberOffset, MemberTypeId);
+
+ Offset += MemberOffset >> 3;
+ PrevStructType = nullptr;
+ setTypeFromId(MemberTypeId, &PrevStructType, &PrevArrayType);
+ } else if (PrevArrayType) {
+ uint32_t LocOffset, ElementTypeId;
+ PrevArrayType->getLocInfo(Loc, LocOffset, ElementTypeId);
+
+ Offset += LocOffset;
+ PrevArrayType = nullptr;
+ setTypeFromId(ElementTypeId, &PrevStructType, &PrevArrayType);
+ } else {
+ llvm_unreachable("Internal Error: BTF offset relocation type traversal error");
+ }
+
+ Start = End + 1;
+ End = Start;
+ }
+ }
+ AccessOffsets[AccessPattern.str()] = Offset;
+ OffsetRelocTable[SecNameOff].push_back(OffsetReloc);
+}
+
+void BTFDebug::processLDimm64(const MachineInstr *MI) {
+ // If the insn is an LD_imm64, the following two cases
+ // will generate an .BTF.ext record.
+ //
+ // If the insn is "r2 = LD_imm64 @__BTF_...",
+ // add this insn into the .BTF.ext OffsetReloc subsection.
+ // Relocation looks like:
+ // . SecName:
+ // . InstOffset
+ // . TypeID
+ // . OffSetNameOff
+ // Later, the insn is replaced with "r2 = <offset>"
+ // where "<offset>" equals to the offset based on current
+ // type definitions.
+ //
+ // If the insn is "r2 = LD_imm64 @VAR" and VAR is
+ // a patchable external global, add this insn into the .BTF.ext
+ // ExternReloc subsection.
+ // Relocation looks like:
+ // . SecName:
+ // . InstOffset
+ // . ExternNameOff
+ // Later, the insn is replaced with "r2 = <value>" or
+ // "LD_imm64 r2, <value>" where "<value>" = 0.
+
+ // check whether this is a candidate or not
+ const MachineOperand &MO = MI->getOperand(1);
+ if (MO.isGlobal()) {
+ const GlobalValue *GVal = MO.getGlobal();
+ auto *GVar = dyn_cast<GlobalVariable>(GVal);
+ if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
+ MCSymbol *ORSym = OS.getContext().createTempSymbol();
+ OS.EmitLabel(ORSym);
+
+ MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
+ DIType *Ty = dyn_cast<DIType>(MDN);
+ generateOffsetReloc(MI, ORSym, Ty, GVar->getName());
+ } else if (GVar && !GVar->hasInitializer() && GVar->hasExternalLinkage() &&
+ GVar->getSection() == BPFCoreSharedInfo::PatchableExtSecName) {
+ MCSymbol *ORSym = OS.getContext().createTempSymbol();
+ OS.EmitLabel(ORSym);
+
+ BTFExternReloc ExternReloc;
+ ExternReloc.Label = ORSym;
+ ExternReloc.ExternNameOff = addString(GVar->getName());
+ ExternRelocTable[SecNameOff].push_back(ExternReloc);
+ }
+ }
+}
+
+void BTFDebug::beginInstruction(const MachineInstr *MI) {
+ DebugHandlerBase::beginInstruction(MI);
+
+ if (SkipInstruction || MI->isMetaInstruction() ||
+ MI->getFlag(MachineInstr::FrameSetup))
+ return;
+
+ if (MI->isInlineAsm()) {
+ // Count the number of register definitions to find the asm string.
+ unsigned NumDefs = 0;
+ for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
+ ++NumDefs)
+ ;
+
+ // Skip this inline asm instruction if the asmstr is empty.
+ const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
+ if (AsmStr[0] == 0)
+ return;
+ }
+
+ if (MI->getOpcode() == BPF::LD_imm64)
+ processLDimm64(MI);
+
+ // Skip this instruction if no DebugLoc or the DebugLoc
+ // is the same as the previous instruction.
+ const DebugLoc &DL = MI->getDebugLoc();
+ if (!DL || PrevInstLoc == DL) {
+ // This instruction will be skipped, no LineInfo has
+ // been generated, construct one based on function signature.
+ if (LineInfoGenerated == false) {
+ auto *S = MI->getMF()->getFunction().getSubprogram();
+ MCSymbol *FuncLabel = Asm->getFunctionBegin();
+ constructLineInfo(S, FuncLabel, S->getLine(), 0);
+ LineInfoGenerated = true;
+ }
+
+ return;
+ }
+
+ // Create a temporary label to remember the insn for lineinfo.
+ MCSymbol *LineSym = OS.getContext().createTempSymbol();
+ OS.EmitLabel(LineSym);
+
+ // Construct the lineinfo.
+ auto SP = DL.get()->getScope()->getSubprogram();
+ constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());
+
+ LineInfoGenerated = true;
+ PrevInstLoc = DL;
+}
+
+void BTFDebug::processGlobals(bool ProcessingMapDef) {
+ // Collect all types referenced by globals.
+ const Module *M = MMI->getModule();
+ for (const GlobalVariable &Global : M->globals()) {
+ // Ignore external globals for now.
+ if (!Global.hasInitializer() && Global.hasExternalLinkage())
+ continue;
+
+ // Decide the section name.
+ StringRef SecName;
+ if (Global.hasSection()) {
+ SecName = Global.getSection();
+ } else {
+ // data, bss, or readonly sections
+ if (Global.isConstant())
+ SecName = ".rodata";
+ else
+ SecName = Global.getInitializer()->isZeroValue() ? ".bss" : ".data";
+ }
+
+ if (ProcessingMapDef != SecName.startswith(".maps"))
+ continue;
+
+ SmallVector<DIGlobalVariableExpression *, 1> GVs;
+ Global.getDebugInfo(GVs);
+ uint32_t GVTypeId = 0;
+ for (auto *GVE : GVs) {
+ if (SecName.startswith(".maps"))
+ visitMapDefType(GVE->getVariable()->getType(), GVTypeId);
+ else
+ visitTypeEntry(GVE->getVariable()->getType(), GVTypeId, false, false);
+ break;
+ }
+
+ // Only support the following globals:
+ // . static variables
+ // . non-static global variables with section attributes
+ // Essentially means:
+ // . .bcc/.data/.rodata DataSec entities only contain static data
+ // . Other DataSec entities contain static or initialized global data.
+ // Initialized global data are mostly used for finding map key/value type
+ // id's. Whether DataSec is readonly or not can be found from
+ // corresponding ELF section flags.
+ auto Linkage = Global.getLinkage();
+ if (Linkage != GlobalValue::InternalLinkage &&
+ (Linkage != GlobalValue::ExternalLinkage || !Global.hasSection()))
+ continue;
+
+ uint32_t GVarInfo = Linkage == GlobalValue::ExternalLinkage
+ ? BTF::VAR_GLOBAL_ALLOCATED
+ : BTF::VAR_STATIC;
+ auto VarEntry =
+ llvm::make_unique<BTFKindVar>(Global.getName(), GVTypeId, GVarInfo);
+ uint32_t VarId = addType(std::move(VarEntry));
+
+ // Find or create a DataSec
+ if (DataSecEntries.find(SecName) == DataSecEntries.end()) {
+ DataSecEntries[SecName] = llvm::make_unique<BTFKindDataSec>(Asm, SecName);
+ }
+
+ // Calculate symbol size
+ const DataLayout &DL = Global.getParent()->getDataLayout();
+ uint32_t Size = DL.getTypeAllocSize(Global.getType()->getElementType());
+
+ DataSecEntries[SecName]->addVar(VarId, Asm->getSymbol(&Global), Size);
+ }
+}
+
+/// Emit proper patchable instructions.
+bool BTFDebug::InstLower(const MachineInstr *MI, MCInst &OutMI) {
+ if (MI->getOpcode() == BPF::LD_imm64) {
+ const MachineOperand &MO = MI->getOperand(1);
+ if (MO.isGlobal()) {
+ const GlobalValue *GVal = MO.getGlobal();
+ auto *GVar = dyn_cast<GlobalVariable>(GVal);
+ if (GVar && GVar->hasAttribute(BPFCoreSharedInfo::AmaAttr)) {
+ MDNode *MDN = GVar->getMetadata(LLVMContext::MD_preserve_access_index);
+ DIType *Ty = dyn_cast<DIType>(MDN);
+ std::string TypeName = Ty->getName();
+ int64_t Imm = AccessOffsets[GVar->getName().str()];
+
+ // Emit "mov ri, <imm>" for abstract member accesses.
+ OutMI.setOpcode(BPF::MOV_ri);
+ OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
+ OutMI.addOperand(MCOperand::createImm(Imm));
+ return true;
+ } else if (GVar && !GVar->hasInitializer() &&
+ GVar->hasExternalLinkage() &&
+ GVar->getSection() == BPFCoreSharedInfo::PatchableExtSecName) {
+ const IntegerType *IntTy = dyn_cast<IntegerType>(GVar->getValueType());
+ assert(IntTy);
+ // For patchable externals, emit "LD_imm64, ri, 0" if the external
+ // variable is 64bit width, emit "mov ri, 0" otherwise.
+ if (IntTy->getBitWidth() == 64)
+ OutMI.setOpcode(BPF::LD_imm64);
+ else
+ OutMI.setOpcode(BPF::MOV_ri);
+ OutMI.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
+ OutMI.addOperand(MCOperand::createImm(0));
+ return true;
+ }
+ }
+ }
+ return false;
+}
+
+void BTFDebug::endModule() {
+ // Collect MapDef globals if not collected yet.
+ if (MapDefNotCollected) {
+ processGlobals(true);
+ MapDefNotCollected = false;
+ }
+
+ // Collect global types/variables except MapDef globals.
+ processGlobals(false);
+ for (auto &DataSec : DataSecEntries)
+ addType(std::move(DataSec.second));
+
+ // Fixups
+ for (auto &Fixup : FixupDerivedTypes) {
+ StringRef TypeName = Fixup.first;
+ bool IsUnion = Fixup.second.first;
+
+ // Search through struct types
+ uint32_t StructTypeId = 0;
+ for (const auto &StructType : StructTypes) {
+ if (StructType->getName() == TypeName) {
+ StructTypeId = StructType->getId();
+ break;
+ }
+ }
+
+ if (StructTypeId == 0) {
+ auto FwdTypeEntry = llvm::make_unique<BTFTypeFwd>(TypeName, IsUnion);
+ StructTypeId = addType(std::move(FwdTypeEntry));
+ }
+
+ for (auto &DType : Fixup.second.second) {
+ DType->setPointeeType(StructTypeId);
+ }
+ }
+
+ // Complete BTF type cross refereences.
+ for (const auto &TypeEntry : TypeEntries)
+ TypeEntry->completeType(*this);
+
+ // Emit BTF sections.
+ emitBTFSection();
+ emitBTFExtSection();
+}