summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp1466
1 files changed, 1466 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp
new file mode 100644
index 000000000000..446246358e96
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/PowerPC/PPCMIPeephole.cpp
@@ -0,0 +1,1466 @@
+//===-------------- PPCMIPeephole.cpp - MI Peephole Cleanups -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===---------------------------------------------------------------------===//
+//
+// This pass performs peephole optimizations to clean up ugly code
+// sequences at the MachineInstruction layer. It runs at the end of
+// the SSA phases, following VSX swap removal. A pass of dead code
+// elimination follows this one for quick clean-up of any dead
+// instructions introduced here. Although we could do this as callbacks
+// from the generic peephole pass, this would have a couple of bad
+// effects: it might remove optimization opportunities for VSX swap
+// removal, and it would miss cleanups made possible following VSX
+// swap removal.
+//
+//===---------------------------------------------------------------------===//
+
+#include "PPC.h"
+#include "PPCInstrBuilder.h"
+#include "PPCInstrInfo.h"
+#include "PPCMachineFunctionInfo.h"
+#include "PPCTargetMachine.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachinePostDominators.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/Support/Debug.h"
+#include "MCTargetDesc/PPCPredicates.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "ppc-mi-peepholes"
+
+STATISTIC(RemoveTOCSave, "Number of TOC saves removed");
+STATISTIC(MultiTOCSaves,
+ "Number of functions with multiple TOC saves that must be kept");
+STATISTIC(NumTOCSavesInPrologue, "Number of TOC saves placed in the prologue");
+STATISTIC(NumEliminatedSExt, "Number of eliminated sign-extensions");
+STATISTIC(NumEliminatedZExt, "Number of eliminated zero-extensions");
+STATISTIC(NumOptADDLIs, "Number of optimized ADD instruction fed by LI");
+STATISTIC(NumConvertedToImmediateForm,
+ "Number of instructions converted to their immediate form");
+STATISTIC(NumFunctionsEnteredInMIPeephole,
+ "Number of functions entered in PPC MI Peepholes");
+STATISTIC(NumFixedPointIterations,
+ "Number of fixed-point iterations converting reg-reg instructions "
+ "to reg-imm ones");
+STATISTIC(NumRotatesCollapsed,
+ "Number of pairs of rotate left, clear left/right collapsed");
+STATISTIC(NumEXTSWAndSLDICombined,
+ "Number of pairs of EXTSW and SLDI combined as EXTSWSLI");
+
+static cl::opt<bool>
+FixedPointRegToImm("ppc-reg-to-imm-fixed-point", cl::Hidden, cl::init(true),
+ cl::desc("Iterate to a fixed point when attempting to "
+ "convert reg-reg instructions to reg-imm"));
+
+static cl::opt<bool>
+ConvertRegReg("ppc-convert-rr-to-ri", cl::Hidden, cl::init(true),
+ cl::desc("Convert eligible reg+reg instructions to reg+imm"));
+
+static cl::opt<bool>
+ EnableSExtElimination("ppc-eliminate-signext",
+ cl::desc("enable elimination of sign-extensions"),
+ cl::init(false), cl::Hidden);
+
+static cl::opt<bool>
+ EnableZExtElimination("ppc-eliminate-zeroext",
+ cl::desc("enable elimination of zero-extensions"),
+ cl::init(false), cl::Hidden);
+
+namespace {
+
+struct PPCMIPeephole : public MachineFunctionPass {
+
+ static char ID;
+ const PPCInstrInfo *TII;
+ MachineFunction *MF;
+ MachineRegisterInfo *MRI;
+
+ PPCMIPeephole() : MachineFunctionPass(ID) {
+ initializePPCMIPeepholePass(*PassRegistry::getPassRegistry());
+ }
+
+private:
+ MachineDominatorTree *MDT;
+ MachinePostDominatorTree *MPDT;
+ MachineBlockFrequencyInfo *MBFI;
+ uint64_t EntryFreq;
+
+ // Initialize class variables.
+ void initialize(MachineFunction &MFParm);
+
+ // Perform peepholes.
+ bool simplifyCode(void);
+
+ // Perform peepholes.
+ bool eliminateRedundantCompare(void);
+ bool eliminateRedundantTOCSaves(std::map<MachineInstr *, bool> &TOCSaves);
+ bool combineSEXTAndSHL(MachineInstr &MI, MachineInstr *&ToErase);
+ bool emitRLDICWhenLoweringJumpTables(MachineInstr &MI);
+ void UpdateTOCSaves(std::map<MachineInstr *, bool> &TOCSaves,
+ MachineInstr *MI);
+
+public:
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<MachineDominatorTree>();
+ AU.addRequired<MachinePostDominatorTree>();
+ AU.addRequired<MachineBlockFrequencyInfo>();
+ AU.addPreserved<MachineDominatorTree>();
+ AU.addPreserved<MachinePostDominatorTree>();
+ AU.addPreserved<MachineBlockFrequencyInfo>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ // Main entry point for this pass.
+ bool runOnMachineFunction(MachineFunction &MF) override {
+ if (skipFunction(MF.getFunction()))
+ return false;
+ initialize(MF);
+ return simplifyCode();
+ }
+};
+
+// Initialize class variables.
+void PPCMIPeephole::initialize(MachineFunction &MFParm) {
+ MF = &MFParm;
+ MRI = &MF->getRegInfo();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ MPDT = &getAnalysis<MachinePostDominatorTree>();
+ MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
+ EntryFreq = MBFI->getEntryFreq();
+ TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
+ LLVM_DEBUG(dbgs() << "*** PowerPC MI peephole pass ***\n\n");
+ LLVM_DEBUG(MF->dump());
+}
+
+static MachineInstr *getVRegDefOrNull(MachineOperand *Op,
+ MachineRegisterInfo *MRI) {
+ assert(Op && "Invalid Operand!");
+ if (!Op->isReg())
+ return nullptr;
+
+ unsigned Reg = Op->getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(Reg))
+ return nullptr;
+
+ return MRI->getVRegDef(Reg);
+}
+
+// This function returns number of known zero bits in output of MI
+// starting from the most significant bit.
+static unsigned
+getKnownLeadingZeroCount(MachineInstr *MI, const PPCInstrInfo *TII) {
+ unsigned Opcode = MI->getOpcode();
+ if (Opcode == PPC::RLDICL || Opcode == PPC::RLDICLo ||
+ Opcode == PPC::RLDCL || Opcode == PPC::RLDCLo)
+ return MI->getOperand(3).getImm();
+
+ if ((Opcode == PPC::RLDIC || Opcode == PPC::RLDICo) &&
+ MI->getOperand(3).getImm() <= 63 - MI->getOperand(2).getImm())
+ return MI->getOperand(3).getImm();
+
+ if ((Opcode == PPC::RLWINM || Opcode == PPC::RLWINMo ||
+ Opcode == PPC::RLWNM || Opcode == PPC::RLWNMo ||
+ Opcode == PPC::RLWINM8 || Opcode == PPC::RLWNM8) &&
+ MI->getOperand(3).getImm() <= MI->getOperand(4).getImm())
+ return 32 + MI->getOperand(3).getImm();
+
+ if (Opcode == PPC::ANDIo) {
+ uint16_t Imm = MI->getOperand(2).getImm();
+ return 48 + countLeadingZeros(Imm);
+ }
+
+ if (Opcode == PPC::CNTLZW || Opcode == PPC::CNTLZWo ||
+ Opcode == PPC::CNTTZW || Opcode == PPC::CNTTZWo ||
+ Opcode == PPC::CNTLZW8 || Opcode == PPC::CNTTZW8)
+ // The result ranges from 0 to 32.
+ return 58;
+
+ if (Opcode == PPC::CNTLZD || Opcode == PPC::CNTLZDo ||
+ Opcode == PPC::CNTTZD || Opcode == PPC::CNTTZDo)
+ // The result ranges from 0 to 64.
+ return 57;
+
+ if (Opcode == PPC::LHZ || Opcode == PPC::LHZX ||
+ Opcode == PPC::LHZ8 || Opcode == PPC::LHZX8 ||
+ Opcode == PPC::LHZU || Opcode == PPC::LHZUX ||
+ Opcode == PPC::LHZU8 || Opcode == PPC::LHZUX8)
+ return 48;
+
+ if (Opcode == PPC::LBZ || Opcode == PPC::LBZX ||
+ Opcode == PPC::LBZ8 || Opcode == PPC::LBZX8 ||
+ Opcode == PPC::LBZU || Opcode == PPC::LBZUX ||
+ Opcode == PPC::LBZU8 || Opcode == PPC::LBZUX8)
+ return 56;
+
+ if (TII->isZeroExtended(*MI))
+ return 32;
+
+ return 0;
+}
+
+// This function maintains a map for the pairs <TOC Save Instr, Keep>
+// Each time a new TOC save is encountered, it checks if any of the existing
+// ones are dominated by the new one. If so, it marks the existing one as
+// redundant by setting it's entry in the map as false. It then adds the new
+// instruction to the map with either true or false depending on if any
+// existing instructions dominated the new one.
+void PPCMIPeephole::UpdateTOCSaves(
+ std::map<MachineInstr *, bool> &TOCSaves, MachineInstr *MI) {
+ assert(TII->isTOCSaveMI(*MI) && "Expecting a TOC save instruction here");
+ assert(MF->getSubtarget<PPCSubtarget>().isELFv2ABI() &&
+ "TOC-save removal only supported on ELFv2");
+ PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
+
+ MachineBasicBlock *Entry = &MF->front();
+ uint64_t CurrBlockFreq = MBFI->getBlockFreq(MI->getParent()).getFrequency();
+
+ // If the block in which the TOC save resides is in a block that
+ // post-dominates Entry, or a block that is hotter than entry (keep in mind
+ // that early MachineLICM has already run so the TOC save won't be hoisted)
+ // we can just do the save in the prologue.
+ if (CurrBlockFreq > EntryFreq || MPDT->dominates(MI->getParent(), Entry))
+ FI->setMustSaveTOC(true);
+
+ // If we are saving the TOC in the prologue, all the TOC saves can be removed
+ // from the code.
+ if (FI->mustSaveTOC()) {
+ for (auto &TOCSave : TOCSaves)
+ TOCSave.second = false;
+ // Add new instruction to map.
+ TOCSaves[MI] = false;
+ return;
+ }
+
+ bool Keep = true;
+ for (auto It = TOCSaves.begin(); It != TOCSaves.end(); It++ ) {
+ MachineInstr *CurrInst = It->first;
+ // If new instruction dominates an existing one, mark existing one as
+ // redundant.
+ if (It->second && MDT->dominates(MI, CurrInst))
+ It->second = false;
+ // Check if the new instruction is redundant.
+ if (MDT->dominates(CurrInst, MI)) {
+ Keep = false;
+ break;
+ }
+ }
+ // Add new instruction to map.
+ TOCSaves[MI] = Keep;
+}
+
+// Perform peephole optimizations.
+bool PPCMIPeephole::simplifyCode(void) {
+ bool Simplified = false;
+ MachineInstr* ToErase = nullptr;
+ std::map<MachineInstr *, bool> TOCSaves;
+ const TargetRegisterInfo *TRI = &TII->getRegisterInfo();
+ NumFunctionsEnteredInMIPeephole++;
+ if (ConvertRegReg) {
+ // Fixed-point conversion of reg/reg instructions fed by load-immediate
+ // into reg/imm instructions. FIXME: This is expensive, control it with
+ // an option.
+ bool SomethingChanged = false;
+ do {
+ NumFixedPointIterations++;
+ SomethingChanged = false;
+ for (MachineBasicBlock &MBB : *MF) {
+ for (MachineInstr &MI : MBB) {
+ if (MI.isDebugInstr())
+ continue;
+
+ if (TII->convertToImmediateForm(MI)) {
+ // We don't erase anything in case the def has other uses. Let DCE
+ // remove it if it can be removed.
+ LLVM_DEBUG(dbgs() << "Converted instruction to imm form: ");
+ LLVM_DEBUG(MI.dump());
+ NumConvertedToImmediateForm++;
+ SomethingChanged = true;
+ Simplified = true;
+ continue;
+ }
+ }
+ }
+ } while (SomethingChanged && FixedPointRegToImm);
+ }
+
+ for (MachineBasicBlock &MBB : *MF) {
+ for (MachineInstr &MI : MBB) {
+
+ // If the previous instruction was marked for elimination,
+ // remove it now.
+ if (ToErase) {
+ ToErase->eraseFromParent();
+ ToErase = nullptr;
+ }
+
+ // Ignore debug instructions.
+ if (MI.isDebugInstr())
+ continue;
+
+ // Per-opcode peepholes.
+ switch (MI.getOpcode()) {
+
+ default:
+ break;
+
+ case PPC::STD: {
+ MachineFrameInfo &MFI = MF->getFrameInfo();
+ if (MFI.hasVarSizedObjects() ||
+ !MF->getSubtarget<PPCSubtarget>().isELFv2ABI())
+ break;
+ // When encountering a TOC save instruction, call UpdateTOCSaves
+ // to add it to the TOCSaves map and mark any existing TOC saves
+ // it dominates as redundant.
+ if (TII->isTOCSaveMI(MI))
+ UpdateTOCSaves(TOCSaves, &MI);
+ break;
+ }
+ case PPC::XXPERMDI: {
+ // Perform simplifications of 2x64 vector swaps and splats.
+ // A swap is identified by an immediate value of 2, and a splat
+ // is identified by an immediate value of 0 or 3.
+ int Immed = MI.getOperand(3).getImm();
+
+ if (Immed != 1) {
+
+ // For each of these simplifications, we need the two source
+ // regs to match. Unfortunately, MachineCSE ignores COPY and
+ // SUBREG_TO_REG, so for example we can see
+ // XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), immed.
+ // We have to look through chains of COPY and SUBREG_TO_REG
+ // to find the real source values for comparison.
+ unsigned TrueReg1 =
+ TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
+ unsigned TrueReg2 =
+ TRI->lookThruCopyLike(MI.getOperand(2).getReg(), MRI);
+
+ if (TrueReg1 == TrueReg2
+ && TargetRegisterInfo::isVirtualRegister(TrueReg1)) {
+ MachineInstr *DefMI = MRI->getVRegDef(TrueReg1);
+ unsigned DefOpc = DefMI ? DefMI->getOpcode() : 0;
+
+ // If this is a splat fed by a splatting load, the splat is
+ // redundant. Replace with a copy. This doesn't happen directly due
+ // to code in PPCDAGToDAGISel.cpp, but it can happen when converting
+ // a load of a double to a vector of 64-bit integers.
+ auto isConversionOfLoadAndSplat = [=]() -> bool {
+ if (DefOpc != PPC::XVCVDPSXDS && DefOpc != PPC::XVCVDPUXDS)
+ return false;
+ unsigned DefReg =
+ TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
+ if (TargetRegisterInfo::isVirtualRegister(DefReg)) {
+ MachineInstr *LoadMI = MRI->getVRegDef(DefReg);
+ if (LoadMI && LoadMI->getOpcode() == PPC::LXVDSX)
+ return true;
+ }
+ return false;
+ };
+ if (DefMI && (Immed == 0 || Immed == 3)) {
+ if (DefOpc == PPC::LXVDSX || isConversionOfLoadAndSplat()) {
+ LLVM_DEBUG(dbgs() << "Optimizing load-and-splat/splat "
+ "to load-and-splat/copy: ");
+ LLVM_DEBUG(MI.dump());
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
+ MI.getOperand(0).getReg())
+ .add(MI.getOperand(1));
+ ToErase = &MI;
+ Simplified = true;
+ }
+ }
+
+ // If this is a splat or a swap fed by another splat, we
+ // can replace it with a copy.
+ if (DefOpc == PPC::XXPERMDI) {
+ unsigned FeedImmed = DefMI->getOperand(3).getImm();
+ unsigned FeedReg1 =
+ TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
+ unsigned FeedReg2 =
+ TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
+
+ if ((FeedImmed == 0 || FeedImmed == 3) && FeedReg1 == FeedReg2) {
+ LLVM_DEBUG(dbgs() << "Optimizing splat/swap or splat/splat "
+ "to splat/copy: ");
+ LLVM_DEBUG(MI.dump());
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
+ MI.getOperand(0).getReg())
+ .add(MI.getOperand(1));
+ ToErase = &MI;
+ Simplified = true;
+ }
+
+ // If this is a splat fed by a swap, we can simplify modify
+ // the splat to splat the other value from the swap's input
+ // parameter.
+ else if ((Immed == 0 || Immed == 3)
+ && FeedImmed == 2 && FeedReg1 == FeedReg2) {
+ LLVM_DEBUG(dbgs() << "Optimizing swap/splat => splat: ");
+ LLVM_DEBUG(MI.dump());
+ MI.getOperand(1).setReg(DefMI->getOperand(1).getReg());
+ MI.getOperand(2).setReg(DefMI->getOperand(2).getReg());
+ MI.getOperand(3).setImm(3 - Immed);
+ Simplified = true;
+ }
+
+ // If this is a swap fed by a swap, we can replace it
+ // with a copy from the first swap's input.
+ else if (Immed == 2 && FeedImmed == 2 && FeedReg1 == FeedReg2) {
+ LLVM_DEBUG(dbgs() << "Optimizing swap/swap => copy: ");
+ LLVM_DEBUG(MI.dump());
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
+ MI.getOperand(0).getReg())
+ .add(DefMI->getOperand(1));
+ ToErase = &MI;
+ Simplified = true;
+ }
+ } else if ((Immed == 0 || Immed == 3) && DefOpc == PPC::XXPERMDIs &&
+ (DefMI->getOperand(2).getImm() == 0 ||
+ DefMI->getOperand(2).getImm() == 3)) {
+ // Splat fed by another splat - switch the output of the first
+ // and remove the second.
+ DefMI->getOperand(0).setReg(MI.getOperand(0).getReg());
+ ToErase = &MI;
+ Simplified = true;
+ LLVM_DEBUG(dbgs() << "Removing redundant splat: ");
+ LLVM_DEBUG(MI.dump());
+ }
+ }
+ }
+ break;
+ }
+ case PPC::VSPLTB:
+ case PPC::VSPLTH:
+ case PPC::XXSPLTW: {
+ unsigned MyOpcode = MI.getOpcode();
+ unsigned OpNo = MyOpcode == PPC::XXSPLTW ? 1 : 2;
+ unsigned TrueReg =
+ TRI->lookThruCopyLike(MI.getOperand(OpNo).getReg(), MRI);
+ if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
+ break;
+ MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
+ if (!DefMI)
+ break;
+ unsigned DefOpcode = DefMI->getOpcode();
+ auto isConvertOfSplat = [=]() -> bool {
+ if (DefOpcode != PPC::XVCVSPSXWS && DefOpcode != PPC::XVCVSPUXWS)
+ return false;
+ unsigned ConvReg = DefMI->getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(ConvReg))
+ return false;
+ MachineInstr *Splt = MRI->getVRegDef(ConvReg);
+ return Splt && (Splt->getOpcode() == PPC::LXVWSX ||
+ Splt->getOpcode() == PPC::XXSPLTW);
+ };
+ bool AlreadySplat = (MyOpcode == DefOpcode) ||
+ (MyOpcode == PPC::VSPLTB && DefOpcode == PPC::VSPLTBs) ||
+ (MyOpcode == PPC::VSPLTH && DefOpcode == PPC::VSPLTHs) ||
+ (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::XXSPLTWs) ||
+ (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::LXVWSX) ||
+ (MyOpcode == PPC::XXSPLTW && DefOpcode == PPC::MTVSRWS)||
+ (MyOpcode == PPC::XXSPLTW && isConvertOfSplat());
+ // If the instruction[s] that feed this splat have already splat
+ // the value, this splat is redundant.
+ if (AlreadySplat) {
+ LLVM_DEBUG(dbgs() << "Changing redundant splat to a copy: ");
+ LLVM_DEBUG(MI.dump());
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
+ MI.getOperand(0).getReg())
+ .add(MI.getOperand(OpNo));
+ ToErase = &MI;
+ Simplified = true;
+ }
+ // Splat fed by a shift. Usually when we align value to splat into
+ // vector element zero.
+ if (DefOpcode == PPC::XXSLDWI) {
+ unsigned ShiftRes = DefMI->getOperand(0).getReg();
+ unsigned ShiftOp1 = DefMI->getOperand(1).getReg();
+ unsigned ShiftOp2 = DefMI->getOperand(2).getReg();
+ unsigned ShiftImm = DefMI->getOperand(3).getImm();
+ unsigned SplatImm = MI.getOperand(2).getImm();
+ if (ShiftOp1 == ShiftOp2) {
+ unsigned NewElem = (SplatImm + ShiftImm) & 0x3;
+ if (MRI->hasOneNonDBGUse(ShiftRes)) {
+ LLVM_DEBUG(dbgs() << "Removing redundant shift: ");
+ LLVM_DEBUG(DefMI->dump());
+ ToErase = DefMI;
+ }
+ Simplified = true;
+ LLVM_DEBUG(dbgs() << "Changing splat immediate from " << SplatImm
+ << " to " << NewElem << " in instruction: ");
+ LLVM_DEBUG(MI.dump());
+ MI.getOperand(1).setReg(ShiftOp1);
+ MI.getOperand(2).setImm(NewElem);
+ }
+ }
+ break;
+ }
+ case PPC::XVCVDPSP: {
+ // If this is a DP->SP conversion fed by an FRSP, the FRSP is redundant.
+ unsigned TrueReg =
+ TRI->lookThruCopyLike(MI.getOperand(1).getReg(), MRI);
+ if (!TargetRegisterInfo::isVirtualRegister(TrueReg))
+ break;
+ MachineInstr *DefMI = MRI->getVRegDef(TrueReg);
+
+ // This can occur when building a vector of single precision or integer
+ // values.
+ if (DefMI && DefMI->getOpcode() == PPC::XXPERMDI) {
+ unsigned DefsReg1 =
+ TRI->lookThruCopyLike(DefMI->getOperand(1).getReg(), MRI);
+ unsigned DefsReg2 =
+ TRI->lookThruCopyLike(DefMI->getOperand(2).getReg(), MRI);
+ if (!TargetRegisterInfo::isVirtualRegister(DefsReg1) ||
+ !TargetRegisterInfo::isVirtualRegister(DefsReg2))
+ break;
+ MachineInstr *P1 = MRI->getVRegDef(DefsReg1);
+ MachineInstr *P2 = MRI->getVRegDef(DefsReg2);
+
+ if (!P1 || !P2)
+ break;
+
+ // Remove the passed FRSP instruction if it only feeds this MI and
+ // set any uses of that FRSP (in this MI) to the source of the FRSP.
+ auto removeFRSPIfPossible = [&](MachineInstr *RoundInstr) {
+ if (RoundInstr->getOpcode() == PPC::FRSP &&
+ MRI->hasOneNonDBGUse(RoundInstr->getOperand(0).getReg())) {
+ Simplified = true;
+ unsigned ConvReg1 = RoundInstr->getOperand(1).getReg();
+ unsigned FRSPDefines = RoundInstr->getOperand(0).getReg();
+ MachineInstr &Use = *(MRI->use_instr_begin(FRSPDefines));
+ for (int i = 0, e = Use.getNumOperands(); i < e; ++i)
+ if (Use.getOperand(i).isReg() &&
+ Use.getOperand(i).getReg() == FRSPDefines)
+ Use.getOperand(i).setReg(ConvReg1);
+ LLVM_DEBUG(dbgs() << "Removing redundant FRSP:\n");
+ LLVM_DEBUG(RoundInstr->dump());
+ LLVM_DEBUG(dbgs() << "As it feeds instruction:\n");
+ LLVM_DEBUG(MI.dump());
+ LLVM_DEBUG(dbgs() << "Through instruction:\n");
+ LLVM_DEBUG(DefMI->dump());
+ RoundInstr->eraseFromParent();
+ }
+ };
+
+ // If the input to XVCVDPSP is a vector that was built (even
+ // partially) out of FRSP's, the FRSP(s) can safely be removed
+ // since this instruction performs the same operation.
+ if (P1 != P2) {
+ removeFRSPIfPossible(P1);
+ removeFRSPIfPossible(P2);
+ break;
+ }
+ removeFRSPIfPossible(P1);
+ }
+ break;
+ }
+ case PPC::EXTSH:
+ case PPC::EXTSH8:
+ case PPC::EXTSH8_32_64: {
+ if (!EnableSExtElimination) break;
+ unsigned NarrowReg = MI.getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(NarrowReg))
+ break;
+
+ MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
+ // If we've used a zero-extending load that we will sign-extend,
+ // just do a sign-extending load.
+ if (SrcMI->getOpcode() == PPC::LHZ ||
+ SrcMI->getOpcode() == PPC::LHZX) {
+ if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
+ break;
+ auto is64Bit = [] (unsigned Opcode) {
+ return Opcode == PPC::EXTSH8;
+ };
+ auto isXForm = [] (unsigned Opcode) {
+ return Opcode == PPC::LHZX;
+ };
+ auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
+ if (is64Bit)
+ if (isXForm) return PPC::LHAX8;
+ else return PPC::LHA8;
+ else
+ if (isXForm) return PPC::LHAX;
+ else return PPC::LHA;
+ };
+ unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
+ isXForm(SrcMI->getOpcode()));
+ LLVM_DEBUG(dbgs() << "Zero-extending load\n");
+ LLVM_DEBUG(SrcMI->dump());
+ LLVM_DEBUG(dbgs() << "and sign-extension\n");
+ LLVM_DEBUG(MI.dump());
+ LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
+ SrcMI->setDesc(TII->get(Opc));
+ SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
+ ToErase = &MI;
+ Simplified = true;
+ NumEliminatedSExt++;
+ }
+ break;
+ }
+ case PPC::EXTSW:
+ case PPC::EXTSW_32:
+ case PPC::EXTSW_32_64: {
+ if (!EnableSExtElimination) break;
+ unsigned NarrowReg = MI.getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(NarrowReg))
+ break;
+
+ MachineInstr *SrcMI = MRI->getVRegDef(NarrowReg);
+ // If we've used a zero-extending load that we will sign-extend,
+ // just do a sign-extending load.
+ if (SrcMI->getOpcode() == PPC::LWZ ||
+ SrcMI->getOpcode() == PPC::LWZX) {
+ if (!MRI->hasOneNonDBGUse(SrcMI->getOperand(0).getReg()))
+ break;
+ auto is64Bit = [] (unsigned Opcode) {
+ return Opcode == PPC::EXTSW || Opcode == PPC::EXTSW_32_64;
+ };
+ auto isXForm = [] (unsigned Opcode) {
+ return Opcode == PPC::LWZX;
+ };
+ auto getSextLoadOp = [] (bool is64Bit, bool isXForm) {
+ if (is64Bit)
+ if (isXForm) return PPC::LWAX;
+ else return PPC::LWA;
+ else
+ if (isXForm) return PPC::LWAX_32;
+ else return PPC::LWA_32;
+ };
+ unsigned Opc = getSextLoadOp(is64Bit(MI.getOpcode()),
+ isXForm(SrcMI->getOpcode()));
+ LLVM_DEBUG(dbgs() << "Zero-extending load\n");
+ LLVM_DEBUG(SrcMI->dump());
+ LLVM_DEBUG(dbgs() << "and sign-extension\n");
+ LLVM_DEBUG(MI.dump());
+ LLVM_DEBUG(dbgs() << "are merged into sign-extending load\n");
+ SrcMI->setDesc(TII->get(Opc));
+ SrcMI->getOperand(0).setReg(MI.getOperand(0).getReg());
+ ToErase = &MI;
+ Simplified = true;
+ NumEliminatedSExt++;
+ } else if (MI.getOpcode() == PPC::EXTSW_32_64 &&
+ TII->isSignExtended(*SrcMI)) {
+ // We can eliminate EXTSW if the input is known to be already
+ // sign-extended.
+ LLVM_DEBUG(dbgs() << "Removing redundant sign-extension\n");
+ unsigned TmpReg =
+ MF->getRegInfo().createVirtualRegister(&PPC::G8RCRegClass);
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::IMPLICIT_DEF),
+ TmpReg);
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::INSERT_SUBREG),
+ MI.getOperand(0).getReg())
+ .addReg(TmpReg)
+ .addReg(NarrowReg)
+ .addImm(PPC::sub_32);
+ ToErase = &MI;
+ Simplified = true;
+ NumEliminatedSExt++;
+ }
+ break;
+ }
+ case PPC::RLDICL: {
+ // We can eliminate RLDICL (e.g. for zero-extension)
+ // if all bits to clear are already zero in the input.
+ // This code assume following code sequence for zero-extension.
+ // %6 = COPY %5:sub_32; (optional)
+ // %8 = IMPLICIT_DEF;
+ // %7<def,tied1> = INSERT_SUBREG %8<tied0>, %6, sub_32;
+ if (!EnableZExtElimination) break;
+
+ if (MI.getOperand(2).getImm() != 0)
+ break;
+
+ unsigned SrcReg = MI.getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ break;
+
+ MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
+ if (!(SrcMI && SrcMI->getOpcode() == PPC::INSERT_SUBREG &&
+ SrcMI->getOperand(0).isReg() && SrcMI->getOperand(1).isReg()))
+ break;
+
+ MachineInstr *ImpDefMI, *SubRegMI;
+ ImpDefMI = MRI->getVRegDef(SrcMI->getOperand(1).getReg());
+ SubRegMI = MRI->getVRegDef(SrcMI->getOperand(2).getReg());
+ if (ImpDefMI->getOpcode() != PPC::IMPLICIT_DEF) break;
+
+ SrcMI = SubRegMI;
+ if (SubRegMI->getOpcode() == PPC::COPY) {
+ unsigned CopyReg = SubRegMI->getOperand(1).getReg();
+ if (TargetRegisterInfo::isVirtualRegister(CopyReg))
+ SrcMI = MRI->getVRegDef(CopyReg);
+ }
+
+ unsigned KnownZeroCount = getKnownLeadingZeroCount(SrcMI, TII);
+ if (MI.getOperand(3).getImm() <= KnownZeroCount) {
+ LLVM_DEBUG(dbgs() << "Removing redundant zero-extension\n");
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
+ MI.getOperand(0).getReg())
+ .addReg(SrcReg);
+ ToErase = &MI;
+ Simplified = true;
+ NumEliminatedZExt++;
+ }
+ break;
+ }
+
+ // TODO: Any instruction that has an immediate form fed only by a PHI
+ // whose operands are all load immediate can be folded away. We currently
+ // do this for ADD instructions, but should expand it to arithmetic and
+ // binary instructions with immediate forms in the future.
+ case PPC::ADD4:
+ case PPC::ADD8: {
+ auto isSingleUsePHI = [&](MachineOperand *PhiOp) {
+ assert(PhiOp && "Invalid Operand!");
+ MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
+
+ return DefPhiMI && (DefPhiMI->getOpcode() == PPC::PHI) &&
+ MRI->hasOneNonDBGUse(DefPhiMI->getOperand(0).getReg());
+ };
+
+ auto dominatesAllSingleUseLIs = [&](MachineOperand *DominatorOp,
+ MachineOperand *PhiOp) {
+ assert(PhiOp && "Invalid Operand!");
+ assert(DominatorOp && "Invalid Operand!");
+ MachineInstr *DefPhiMI = getVRegDefOrNull(PhiOp, MRI);
+ MachineInstr *DefDomMI = getVRegDefOrNull(DominatorOp, MRI);
+
+ // Note: the vregs only show up at odd indices position of PHI Node,
+ // the even indices position save the BB info.
+ for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
+ MachineInstr *LiMI =
+ getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
+ if (!LiMI ||
+ (LiMI->getOpcode() != PPC::LI && LiMI->getOpcode() != PPC::LI8)
+ || !MRI->hasOneNonDBGUse(LiMI->getOperand(0).getReg()) ||
+ !MDT->dominates(DefDomMI, LiMI))
+ return false;
+ }
+
+ return true;
+ };
+
+ MachineOperand Op1 = MI.getOperand(1);
+ MachineOperand Op2 = MI.getOperand(2);
+ if (isSingleUsePHI(&Op2) && dominatesAllSingleUseLIs(&Op1, &Op2))
+ std::swap(Op1, Op2);
+ else if (!isSingleUsePHI(&Op1) || !dominatesAllSingleUseLIs(&Op2, &Op1))
+ break; // We don't have an ADD fed by LI's that can be transformed
+
+ // Now we know that Op1 is the PHI node and Op2 is the dominator
+ unsigned DominatorReg = Op2.getReg();
+
+ const TargetRegisterClass *TRC = MI.getOpcode() == PPC::ADD8
+ ? &PPC::G8RC_and_G8RC_NOX0RegClass
+ : &PPC::GPRC_and_GPRC_NOR0RegClass;
+ MRI->setRegClass(DominatorReg, TRC);
+
+ // replace LIs with ADDIs
+ MachineInstr *DefPhiMI = getVRegDefOrNull(&Op1, MRI);
+ for (unsigned i = 1; i < DefPhiMI->getNumOperands(); i += 2) {
+ MachineInstr *LiMI = getVRegDefOrNull(&DefPhiMI->getOperand(i), MRI);
+ LLVM_DEBUG(dbgs() << "Optimizing LI to ADDI: ");
+ LLVM_DEBUG(LiMI->dump());
+
+ // There could be repeated registers in the PHI, e.g: %1 =
+ // PHI %6, <%bb.2>, %8, <%bb.3>, %8, <%bb.6>; So if we've
+ // already replaced the def instruction, skip.
+ if (LiMI->getOpcode() == PPC::ADDI || LiMI->getOpcode() == PPC::ADDI8)
+ continue;
+
+ assert((LiMI->getOpcode() == PPC::LI ||
+ LiMI->getOpcode() == PPC::LI8) &&
+ "Invalid Opcode!");
+ auto LiImm = LiMI->getOperand(1).getImm(); // save the imm of LI
+ LiMI->RemoveOperand(1); // remove the imm of LI
+ LiMI->setDesc(TII->get(LiMI->getOpcode() == PPC::LI ? PPC::ADDI
+ : PPC::ADDI8));
+ MachineInstrBuilder(*LiMI->getParent()->getParent(), *LiMI)
+ .addReg(DominatorReg)
+ .addImm(LiImm); // restore the imm of LI
+ LLVM_DEBUG(LiMI->dump());
+ }
+
+ // Replace ADD with COPY
+ LLVM_DEBUG(dbgs() << "Optimizing ADD to COPY: ");
+ LLVM_DEBUG(MI.dump());
+ BuildMI(MBB, &MI, MI.getDebugLoc(), TII->get(PPC::COPY),
+ MI.getOperand(0).getReg())
+ .add(Op1);
+ ToErase = &MI;
+ Simplified = true;
+ NumOptADDLIs++;
+ break;
+ }
+ case PPC::RLDICR: {
+ Simplified |= emitRLDICWhenLoweringJumpTables(MI) ||
+ combineSEXTAndSHL(MI, ToErase);
+ break;
+ }
+ }
+ }
+
+ // If the last instruction was marked for elimination,
+ // remove it now.
+ if (ToErase) {
+ ToErase->eraseFromParent();
+ ToErase = nullptr;
+ }
+ }
+
+ // Eliminate all the TOC save instructions which are redundant.
+ Simplified |= eliminateRedundantTOCSaves(TOCSaves);
+ PPCFunctionInfo *FI = MF->getInfo<PPCFunctionInfo>();
+ if (FI->mustSaveTOC())
+ NumTOCSavesInPrologue++;
+
+ // We try to eliminate redundant compare instruction.
+ Simplified |= eliminateRedundantCompare();
+
+ return Simplified;
+}
+
+// helper functions for eliminateRedundantCompare
+static bool isEqOrNe(MachineInstr *BI) {
+ PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
+ unsigned PredCond = PPC::getPredicateCondition(Pred);
+ return (PredCond == PPC::PRED_EQ || PredCond == PPC::PRED_NE);
+}
+
+static bool isSupportedCmpOp(unsigned opCode) {
+ return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
+ opCode == PPC::CMPLW || opCode == PPC::CMPW ||
+ opCode == PPC::CMPLDI || opCode == PPC::CMPDI ||
+ opCode == PPC::CMPLWI || opCode == PPC::CMPWI);
+}
+
+static bool is64bitCmpOp(unsigned opCode) {
+ return (opCode == PPC::CMPLD || opCode == PPC::CMPD ||
+ opCode == PPC::CMPLDI || opCode == PPC::CMPDI);
+}
+
+static bool isSignedCmpOp(unsigned opCode) {
+ return (opCode == PPC::CMPD || opCode == PPC::CMPW ||
+ opCode == PPC::CMPDI || opCode == PPC::CMPWI);
+}
+
+static unsigned getSignedCmpOpCode(unsigned opCode) {
+ if (opCode == PPC::CMPLD) return PPC::CMPD;
+ if (opCode == PPC::CMPLW) return PPC::CMPW;
+ if (opCode == PPC::CMPLDI) return PPC::CMPDI;
+ if (opCode == PPC::CMPLWI) return PPC::CMPWI;
+ return opCode;
+}
+
+// We can decrement immediate x in (GE x) by changing it to (GT x-1) or
+// (LT x) to (LE x-1)
+static unsigned getPredicateToDecImm(MachineInstr *BI, MachineInstr *CMPI) {
+ uint64_t Imm = CMPI->getOperand(2).getImm();
+ bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
+ if ((!SignedCmp && Imm == 0) || (SignedCmp && Imm == 0x8000))
+ return 0;
+
+ PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
+ unsigned PredCond = PPC::getPredicateCondition(Pred);
+ unsigned PredHint = PPC::getPredicateHint(Pred);
+ if (PredCond == PPC::PRED_GE)
+ return PPC::getPredicate(PPC::PRED_GT, PredHint);
+ if (PredCond == PPC::PRED_LT)
+ return PPC::getPredicate(PPC::PRED_LE, PredHint);
+
+ return 0;
+}
+
+// We can increment immediate x in (GT x) by changing it to (GE x+1) or
+// (LE x) to (LT x+1)
+static unsigned getPredicateToIncImm(MachineInstr *BI, MachineInstr *CMPI) {
+ uint64_t Imm = CMPI->getOperand(2).getImm();
+ bool SignedCmp = isSignedCmpOp(CMPI->getOpcode());
+ if ((!SignedCmp && Imm == 0xFFFF) || (SignedCmp && Imm == 0x7FFF))
+ return 0;
+
+ PPC::Predicate Pred = (PPC::Predicate)BI->getOperand(0).getImm();
+ unsigned PredCond = PPC::getPredicateCondition(Pred);
+ unsigned PredHint = PPC::getPredicateHint(Pred);
+ if (PredCond == PPC::PRED_GT)
+ return PPC::getPredicate(PPC::PRED_GE, PredHint);
+ if (PredCond == PPC::PRED_LE)
+ return PPC::getPredicate(PPC::PRED_LT, PredHint);
+
+ return 0;
+}
+
+// This takes a Phi node and returns a register value for the specified BB.
+static unsigned getIncomingRegForBlock(MachineInstr *Phi,
+ MachineBasicBlock *MBB) {
+ for (unsigned I = 2, E = Phi->getNumOperands() + 1; I != E; I += 2) {
+ MachineOperand &MO = Phi->getOperand(I);
+ if (MO.getMBB() == MBB)
+ return Phi->getOperand(I-1).getReg();
+ }
+ llvm_unreachable("invalid src basic block for this Phi node\n");
+ return 0;
+}
+
+// This function tracks the source of the register through register copy.
+// If BB1 and BB2 are non-NULL, we also track PHI instruction in BB2
+// assuming that the control comes from BB1 into BB2.
+static unsigned getSrcVReg(unsigned Reg, MachineBasicBlock *BB1,
+ MachineBasicBlock *BB2, MachineRegisterInfo *MRI) {
+ unsigned SrcReg = Reg;
+ while (1) {
+ unsigned NextReg = SrcReg;
+ MachineInstr *Inst = MRI->getVRegDef(SrcReg);
+ if (BB1 && Inst->getOpcode() == PPC::PHI && Inst->getParent() == BB2) {
+ NextReg = getIncomingRegForBlock(Inst, BB1);
+ // We track through PHI only once to avoid infinite loop.
+ BB1 = nullptr;
+ }
+ else if (Inst->isFullCopy())
+ NextReg = Inst->getOperand(1).getReg();
+ if (NextReg == SrcReg || !TargetRegisterInfo::isVirtualRegister(NextReg))
+ break;
+ SrcReg = NextReg;
+ }
+ return SrcReg;
+}
+
+static bool eligibleForCompareElimination(MachineBasicBlock &MBB,
+ MachineBasicBlock *&PredMBB,
+ MachineBasicBlock *&MBBtoMoveCmp,
+ MachineRegisterInfo *MRI) {
+
+ auto isEligibleBB = [&](MachineBasicBlock &BB) {
+ auto BII = BB.getFirstInstrTerminator();
+ // We optimize BBs ending with a conditional branch.
+ // We check only for BCC here, not BCCLR, because BCCLR
+ // will be formed only later in the pipeline.
+ if (BB.succ_size() == 2 &&
+ BII != BB.instr_end() &&
+ (*BII).getOpcode() == PPC::BCC &&
+ (*BII).getOperand(1).isReg()) {
+ // We optimize only if the condition code is used only by one BCC.
+ unsigned CndReg = (*BII).getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(CndReg) ||
+ !MRI->hasOneNonDBGUse(CndReg))
+ return false;
+
+ MachineInstr *CMPI = MRI->getVRegDef(CndReg);
+ // We assume compare and branch are in the same BB for ease of analysis.
+ if (CMPI->getParent() != &BB)
+ return false;
+
+ // We skip this BB if a physical register is used in comparison.
+ for (MachineOperand &MO : CMPI->operands())
+ if (MO.isReg() && !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
+ return false;
+
+ return true;
+ }
+ return false;
+ };
+
+ // If this BB has more than one successor, we can create a new BB and
+ // move the compare instruction in the new BB.
+ // So far, we do not move compare instruction to a BB having multiple
+ // successors to avoid potentially increasing code size.
+ auto isEligibleForMoveCmp = [](MachineBasicBlock &BB) {
+ return BB.succ_size() == 1;
+ };
+
+ if (!isEligibleBB(MBB))
+ return false;
+
+ unsigned NumPredBBs = MBB.pred_size();
+ if (NumPredBBs == 1) {
+ MachineBasicBlock *TmpMBB = *MBB.pred_begin();
+ if (isEligibleBB(*TmpMBB)) {
+ PredMBB = TmpMBB;
+ MBBtoMoveCmp = nullptr;
+ return true;
+ }
+ }
+ else if (NumPredBBs == 2) {
+ // We check for partially redundant case.
+ // So far, we support cases with only two predecessors
+ // to avoid increasing the number of instructions.
+ MachineBasicBlock::pred_iterator PI = MBB.pred_begin();
+ MachineBasicBlock *Pred1MBB = *PI;
+ MachineBasicBlock *Pred2MBB = *(PI+1);
+
+ if (isEligibleBB(*Pred1MBB) && isEligibleForMoveCmp(*Pred2MBB)) {
+ // We assume Pred1MBB is the BB containing the compare to be merged and
+ // Pred2MBB is the BB to which we will append a compare instruction.
+ // Hence we can proceed as is.
+ }
+ else if (isEligibleBB(*Pred2MBB) && isEligibleForMoveCmp(*Pred1MBB)) {
+ // We need to swap Pred1MBB and Pred2MBB to canonicalize.
+ std::swap(Pred1MBB, Pred2MBB);
+ }
+ else return false;
+
+ // Here, Pred2MBB is the BB to which we need to append a compare inst.
+ // We cannot move the compare instruction if operands are not available
+ // in Pred2MBB (i.e. defined in MBB by an instruction other than PHI).
+ MachineInstr *BI = &*MBB.getFirstInstrTerminator();
+ MachineInstr *CMPI = MRI->getVRegDef(BI->getOperand(1).getReg());
+ for (int I = 1; I <= 2; I++)
+ if (CMPI->getOperand(I).isReg()) {
+ MachineInstr *Inst = MRI->getVRegDef(CMPI->getOperand(I).getReg());
+ if (Inst->getParent() == &MBB && Inst->getOpcode() != PPC::PHI)
+ return false;
+ }
+
+ PredMBB = Pred1MBB;
+ MBBtoMoveCmp = Pred2MBB;
+ return true;
+ }
+
+ return false;
+}
+
+// This function will iterate over the input map containing a pair of TOC save
+// instruction and a flag. The flag will be set to false if the TOC save is
+// proven redundant. This function will erase from the basic block all the TOC
+// saves marked as redundant.
+bool PPCMIPeephole::eliminateRedundantTOCSaves(
+ std::map<MachineInstr *, bool> &TOCSaves) {
+ bool Simplified = false;
+ int NumKept = 0;
+ for (auto TOCSave : TOCSaves) {
+ if (!TOCSave.second) {
+ TOCSave.first->eraseFromParent();
+ RemoveTOCSave++;
+ Simplified = true;
+ } else {
+ NumKept++;
+ }
+ }
+
+ if (NumKept > 1)
+ MultiTOCSaves++;
+
+ return Simplified;
+}
+
+// If multiple conditional branches are executed based on the (essentially)
+// same comparison, we merge compare instructions into one and make multiple
+// conditional branches on this comparison.
+// For example,
+// if (a == 0) { ... }
+// else if (a < 0) { ... }
+// can be executed by one compare and two conditional branches instead of
+// two pairs of a compare and a conditional branch.
+//
+// This method merges two compare instructions in two MBBs and modifies the
+// compare and conditional branch instructions if needed.
+// For the above example, the input for this pass looks like:
+// cmplwi r3, 0
+// beq 0, .LBB0_3
+// cmpwi r3, -1
+// bgt 0, .LBB0_4
+// So, before merging two compares, we need to modify these instructions as
+// cmpwi r3, 0 ; cmplwi and cmpwi yield same result for beq
+// beq 0, .LBB0_3
+// cmpwi r3, 0 ; greather than -1 means greater or equal to 0
+// bge 0, .LBB0_4
+
+bool PPCMIPeephole::eliminateRedundantCompare(void) {
+ bool Simplified = false;
+
+ for (MachineBasicBlock &MBB2 : *MF) {
+ MachineBasicBlock *MBB1 = nullptr, *MBBtoMoveCmp = nullptr;
+
+ // For fully redundant case, we select two basic blocks MBB1 and MBB2
+ // as an optimization target if
+ // - both MBBs end with a conditional branch,
+ // - MBB1 is the only predecessor of MBB2, and
+ // - compare does not take a physical register as a operand in both MBBs.
+ // In this case, eligibleForCompareElimination sets MBBtoMoveCmp nullptr.
+ //
+ // As partially redundant case, we additionally handle if MBB2 has one
+ // additional predecessor, which has only one successor (MBB2).
+ // In this case, we move the compare instruction originally in MBB2 into
+ // MBBtoMoveCmp. This partially redundant case is typically appear by
+ // compiling a while loop; here, MBBtoMoveCmp is the loop preheader.
+ //
+ // Overview of CFG of related basic blocks
+ // Fully redundant case Partially redundant case
+ // -------- ---------------- --------
+ // | MBB1 | (w/ 2 succ) | MBBtoMoveCmp | | MBB1 | (w/ 2 succ)
+ // -------- ---------------- --------
+ // | \ (w/ 1 succ) \ | \
+ // | \ \ | \
+ // | \ |
+ // -------- --------
+ // | MBB2 | (w/ 1 pred | MBB2 | (w/ 2 pred
+ // -------- and 2 succ) -------- and 2 succ)
+ // | \ | \
+ // | \ | \
+ //
+ if (!eligibleForCompareElimination(MBB2, MBB1, MBBtoMoveCmp, MRI))
+ continue;
+
+ MachineInstr *BI1 = &*MBB1->getFirstInstrTerminator();
+ MachineInstr *CMPI1 = MRI->getVRegDef(BI1->getOperand(1).getReg());
+
+ MachineInstr *BI2 = &*MBB2.getFirstInstrTerminator();
+ MachineInstr *CMPI2 = MRI->getVRegDef(BI2->getOperand(1).getReg());
+ bool IsPartiallyRedundant = (MBBtoMoveCmp != nullptr);
+
+ // We cannot optimize an unsupported compare opcode or
+ // a mix of 32-bit and 64-bit comaprisons
+ if (!isSupportedCmpOp(CMPI1->getOpcode()) ||
+ !isSupportedCmpOp(CMPI2->getOpcode()) ||
+ is64bitCmpOp(CMPI1->getOpcode()) != is64bitCmpOp(CMPI2->getOpcode()))
+ continue;
+
+ unsigned NewOpCode = 0;
+ unsigned NewPredicate1 = 0, NewPredicate2 = 0;
+ int16_t Imm1 = 0, NewImm1 = 0, Imm2 = 0, NewImm2 = 0;
+ bool SwapOperands = false;
+
+ if (CMPI1->getOpcode() != CMPI2->getOpcode()) {
+ // Typically, unsigned comparison is used for equality check, but
+ // we replace it with a signed comparison if the comparison
+ // to be merged is a signed comparison.
+ // In other cases of opcode mismatch, we cannot optimize this.
+
+ // We cannot change opcode when comparing against an immediate
+ // if the most significant bit of the immediate is one
+ // due to the difference in sign extension.
+ auto CmpAgainstImmWithSignBit = [](MachineInstr *I) {
+ if (!I->getOperand(2).isImm())
+ return false;
+ int16_t Imm = (int16_t)I->getOperand(2).getImm();
+ return Imm < 0;
+ };
+
+ if (isEqOrNe(BI2) && !CmpAgainstImmWithSignBit(CMPI2) &&
+ CMPI1->getOpcode() == getSignedCmpOpCode(CMPI2->getOpcode()))
+ NewOpCode = CMPI1->getOpcode();
+ else if (isEqOrNe(BI1) && !CmpAgainstImmWithSignBit(CMPI1) &&
+ getSignedCmpOpCode(CMPI1->getOpcode()) == CMPI2->getOpcode())
+ NewOpCode = CMPI2->getOpcode();
+ else continue;
+ }
+
+ if (CMPI1->getOperand(2).isReg() && CMPI2->getOperand(2).isReg()) {
+ // In case of comparisons between two registers, these two registers
+ // must be same to merge two comparisons.
+ unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
+ nullptr, nullptr, MRI);
+ unsigned Cmp1Operand2 = getSrcVReg(CMPI1->getOperand(2).getReg(),
+ nullptr, nullptr, MRI);
+ unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
+ MBB1, &MBB2, MRI);
+ unsigned Cmp2Operand2 = getSrcVReg(CMPI2->getOperand(2).getReg(),
+ MBB1, &MBB2, MRI);
+
+ if (Cmp1Operand1 == Cmp2Operand1 && Cmp1Operand2 == Cmp2Operand2) {
+ // Same pair of registers in the same order; ready to merge as is.
+ }
+ else if (Cmp1Operand1 == Cmp2Operand2 && Cmp1Operand2 == Cmp2Operand1) {
+ // Same pair of registers in different order.
+ // We reverse the predicate to merge compare instructions.
+ PPC::Predicate Pred = (PPC::Predicate)BI2->getOperand(0).getImm();
+ NewPredicate2 = (unsigned)PPC::getSwappedPredicate(Pred);
+ // In case of partial redundancy, we need to swap operands
+ // in another compare instruction.
+ SwapOperands = true;
+ }
+ else continue;
+ }
+ else if (CMPI1->getOperand(2).isImm() && CMPI2->getOperand(2).isImm()) {
+ // In case of comparisons between a register and an immediate,
+ // the operand register must be same for two compare instructions.
+ unsigned Cmp1Operand1 = getSrcVReg(CMPI1->getOperand(1).getReg(),
+ nullptr, nullptr, MRI);
+ unsigned Cmp2Operand1 = getSrcVReg(CMPI2->getOperand(1).getReg(),
+ MBB1, &MBB2, MRI);
+ if (Cmp1Operand1 != Cmp2Operand1)
+ continue;
+
+ NewImm1 = Imm1 = (int16_t)CMPI1->getOperand(2).getImm();
+ NewImm2 = Imm2 = (int16_t)CMPI2->getOperand(2).getImm();
+
+ // If immediate are not same, we try to adjust by changing predicate;
+ // e.g. GT imm means GE (imm+1).
+ if (Imm1 != Imm2 && (!isEqOrNe(BI2) || !isEqOrNe(BI1))) {
+ int Diff = Imm1 - Imm2;
+ if (Diff < -2 || Diff > 2)
+ continue;
+
+ unsigned PredToInc1 = getPredicateToIncImm(BI1, CMPI1);
+ unsigned PredToDec1 = getPredicateToDecImm(BI1, CMPI1);
+ unsigned PredToInc2 = getPredicateToIncImm(BI2, CMPI2);
+ unsigned PredToDec2 = getPredicateToDecImm(BI2, CMPI2);
+ if (Diff == 2) {
+ if (PredToInc2 && PredToDec1) {
+ NewPredicate2 = PredToInc2;
+ NewPredicate1 = PredToDec1;
+ NewImm2++;
+ NewImm1--;
+ }
+ }
+ else if (Diff == 1) {
+ if (PredToInc2) {
+ NewImm2++;
+ NewPredicate2 = PredToInc2;
+ }
+ else if (PredToDec1) {
+ NewImm1--;
+ NewPredicate1 = PredToDec1;
+ }
+ }
+ else if (Diff == -1) {
+ if (PredToDec2) {
+ NewImm2--;
+ NewPredicate2 = PredToDec2;
+ }
+ else if (PredToInc1) {
+ NewImm1++;
+ NewPredicate1 = PredToInc1;
+ }
+ }
+ else if (Diff == -2) {
+ if (PredToDec2 && PredToInc1) {
+ NewPredicate2 = PredToDec2;
+ NewPredicate1 = PredToInc1;
+ NewImm2--;
+ NewImm1++;
+ }
+ }
+ }
+
+ // We cannot merge two compares if the immediates are not same.
+ if (NewImm2 != NewImm1)
+ continue;
+ }
+
+ LLVM_DEBUG(dbgs() << "Optimize two pairs of compare and branch:\n");
+ LLVM_DEBUG(CMPI1->dump());
+ LLVM_DEBUG(BI1->dump());
+ LLVM_DEBUG(CMPI2->dump());
+ LLVM_DEBUG(BI2->dump());
+
+ // We adjust opcode, predicates and immediate as we determined above.
+ if (NewOpCode != 0 && NewOpCode != CMPI1->getOpcode()) {
+ CMPI1->setDesc(TII->get(NewOpCode));
+ }
+ if (NewPredicate1) {
+ BI1->getOperand(0).setImm(NewPredicate1);
+ }
+ if (NewPredicate2) {
+ BI2->getOperand(0).setImm(NewPredicate2);
+ }
+ if (NewImm1 != Imm1) {
+ CMPI1->getOperand(2).setImm(NewImm1);
+ }
+
+ if (IsPartiallyRedundant) {
+ // We touch up the compare instruction in MBB2 and move it to
+ // a previous BB to handle partially redundant case.
+ if (SwapOperands) {
+ unsigned Op1 = CMPI2->getOperand(1).getReg();
+ unsigned Op2 = CMPI2->getOperand(2).getReg();
+ CMPI2->getOperand(1).setReg(Op2);
+ CMPI2->getOperand(2).setReg(Op1);
+ }
+ if (NewImm2 != Imm2)
+ CMPI2->getOperand(2).setImm(NewImm2);
+
+ for (int I = 1; I <= 2; I++) {
+ if (CMPI2->getOperand(I).isReg()) {
+ MachineInstr *Inst = MRI->getVRegDef(CMPI2->getOperand(I).getReg());
+ if (Inst->getParent() != &MBB2)
+ continue;
+
+ assert(Inst->getOpcode() == PPC::PHI &&
+ "We cannot support if an operand comes from this BB.");
+ unsigned SrcReg = getIncomingRegForBlock(Inst, MBBtoMoveCmp);
+ CMPI2->getOperand(I).setReg(SrcReg);
+ }
+ }
+ auto I = MachineBasicBlock::iterator(MBBtoMoveCmp->getFirstTerminator());
+ MBBtoMoveCmp->splice(I, &MBB2, MachineBasicBlock::iterator(CMPI2));
+
+ DebugLoc DL = CMPI2->getDebugLoc();
+ unsigned NewVReg = MRI->createVirtualRegister(&PPC::CRRCRegClass);
+ BuildMI(MBB2, MBB2.begin(), DL,
+ TII->get(PPC::PHI), NewVReg)
+ .addReg(BI1->getOperand(1).getReg()).addMBB(MBB1)
+ .addReg(BI2->getOperand(1).getReg()).addMBB(MBBtoMoveCmp);
+ BI2->getOperand(1).setReg(NewVReg);
+ }
+ else {
+ // We finally eliminate compare instruction in MBB2.
+ BI2->getOperand(1).setReg(BI1->getOperand(1).getReg());
+ CMPI2->eraseFromParent();
+ }
+ BI2->getOperand(1).setIsKill(true);
+ BI1->getOperand(1).setIsKill(false);
+
+ LLVM_DEBUG(dbgs() << "into a compare and two branches:\n");
+ LLVM_DEBUG(CMPI1->dump());
+ LLVM_DEBUG(BI1->dump());
+ LLVM_DEBUG(BI2->dump());
+ if (IsPartiallyRedundant) {
+ LLVM_DEBUG(dbgs() << "The following compare is moved into "
+ << printMBBReference(*MBBtoMoveCmp)
+ << " to handle partial redundancy.\n");
+ LLVM_DEBUG(CMPI2->dump());
+ }
+
+ Simplified = true;
+ }
+
+ return Simplified;
+}
+
+// We miss the opportunity to emit an RLDIC when lowering jump tables
+// since ISEL sees only a single basic block. When selecting, the clear
+// and shift left will be in different blocks.
+bool PPCMIPeephole::emitRLDICWhenLoweringJumpTables(MachineInstr &MI) {
+ if (MI.getOpcode() != PPC::RLDICR)
+ return false;
+
+ unsigned SrcReg = MI.getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ return false;
+
+ MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
+ if (SrcMI->getOpcode() != PPC::RLDICL)
+ return false;
+
+ MachineOperand MOpSHSrc = SrcMI->getOperand(2);
+ MachineOperand MOpMBSrc = SrcMI->getOperand(3);
+ MachineOperand MOpSHMI = MI.getOperand(2);
+ MachineOperand MOpMEMI = MI.getOperand(3);
+ if (!(MOpSHSrc.isImm() && MOpMBSrc.isImm() && MOpSHMI.isImm() &&
+ MOpMEMI.isImm()))
+ return false;
+
+ uint64_t SHSrc = MOpSHSrc.getImm();
+ uint64_t MBSrc = MOpMBSrc.getImm();
+ uint64_t SHMI = MOpSHMI.getImm();
+ uint64_t MEMI = MOpMEMI.getImm();
+ uint64_t NewSH = SHSrc + SHMI;
+ uint64_t NewMB = MBSrc - SHMI;
+ if (NewMB > 63 || NewSH > 63)
+ return false;
+
+ // The bits cleared with RLDICL are [0, MBSrc).
+ // The bits cleared with RLDICR are (MEMI, 63].
+ // After the sequence, the bits cleared are:
+ // [0, MBSrc-SHMI) and (MEMI, 63).
+ //
+ // The bits cleared with RLDIC are [0, NewMB) and (63-NewSH, 63].
+ if ((63 - NewSH) != MEMI)
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Converting pair: ");
+ LLVM_DEBUG(SrcMI->dump());
+ LLVM_DEBUG(MI.dump());
+
+ MI.setDesc(TII->get(PPC::RLDIC));
+ MI.getOperand(1).setReg(SrcMI->getOperand(1).getReg());
+ MI.getOperand(2).setImm(NewSH);
+ MI.getOperand(3).setImm(NewMB);
+
+ LLVM_DEBUG(dbgs() << "To: ");
+ LLVM_DEBUG(MI.dump());
+ NumRotatesCollapsed++;
+ return true;
+}
+
+// For case in LLVM IR
+// entry:
+// %iconv = sext i32 %index to i64
+// br i1 undef label %true, label %false
+// true:
+// %ptr = getelementptr inbounds i32, i32* null, i64 %iconv
+// ...
+// PPCISelLowering::combineSHL fails to combine, because sext and shl are in
+// different BBs when conducting instruction selection. We can do a peephole
+// optimization to combine these two instructions into extswsli after
+// instruction selection.
+bool PPCMIPeephole::combineSEXTAndSHL(MachineInstr &MI,
+ MachineInstr *&ToErase) {
+ if (MI.getOpcode() != PPC::RLDICR)
+ return false;
+
+ if (!MF->getSubtarget<PPCSubtarget>().isISA3_0())
+ return false;
+
+ assert(MI.getNumOperands() == 4 && "RLDICR should have 4 operands");
+
+ MachineOperand MOpSHMI = MI.getOperand(2);
+ MachineOperand MOpMEMI = MI.getOperand(3);
+ if (!(MOpSHMI.isImm() && MOpMEMI.isImm()))
+ return false;
+
+ uint64_t SHMI = MOpSHMI.getImm();
+ uint64_t MEMI = MOpMEMI.getImm();
+ if (SHMI + MEMI != 63)
+ return false;
+
+ unsigned SrcReg = MI.getOperand(1).getReg();
+ if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
+ return false;
+
+ MachineInstr *SrcMI = MRI->getVRegDef(SrcReg);
+ if (SrcMI->getOpcode() != PPC::EXTSW &&
+ SrcMI->getOpcode() != PPC::EXTSW_32_64)
+ return false;
+
+ // If the register defined by extsw has more than one use, combination is not
+ // needed.
+ if (!MRI->hasOneNonDBGUse(SrcReg))
+ return false;
+
+ LLVM_DEBUG(dbgs() << "Combining pair: ");
+ LLVM_DEBUG(SrcMI->dump());
+ LLVM_DEBUG(MI.dump());
+
+ MachineInstr *NewInstr =
+ BuildMI(*MI.getParent(), &MI, MI.getDebugLoc(),
+ SrcMI->getOpcode() == PPC::EXTSW ? TII->get(PPC::EXTSWSLI)
+ : TII->get(PPC::EXTSWSLI_32_64),
+ MI.getOperand(0).getReg())
+ .add(SrcMI->getOperand(1))
+ .add(MOpSHMI);
+ (void)NewInstr;
+
+ LLVM_DEBUG(dbgs() << "TO: ");
+ LLVM_DEBUG(NewInstr->dump());
+ ++NumEXTSWAndSLDICombined;
+ ToErase = &MI;
+ // SrcMI, which is extsw, is of no use now, erase it.
+ SrcMI->eraseFromParent();
+ return true;
+}
+
+} // end default namespace
+
+INITIALIZE_PASS_BEGIN(PPCMIPeephole, DEBUG_TYPE,
+ "PowerPC MI Peephole Optimization", false, false)
+INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
+INITIALIZE_PASS_END(PPCMIPeephole, DEBUG_TYPE,
+ "PowerPC MI Peephole Optimization", false, false)
+
+char PPCMIPeephole::ID = 0;
+FunctionPass*
+llvm::createPPCMIPeepholePass() { return new PPCMIPeephole(); }
+