summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Target/X86/X86InstructionSelector.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Target/X86/X86InstructionSelector.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Target/X86/X86InstructionSelector.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Target/X86/X86InstructionSelector.cpp1820
1 files changed, 1820 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Target/X86/X86InstructionSelector.cpp b/contrib/llvm-project/llvm/lib/Target/X86/X86InstructionSelector.cpp
new file mode 100644
index 000000000000..892a083f4d1a
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Target/X86/X86InstructionSelector.cpp
@@ -0,0 +1,1820 @@
+//===- X86InstructionSelector.cpp -----------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements the targeting of the InstructionSelector class for
+/// X86.
+/// \todo This should be generated by TableGen.
+//===----------------------------------------------------------------------===//
+
+#include "MCTargetDesc/X86BaseInfo.h"
+#include "X86InstrBuilder.h"
+#include "X86InstrInfo.h"
+#include "X86RegisterBankInfo.h"
+#include "X86RegisterInfo.h"
+#include "X86Subtarget.h"
+#include "X86TargetMachine.h"
+#include "llvm/CodeGen/GlobalISel/InstructionSelector.h"
+#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
+#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
+#include "llvm/CodeGen/GlobalISel/Utils.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/Support/AtomicOrdering.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cstdint>
+#include <tuple>
+
+#define DEBUG_TYPE "X86-isel"
+
+using namespace llvm;
+
+namespace {
+
+#define GET_GLOBALISEL_PREDICATE_BITSET
+#include "X86GenGlobalISel.inc"
+#undef GET_GLOBALISEL_PREDICATE_BITSET
+
+class X86InstructionSelector : public InstructionSelector {
+public:
+ X86InstructionSelector(const X86TargetMachine &TM, const X86Subtarget &STI,
+ const X86RegisterBankInfo &RBI);
+
+ bool select(MachineInstr &I, CodeGenCoverage &CoverageInfo) const override;
+ static const char *getName() { return DEBUG_TYPE; }
+
+private:
+ /// tblgen-erated 'select' implementation, used as the initial selector for
+ /// the patterns that don't require complex C++.
+ bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
+
+ // TODO: remove after supported by Tablegen-erated instruction selection.
+ unsigned getLoadStoreOp(const LLT &Ty, const RegisterBank &RB, unsigned Opc,
+ uint64_t Alignment) const;
+
+ bool selectLoadStoreOp(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectFrameIndexOrGep(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectGlobalValue(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectConstant(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectTruncOrPtrToInt(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectZext(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectAnyext(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectCmp(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectFCmp(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectUadde(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectCopy(MachineInstr &I, MachineRegisterInfo &MRI) const;
+ bool selectUnmergeValues(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF,
+ CodeGenCoverage &CoverageInfo) const;
+ bool selectMergeValues(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF,
+ CodeGenCoverage &CoverageInfo) const;
+ bool selectInsert(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectExtract(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectCondBranch(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectTurnIntoCOPY(MachineInstr &I, MachineRegisterInfo &MRI,
+ const unsigned DstReg,
+ const TargetRegisterClass *DstRC,
+ const unsigned SrcReg,
+ const TargetRegisterClass *SrcRC) const;
+ bool materializeFP(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectImplicitDefOrPHI(MachineInstr &I, MachineRegisterInfo &MRI) const;
+ bool selectShift(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectDivRem(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+ bool selectIntrinsicWSideEffects(MachineInstr &I, MachineRegisterInfo &MRI,
+ MachineFunction &MF) const;
+
+ // emit insert subreg instruction and insert it before MachineInstr &I
+ bool emitInsertSubreg(unsigned DstReg, unsigned SrcReg, MachineInstr &I,
+ MachineRegisterInfo &MRI, MachineFunction &MF) const;
+ // emit extract subreg instruction and insert it before MachineInstr &I
+ bool emitExtractSubreg(unsigned DstReg, unsigned SrcReg, MachineInstr &I,
+ MachineRegisterInfo &MRI, MachineFunction &MF) const;
+
+ const TargetRegisterClass *getRegClass(LLT Ty, const RegisterBank &RB) const;
+ const TargetRegisterClass *getRegClass(LLT Ty, unsigned Reg,
+ MachineRegisterInfo &MRI) const;
+
+ const X86TargetMachine &TM;
+ const X86Subtarget &STI;
+ const X86InstrInfo &TII;
+ const X86RegisterInfo &TRI;
+ const X86RegisterBankInfo &RBI;
+
+#define GET_GLOBALISEL_PREDICATES_DECL
+#include "X86GenGlobalISel.inc"
+#undef GET_GLOBALISEL_PREDICATES_DECL
+
+#define GET_GLOBALISEL_TEMPORARIES_DECL
+#include "X86GenGlobalISel.inc"
+#undef GET_GLOBALISEL_TEMPORARIES_DECL
+};
+
+} // end anonymous namespace
+
+#define GET_GLOBALISEL_IMPL
+#include "X86GenGlobalISel.inc"
+#undef GET_GLOBALISEL_IMPL
+
+X86InstructionSelector::X86InstructionSelector(const X86TargetMachine &TM,
+ const X86Subtarget &STI,
+ const X86RegisterBankInfo &RBI)
+ : InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
+ TRI(*STI.getRegisterInfo()), RBI(RBI),
+#define GET_GLOBALISEL_PREDICATES_INIT
+#include "X86GenGlobalISel.inc"
+#undef GET_GLOBALISEL_PREDICATES_INIT
+#define GET_GLOBALISEL_TEMPORARIES_INIT
+#include "X86GenGlobalISel.inc"
+#undef GET_GLOBALISEL_TEMPORARIES_INIT
+{
+}
+
+// FIXME: This should be target-independent, inferred from the types declared
+// for each class in the bank.
+const TargetRegisterClass *
+X86InstructionSelector::getRegClass(LLT Ty, const RegisterBank &RB) const {
+ if (RB.getID() == X86::GPRRegBankID) {
+ if (Ty.getSizeInBits() <= 8)
+ return &X86::GR8RegClass;
+ if (Ty.getSizeInBits() == 16)
+ return &X86::GR16RegClass;
+ if (Ty.getSizeInBits() == 32)
+ return &X86::GR32RegClass;
+ if (Ty.getSizeInBits() == 64)
+ return &X86::GR64RegClass;
+ }
+ if (RB.getID() == X86::VECRRegBankID) {
+ if (Ty.getSizeInBits() == 32)
+ return STI.hasAVX512() ? &X86::FR32XRegClass : &X86::FR32RegClass;
+ if (Ty.getSizeInBits() == 64)
+ return STI.hasAVX512() ? &X86::FR64XRegClass : &X86::FR64RegClass;
+ if (Ty.getSizeInBits() == 128)
+ return STI.hasAVX512() ? &X86::VR128XRegClass : &X86::VR128RegClass;
+ if (Ty.getSizeInBits() == 256)
+ return STI.hasAVX512() ? &X86::VR256XRegClass : &X86::VR256RegClass;
+ if (Ty.getSizeInBits() == 512)
+ return &X86::VR512RegClass;
+ }
+
+ llvm_unreachable("Unknown RegBank!");
+}
+
+const TargetRegisterClass *
+X86InstructionSelector::getRegClass(LLT Ty, unsigned Reg,
+ MachineRegisterInfo &MRI) const {
+ const RegisterBank &RegBank = *RBI.getRegBank(Reg, MRI, TRI);
+ return getRegClass(Ty, RegBank);
+}
+
+static unsigned getSubRegIndex(const TargetRegisterClass *RC) {
+ unsigned SubIdx = X86::NoSubRegister;
+ if (RC == &X86::GR32RegClass) {
+ SubIdx = X86::sub_32bit;
+ } else if (RC == &X86::GR16RegClass) {
+ SubIdx = X86::sub_16bit;
+ } else if (RC == &X86::GR8RegClass) {
+ SubIdx = X86::sub_8bit;
+ }
+
+ return SubIdx;
+}
+
+static const TargetRegisterClass *getRegClassFromGRPhysReg(unsigned Reg) {
+ assert(TargetRegisterInfo::isPhysicalRegister(Reg));
+ if (X86::GR64RegClass.contains(Reg))
+ return &X86::GR64RegClass;
+ if (X86::GR32RegClass.contains(Reg))
+ return &X86::GR32RegClass;
+ if (X86::GR16RegClass.contains(Reg))
+ return &X86::GR16RegClass;
+ if (X86::GR8RegClass.contains(Reg))
+ return &X86::GR8RegClass;
+
+ llvm_unreachable("Unknown RegClass for PhysReg!");
+}
+
+// Set X86 Opcode and constrain DestReg.
+bool X86InstructionSelector::selectCopy(MachineInstr &I,
+ MachineRegisterInfo &MRI) const {
+ unsigned DstReg = I.getOperand(0).getReg();
+ const unsigned DstSize = RBI.getSizeInBits(DstReg, MRI, TRI);
+ const RegisterBank &DstRegBank = *RBI.getRegBank(DstReg, MRI, TRI);
+
+ unsigned SrcReg = I.getOperand(1).getReg();
+ const unsigned SrcSize = RBI.getSizeInBits(SrcReg, MRI, TRI);
+ const RegisterBank &SrcRegBank = *RBI.getRegBank(SrcReg, MRI, TRI);
+
+ if (TargetRegisterInfo::isPhysicalRegister(DstReg)) {
+ assert(I.isCopy() && "Generic operators do not allow physical registers");
+
+ if (DstSize > SrcSize && SrcRegBank.getID() == X86::GPRRegBankID &&
+ DstRegBank.getID() == X86::GPRRegBankID) {
+
+ const TargetRegisterClass *SrcRC =
+ getRegClass(MRI.getType(SrcReg), SrcRegBank);
+ const TargetRegisterClass *DstRC = getRegClassFromGRPhysReg(DstReg);
+
+ if (SrcRC != DstRC) {
+ // This case can be generated by ABI lowering, performe anyext
+ unsigned ExtSrc = MRI.createVirtualRegister(DstRC);
+ BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(TargetOpcode::SUBREG_TO_REG))
+ .addDef(ExtSrc)
+ .addImm(0)
+ .addReg(SrcReg)
+ .addImm(getSubRegIndex(SrcRC));
+
+ I.getOperand(1).setReg(ExtSrc);
+ }
+ }
+
+ return true;
+ }
+
+ assert((!TargetRegisterInfo::isPhysicalRegister(SrcReg) || I.isCopy()) &&
+ "No phys reg on generic operators");
+ assert((DstSize == SrcSize ||
+ // Copies are a mean to setup initial types, the number of
+ // bits may not exactly match.
+ (TargetRegisterInfo::isPhysicalRegister(SrcReg) &&
+ DstSize <= RBI.getSizeInBits(SrcReg, MRI, TRI))) &&
+ "Copy with different width?!");
+
+ const TargetRegisterClass *DstRC =
+ getRegClass(MRI.getType(DstReg), DstRegBank);
+
+ if (SrcRegBank.getID() == X86::GPRRegBankID &&
+ DstRegBank.getID() == X86::GPRRegBankID && SrcSize > DstSize &&
+ TargetRegisterInfo::isPhysicalRegister(SrcReg)) {
+ // Change the physical register to performe truncate.
+
+ const TargetRegisterClass *SrcRC = getRegClassFromGRPhysReg(SrcReg);
+
+ if (DstRC != SrcRC) {
+ I.getOperand(1).setSubReg(getSubRegIndex(DstRC));
+ I.getOperand(1).substPhysReg(SrcReg, TRI);
+ }
+ }
+
+ // No need to constrain SrcReg. It will get constrained when
+ // we hit another of its use or its defs.
+ // Copies do not have constraints.
+ const TargetRegisterClass *OldRC = MRI.getRegClassOrNull(DstReg);
+ if (!OldRC || !DstRC->hasSubClassEq(OldRC)) {
+ if (!RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
+ LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
+ << " operand\n");
+ return false;
+ }
+ }
+ I.setDesc(TII.get(X86::COPY));
+ return true;
+}
+
+bool X86InstructionSelector::select(MachineInstr &I,
+ CodeGenCoverage &CoverageInfo) const {
+ assert(I.getParent() && "Instruction should be in a basic block!");
+ assert(I.getParent()->getParent() && "Instruction should be in a function!");
+
+ MachineBasicBlock &MBB = *I.getParent();
+ MachineFunction &MF = *MBB.getParent();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ unsigned Opcode = I.getOpcode();
+ if (!isPreISelGenericOpcode(Opcode)) {
+ // Certain non-generic instructions also need some special handling.
+
+ if (Opcode == TargetOpcode::LOAD_STACK_GUARD)
+ return false;
+
+ if (I.isCopy())
+ return selectCopy(I, MRI);
+
+ return true;
+ }
+
+ assert(I.getNumOperands() == I.getNumExplicitOperands() &&
+ "Generic instruction has unexpected implicit operands\n");
+
+ if (selectImpl(I, CoverageInfo))
+ return true;
+
+ LLVM_DEBUG(dbgs() << " C++ instruction selection: "; I.print(dbgs()));
+
+ // TODO: This should be implemented by tblgen.
+ switch (I.getOpcode()) {
+ default:
+ return false;
+ case TargetOpcode::G_STORE:
+ case TargetOpcode::G_LOAD:
+ return selectLoadStoreOp(I, MRI, MF);
+ case TargetOpcode::G_GEP:
+ case TargetOpcode::G_FRAME_INDEX:
+ return selectFrameIndexOrGep(I, MRI, MF);
+ case TargetOpcode::G_GLOBAL_VALUE:
+ return selectGlobalValue(I, MRI, MF);
+ case TargetOpcode::G_CONSTANT:
+ return selectConstant(I, MRI, MF);
+ case TargetOpcode::G_FCONSTANT:
+ return materializeFP(I, MRI, MF);
+ case TargetOpcode::G_PTRTOINT:
+ case TargetOpcode::G_TRUNC:
+ return selectTruncOrPtrToInt(I, MRI, MF);
+ case TargetOpcode::G_INTTOPTR:
+ return selectCopy(I, MRI);
+ case TargetOpcode::G_ZEXT:
+ return selectZext(I, MRI, MF);
+ case TargetOpcode::G_ANYEXT:
+ return selectAnyext(I, MRI, MF);
+ case TargetOpcode::G_ICMP:
+ return selectCmp(I, MRI, MF);
+ case TargetOpcode::G_FCMP:
+ return selectFCmp(I, MRI, MF);
+ case TargetOpcode::G_UADDE:
+ return selectUadde(I, MRI, MF);
+ case TargetOpcode::G_UNMERGE_VALUES:
+ return selectUnmergeValues(I, MRI, MF, CoverageInfo);
+ case TargetOpcode::G_MERGE_VALUES:
+ case TargetOpcode::G_CONCAT_VECTORS:
+ return selectMergeValues(I, MRI, MF, CoverageInfo);
+ case TargetOpcode::G_EXTRACT:
+ return selectExtract(I, MRI, MF);
+ case TargetOpcode::G_INSERT:
+ return selectInsert(I, MRI, MF);
+ case TargetOpcode::G_BRCOND:
+ return selectCondBranch(I, MRI, MF);
+ case TargetOpcode::G_IMPLICIT_DEF:
+ case TargetOpcode::G_PHI:
+ return selectImplicitDefOrPHI(I, MRI);
+ case TargetOpcode::G_SHL:
+ case TargetOpcode::G_ASHR:
+ case TargetOpcode::G_LSHR:
+ return selectShift(I, MRI, MF);
+ case TargetOpcode::G_SDIV:
+ case TargetOpcode::G_UDIV:
+ case TargetOpcode::G_SREM:
+ case TargetOpcode::G_UREM:
+ return selectDivRem(I, MRI, MF);
+ case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
+ return selectIntrinsicWSideEffects(I, MRI, MF);
+ }
+
+ return false;
+}
+
+unsigned X86InstructionSelector::getLoadStoreOp(const LLT &Ty,
+ const RegisterBank &RB,
+ unsigned Opc,
+ uint64_t Alignment) const {
+ bool Isload = (Opc == TargetOpcode::G_LOAD);
+ bool HasAVX = STI.hasAVX();
+ bool HasAVX512 = STI.hasAVX512();
+ bool HasVLX = STI.hasVLX();
+
+ if (Ty == LLT::scalar(8)) {
+ if (X86::GPRRegBankID == RB.getID())
+ return Isload ? X86::MOV8rm : X86::MOV8mr;
+ } else if (Ty == LLT::scalar(16)) {
+ if (X86::GPRRegBankID == RB.getID())
+ return Isload ? X86::MOV16rm : X86::MOV16mr;
+ } else if (Ty == LLT::scalar(32) || Ty == LLT::pointer(0, 32)) {
+ if (X86::GPRRegBankID == RB.getID())
+ return Isload ? X86::MOV32rm : X86::MOV32mr;
+ if (X86::VECRRegBankID == RB.getID())
+ return Isload ? (HasAVX512 ? X86::VMOVSSZrm_alt :
+ HasAVX ? X86::VMOVSSrm_alt :
+ X86::MOVSSrm_alt)
+ : (HasAVX512 ? X86::VMOVSSZmr :
+ HasAVX ? X86::VMOVSSmr :
+ X86::MOVSSmr);
+ } else if (Ty == LLT::scalar(64) || Ty == LLT::pointer(0, 64)) {
+ if (X86::GPRRegBankID == RB.getID())
+ return Isload ? X86::MOV64rm : X86::MOV64mr;
+ if (X86::VECRRegBankID == RB.getID())
+ return Isload ? (HasAVX512 ? X86::VMOVSDZrm_alt :
+ HasAVX ? X86::VMOVSDrm_alt :
+ X86::MOVSDrm_alt)
+ : (HasAVX512 ? X86::VMOVSDZmr :
+ HasAVX ? X86::VMOVSDmr :
+ X86::MOVSDmr);
+ } else if (Ty.isVector() && Ty.getSizeInBits() == 128) {
+ if (Alignment >= 16)
+ return Isload ? (HasVLX ? X86::VMOVAPSZ128rm
+ : HasAVX512
+ ? X86::VMOVAPSZ128rm_NOVLX
+ : HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm)
+ : (HasVLX ? X86::VMOVAPSZ128mr
+ : HasAVX512
+ ? X86::VMOVAPSZ128mr_NOVLX
+ : HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
+ else
+ return Isload ? (HasVLX ? X86::VMOVUPSZ128rm
+ : HasAVX512
+ ? X86::VMOVUPSZ128rm_NOVLX
+ : HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm)
+ : (HasVLX ? X86::VMOVUPSZ128mr
+ : HasAVX512
+ ? X86::VMOVUPSZ128mr_NOVLX
+ : HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
+ } else if (Ty.isVector() && Ty.getSizeInBits() == 256) {
+ if (Alignment >= 32)
+ return Isload ? (HasVLX ? X86::VMOVAPSZ256rm
+ : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX
+ : X86::VMOVAPSYrm)
+ : (HasVLX ? X86::VMOVAPSZ256mr
+ : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX
+ : X86::VMOVAPSYmr);
+ else
+ return Isload ? (HasVLX ? X86::VMOVUPSZ256rm
+ : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX
+ : X86::VMOVUPSYrm)
+ : (HasVLX ? X86::VMOVUPSZ256mr
+ : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX
+ : X86::VMOVUPSYmr);
+ } else if (Ty.isVector() && Ty.getSizeInBits() == 512) {
+ if (Alignment >= 64)
+ return Isload ? X86::VMOVAPSZrm : X86::VMOVAPSZmr;
+ else
+ return Isload ? X86::VMOVUPSZrm : X86::VMOVUPSZmr;
+ }
+ return Opc;
+}
+
+// Fill in an address from the given instruction.
+static void X86SelectAddress(const MachineInstr &I,
+ const MachineRegisterInfo &MRI,
+ X86AddressMode &AM) {
+ assert(I.getOperand(0).isReg() && "unsupported opperand.");
+ assert(MRI.getType(I.getOperand(0).getReg()).isPointer() &&
+ "unsupported type.");
+
+ if (I.getOpcode() == TargetOpcode::G_GEP) {
+ if (auto COff = getConstantVRegVal(I.getOperand(2).getReg(), MRI)) {
+ int64_t Imm = *COff;
+ if (isInt<32>(Imm)) { // Check for displacement overflow.
+ AM.Disp = static_cast<int32_t>(Imm);
+ AM.Base.Reg = I.getOperand(1).getReg();
+ return;
+ }
+ }
+ } else if (I.getOpcode() == TargetOpcode::G_FRAME_INDEX) {
+ AM.Base.FrameIndex = I.getOperand(1).getIndex();
+ AM.BaseType = X86AddressMode::FrameIndexBase;
+ return;
+ }
+
+ // Default behavior.
+ AM.Base.Reg = I.getOperand(0).getReg();
+}
+
+bool X86InstructionSelector::selectLoadStoreOp(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ unsigned Opc = I.getOpcode();
+
+ assert((Opc == TargetOpcode::G_STORE || Opc == TargetOpcode::G_LOAD) &&
+ "unexpected instruction");
+
+ const unsigned DefReg = I.getOperand(0).getReg();
+ LLT Ty = MRI.getType(DefReg);
+ const RegisterBank &RB = *RBI.getRegBank(DefReg, MRI, TRI);
+
+ assert(I.hasOneMemOperand());
+ auto &MemOp = **I.memoperands_begin();
+ if (MemOp.isAtomic()) {
+ // Note: for unordered operations, we rely on the fact the appropriate MMO
+ // is already on the instruction we're mutating, and thus we don't need to
+ // make any changes. So long as we select an opcode which is capable of
+ // loading or storing the appropriate size atomically, the rest of the
+ // backend is required to respect the MMO state.
+ if (!MemOp.isUnordered()) {
+ LLVM_DEBUG(dbgs() << "Atomic ordering not supported yet\n");
+ return false;
+ }
+ if (MemOp.getAlignment() < Ty.getSizeInBits()/8) {
+ LLVM_DEBUG(dbgs() << "Unaligned atomics not supported yet\n");
+ return false;
+ }
+ }
+
+ unsigned NewOpc = getLoadStoreOp(Ty, RB, Opc, MemOp.getAlignment());
+ if (NewOpc == Opc)
+ return false;
+
+ X86AddressMode AM;
+ X86SelectAddress(*MRI.getVRegDef(I.getOperand(1).getReg()), MRI, AM);
+
+ I.setDesc(TII.get(NewOpc));
+ MachineInstrBuilder MIB(MF, I);
+ if (Opc == TargetOpcode::G_LOAD) {
+ I.RemoveOperand(1);
+ addFullAddress(MIB, AM);
+ } else {
+ // G_STORE (VAL, Addr), X86Store instruction (Addr, VAL)
+ I.RemoveOperand(1);
+ I.RemoveOperand(0);
+ addFullAddress(MIB, AM).addUse(DefReg);
+ }
+ return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
+}
+
+static unsigned getLeaOP(LLT Ty, const X86Subtarget &STI) {
+ if (Ty == LLT::pointer(0, 64))
+ return X86::LEA64r;
+ else if (Ty == LLT::pointer(0, 32))
+ return STI.isTarget64BitILP32() ? X86::LEA64_32r : X86::LEA32r;
+ else
+ llvm_unreachable("Can't get LEA opcode. Unsupported type.");
+}
+
+bool X86InstructionSelector::selectFrameIndexOrGep(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ unsigned Opc = I.getOpcode();
+
+ assert((Opc == TargetOpcode::G_FRAME_INDEX || Opc == TargetOpcode::G_GEP) &&
+ "unexpected instruction");
+
+ const unsigned DefReg = I.getOperand(0).getReg();
+ LLT Ty = MRI.getType(DefReg);
+
+ // Use LEA to calculate frame index and GEP
+ unsigned NewOpc = getLeaOP(Ty, STI);
+ I.setDesc(TII.get(NewOpc));
+ MachineInstrBuilder MIB(MF, I);
+
+ if (Opc == TargetOpcode::G_FRAME_INDEX) {
+ addOffset(MIB, 0);
+ } else {
+ MachineOperand &InxOp = I.getOperand(2);
+ I.addOperand(InxOp); // set IndexReg
+ InxOp.ChangeToImmediate(1); // set Scale
+ MIB.addImm(0).addReg(0);
+ }
+
+ return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
+}
+
+bool X86InstructionSelector::selectGlobalValue(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE) &&
+ "unexpected instruction");
+
+ auto GV = I.getOperand(1).getGlobal();
+ if (GV->isThreadLocal()) {
+ return false; // TODO: we don't support TLS yet.
+ }
+
+ // Can't handle alternate code models yet.
+ if (TM.getCodeModel() != CodeModel::Small)
+ return false;
+
+ X86AddressMode AM;
+ AM.GV = GV;
+ AM.GVOpFlags = STI.classifyGlobalReference(GV);
+
+ // TODO: The ABI requires an extra load. not supported yet.
+ if (isGlobalStubReference(AM.GVOpFlags))
+ return false;
+
+ // TODO: This reference is relative to the pic base. not supported yet.
+ if (isGlobalRelativeToPICBase(AM.GVOpFlags))
+ return false;
+
+ if (STI.isPICStyleRIPRel()) {
+ // Use rip-relative addressing.
+ assert(AM.Base.Reg == 0 && AM.IndexReg == 0);
+ AM.Base.Reg = X86::RIP;
+ }
+
+ const unsigned DefReg = I.getOperand(0).getReg();
+ LLT Ty = MRI.getType(DefReg);
+ unsigned NewOpc = getLeaOP(Ty, STI);
+
+ I.setDesc(TII.get(NewOpc));
+ MachineInstrBuilder MIB(MF, I);
+
+ I.RemoveOperand(1);
+ addFullAddress(MIB, AM);
+
+ return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
+}
+
+bool X86InstructionSelector::selectConstant(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_CONSTANT) &&
+ "unexpected instruction");
+
+ const unsigned DefReg = I.getOperand(0).getReg();
+ LLT Ty = MRI.getType(DefReg);
+
+ if (RBI.getRegBank(DefReg, MRI, TRI)->getID() != X86::GPRRegBankID)
+ return false;
+
+ uint64_t Val = 0;
+ if (I.getOperand(1).isCImm()) {
+ Val = I.getOperand(1).getCImm()->getZExtValue();
+ I.getOperand(1).ChangeToImmediate(Val);
+ } else if (I.getOperand(1).isImm()) {
+ Val = I.getOperand(1).getImm();
+ } else
+ llvm_unreachable("Unsupported operand type.");
+
+ unsigned NewOpc;
+ switch (Ty.getSizeInBits()) {
+ case 8:
+ NewOpc = X86::MOV8ri;
+ break;
+ case 16:
+ NewOpc = X86::MOV16ri;
+ break;
+ case 32:
+ NewOpc = X86::MOV32ri;
+ break;
+ case 64:
+ // TODO: in case isUInt<32>(Val), X86::MOV32ri can be used
+ if (isInt<32>(Val))
+ NewOpc = X86::MOV64ri32;
+ else
+ NewOpc = X86::MOV64ri;
+ break;
+ default:
+ llvm_unreachable("Can't select G_CONSTANT, unsupported type.");
+ }
+
+ I.setDesc(TII.get(NewOpc));
+ return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
+}
+
+// Helper function for selectTruncOrPtrToInt and selectAnyext.
+// Returns true if DstRC lives on a floating register class and
+// SrcRC lives on a 128-bit vector class.
+static bool canTurnIntoCOPY(const TargetRegisterClass *DstRC,
+ const TargetRegisterClass *SrcRC) {
+ return (DstRC == &X86::FR32RegClass || DstRC == &X86::FR32XRegClass ||
+ DstRC == &X86::FR64RegClass || DstRC == &X86::FR64XRegClass) &&
+ (SrcRC == &X86::VR128RegClass || SrcRC == &X86::VR128XRegClass);
+}
+
+bool X86InstructionSelector::selectTurnIntoCOPY(
+ MachineInstr &I, MachineRegisterInfo &MRI, const unsigned DstReg,
+ const TargetRegisterClass *DstRC, const unsigned SrcReg,
+ const TargetRegisterClass *SrcRC) const {
+
+ if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
+ !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
+ LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
+ << " operand\n");
+ return false;
+ }
+ I.setDesc(TII.get(X86::COPY));
+ return true;
+}
+
+bool X86InstructionSelector::selectTruncOrPtrToInt(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_TRUNC ||
+ I.getOpcode() == TargetOpcode::G_PTRTOINT) &&
+ "unexpected instruction");
+
+ const unsigned DstReg = I.getOperand(0).getReg();
+ const unsigned SrcReg = I.getOperand(1).getReg();
+
+ const LLT DstTy = MRI.getType(DstReg);
+ const LLT SrcTy = MRI.getType(SrcReg);
+
+ const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
+ const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
+
+ if (DstRB.getID() != SrcRB.getID()) {
+ LLVM_DEBUG(dbgs() << TII.getName(I.getOpcode())
+ << " input/output on different banks\n");
+ return false;
+ }
+
+ const TargetRegisterClass *DstRC = getRegClass(DstTy, DstRB);
+ const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcRB);
+
+ if (!DstRC || !SrcRC)
+ return false;
+
+ // If that's truncation of the value that lives on the vector class and goes
+ // into the floating class, just replace it with copy, as we are able to
+ // select it as a regular move.
+ if (canTurnIntoCOPY(DstRC, SrcRC))
+ return selectTurnIntoCOPY(I, MRI, DstReg, DstRC, SrcReg, SrcRC);
+
+ if (DstRB.getID() != X86::GPRRegBankID)
+ return false;
+
+ unsigned SubIdx;
+ if (DstRC == SrcRC) {
+ // Nothing to be done
+ SubIdx = X86::NoSubRegister;
+ } else if (DstRC == &X86::GR32RegClass) {
+ SubIdx = X86::sub_32bit;
+ } else if (DstRC == &X86::GR16RegClass) {
+ SubIdx = X86::sub_16bit;
+ } else if (DstRC == &X86::GR8RegClass) {
+ SubIdx = X86::sub_8bit;
+ } else {
+ return false;
+ }
+
+ SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubIdx);
+
+ if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
+ !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
+ LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
+ << "\n");
+ return false;
+ }
+
+ I.getOperand(1).setSubReg(SubIdx);
+
+ I.setDesc(TII.get(X86::COPY));
+ return true;
+}
+
+bool X86InstructionSelector::selectZext(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_ZEXT) && "unexpected instruction");
+
+ const unsigned DstReg = I.getOperand(0).getReg();
+ const unsigned SrcReg = I.getOperand(1).getReg();
+
+ const LLT DstTy = MRI.getType(DstReg);
+ const LLT SrcTy = MRI.getType(SrcReg);
+
+ assert(!(SrcTy == LLT::scalar(8) && DstTy == LLT::scalar(32)) &&
+ "8=>32 Zext is handled by tablegen");
+ assert(!(SrcTy == LLT::scalar(16) && DstTy == LLT::scalar(32)) &&
+ "16=>32 Zext is handled by tablegen");
+
+ const static struct ZextEntry {
+ LLT SrcTy;
+ LLT DstTy;
+ unsigned MovOp;
+ bool NeedSubregToReg;
+ } OpTable[] = {
+ {LLT::scalar(8), LLT::scalar(16), X86::MOVZX16rr8, false}, // i8 => i16
+ {LLT::scalar(8), LLT::scalar(64), X86::MOVZX32rr8, true}, // i8 => i64
+ {LLT::scalar(16), LLT::scalar(64), X86::MOVZX32rr16, true}, // i16 => i64
+ {LLT::scalar(32), LLT::scalar(64), 0, true} // i32 => i64
+ };
+
+ auto ZextEntryIt =
+ std::find_if(std::begin(OpTable), std::end(OpTable),
+ [SrcTy, DstTy](const ZextEntry &El) {
+ return El.DstTy == DstTy && El.SrcTy == SrcTy;
+ });
+
+ // Here we try to select Zext into a MOVZ and/or SUBREG_TO_REG instruction.
+ if (ZextEntryIt != std::end(OpTable)) {
+ const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
+ const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
+ const TargetRegisterClass *DstRC = getRegClass(DstTy, DstRB);
+ const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcRB);
+
+ if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
+ !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
+ LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
+ << " operand\n");
+ return false;
+ }
+
+ unsigned TransitRegTo = DstReg;
+ unsigned TransitRegFrom = SrcReg;
+ if (ZextEntryIt->MovOp) {
+ // If we select Zext into MOVZ + SUBREG_TO_REG, we need to have
+ // a transit register in between: create it here.
+ if (ZextEntryIt->NeedSubregToReg) {
+ TransitRegFrom = MRI.createVirtualRegister(
+ getRegClass(LLT::scalar(32), DstReg, MRI));
+ TransitRegTo = TransitRegFrom;
+ }
+
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(ZextEntryIt->MovOp))
+ .addDef(TransitRegTo)
+ .addReg(SrcReg);
+ }
+ if (ZextEntryIt->NeedSubregToReg) {
+ BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(TargetOpcode::SUBREG_TO_REG))
+ .addDef(DstReg)
+ .addImm(0)
+ .addReg(TransitRegFrom)
+ .addImm(X86::sub_32bit);
+ }
+ I.eraseFromParent();
+ return true;
+ }
+
+ if (SrcTy != LLT::scalar(1))
+ return false;
+
+ unsigned AndOpc;
+ if (DstTy == LLT::scalar(8))
+ AndOpc = X86::AND8ri;
+ else if (DstTy == LLT::scalar(16))
+ AndOpc = X86::AND16ri8;
+ else if (DstTy == LLT::scalar(32))
+ AndOpc = X86::AND32ri8;
+ else if (DstTy == LLT::scalar(64))
+ AndOpc = X86::AND64ri8;
+ else
+ return false;
+
+ unsigned DefReg = SrcReg;
+ if (DstTy != LLT::scalar(8)) {
+ DefReg = MRI.createVirtualRegister(getRegClass(DstTy, DstReg, MRI));
+ BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(TargetOpcode::SUBREG_TO_REG), DefReg)
+ .addImm(0)
+ .addReg(SrcReg)
+ .addImm(X86::sub_8bit);
+ }
+
+ MachineInstr &AndInst =
+ *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(AndOpc), DstReg)
+ .addReg(DefReg)
+ .addImm(1);
+
+ constrainSelectedInstRegOperands(AndInst, TII, TRI, RBI);
+
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectAnyext(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_ANYEXT) && "unexpected instruction");
+
+ const unsigned DstReg = I.getOperand(0).getReg();
+ const unsigned SrcReg = I.getOperand(1).getReg();
+
+ const LLT DstTy = MRI.getType(DstReg);
+ const LLT SrcTy = MRI.getType(SrcReg);
+
+ const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
+ const RegisterBank &SrcRB = *RBI.getRegBank(SrcReg, MRI, TRI);
+
+ assert(DstRB.getID() == SrcRB.getID() &&
+ "G_ANYEXT input/output on different banks\n");
+
+ assert(DstTy.getSizeInBits() > SrcTy.getSizeInBits() &&
+ "G_ANYEXT incorrect operand size");
+
+ const TargetRegisterClass *DstRC = getRegClass(DstTy, DstRB);
+ const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcRB);
+
+ // If that's ANY_EXT of the value that lives on the floating class and goes
+ // into the vector class, just replace it with copy, as we are able to select
+ // it as a regular move.
+ if (canTurnIntoCOPY(SrcRC, DstRC))
+ return selectTurnIntoCOPY(I, MRI, SrcReg, SrcRC, DstReg, DstRC);
+
+ if (DstRB.getID() != X86::GPRRegBankID)
+ return false;
+
+ if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
+ !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
+ LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
+ << " operand\n");
+ return false;
+ }
+
+ if (SrcRC == DstRC) {
+ I.setDesc(TII.get(X86::COPY));
+ return true;
+ }
+
+ BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(TargetOpcode::SUBREG_TO_REG))
+ .addDef(DstReg)
+ .addImm(0)
+ .addReg(SrcReg)
+ .addImm(getSubRegIndex(SrcRC));
+
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectCmp(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_ICMP) && "unexpected instruction");
+
+ X86::CondCode CC;
+ bool SwapArgs;
+ std::tie(CC, SwapArgs) = X86::getX86ConditionCode(
+ (CmpInst::Predicate)I.getOperand(1).getPredicate());
+
+ unsigned LHS = I.getOperand(2).getReg();
+ unsigned RHS = I.getOperand(3).getReg();
+
+ if (SwapArgs)
+ std::swap(LHS, RHS);
+
+ unsigned OpCmp;
+ LLT Ty = MRI.getType(LHS);
+
+ switch (Ty.getSizeInBits()) {
+ default:
+ return false;
+ case 8:
+ OpCmp = X86::CMP8rr;
+ break;
+ case 16:
+ OpCmp = X86::CMP16rr;
+ break;
+ case 32:
+ OpCmp = X86::CMP32rr;
+ break;
+ case 64:
+ OpCmp = X86::CMP64rr;
+ break;
+ }
+
+ MachineInstr &CmpInst =
+ *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpCmp))
+ .addReg(LHS)
+ .addReg(RHS);
+
+ MachineInstr &SetInst = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(X86::SETCCr), I.getOperand(0).getReg()).addImm(CC);
+
+ constrainSelectedInstRegOperands(CmpInst, TII, TRI, RBI);
+ constrainSelectedInstRegOperands(SetInst, TII, TRI, RBI);
+
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectFCmp(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_FCMP) && "unexpected instruction");
+
+ unsigned LhsReg = I.getOperand(2).getReg();
+ unsigned RhsReg = I.getOperand(3).getReg();
+ CmpInst::Predicate Predicate =
+ (CmpInst::Predicate)I.getOperand(1).getPredicate();
+
+ // FCMP_OEQ and FCMP_UNE cannot be checked with a single instruction.
+ static const uint16_t SETFOpcTable[2][3] = {
+ {X86::COND_E, X86::COND_NP, X86::AND8rr},
+ {X86::COND_NE, X86::COND_P, X86::OR8rr}};
+ const uint16_t *SETFOpc = nullptr;
+ switch (Predicate) {
+ default:
+ break;
+ case CmpInst::FCMP_OEQ:
+ SETFOpc = &SETFOpcTable[0][0];
+ break;
+ case CmpInst::FCMP_UNE:
+ SETFOpc = &SETFOpcTable[1][0];
+ break;
+ }
+
+ // Compute the opcode for the CMP instruction.
+ unsigned OpCmp;
+ LLT Ty = MRI.getType(LhsReg);
+ switch (Ty.getSizeInBits()) {
+ default:
+ return false;
+ case 32:
+ OpCmp = X86::UCOMISSrr;
+ break;
+ case 64:
+ OpCmp = X86::UCOMISDrr;
+ break;
+ }
+
+ unsigned ResultReg = I.getOperand(0).getReg();
+ RBI.constrainGenericRegister(
+ ResultReg,
+ *getRegClass(LLT::scalar(8), *RBI.getRegBank(ResultReg, MRI, TRI)), MRI);
+ if (SETFOpc) {
+ MachineInstr &CmpInst =
+ *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpCmp))
+ .addReg(LhsReg)
+ .addReg(RhsReg);
+
+ unsigned FlagReg1 = MRI.createVirtualRegister(&X86::GR8RegClass);
+ unsigned FlagReg2 = MRI.createVirtualRegister(&X86::GR8RegClass);
+ MachineInstr &Set1 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(X86::SETCCr), FlagReg1).addImm(SETFOpc[0]);
+ MachineInstr &Set2 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(X86::SETCCr), FlagReg2).addImm(SETFOpc[1]);
+ MachineInstr &Set3 = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(SETFOpc[2]), ResultReg)
+ .addReg(FlagReg1)
+ .addReg(FlagReg2);
+ constrainSelectedInstRegOperands(CmpInst, TII, TRI, RBI);
+ constrainSelectedInstRegOperands(Set1, TII, TRI, RBI);
+ constrainSelectedInstRegOperands(Set2, TII, TRI, RBI);
+ constrainSelectedInstRegOperands(Set3, TII, TRI, RBI);
+
+ I.eraseFromParent();
+ return true;
+ }
+
+ X86::CondCode CC;
+ bool SwapArgs;
+ std::tie(CC, SwapArgs) = X86::getX86ConditionCode(Predicate);
+ assert(CC <= X86::LAST_VALID_COND && "Unexpected condition code.");
+
+ if (SwapArgs)
+ std::swap(LhsReg, RhsReg);
+
+ // Emit a compare of LHS/RHS.
+ MachineInstr &CmpInst =
+ *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpCmp))
+ .addReg(LhsReg)
+ .addReg(RhsReg);
+
+ MachineInstr &Set =
+ *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::SETCCr), ResultReg).addImm(CC);
+ constrainSelectedInstRegOperands(CmpInst, TII, TRI, RBI);
+ constrainSelectedInstRegOperands(Set, TII, TRI, RBI);
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectUadde(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_UADDE) && "unexpected instruction");
+
+ const unsigned DstReg = I.getOperand(0).getReg();
+ const unsigned CarryOutReg = I.getOperand(1).getReg();
+ const unsigned Op0Reg = I.getOperand(2).getReg();
+ const unsigned Op1Reg = I.getOperand(3).getReg();
+ unsigned CarryInReg = I.getOperand(4).getReg();
+
+ const LLT DstTy = MRI.getType(DstReg);
+
+ if (DstTy != LLT::scalar(32))
+ return false;
+
+ // find CarryIn def instruction.
+ MachineInstr *Def = MRI.getVRegDef(CarryInReg);
+ while (Def->getOpcode() == TargetOpcode::G_TRUNC) {
+ CarryInReg = Def->getOperand(1).getReg();
+ Def = MRI.getVRegDef(CarryInReg);
+ }
+
+ unsigned Opcode;
+ if (Def->getOpcode() == TargetOpcode::G_UADDE) {
+ // carry set by prev ADD.
+
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY), X86::EFLAGS)
+ .addReg(CarryInReg);
+
+ if (!RBI.constrainGenericRegister(CarryInReg, X86::GR32RegClass, MRI))
+ return false;
+
+ Opcode = X86::ADC32rr;
+ } else if (auto val = getConstantVRegVal(CarryInReg, MRI)) {
+ // carry is constant, support only 0.
+ if (*val != 0)
+ return false;
+
+ Opcode = X86::ADD32rr;
+ } else
+ return false;
+
+ MachineInstr &AddInst =
+ *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode), DstReg)
+ .addReg(Op0Reg)
+ .addReg(Op1Reg);
+
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY), CarryOutReg)
+ .addReg(X86::EFLAGS);
+
+ if (!constrainSelectedInstRegOperands(AddInst, TII, TRI, RBI) ||
+ !RBI.constrainGenericRegister(CarryOutReg, X86::GR32RegClass, MRI))
+ return false;
+
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectExtract(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_EXTRACT) &&
+ "unexpected instruction");
+
+ const unsigned DstReg = I.getOperand(0).getReg();
+ const unsigned SrcReg = I.getOperand(1).getReg();
+ int64_t Index = I.getOperand(2).getImm();
+
+ const LLT DstTy = MRI.getType(DstReg);
+ const LLT SrcTy = MRI.getType(SrcReg);
+
+ // Meanwile handle vector type only.
+ if (!DstTy.isVector())
+ return false;
+
+ if (Index % DstTy.getSizeInBits() != 0)
+ return false; // Not extract subvector.
+
+ if (Index == 0) {
+ // Replace by extract subreg copy.
+ if (!emitExtractSubreg(DstReg, SrcReg, I, MRI, MF))
+ return false;
+
+ I.eraseFromParent();
+ return true;
+ }
+
+ bool HasAVX = STI.hasAVX();
+ bool HasAVX512 = STI.hasAVX512();
+ bool HasVLX = STI.hasVLX();
+
+ if (SrcTy.getSizeInBits() == 256 && DstTy.getSizeInBits() == 128) {
+ if (HasVLX)
+ I.setDesc(TII.get(X86::VEXTRACTF32x4Z256rr));
+ else if (HasAVX)
+ I.setDesc(TII.get(X86::VEXTRACTF128rr));
+ else
+ return false;
+ } else if (SrcTy.getSizeInBits() == 512 && HasAVX512) {
+ if (DstTy.getSizeInBits() == 128)
+ I.setDesc(TII.get(X86::VEXTRACTF32x4Zrr));
+ else if (DstTy.getSizeInBits() == 256)
+ I.setDesc(TII.get(X86::VEXTRACTF64x4Zrr));
+ else
+ return false;
+ } else
+ return false;
+
+ // Convert to X86 VEXTRACT immediate.
+ Index = Index / DstTy.getSizeInBits();
+ I.getOperand(2).setImm(Index);
+
+ return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
+}
+
+bool X86InstructionSelector::emitExtractSubreg(unsigned DstReg, unsigned SrcReg,
+ MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ const LLT DstTy = MRI.getType(DstReg);
+ const LLT SrcTy = MRI.getType(SrcReg);
+ unsigned SubIdx = X86::NoSubRegister;
+
+ if (!DstTy.isVector() || !SrcTy.isVector())
+ return false;
+
+ assert(SrcTy.getSizeInBits() > DstTy.getSizeInBits() &&
+ "Incorrect Src/Dst register size");
+
+ if (DstTy.getSizeInBits() == 128)
+ SubIdx = X86::sub_xmm;
+ else if (DstTy.getSizeInBits() == 256)
+ SubIdx = X86::sub_ymm;
+ else
+ return false;
+
+ const TargetRegisterClass *DstRC = getRegClass(DstTy, DstReg, MRI);
+ const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcReg, MRI);
+
+ SrcRC = TRI.getSubClassWithSubReg(SrcRC, SubIdx);
+
+ if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
+ !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
+ LLVM_DEBUG(dbgs() << "Failed to constrain G_TRUNC\n");
+ return false;
+ }
+
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY), DstReg)
+ .addReg(SrcReg, 0, SubIdx);
+
+ return true;
+}
+
+bool X86InstructionSelector::emitInsertSubreg(unsigned DstReg, unsigned SrcReg,
+ MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ const LLT DstTy = MRI.getType(DstReg);
+ const LLT SrcTy = MRI.getType(SrcReg);
+ unsigned SubIdx = X86::NoSubRegister;
+
+ // TODO: support scalar types
+ if (!DstTy.isVector() || !SrcTy.isVector())
+ return false;
+
+ assert(SrcTy.getSizeInBits() < DstTy.getSizeInBits() &&
+ "Incorrect Src/Dst register size");
+
+ if (SrcTy.getSizeInBits() == 128)
+ SubIdx = X86::sub_xmm;
+ else if (SrcTy.getSizeInBits() == 256)
+ SubIdx = X86::sub_ymm;
+ else
+ return false;
+
+ const TargetRegisterClass *SrcRC = getRegClass(SrcTy, SrcReg, MRI);
+ const TargetRegisterClass *DstRC = getRegClass(DstTy, DstReg, MRI);
+
+ if (!RBI.constrainGenericRegister(SrcReg, *SrcRC, MRI) ||
+ !RBI.constrainGenericRegister(DstReg, *DstRC, MRI)) {
+ LLVM_DEBUG(dbgs() << "Failed to constrain INSERT_SUBREG\n");
+ return false;
+ }
+
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::COPY))
+ .addReg(DstReg, RegState::DefineNoRead, SubIdx)
+ .addReg(SrcReg);
+
+ return true;
+}
+
+bool X86InstructionSelector::selectInsert(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_INSERT) && "unexpected instruction");
+
+ const unsigned DstReg = I.getOperand(0).getReg();
+ const unsigned SrcReg = I.getOperand(1).getReg();
+ const unsigned InsertReg = I.getOperand(2).getReg();
+ int64_t Index = I.getOperand(3).getImm();
+
+ const LLT DstTy = MRI.getType(DstReg);
+ const LLT InsertRegTy = MRI.getType(InsertReg);
+
+ // Meanwile handle vector type only.
+ if (!DstTy.isVector())
+ return false;
+
+ if (Index % InsertRegTy.getSizeInBits() != 0)
+ return false; // Not insert subvector.
+
+ if (Index == 0 && MRI.getVRegDef(SrcReg)->isImplicitDef()) {
+ // Replace by subreg copy.
+ if (!emitInsertSubreg(DstReg, InsertReg, I, MRI, MF))
+ return false;
+
+ I.eraseFromParent();
+ return true;
+ }
+
+ bool HasAVX = STI.hasAVX();
+ bool HasAVX512 = STI.hasAVX512();
+ bool HasVLX = STI.hasVLX();
+
+ if (DstTy.getSizeInBits() == 256 && InsertRegTy.getSizeInBits() == 128) {
+ if (HasVLX)
+ I.setDesc(TII.get(X86::VINSERTF32x4Z256rr));
+ else if (HasAVX)
+ I.setDesc(TII.get(X86::VINSERTF128rr));
+ else
+ return false;
+ } else if (DstTy.getSizeInBits() == 512 && HasAVX512) {
+ if (InsertRegTy.getSizeInBits() == 128)
+ I.setDesc(TII.get(X86::VINSERTF32x4Zrr));
+ else if (InsertRegTy.getSizeInBits() == 256)
+ I.setDesc(TII.get(X86::VINSERTF64x4Zrr));
+ else
+ return false;
+ } else
+ return false;
+
+ // Convert to X86 VINSERT immediate.
+ Index = Index / InsertRegTy.getSizeInBits();
+
+ I.getOperand(3).setImm(Index);
+
+ return constrainSelectedInstRegOperands(I, TII, TRI, RBI);
+}
+
+bool X86InstructionSelector::selectUnmergeValues(
+ MachineInstr &I, MachineRegisterInfo &MRI, MachineFunction &MF,
+ CodeGenCoverage &CoverageInfo) const {
+ assert((I.getOpcode() == TargetOpcode::G_UNMERGE_VALUES) &&
+ "unexpected instruction");
+
+ // Split to extracts.
+ unsigned NumDefs = I.getNumOperands() - 1;
+ unsigned SrcReg = I.getOperand(NumDefs).getReg();
+ unsigned DefSize = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
+
+ for (unsigned Idx = 0; Idx < NumDefs; ++Idx) {
+ MachineInstr &ExtrInst =
+ *BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(TargetOpcode::G_EXTRACT), I.getOperand(Idx).getReg())
+ .addReg(SrcReg)
+ .addImm(Idx * DefSize);
+
+ if (!select(ExtrInst, CoverageInfo))
+ return false;
+ }
+
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectMergeValues(
+ MachineInstr &I, MachineRegisterInfo &MRI, MachineFunction &MF,
+ CodeGenCoverage &CoverageInfo) const {
+ assert((I.getOpcode() == TargetOpcode::G_MERGE_VALUES ||
+ I.getOpcode() == TargetOpcode::G_CONCAT_VECTORS) &&
+ "unexpected instruction");
+
+ // Split to inserts.
+ unsigned DstReg = I.getOperand(0).getReg();
+ unsigned SrcReg0 = I.getOperand(1).getReg();
+
+ const LLT DstTy = MRI.getType(DstReg);
+ const LLT SrcTy = MRI.getType(SrcReg0);
+ unsigned SrcSize = SrcTy.getSizeInBits();
+
+ const RegisterBank &RegBank = *RBI.getRegBank(DstReg, MRI, TRI);
+
+ // For the first src use insertSubReg.
+ unsigned DefReg = MRI.createGenericVirtualRegister(DstTy);
+ MRI.setRegBank(DefReg, RegBank);
+ if (!emitInsertSubreg(DefReg, I.getOperand(1).getReg(), I, MRI, MF))
+ return false;
+
+ for (unsigned Idx = 2; Idx < I.getNumOperands(); ++Idx) {
+ unsigned Tmp = MRI.createGenericVirtualRegister(DstTy);
+ MRI.setRegBank(Tmp, RegBank);
+
+ MachineInstr &InsertInst = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(TargetOpcode::G_INSERT), Tmp)
+ .addReg(DefReg)
+ .addReg(I.getOperand(Idx).getReg())
+ .addImm((Idx - 1) * SrcSize);
+
+ DefReg = Tmp;
+
+ if (!select(InsertInst, CoverageInfo))
+ return false;
+ }
+
+ MachineInstr &CopyInst = *BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(TargetOpcode::COPY), DstReg)
+ .addReg(DefReg);
+
+ if (!select(CopyInst, CoverageInfo))
+ return false;
+
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectCondBranch(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_BRCOND) && "unexpected instruction");
+
+ const unsigned CondReg = I.getOperand(0).getReg();
+ MachineBasicBlock *DestMBB = I.getOperand(1).getMBB();
+
+ MachineInstr &TestInst =
+ *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::TEST8ri))
+ .addReg(CondReg)
+ .addImm(1);
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::JCC_1))
+ .addMBB(DestMBB).addImm(X86::COND_NE);
+
+ constrainSelectedInstRegOperands(TestInst, TII, TRI, RBI);
+
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::materializeFP(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ assert((I.getOpcode() == TargetOpcode::G_FCONSTANT) &&
+ "unexpected instruction");
+
+ // Can't handle alternate code models yet.
+ CodeModel::Model CM = TM.getCodeModel();
+ if (CM != CodeModel::Small && CM != CodeModel::Large)
+ return false;
+
+ const unsigned DstReg = I.getOperand(0).getReg();
+ const LLT DstTy = MRI.getType(DstReg);
+ const RegisterBank &RegBank = *RBI.getRegBank(DstReg, MRI, TRI);
+ unsigned Align = DstTy.getSizeInBits();
+ const DebugLoc &DbgLoc = I.getDebugLoc();
+
+ unsigned Opc = getLoadStoreOp(DstTy, RegBank, TargetOpcode::G_LOAD, Align);
+
+ // Create the load from the constant pool.
+ const ConstantFP *CFP = I.getOperand(1).getFPImm();
+ unsigned CPI = MF.getConstantPool()->getConstantPoolIndex(CFP, Align);
+ MachineInstr *LoadInst = nullptr;
+ unsigned char OpFlag = STI.classifyLocalReference(nullptr);
+
+ if (CM == CodeModel::Large && STI.is64Bit()) {
+ // Under X86-64 non-small code model, GV (and friends) are 64-bits, so
+ // they cannot be folded into immediate fields.
+
+ unsigned AddrReg = MRI.createVirtualRegister(&X86::GR64RegClass);
+ BuildMI(*I.getParent(), I, DbgLoc, TII.get(X86::MOV64ri), AddrReg)
+ .addConstantPoolIndex(CPI, 0, OpFlag);
+
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getConstantPool(MF), MachineMemOperand::MOLoad,
+ MF.getDataLayout().getPointerSize(), Align);
+
+ LoadInst =
+ addDirectMem(BuildMI(*I.getParent(), I, DbgLoc, TII.get(Opc), DstReg),
+ AddrReg)
+ .addMemOperand(MMO);
+
+ } else if (CM == CodeModel::Small || !STI.is64Bit()) {
+ // Handle the case when globals fit in our immediate field.
+ // This is true for X86-32 always and X86-64 when in -mcmodel=small mode.
+
+ // x86-32 PIC requires a PIC base register for constant pools.
+ unsigned PICBase = 0;
+ if (OpFlag == X86II::MO_PIC_BASE_OFFSET || OpFlag == X86II::MO_GOTOFF) {
+ // PICBase can be allocated by TII.getGlobalBaseReg(&MF).
+ // In DAGISEL the code that initialize it generated by the CGBR pass.
+ return false; // TODO support the mode.
+ } else if (STI.is64Bit() && TM.getCodeModel() == CodeModel::Small)
+ PICBase = X86::RIP;
+
+ LoadInst = addConstantPoolReference(
+ BuildMI(*I.getParent(), I, DbgLoc, TII.get(Opc), DstReg), CPI, PICBase,
+ OpFlag);
+ } else
+ return false;
+
+ constrainSelectedInstRegOperands(*LoadInst, TII, TRI, RBI);
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectImplicitDefOrPHI(
+ MachineInstr &I, MachineRegisterInfo &MRI) const {
+ assert((I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF ||
+ I.getOpcode() == TargetOpcode::G_PHI) &&
+ "unexpected instruction");
+
+ unsigned DstReg = I.getOperand(0).getReg();
+
+ if (!MRI.getRegClassOrNull(DstReg)) {
+ const LLT DstTy = MRI.getType(DstReg);
+ const TargetRegisterClass *RC = getRegClass(DstTy, DstReg, MRI);
+
+ if (!RBI.constrainGenericRegister(DstReg, *RC, MRI)) {
+ LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
+ << " operand\n");
+ return false;
+ }
+ }
+
+ if (I.getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
+ I.setDesc(TII.get(X86::IMPLICIT_DEF));
+ else
+ I.setDesc(TII.get(X86::PHI));
+
+ return true;
+}
+
+// Currently GlobalIsel TableGen generates patterns for shift imm and shift 1,
+// but with shiftCount i8. In G_LSHR/G_ASHR/G_SHL like LLVM-IR both arguments
+// has the same type, so for now only shift i8 can use auto generated
+// TableGen patterns.
+bool X86InstructionSelector::selectShift(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+
+ assert((I.getOpcode() == TargetOpcode::G_SHL ||
+ I.getOpcode() == TargetOpcode::G_ASHR ||
+ I.getOpcode() == TargetOpcode::G_LSHR) &&
+ "unexpected instruction");
+
+ unsigned DstReg = I.getOperand(0).getReg();
+ const LLT DstTy = MRI.getType(DstReg);
+ const RegisterBank &DstRB = *RBI.getRegBank(DstReg, MRI, TRI);
+
+ const static struct ShiftEntry {
+ unsigned SizeInBits;
+ unsigned OpLSHR;
+ unsigned OpASHR;
+ unsigned OpSHL;
+ } OpTable[] = {
+ {8, X86::SHR8rCL, X86::SAR8rCL, X86::SHL8rCL}, // i8
+ {16, X86::SHR16rCL, X86::SAR16rCL, X86::SHL16rCL}, // i16
+ {32, X86::SHR32rCL, X86::SAR32rCL, X86::SHL32rCL}, // i32
+ {64, X86::SHR64rCL, X86::SAR64rCL, X86::SHL64rCL} // i64
+ };
+
+ if (DstRB.getID() != X86::GPRRegBankID)
+ return false;
+
+ auto ShiftEntryIt = std::find_if(
+ std::begin(OpTable), std::end(OpTable), [DstTy](const ShiftEntry &El) {
+ return El.SizeInBits == DstTy.getSizeInBits();
+ });
+ if (ShiftEntryIt == std::end(OpTable))
+ return false;
+
+ unsigned Opcode = 0;
+ switch (I.getOpcode()) {
+ case TargetOpcode::G_SHL:
+ Opcode = ShiftEntryIt->OpSHL;
+ break;
+ case TargetOpcode::G_ASHR:
+ Opcode = ShiftEntryIt->OpASHR;
+ break;
+ case TargetOpcode::G_LSHR:
+ Opcode = ShiftEntryIt->OpLSHR;
+ break;
+ default:
+ return false;
+ }
+
+ unsigned Op0Reg = I.getOperand(1).getReg();
+ unsigned Op1Reg = I.getOperand(2).getReg();
+
+ assert(MRI.getType(Op1Reg).getSizeInBits() == 8);
+
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(TargetOpcode::COPY),
+ X86::CL)
+ .addReg(Op1Reg);
+
+ MachineInstr &ShiftInst =
+ *BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode), DstReg)
+ .addReg(Op0Reg);
+
+ constrainSelectedInstRegOperands(ShiftInst, TII, TRI, RBI);
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectDivRem(MachineInstr &I,
+ MachineRegisterInfo &MRI,
+ MachineFunction &MF) const {
+ // The implementation of this function is taken from X86FastISel.
+ assert((I.getOpcode() == TargetOpcode::G_SDIV ||
+ I.getOpcode() == TargetOpcode::G_SREM ||
+ I.getOpcode() == TargetOpcode::G_UDIV ||
+ I.getOpcode() == TargetOpcode::G_UREM) &&
+ "unexpected instruction");
+
+ const unsigned DstReg = I.getOperand(0).getReg();
+ const unsigned Op1Reg = I.getOperand(1).getReg();
+ const unsigned Op2Reg = I.getOperand(2).getReg();
+
+ const LLT RegTy = MRI.getType(DstReg);
+ assert(RegTy == MRI.getType(Op1Reg) && RegTy == MRI.getType(Op2Reg) &&
+ "Arguments and return value types must match");
+
+ const RegisterBank *RegRB = RBI.getRegBank(DstReg, MRI, TRI);
+ if (!RegRB || RegRB->getID() != X86::GPRRegBankID)
+ return false;
+
+ const static unsigned NumTypes = 4; // i8, i16, i32, i64
+ const static unsigned NumOps = 4; // SDiv, SRem, UDiv, URem
+ const static bool S = true; // IsSigned
+ const static bool U = false; // !IsSigned
+ const static unsigned Copy = TargetOpcode::COPY;
+ // For the X86 IDIV instruction, in most cases the dividend
+ // (numerator) must be in a specific register pair highreg:lowreg,
+ // producing the quotient in lowreg and the remainder in highreg.
+ // For most data types, to set up the instruction, the dividend is
+ // copied into lowreg, and lowreg is sign-extended into highreg. The
+ // exception is i8, where the dividend is defined as a single register rather
+ // than a register pair, and we therefore directly sign-extend the dividend
+ // into lowreg, instead of copying, and ignore the highreg.
+ const static struct DivRemEntry {
+ // The following portion depends only on the data type.
+ unsigned SizeInBits;
+ unsigned LowInReg; // low part of the register pair
+ unsigned HighInReg; // high part of the register pair
+ // The following portion depends on both the data type and the operation.
+ struct DivRemResult {
+ unsigned OpDivRem; // The specific DIV/IDIV opcode to use.
+ unsigned OpSignExtend; // Opcode for sign-extending lowreg into
+ // highreg, or copying a zero into highreg.
+ unsigned OpCopy; // Opcode for copying dividend into lowreg, or
+ // zero/sign-extending into lowreg for i8.
+ unsigned DivRemResultReg; // Register containing the desired result.
+ bool IsOpSigned; // Whether to use signed or unsigned form.
+ } ResultTable[NumOps];
+ } OpTable[NumTypes] = {
+ {8,
+ X86::AX,
+ 0,
+ {
+ {X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AL, S}, // SDiv
+ {X86::IDIV8r, 0, X86::MOVSX16rr8, X86::AH, S}, // SRem
+ {X86::DIV8r, 0, X86::MOVZX16rr8, X86::AL, U}, // UDiv
+ {X86::DIV8r, 0, X86::MOVZX16rr8, X86::AH, U}, // URem
+ }}, // i8
+ {16,
+ X86::AX,
+ X86::DX,
+ {
+ {X86::IDIV16r, X86::CWD, Copy, X86::AX, S}, // SDiv
+ {X86::IDIV16r, X86::CWD, Copy, X86::DX, S}, // SRem
+ {X86::DIV16r, X86::MOV32r0, Copy, X86::AX, U}, // UDiv
+ {X86::DIV16r, X86::MOV32r0, Copy, X86::DX, U}, // URem
+ }}, // i16
+ {32,
+ X86::EAX,
+ X86::EDX,
+ {
+ {X86::IDIV32r, X86::CDQ, Copy, X86::EAX, S}, // SDiv
+ {X86::IDIV32r, X86::CDQ, Copy, X86::EDX, S}, // SRem
+ {X86::DIV32r, X86::MOV32r0, Copy, X86::EAX, U}, // UDiv
+ {X86::DIV32r, X86::MOV32r0, Copy, X86::EDX, U}, // URem
+ }}, // i32
+ {64,
+ X86::RAX,
+ X86::RDX,
+ {
+ {X86::IDIV64r, X86::CQO, Copy, X86::RAX, S}, // SDiv
+ {X86::IDIV64r, X86::CQO, Copy, X86::RDX, S}, // SRem
+ {X86::DIV64r, X86::MOV32r0, Copy, X86::RAX, U}, // UDiv
+ {X86::DIV64r, X86::MOV32r0, Copy, X86::RDX, U}, // URem
+ }}, // i64
+ };
+
+ auto OpEntryIt = std::find_if(std::begin(OpTable), std::end(OpTable),
+ [RegTy](const DivRemEntry &El) {
+ return El.SizeInBits == RegTy.getSizeInBits();
+ });
+ if (OpEntryIt == std::end(OpTable))
+ return false;
+
+ unsigned OpIndex;
+ switch (I.getOpcode()) {
+ default:
+ llvm_unreachable("Unexpected div/rem opcode");
+ case TargetOpcode::G_SDIV:
+ OpIndex = 0;
+ break;
+ case TargetOpcode::G_SREM:
+ OpIndex = 1;
+ break;
+ case TargetOpcode::G_UDIV:
+ OpIndex = 2;
+ break;
+ case TargetOpcode::G_UREM:
+ OpIndex = 3;
+ break;
+ }
+
+ const DivRemEntry &TypeEntry = *OpEntryIt;
+ const DivRemEntry::DivRemResult &OpEntry = TypeEntry.ResultTable[OpIndex];
+
+ const TargetRegisterClass *RegRC = getRegClass(RegTy, *RegRB);
+ if (!RBI.constrainGenericRegister(Op1Reg, *RegRC, MRI) ||
+ !RBI.constrainGenericRegister(Op2Reg, *RegRC, MRI) ||
+ !RBI.constrainGenericRegister(DstReg, *RegRC, MRI)) {
+ LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
+ << " operand\n");
+ return false;
+ }
+
+ // Move op1 into low-order input register.
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpEntry.OpCopy),
+ TypeEntry.LowInReg)
+ .addReg(Op1Reg);
+ // Zero-extend or sign-extend into high-order input register.
+ if (OpEntry.OpSignExtend) {
+ if (OpEntry.IsOpSigned)
+ BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(OpEntry.OpSignExtend));
+ else {
+ unsigned Zero32 = MRI.createVirtualRegister(&X86::GR32RegClass);
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::MOV32r0),
+ Zero32);
+
+ // Copy the zero into the appropriate sub/super/identical physical
+ // register. Unfortunately the operations needed are not uniform enough
+ // to fit neatly into the table above.
+ if (RegTy.getSizeInBits() == 16) {
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Copy),
+ TypeEntry.HighInReg)
+ .addReg(Zero32, 0, X86::sub_16bit);
+ } else if (RegTy.getSizeInBits() == 32) {
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Copy),
+ TypeEntry.HighInReg)
+ .addReg(Zero32);
+ } else if (RegTy.getSizeInBits() == 64) {
+ BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(TargetOpcode::SUBREG_TO_REG), TypeEntry.HighInReg)
+ .addImm(0)
+ .addReg(Zero32)
+ .addImm(X86::sub_32bit);
+ }
+ }
+ }
+ // Generate the DIV/IDIV instruction.
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(OpEntry.OpDivRem))
+ .addReg(Op2Reg);
+ // For i8 remainder, we can't reference ah directly, as we'll end
+ // up with bogus copies like %r9b = COPY %ah. Reference ax
+ // instead to prevent ah references in a rex instruction.
+ //
+ // The current assumption of the fast register allocator is that isel
+ // won't generate explicit references to the GR8_NOREX registers. If
+ // the allocator and/or the backend get enhanced to be more robust in
+ // that regard, this can be, and should be, removed.
+ if ((I.getOpcode() == Instruction::SRem ||
+ I.getOpcode() == Instruction::URem) &&
+ OpEntry.DivRemResultReg == X86::AH && STI.is64Bit()) {
+ unsigned SourceSuperReg = MRI.createVirtualRegister(&X86::GR16RegClass);
+ unsigned ResultSuperReg = MRI.createVirtualRegister(&X86::GR16RegClass);
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Copy), SourceSuperReg)
+ .addReg(X86::AX);
+
+ // Shift AX right by 8 bits instead of using AH.
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::SHR16ri),
+ ResultSuperReg)
+ .addReg(SourceSuperReg)
+ .addImm(8);
+
+ // Now reference the 8-bit subreg of the result.
+ BuildMI(*I.getParent(), I, I.getDebugLoc(),
+ TII.get(TargetOpcode::SUBREG_TO_REG))
+ .addDef(DstReg)
+ .addImm(0)
+ .addReg(ResultSuperReg)
+ .addImm(X86::sub_8bit);
+ } else {
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(TargetOpcode::COPY),
+ DstReg)
+ .addReg(OpEntry.DivRemResultReg);
+ }
+ I.eraseFromParent();
+ return true;
+}
+
+bool X86InstructionSelector::selectIntrinsicWSideEffects(
+ MachineInstr &I, MachineRegisterInfo &MRI, MachineFunction &MF) const {
+
+ assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS &&
+ "unexpected instruction");
+
+ if (I.getOperand(0).getIntrinsicID() != Intrinsic::trap)
+ return false;
+
+ BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(X86::TRAP));
+
+ I.eraseFromParent();
+ return true;
+}
+
+InstructionSelector *
+llvm::createX86InstructionSelector(const X86TargetMachine &TM,
+ X86Subtarget &Subtarget,
+ X86RegisterBankInfo &RBI) {
+ return new X86InstructionSelector(TM, Subtarget, RBI);
+}