summaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
committerDimitry Andric <dim@FreeBSD.org>2019-12-20 19:53:05 +0000
commit0b57cec536236d46e3dba9bd041533462f33dbb7 (patch)
tree56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
parent718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff)
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp')
-rw-r--r--contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp2954
1 files changed, 2954 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
new file mode 100644
index 000000000000..f9fc698a4a9b
--- /dev/null
+++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp
@@ -0,0 +1,2954 @@
+//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This transformation analyzes and transforms the induction variables (and
+// computations derived from them) into simpler forms suitable for subsequent
+// analysis and transformation.
+//
+// If the trip count of a loop is computable, this pass also makes the following
+// changes:
+// 1. The exit condition for the loop is canonicalized to compare the
+// induction value against the exit value. This turns loops like:
+// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
+// 2. Any use outside of the loop of an expression derived from the indvar
+// is changed to compute the derived value outside of the loop, eliminating
+// the dependence on the exit value of the induction variable. If the only
+// purpose of the loop is to compute the exit value of some derived
+// expression, this transformation will make the loop dead.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/IndVarSimplify.h"
+#include "llvm/ADT/APFloat.h"
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/ConstantRange.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueHandle.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/LoopPassManager.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SimplifyIndVar.h"
+#include <cassert>
+#include <cstdint>
+#include <utility>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "indvars"
+
+STATISTIC(NumWidened , "Number of indvars widened");
+STATISTIC(NumReplaced , "Number of exit values replaced");
+STATISTIC(NumLFTR , "Number of loop exit tests replaced");
+STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated");
+STATISTIC(NumElimIV , "Number of congruent IVs eliminated");
+
+// Trip count verification can be enabled by default under NDEBUG if we
+// implement a strong expression equivalence checker in SCEV. Until then, we
+// use the verify-indvars flag, which may assert in some cases.
+static cl::opt<bool> VerifyIndvars(
+ "verify-indvars", cl::Hidden,
+ cl::desc("Verify the ScalarEvolution result after running indvars"));
+
+enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, NoHardUse, AlwaysRepl };
+
+static cl::opt<ReplaceExitVal> ReplaceExitValue(
+ "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
+ cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
+ cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
+ clEnumValN(OnlyCheapRepl, "cheap",
+ "only replace exit value when the cost is cheap"),
+ clEnumValN(NoHardUse, "noharduse",
+ "only replace exit values when loop def likely dead"),
+ clEnumValN(AlwaysRepl, "always",
+ "always replace exit value whenever possible")));
+
+static cl::opt<bool> UsePostIncrementRanges(
+ "indvars-post-increment-ranges", cl::Hidden,
+ cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
+ cl::init(true));
+
+static cl::opt<bool>
+DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
+ cl::desc("Disable Linear Function Test Replace optimization"));
+
+namespace {
+
+struct RewritePhi;
+
+class IndVarSimplify {
+ LoopInfo *LI;
+ ScalarEvolution *SE;
+ DominatorTree *DT;
+ const DataLayout &DL;
+ TargetLibraryInfo *TLI;
+ const TargetTransformInfo *TTI;
+
+ SmallVector<WeakTrackingVH, 16> DeadInsts;
+
+ bool isValidRewrite(Value *FromVal, Value *ToVal);
+
+ bool handleFloatingPointIV(Loop *L, PHINode *PH);
+ bool rewriteNonIntegerIVs(Loop *L);
+
+ bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
+ bool optimizeLoopExits(Loop *L);
+
+ bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
+ bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
+ bool rewriteFirstIterationLoopExitValues(Loop *L);
+ bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
+
+ bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
+ const SCEV *ExitCount,
+ PHINode *IndVar, SCEVExpander &Rewriter);
+
+ bool sinkUnusedInvariants(Loop *L);
+
+public:
+ IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
+ const DataLayout &DL, TargetLibraryInfo *TLI,
+ TargetTransformInfo *TTI)
+ : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
+
+ bool run(Loop *L);
+};
+
+} // end anonymous namespace
+
+/// Return true if the SCEV expansion generated by the rewriter can replace the
+/// original value. SCEV guarantees that it produces the same value, but the way
+/// it is produced may be illegal IR. Ideally, this function will only be
+/// called for verification.
+bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
+ // If an SCEV expression subsumed multiple pointers, its expansion could
+ // reassociate the GEP changing the base pointer. This is illegal because the
+ // final address produced by a GEP chain must be inbounds relative to its
+ // underlying object. Otherwise basic alias analysis, among other things,
+ // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
+ // producing an expression involving multiple pointers. Until then, we must
+ // bail out here.
+ //
+ // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
+ // because it understands lcssa phis while SCEV does not.
+ Value *FromPtr = FromVal;
+ Value *ToPtr = ToVal;
+ if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
+ FromPtr = GEP->getPointerOperand();
+ }
+ if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
+ ToPtr = GEP->getPointerOperand();
+ }
+ if (FromPtr != FromVal || ToPtr != ToVal) {
+ // Quickly check the common case
+ if (FromPtr == ToPtr)
+ return true;
+
+ // SCEV may have rewritten an expression that produces the GEP's pointer
+ // operand. That's ok as long as the pointer operand has the same base
+ // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
+ // base of a recurrence. This handles the case in which SCEV expansion
+ // converts a pointer type recurrence into a nonrecurrent pointer base
+ // indexed by an integer recurrence.
+
+ // If the GEP base pointer is a vector of pointers, abort.
+ if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
+ return false;
+
+ const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
+ const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
+ if (FromBase == ToBase)
+ return true;
+
+ LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
+ << " != " << *ToBase << "\n");
+
+ return false;
+ }
+ return true;
+}
+
+/// Determine the insertion point for this user. By default, insert immediately
+/// before the user. SCEVExpander or LICM will hoist loop invariants out of the
+/// loop. For PHI nodes, there may be multiple uses, so compute the nearest
+/// common dominator for the incoming blocks. A nullptr can be returned if no
+/// viable location is found: it may happen if User is a PHI and Def only comes
+/// to this PHI from unreachable blocks.
+static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
+ DominatorTree *DT, LoopInfo *LI) {
+ PHINode *PHI = dyn_cast<PHINode>(User);
+ if (!PHI)
+ return User;
+
+ Instruction *InsertPt = nullptr;
+ for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
+ if (PHI->getIncomingValue(i) != Def)
+ continue;
+
+ BasicBlock *InsertBB = PHI->getIncomingBlock(i);
+
+ if (!DT->isReachableFromEntry(InsertBB))
+ continue;
+
+ if (!InsertPt) {
+ InsertPt = InsertBB->getTerminator();
+ continue;
+ }
+ InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
+ InsertPt = InsertBB->getTerminator();
+ }
+
+ // If we have skipped all inputs, it means that Def only comes to Phi from
+ // unreachable blocks.
+ if (!InsertPt)
+ return nullptr;
+
+ auto *DefI = dyn_cast<Instruction>(Def);
+ if (!DefI)
+ return InsertPt;
+
+ assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
+
+ auto *L = LI->getLoopFor(DefI->getParent());
+ assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
+
+ for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
+ if (LI->getLoopFor(DTN->getBlock()) == L)
+ return DTN->getBlock()->getTerminator();
+
+ llvm_unreachable("DefI dominates InsertPt!");
+}
+
+//===----------------------------------------------------------------------===//
+// rewriteNonIntegerIVs and helpers. Prefer integer IVs.
+//===----------------------------------------------------------------------===//
+
+/// Convert APF to an integer, if possible.
+static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
+ bool isExact = false;
+ // See if we can convert this to an int64_t
+ uint64_t UIntVal;
+ if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
+ APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
+ !isExact)
+ return false;
+ IntVal = UIntVal;
+ return true;
+}
+
+/// If the loop has floating induction variable then insert corresponding
+/// integer induction variable if possible.
+/// For example,
+/// for(double i = 0; i < 10000; ++i)
+/// bar(i)
+/// is converted into
+/// for(int i = 0; i < 10000; ++i)
+/// bar((double)i);
+bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
+ unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
+ unsigned BackEdge = IncomingEdge^1;
+
+ // Check incoming value.
+ auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
+
+ int64_t InitValue;
+ if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
+ return false;
+
+ // Check IV increment. Reject this PN if increment operation is not
+ // an add or increment value can not be represented by an integer.
+ auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
+ if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
+
+ // If this is not an add of the PHI with a constantfp, or if the constant fp
+ // is not an integer, bail out.
+ ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
+ int64_t IncValue;
+ if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
+ !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
+ return false;
+
+ // Check Incr uses. One user is PN and the other user is an exit condition
+ // used by the conditional terminator.
+ Value::user_iterator IncrUse = Incr->user_begin();
+ Instruction *U1 = cast<Instruction>(*IncrUse++);
+ if (IncrUse == Incr->user_end()) return false;
+ Instruction *U2 = cast<Instruction>(*IncrUse++);
+ if (IncrUse != Incr->user_end()) return false;
+
+ // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't
+ // only used by a branch, we can't transform it.
+ FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
+ if (!Compare)
+ Compare = dyn_cast<FCmpInst>(U2);
+ if (!Compare || !Compare->hasOneUse() ||
+ !isa<BranchInst>(Compare->user_back()))
+ return false;
+
+ BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
+
+ // We need to verify that the branch actually controls the iteration count
+ // of the loop. If not, the new IV can overflow and no one will notice.
+ // The branch block must be in the loop and one of the successors must be out
+ // of the loop.
+ assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
+ if (!L->contains(TheBr->getParent()) ||
+ (L->contains(TheBr->getSuccessor(0)) &&
+ L->contains(TheBr->getSuccessor(1))))
+ return false;
+
+ // If it isn't a comparison with an integer-as-fp (the exit value), we can't
+ // transform it.
+ ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
+ int64_t ExitValue;
+ if (ExitValueVal == nullptr ||
+ !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
+ return false;
+
+ // Find new predicate for integer comparison.
+ CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
+ switch (Compare->getPredicate()) {
+ default: return false; // Unknown comparison.
+ case CmpInst::FCMP_OEQ:
+ case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
+ case CmpInst::FCMP_ONE:
+ case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
+ case CmpInst::FCMP_OGT:
+ case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
+ case CmpInst::FCMP_OGE:
+ case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
+ case CmpInst::FCMP_OLT:
+ case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
+ case CmpInst::FCMP_OLE:
+ case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
+ }
+
+ // We convert the floating point induction variable to a signed i32 value if
+ // we can. This is only safe if the comparison will not overflow in a way
+ // that won't be trapped by the integer equivalent operations. Check for this
+ // now.
+ // TODO: We could use i64 if it is native and the range requires it.
+
+ // The start/stride/exit values must all fit in signed i32.
+ if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
+ return false;
+
+ // If not actually striding (add x, 0.0), avoid touching the code.
+ if (IncValue == 0)
+ return false;
+
+ // Positive and negative strides have different safety conditions.
+ if (IncValue > 0) {
+ // If we have a positive stride, we require the init to be less than the
+ // exit value.
+ if (InitValue >= ExitValue)
+ return false;
+
+ uint32_t Range = uint32_t(ExitValue-InitValue);
+ // Check for infinite loop, either:
+ // while (i <= Exit) or until (i > Exit)
+ if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
+ if (++Range == 0) return false; // Range overflows.
+ }
+
+ unsigned Leftover = Range % uint32_t(IncValue);
+
+ // If this is an equality comparison, we require that the strided value
+ // exactly land on the exit value, otherwise the IV condition will wrap
+ // around and do things the fp IV wouldn't.
+ if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
+ Leftover != 0)
+ return false;
+
+ // If the stride would wrap around the i32 before exiting, we can't
+ // transform the IV.
+ if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
+ return false;
+ } else {
+ // If we have a negative stride, we require the init to be greater than the
+ // exit value.
+ if (InitValue <= ExitValue)
+ return false;
+
+ uint32_t Range = uint32_t(InitValue-ExitValue);
+ // Check for infinite loop, either:
+ // while (i >= Exit) or until (i < Exit)
+ if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
+ if (++Range == 0) return false; // Range overflows.
+ }
+
+ unsigned Leftover = Range % uint32_t(-IncValue);
+
+ // If this is an equality comparison, we require that the strided value
+ // exactly land on the exit value, otherwise the IV condition will wrap
+ // around and do things the fp IV wouldn't.
+ if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
+ Leftover != 0)
+ return false;
+
+ // If the stride would wrap around the i32 before exiting, we can't
+ // transform the IV.
+ if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
+ return false;
+ }
+
+ IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
+
+ // Insert new integer induction variable.
+ PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
+ NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
+ PN->getIncomingBlock(IncomingEdge));
+
+ Value *NewAdd =
+ BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
+ Incr->getName()+".int", Incr);
+ NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
+
+ ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
+ ConstantInt::get(Int32Ty, ExitValue),
+ Compare->getName());
+
+ // In the following deletions, PN may become dead and may be deleted.
+ // Use a WeakTrackingVH to observe whether this happens.
+ WeakTrackingVH WeakPH = PN;
+
+ // Delete the old floating point exit comparison. The branch starts using the
+ // new comparison.
+ NewCompare->takeName(Compare);
+ Compare->replaceAllUsesWith(NewCompare);
+ RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
+
+ // Delete the old floating point increment.
+ Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
+ RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
+
+ // If the FP induction variable still has uses, this is because something else
+ // in the loop uses its value. In order to canonicalize the induction
+ // variable, we chose to eliminate the IV and rewrite it in terms of an
+ // int->fp cast.
+ //
+ // We give preference to sitofp over uitofp because it is faster on most
+ // platforms.
+ if (WeakPH) {
+ Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
+ &*PN->getParent()->getFirstInsertionPt());
+ PN->replaceAllUsesWith(Conv);
+ RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
+ }
+ return true;
+}
+
+bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
+ // First step. Check to see if there are any floating-point recurrences.
+ // If there are, change them into integer recurrences, permitting analysis by
+ // the SCEV routines.
+ BasicBlock *Header = L->getHeader();
+
+ SmallVector<WeakTrackingVH, 8> PHIs;
+ for (PHINode &PN : Header->phis())
+ PHIs.push_back(&PN);
+
+ bool Changed = false;
+ for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
+ if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
+ Changed |= handleFloatingPointIV(L, PN);
+
+ // If the loop previously had floating-point IV, ScalarEvolution
+ // may not have been able to compute a trip count. Now that we've done some
+ // re-writing, the trip count may be computable.
+ if (Changed)
+ SE->forgetLoop(L);
+ return Changed;
+}
+
+namespace {
+
+// Collect information about PHI nodes which can be transformed in
+// rewriteLoopExitValues.
+struct RewritePhi {
+ PHINode *PN;
+
+ // Ith incoming value.
+ unsigned Ith;
+
+ // Exit value after expansion.
+ Value *Val;
+
+ // High Cost when expansion.
+ bool HighCost;
+
+ RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
+ : PN(P), Ith(I), Val(V), HighCost(H) {}
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// rewriteLoopExitValues - Optimize IV users outside the loop.
+// As a side effect, reduces the amount of IV processing within the loop.
+//===----------------------------------------------------------------------===//
+
+bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
+ SmallPtrSet<const Instruction *, 8> Visited;
+ SmallVector<const Instruction *, 8> WorkList;
+ Visited.insert(I);
+ WorkList.push_back(I);
+ while (!WorkList.empty()) {
+ const Instruction *Curr = WorkList.pop_back_val();
+ // This use is outside the loop, nothing to do.
+ if (!L->contains(Curr))
+ continue;
+ // Do we assume it is a "hard" use which will not be eliminated easily?
+ if (Curr->mayHaveSideEffects())
+ return true;
+ // Otherwise, add all its users to worklist.
+ for (auto U : Curr->users()) {
+ auto *UI = cast<Instruction>(U);
+ if (Visited.insert(UI).second)
+ WorkList.push_back(UI);
+ }
+ }
+ return false;
+}
+
+/// Check to see if this loop has a computable loop-invariant execution count.
+/// If so, this means that we can compute the final value of any expressions
+/// that are recurrent in the loop, and substitute the exit values from the loop
+/// into any instructions outside of the loop that use the final values of the
+/// current expressions.
+///
+/// This is mostly redundant with the regular IndVarSimplify activities that
+/// happen later, except that it's more powerful in some cases, because it's
+/// able to brute-force evaluate arbitrary instructions as long as they have
+/// constant operands at the beginning of the loop.
+bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
+ // Check a pre-condition.
+ assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
+ "Indvars did not preserve LCSSA!");
+
+ SmallVector<BasicBlock*, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ SmallVector<RewritePhi, 8> RewritePhiSet;
+ // Find all values that are computed inside the loop, but used outside of it.
+ // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
+ // the exit blocks of the loop to find them.
+ for (BasicBlock *ExitBB : ExitBlocks) {
+ // If there are no PHI nodes in this exit block, then no values defined
+ // inside the loop are used on this path, skip it.
+ PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
+ if (!PN) continue;
+
+ unsigned NumPreds = PN->getNumIncomingValues();
+
+ // Iterate over all of the PHI nodes.
+ BasicBlock::iterator BBI = ExitBB->begin();
+ while ((PN = dyn_cast<PHINode>(BBI++))) {
+ if (PN->use_empty())
+ continue; // dead use, don't replace it
+
+ if (!SE->isSCEVable(PN->getType()))
+ continue;
+
+ // It's necessary to tell ScalarEvolution about this explicitly so that
+ // it can walk the def-use list and forget all SCEVs, as it may not be
+ // watching the PHI itself. Once the new exit value is in place, there
+ // may not be a def-use connection between the loop and every instruction
+ // which got a SCEVAddRecExpr for that loop.
+ SE->forgetValue(PN);
+
+ // Iterate over all of the values in all the PHI nodes.
+ for (unsigned i = 0; i != NumPreds; ++i) {
+ // If the value being merged in is not integer or is not defined
+ // in the loop, skip it.
+ Value *InVal = PN->getIncomingValue(i);
+ if (!isa<Instruction>(InVal))
+ continue;
+
+ // If this pred is for a subloop, not L itself, skip it.
+ if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
+ continue; // The Block is in a subloop, skip it.
+
+ // Check that InVal is defined in the loop.
+ Instruction *Inst = cast<Instruction>(InVal);
+ if (!L->contains(Inst))
+ continue;
+
+ // Okay, this instruction has a user outside of the current loop
+ // and varies predictably *inside* the loop. Evaluate the value it
+ // contains when the loop exits, if possible.
+ const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
+ if (!SE->isLoopInvariant(ExitValue, L) ||
+ !isSafeToExpand(ExitValue, *SE))
+ continue;
+
+ // Computing the value outside of the loop brings no benefit if it is
+ // definitely used inside the loop in a way which can not be optimized
+ // away. Avoid doing so unless we know we have a value which computes
+ // the ExitValue already. TODO: This should be merged into SCEV
+ // expander to leverage its knowledge of existing expressions.
+ if (ReplaceExitValue != AlwaysRepl &&
+ !isa<SCEVConstant>(ExitValue) && !isa<SCEVUnknown>(ExitValue) &&
+ hasHardUserWithinLoop(L, Inst))
+ continue;
+
+ bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
+ Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
+
+ LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
+ << '\n'
+ << " LoopVal = " << *Inst << "\n");
+
+ if (!isValidRewrite(Inst, ExitVal)) {
+ DeadInsts.push_back(ExitVal);
+ continue;
+ }
+
+#ifndef NDEBUG
+ // If we reuse an instruction from a loop which is neither L nor one of
+ // its containing loops, we end up breaking LCSSA form for this loop by
+ // creating a new use of its instruction.
+ if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
+ if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
+ if (EVL != L)
+ assert(EVL->contains(L) && "LCSSA breach detected!");
+#endif
+
+ // Collect all the candidate PHINodes to be rewritten.
+ RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
+ }
+ }
+ }
+
+ bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
+
+ bool Changed = false;
+ // Transformation.
+ for (const RewritePhi &Phi : RewritePhiSet) {
+ PHINode *PN = Phi.PN;
+ Value *ExitVal = Phi.Val;
+
+ // Only do the rewrite when the ExitValue can be expanded cheaply.
+ // If LoopCanBeDel is true, rewrite exit value aggressively.
+ if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
+ DeadInsts.push_back(ExitVal);
+ continue;
+ }
+
+ Changed = true;
+ ++NumReplaced;
+ Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
+ PN->setIncomingValue(Phi.Ith, ExitVal);
+
+ // If this instruction is dead now, delete it. Don't do it now to avoid
+ // invalidating iterators.
+ if (isInstructionTriviallyDead(Inst, TLI))
+ DeadInsts.push_back(Inst);
+
+ // Replace PN with ExitVal if that is legal and does not break LCSSA.
+ if (PN->getNumIncomingValues() == 1 &&
+ LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
+ PN->replaceAllUsesWith(ExitVal);
+ PN->eraseFromParent();
+ }
+ }
+
+ // The insertion point instruction may have been deleted; clear it out
+ // so that the rewriter doesn't trip over it later.
+ Rewriter.clearInsertPoint();
+ return Changed;
+}
+
+//===---------------------------------------------------------------------===//
+// rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
+// they will exit at the first iteration.
+//===---------------------------------------------------------------------===//
+
+/// Check to see if this loop has loop invariant conditions which lead to loop
+/// exits. If so, we know that if the exit path is taken, it is at the first
+/// loop iteration. This lets us predict exit values of PHI nodes that live in
+/// loop header.
+bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
+ // Verify the input to the pass is already in LCSSA form.
+ assert(L->isLCSSAForm(*DT));
+
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ bool MadeAnyChanges = false;
+ for (auto *ExitBB : ExitBlocks) {
+ // If there are no more PHI nodes in this exit block, then no more
+ // values defined inside the loop are used on this path.
+ for (PHINode &PN : ExitBB->phis()) {
+ for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
+ IncomingValIdx != E; ++IncomingValIdx) {
+ auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
+
+ // Can we prove that the exit must run on the first iteration if it
+ // runs at all? (i.e. early exits are fine for our purposes, but
+ // traces which lead to this exit being taken on the 2nd iteration
+ // aren't.) Note that this is about whether the exit branch is
+ // executed, not about whether it is taken.
+ if (!L->getLoopLatch() ||
+ !DT->dominates(IncomingBB, L->getLoopLatch()))
+ continue;
+
+ // Get condition that leads to the exit path.
+ auto *TermInst = IncomingBB->getTerminator();
+
+ Value *Cond = nullptr;
+ if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
+ // Must be a conditional branch, otherwise the block
+ // should not be in the loop.
+ Cond = BI->getCondition();
+ } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
+ Cond = SI->getCondition();
+ else
+ continue;
+
+ if (!L->isLoopInvariant(Cond))
+ continue;
+
+ auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
+
+ // Only deal with PHIs in the loop header.
+ if (!ExitVal || ExitVal->getParent() != L->getHeader())
+ continue;
+
+ // If ExitVal is a PHI on the loop header, then we know its
+ // value along this exit because the exit can only be taken
+ // on the first iteration.
+ auto *LoopPreheader = L->getLoopPreheader();
+ assert(LoopPreheader && "Invalid loop");
+ int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
+ if (PreheaderIdx != -1) {
+ assert(ExitVal->getParent() == L->getHeader() &&
+ "ExitVal must be in loop header");
+ MadeAnyChanges = true;
+ PN.setIncomingValue(IncomingValIdx,
+ ExitVal->getIncomingValue(PreheaderIdx));
+ }
+ }
+ }
+ }
+ return MadeAnyChanges;
+}
+
+/// Check whether it is possible to delete the loop after rewriting exit
+/// value. If it is possible, ignore ReplaceExitValue and do rewriting
+/// aggressively.
+bool IndVarSimplify::canLoopBeDeleted(
+ Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
+ BasicBlock *Preheader = L->getLoopPreheader();
+ // If there is no preheader, the loop will not be deleted.
+ if (!Preheader)
+ return false;
+
+ // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
+ // We obviate multiple ExitingBlocks case for simplicity.
+ // TODO: If we see testcase with multiple ExitingBlocks can be deleted
+ // after exit value rewriting, we can enhance the logic here.
+ SmallVector<BasicBlock *, 4> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+ if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
+ return false;
+
+ BasicBlock *ExitBlock = ExitBlocks[0];
+ BasicBlock::iterator BI = ExitBlock->begin();
+ while (PHINode *P = dyn_cast<PHINode>(BI)) {
+ Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
+
+ // If the Incoming value of P is found in RewritePhiSet, we know it
+ // could be rewritten to use a loop invariant value in transformation
+ // phase later. Skip it in the loop invariant check below.
+ bool found = false;
+ for (const RewritePhi &Phi : RewritePhiSet) {
+ unsigned i = Phi.Ith;
+ if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
+ found = true;
+ break;
+ }
+ }
+
+ Instruction *I;
+ if (!found && (I = dyn_cast<Instruction>(Incoming)))
+ if (!L->hasLoopInvariantOperands(I))
+ return false;
+
+ ++BI;
+ }
+
+ for (auto *BB : L->blocks())
+ if (llvm::any_of(*BB, [](Instruction &I) {
+ return I.mayHaveSideEffects();
+ }))
+ return false;
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// IV Widening - Extend the width of an IV to cover its widest uses.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+// Collect information about induction variables that are used by sign/zero
+// extend operations. This information is recorded by CollectExtend and provides
+// the input to WidenIV.
+struct WideIVInfo {
+ PHINode *NarrowIV = nullptr;
+
+ // Widest integer type created [sz]ext
+ Type *WidestNativeType = nullptr;
+
+ // Was a sext user seen before a zext?
+ bool IsSigned = false;
+};
+
+} // end anonymous namespace
+
+/// Update information about the induction variable that is extended by this
+/// sign or zero extend operation. This is used to determine the final width of
+/// the IV before actually widening it.
+static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
+ const TargetTransformInfo *TTI) {
+ bool IsSigned = Cast->getOpcode() == Instruction::SExt;
+ if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
+ return;
+
+ Type *Ty = Cast->getType();
+ uint64_t Width = SE->getTypeSizeInBits(Ty);
+ if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
+ return;
+
+ // Check that `Cast` actually extends the induction variable (we rely on this
+ // later). This takes care of cases where `Cast` is extending a truncation of
+ // the narrow induction variable, and thus can end up being narrower than the
+ // "narrow" induction variable.
+ uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
+ if (NarrowIVWidth >= Width)
+ return;
+
+ // Cast is either an sext or zext up to this point.
+ // We should not widen an indvar if arithmetics on the wider indvar are more
+ // expensive than those on the narrower indvar. We check only the cost of ADD
+ // because at least an ADD is required to increment the induction variable. We
+ // could compute more comprehensively the cost of all instructions on the
+ // induction variable when necessary.
+ if (TTI &&
+ TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
+ TTI->getArithmeticInstrCost(Instruction::Add,
+ Cast->getOperand(0)->getType())) {
+ return;
+ }
+
+ if (!WI.WidestNativeType) {
+ WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
+ WI.IsSigned = IsSigned;
+ return;
+ }
+
+ // We extend the IV to satisfy the sign of its first user, arbitrarily.
+ if (WI.IsSigned != IsSigned)
+ return;
+
+ if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
+ WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
+}
+
+namespace {
+
+/// Record a link in the Narrow IV def-use chain along with the WideIV that
+/// computes the same value as the Narrow IV def. This avoids caching Use*
+/// pointers.
+struct NarrowIVDefUse {
+ Instruction *NarrowDef = nullptr;
+ Instruction *NarrowUse = nullptr;
+ Instruction *WideDef = nullptr;
+
+ // True if the narrow def is never negative. Tracking this information lets
+ // us use a sign extension instead of a zero extension or vice versa, when
+ // profitable and legal.
+ bool NeverNegative = false;
+
+ NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
+ bool NeverNegative)
+ : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
+ NeverNegative(NeverNegative) {}
+};
+
+/// The goal of this transform is to remove sign and zero extends without
+/// creating any new induction variables. To do this, it creates a new phi of
+/// the wider type and redirects all users, either removing extends or inserting
+/// truncs whenever we stop propagating the type.
+class WidenIV {
+ // Parameters
+ PHINode *OrigPhi;
+ Type *WideType;
+
+ // Context
+ LoopInfo *LI;
+ Loop *L;
+ ScalarEvolution *SE;
+ DominatorTree *DT;
+
+ // Does the module have any calls to the llvm.experimental.guard intrinsic
+ // at all? If not we can avoid scanning instructions looking for guards.
+ bool HasGuards;
+
+ // Result
+ PHINode *WidePhi = nullptr;
+ Instruction *WideInc = nullptr;
+ const SCEV *WideIncExpr = nullptr;
+ SmallVectorImpl<WeakTrackingVH> &DeadInsts;
+
+ SmallPtrSet<Instruction *,16> Widened;
+ SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
+
+ enum ExtendKind { ZeroExtended, SignExtended, Unknown };
+
+ // A map tracking the kind of extension used to widen each narrow IV
+ // and narrow IV user.
+ // Key: pointer to a narrow IV or IV user.
+ // Value: the kind of extension used to widen this Instruction.
+ DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
+
+ using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
+
+ // A map with control-dependent ranges for post increment IV uses. The key is
+ // a pair of IV def and a use of this def denoting the context. The value is
+ // a ConstantRange representing possible values of the def at the given
+ // context.
+ DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
+
+ Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
+ Instruction *UseI) {
+ DefUserPair Key(Def, UseI);
+ auto It = PostIncRangeInfos.find(Key);
+ return It == PostIncRangeInfos.end()
+ ? Optional<ConstantRange>(None)
+ : Optional<ConstantRange>(It->second);
+ }
+
+ void calculatePostIncRanges(PHINode *OrigPhi);
+ void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
+
+ void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
+ DefUserPair Key(Def, UseI);
+ auto It = PostIncRangeInfos.find(Key);
+ if (It == PostIncRangeInfos.end())
+ PostIncRangeInfos.insert({Key, R});
+ else
+ It->second = R.intersectWith(It->second);
+ }
+
+public:
+ WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
+ DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
+ bool HasGuards)
+ : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
+ L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
+ HasGuards(HasGuards), DeadInsts(DI) {
+ assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
+ ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
+ }
+
+ PHINode *createWideIV(SCEVExpander &Rewriter);
+
+protected:
+ Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
+ Instruction *Use);
+
+ Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
+ Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
+ const SCEVAddRecExpr *WideAR);
+ Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
+
+ ExtendKind getExtendKind(Instruction *I);
+
+ using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
+
+ WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
+
+ WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
+
+ const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
+ unsigned OpCode) const;
+
+ Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
+
+ bool widenLoopCompare(NarrowIVDefUse DU);
+ bool widenWithVariantLoadUse(NarrowIVDefUse DU);
+ void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
+
+ void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
+};
+
+} // end anonymous namespace
+
+Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
+ bool IsSigned, Instruction *Use) {
+ // Set the debug location and conservative insertion point.
+ IRBuilder<> Builder(Use);
+ // Hoist the insertion point into loop preheaders as far as possible.
+ for (const Loop *L = LI->getLoopFor(Use->getParent());
+ L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
+ L = L->getParentLoop())
+ Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
+
+ return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
+ Builder.CreateZExt(NarrowOper, WideType);
+}
+
+/// Instantiate a wide operation to replace a narrow operation. This only needs
+/// to handle operations that can evaluation to SCEVAddRec. It can safely return
+/// 0 for any operation we decide not to clone.
+Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
+ const SCEVAddRecExpr *WideAR) {
+ unsigned Opcode = DU.NarrowUse->getOpcode();
+ switch (Opcode) {
+ default:
+ return nullptr;
+ case Instruction::Add:
+ case Instruction::Mul:
+ case Instruction::UDiv:
+ case Instruction::Sub:
+ return cloneArithmeticIVUser(DU, WideAR);
+
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ return cloneBitwiseIVUser(DU);
+ }
+}
+
+Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
+ Instruction *NarrowUse = DU.NarrowUse;
+ Instruction *NarrowDef = DU.NarrowDef;
+ Instruction *WideDef = DU.WideDef;
+
+ LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
+
+ // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
+ // about the narrow operand yet so must insert a [sz]ext. It is probably loop
+ // invariant and will be folded or hoisted. If it actually comes from a
+ // widened IV, it should be removed during a future call to widenIVUse.
+ bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
+ Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(0), WideType,
+ IsSigned, NarrowUse);
+ Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(1), WideType,
+ IsSigned, NarrowUse);
+
+ auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
+ auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
+ NarrowBO->getName());
+ IRBuilder<> Builder(NarrowUse);
+ Builder.Insert(WideBO);
+ WideBO->copyIRFlags(NarrowBO);
+ return WideBO;
+}
+
+Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
+ const SCEVAddRecExpr *WideAR) {
+ Instruction *NarrowUse = DU.NarrowUse;
+ Instruction *NarrowDef = DU.NarrowDef;
+ Instruction *WideDef = DU.WideDef;
+
+ LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
+
+ unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
+
+ // We're trying to find X such that
+ //
+ // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
+ //
+ // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
+ // and check using SCEV if any of them are correct.
+
+ // Returns true if extending NonIVNarrowDef according to `SignExt` is a
+ // correct solution to X.
+ auto GuessNonIVOperand = [&](bool SignExt) {
+ const SCEV *WideLHS;
+ const SCEV *WideRHS;
+
+ auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
+ if (SignExt)
+ return SE->getSignExtendExpr(S, Ty);
+ return SE->getZeroExtendExpr(S, Ty);
+ };
+
+ if (IVOpIdx == 0) {
+ WideLHS = SE->getSCEV(WideDef);
+ const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
+ WideRHS = GetExtend(NarrowRHS, WideType);
+ } else {
+ const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
+ WideLHS = GetExtend(NarrowLHS, WideType);
+ WideRHS = SE->getSCEV(WideDef);
+ }
+
+ // WideUse is "WideDef `op.wide` X" as described in the comment.
+ const SCEV *WideUse = nullptr;
+
+ switch (NarrowUse->getOpcode()) {
+ default:
+ llvm_unreachable("No other possibility!");
+
+ case Instruction::Add:
+ WideUse = SE->getAddExpr(WideLHS, WideRHS);
+ break;
+
+ case Instruction::Mul:
+ WideUse = SE->getMulExpr(WideLHS, WideRHS);
+ break;
+
+ case Instruction::UDiv:
+ WideUse = SE->getUDivExpr(WideLHS, WideRHS);
+ break;
+
+ case Instruction::Sub:
+ WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
+ break;
+ }
+
+ return WideUse == WideAR;
+ };
+
+ bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
+ if (!GuessNonIVOperand(SignExtend)) {
+ SignExtend = !SignExtend;
+ if (!GuessNonIVOperand(SignExtend))
+ return nullptr;
+ }
+
+ Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(0), WideType,
+ SignExtend, NarrowUse);
+ Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(1), WideType,
+ SignExtend, NarrowUse);
+
+ auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
+ auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
+ NarrowBO->getName());
+
+ IRBuilder<> Builder(NarrowUse);
+ Builder.Insert(WideBO);
+ WideBO->copyIRFlags(NarrowBO);
+ return WideBO;
+}
+
+WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
+ auto It = ExtendKindMap.find(I);
+ assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
+ return It->second;
+}
+
+const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
+ unsigned OpCode) const {
+ if (OpCode == Instruction::Add)
+ return SE->getAddExpr(LHS, RHS);
+ if (OpCode == Instruction::Sub)
+ return SE->getMinusSCEV(LHS, RHS);
+ if (OpCode == Instruction::Mul)
+ return SE->getMulExpr(LHS, RHS);
+
+ llvm_unreachable("Unsupported opcode.");
+}
+
+/// No-wrap operations can transfer sign extension of their result to their
+/// operands. Generate the SCEV value for the widened operation without
+/// actually modifying the IR yet. If the expression after extending the
+/// operands is an AddRec for this loop, return the AddRec and the kind of
+/// extension used.
+WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
+ // Handle the common case of add<nsw/nuw>
+ const unsigned OpCode = DU.NarrowUse->getOpcode();
+ // Only Add/Sub/Mul instructions supported yet.
+ if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
+ OpCode != Instruction::Mul)
+ return {nullptr, Unknown};
+
+ // One operand (NarrowDef) has already been extended to WideDef. Now determine
+ // if extending the other will lead to a recurrence.
+ const unsigned ExtendOperIdx =
+ DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
+ assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
+
+ const SCEV *ExtendOperExpr = nullptr;
+ const OverflowingBinaryOperator *OBO =
+ cast<OverflowingBinaryOperator>(DU.NarrowUse);
+ ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
+ if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
+ ExtendOperExpr = SE->getSignExtendExpr(
+ SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
+ else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
+ ExtendOperExpr = SE->getZeroExtendExpr(
+ SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
+ else
+ return {nullptr, Unknown};
+
+ // When creating this SCEV expr, don't apply the current operations NSW or NUW
+ // flags. This instruction may be guarded by control flow that the no-wrap
+ // behavior depends on. Non-control-equivalent instructions can be mapped to
+ // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
+ // semantics to those operations.
+ const SCEV *lhs = SE->getSCEV(DU.WideDef);
+ const SCEV *rhs = ExtendOperExpr;
+
+ // Let's swap operands to the initial order for the case of non-commutative
+ // operations, like SUB. See PR21014.
+ if (ExtendOperIdx == 0)
+ std::swap(lhs, rhs);
+ const SCEVAddRecExpr *AddRec =
+ dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
+
+ if (!AddRec || AddRec->getLoop() != L)
+ return {nullptr, Unknown};
+
+ return {AddRec, ExtKind};
+}
+
+/// Is this instruction potentially interesting for further simplification after
+/// widening it's type? In other words, can the extend be safely hoisted out of
+/// the loop with SCEV reducing the value to a recurrence on the same loop. If
+/// so, return the extended recurrence and the kind of extension used. Otherwise
+/// return {nullptr, Unknown}.
+WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
+ if (!SE->isSCEVable(DU.NarrowUse->getType()))
+ return {nullptr, Unknown};
+
+ const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
+ if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
+ SE->getTypeSizeInBits(WideType)) {
+ // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
+ // index. So don't follow this use.
+ return {nullptr, Unknown};
+ }
+
+ const SCEV *WideExpr;
+ ExtendKind ExtKind;
+ if (DU.NeverNegative) {
+ WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
+ if (isa<SCEVAddRecExpr>(WideExpr))
+ ExtKind = SignExtended;
+ else {
+ WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
+ ExtKind = ZeroExtended;
+ }
+ } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
+ WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
+ ExtKind = SignExtended;
+ } else {
+ WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
+ ExtKind = ZeroExtended;
+ }
+ const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
+ if (!AddRec || AddRec->getLoop() != L)
+ return {nullptr, Unknown};
+ return {AddRec, ExtKind};
+}
+
+/// This IV user cannot be widened. Replace this use of the original narrow IV
+/// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
+static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
+ auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
+ if (!InsertPt)
+ return;
+ LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
+ << *DU.NarrowUse << "\n");
+ IRBuilder<> Builder(InsertPt);
+ Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
+ DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
+}
+
+/// If the narrow use is a compare instruction, then widen the compare
+// (and possibly the other operand). The extend operation is hoisted into the
+// loop preheader as far as possible.
+bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
+ ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
+ if (!Cmp)
+ return false;
+
+ // We can legally widen the comparison in the following two cases:
+ //
+ // - The signedness of the IV extension and comparison match
+ //
+ // - The narrow IV is always positive (and thus its sign extension is equal
+ // to its zero extension). For instance, let's say we're zero extending
+ // %narrow for the following use
+ //
+ // icmp slt i32 %narrow, %val ... (A)
+ //
+ // and %narrow is always positive. Then
+ //
+ // (A) == icmp slt i32 sext(%narrow), sext(%val)
+ // == icmp slt i32 zext(%narrow), sext(%val)
+ bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
+ if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
+ return false;
+
+ Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
+ unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
+ unsigned IVWidth = SE->getTypeSizeInBits(WideType);
+ assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
+
+ // Widen the compare instruction.
+ auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
+ if (!InsertPt)
+ return false;
+ IRBuilder<> Builder(InsertPt);
+ DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
+
+ // Widen the other operand of the compare, if necessary.
+ if (CastWidth < IVWidth) {
+ Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
+ DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
+ }
+ return true;
+}
+
+/// If the narrow use is an instruction whose two operands are the defining
+/// instruction of DU and a load instruction, then we have the following:
+/// if the load is hoisted outside the loop, then we do not reach this function
+/// as scalar evolution analysis works fine in widenIVUse with variables
+/// hoisted outside the loop and efficient code is subsequently generated by
+/// not emitting truncate instructions. But when the load is not hoisted
+/// (whether due to limitation in alias analysis or due to a true legality),
+/// then scalar evolution can not proceed with loop variant values and
+/// inefficient code is generated. This function handles the non-hoisted load
+/// special case by making the optimization generate the same type of code for
+/// hoisted and non-hoisted load (widen use and eliminate sign extend
+/// instruction). This special case is important especially when the induction
+/// variables are affecting addressing mode in code generation.
+bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
+ Instruction *NarrowUse = DU.NarrowUse;
+ Instruction *NarrowDef = DU.NarrowDef;
+ Instruction *WideDef = DU.WideDef;
+
+ // Handle the common case of add<nsw/nuw>
+ const unsigned OpCode = NarrowUse->getOpcode();
+ // Only Add/Sub/Mul instructions are supported.
+ if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
+ OpCode != Instruction::Mul)
+ return false;
+
+ // The operand that is not defined by NarrowDef of DU. Let's call it the
+ // other operand.
+ unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
+ assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
+ "bad DU");
+
+ const SCEV *ExtendOperExpr = nullptr;
+ const OverflowingBinaryOperator *OBO =
+ cast<OverflowingBinaryOperator>(NarrowUse);
+ ExtendKind ExtKind = getExtendKind(NarrowDef);
+ if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
+ ExtendOperExpr = SE->getSignExtendExpr(
+ SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
+ else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
+ ExtendOperExpr = SE->getZeroExtendExpr(
+ SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
+ else
+ return false;
+
+ // We are interested in the other operand being a load instruction.
+ // But, we should look into relaxing this restriction later on.
+ auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
+ if (I && I->getOpcode() != Instruction::Load)
+ return false;
+
+ // Verifying that Defining operand is an AddRec
+ const SCEV *Op1 = SE->getSCEV(WideDef);
+ const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
+ if (!AddRecOp1 || AddRecOp1->getLoop() != L)
+ return false;
+ // Verifying that other operand is an Extend.
+ if (ExtKind == SignExtended) {
+ if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
+ return false;
+ } else {
+ if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
+ return false;
+ }
+
+ if (ExtKind == SignExtended) {
+ for (Use &U : NarrowUse->uses()) {
+ SExtInst *User = dyn_cast<SExtInst>(U.getUser());
+ if (!User || User->getType() != WideType)
+ return false;
+ }
+ } else { // ExtKind == ZeroExtended
+ for (Use &U : NarrowUse->uses()) {
+ ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
+ if (!User || User->getType() != WideType)
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// Special Case for widening with variant Loads (see
+/// WidenIV::widenWithVariantLoadUse). This is the code generation part.
+void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
+ Instruction *NarrowUse = DU.NarrowUse;
+ Instruction *NarrowDef = DU.NarrowDef;
+ Instruction *WideDef = DU.WideDef;
+
+ ExtendKind ExtKind = getExtendKind(NarrowDef);
+
+ LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
+
+ // Generating a widening use instruction.
+ Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(0), WideType,
+ ExtKind, NarrowUse);
+ Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
+ ? WideDef
+ : createExtendInst(NarrowUse->getOperand(1), WideType,
+ ExtKind, NarrowUse);
+
+ auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
+ auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
+ NarrowBO->getName());
+ IRBuilder<> Builder(NarrowUse);
+ Builder.Insert(WideBO);
+ WideBO->copyIRFlags(NarrowBO);
+
+ if (ExtKind == SignExtended)
+ ExtendKindMap[NarrowUse] = SignExtended;
+ else
+ ExtendKindMap[NarrowUse] = ZeroExtended;
+
+ // Update the Use.
+ if (ExtKind == SignExtended) {
+ for (Use &U : NarrowUse->uses()) {
+ SExtInst *User = dyn_cast<SExtInst>(U.getUser());
+ if (User && User->getType() == WideType) {
+ LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
+ << *WideBO << "\n");
+ ++NumElimExt;
+ User->replaceAllUsesWith(WideBO);
+ DeadInsts.emplace_back(User);
+ }
+ }
+ } else { // ExtKind == ZeroExtended
+ for (Use &U : NarrowUse->uses()) {
+ ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
+ if (User && User->getType() == WideType) {
+ LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
+ << *WideBO << "\n");
+ ++NumElimExt;
+ User->replaceAllUsesWith(WideBO);
+ DeadInsts.emplace_back(User);
+ }
+ }
+ }
+}
+
+/// Determine whether an individual user of the narrow IV can be widened. If so,
+/// return the wide clone of the user.
+Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
+ assert(ExtendKindMap.count(DU.NarrowDef) &&
+ "Should already know the kind of extension used to widen NarrowDef");
+
+ // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
+ if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
+ if (LI->getLoopFor(UsePhi->getParent()) != L) {
+ // For LCSSA phis, sink the truncate outside the loop.
+ // After SimplifyCFG most loop exit targets have a single predecessor.
+ // Otherwise fall back to a truncate within the loop.
+ if (UsePhi->getNumOperands() != 1)
+ truncateIVUse(DU, DT, LI);
+ else {
+ // Widening the PHI requires us to insert a trunc. The logical place
+ // for this trunc is in the same BB as the PHI. This is not possible if
+ // the BB is terminated by a catchswitch.
+ if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
+ return nullptr;
+
+ PHINode *WidePhi =
+ PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
+ UsePhi);
+ WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
+ IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
+ Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
+ UsePhi->replaceAllUsesWith(Trunc);
+ DeadInsts.emplace_back(UsePhi);
+ LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
+ << *WidePhi << "\n");
+ }
+ return nullptr;
+ }
+ }
+
+ // This narrow use can be widened by a sext if it's non-negative or its narrow
+ // def was widended by a sext. Same for zext.
+ auto canWidenBySExt = [&]() {
+ return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
+ };
+ auto canWidenByZExt = [&]() {
+ return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
+ };
+
+ // Our raison d'etre! Eliminate sign and zero extension.
+ if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
+ (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
+ Value *NewDef = DU.WideDef;
+ if (DU.NarrowUse->getType() != WideType) {
+ unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
+ unsigned IVWidth = SE->getTypeSizeInBits(WideType);
+ if (CastWidth < IVWidth) {
+ // The cast isn't as wide as the IV, so insert a Trunc.
+ IRBuilder<> Builder(DU.NarrowUse);
+ NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
+ }
+ else {
+ // A wider extend was hidden behind a narrower one. This may induce
+ // another round of IV widening in which the intermediate IV becomes
+ // dead. It should be very rare.
+ LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
+ << " not wide enough to subsume " << *DU.NarrowUse
+ << "\n");
+ DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
+ NewDef = DU.NarrowUse;
+ }
+ }
+ if (NewDef != DU.NarrowUse) {
+ LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
+ << " replaced by " << *DU.WideDef << "\n");
+ ++NumElimExt;
+ DU.NarrowUse->replaceAllUsesWith(NewDef);
+ DeadInsts.emplace_back(DU.NarrowUse);
+ }
+ // Now that the extend is gone, we want to expose it's uses for potential
+ // further simplification. We don't need to directly inform SimplifyIVUsers
+ // of the new users, because their parent IV will be processed later as a
+ // new loop phi. If we preserved IVUsers analysis, we would also want to
+ // push the uses of WideDef here.
+
+ // No further widening is needed. The deceased [sz]ext had done it for us.
+ return nullptr;
+ }
+
+ // Does this user itself evaluate to a recurrence after widening?
+ WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
+ if (!WideAddRec.first)
+ WideAddRec = getWideRecurrence(DU);
+
+ assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
+ if (!WideAddRec.first) {
+ // If use is a loop condition, try to promote the condition instead of
+ // truncating the IV first.
+ if (widenLoopCompare(DU))
+ return nullptr;
+
+ // We are here about to generate a truncate instruction that may hurt
+ // performance because the scalar evolution expression computed earlier
+ // in WideAddRec.first does not indicate a polynomial induction expression.
+ // In that case, look at the operands of the use instruction to determine
+ // if we can still widen the use instead of truncating its operand.
+ if (widenWithVariantLoadUse(DU)) {
+ widenWithVariantLoadUseCodegen(DU);
+ return nullptr;
+ }
+
+ // This user does not evaluate to a recurrence after widening, so don't
+ // follow it. Instead insert a Trunc to kill off the original use,
+ // eventually isolating the original narrow IV so it can be removed.
+ truncateIVUse(DU, DT, LI);
+ return nullptr;
+ }
+ // Assume block terminators cannot evaluate to a recurrence. We can't to
+ // insert a Trunc after a terminator if there happens to be a critical edge.
+ assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
+ "SCEV is not expected to evaluate a block terminator");
+
+ // Reuse the IV increment that SCEVExpander created as long as it dominates
+ // NarrowUse.
+ Instruction *WideUse = nullptr;
+ if (WideAddRec.first == WideIncExpr &&
+ Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
+ WideUse = WideInc;
+ else {
+ WideUse = cloneIVUser(DU, WideAddRec.first);
+ if (!WideUse)
+ return nullptr;
+ }
+ // Evaluation of WideAddRec ensured that the narrow expression could be
+ // extended outside the loop without overflow. This suggests that the wide use
+ // evaluates to the same expression as the extended narrow use, but doesn't
+ // absolutely guarantee it. Hence the following failsafe check. In rare cases
+ // where it fails, we simply throw away the newly created wide use.
+ if (WideAddRec.first != SE->getSCEV(WideUse)) {
+ LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
+ << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
+ << "\n");
+ DeadInsts.emplace_back(WideUse);
+ return nullptr;
+ }
+
+ ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
+ // Returning WideUse pushes it on the worklist.
+ return WideUse;
+}
+
+/// Add eligible users of NarrowDef to NarrowIVUsers.
+void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
+ const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
+ bool NonNegativeDef =
+ SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
+ SE->getConstant(NarrowSCEV->getType(), 0));
+ for (User *U : NarrowDef->users()) {
+ Instruction *NarrowUser = cast<Instruction>(U);
+
+ // Handle data flow merges and bizarre phi cycles.
+ if (!Widened.insert(NarrowUser).second)
+ continue;
+
+ bool NonNegativeUse = false;
+ if (!NonNegativeDef) {
+ // We might have a control-dependent range information for this context.
+ if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
+ NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
+ }
+
+ NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
+ NonNegativeDef || NonNegativeUse);
+ }
+}
+
+/// Process a single induction variable. First use the SCEVExpander to create a
+/// wide induction variable that evaluates to the same recurrence as the
+/// original narrow IV. Then use a worklist to forward traverse the narrow IV's
+/// def-use chain. After widenIVUse has processed all interesting IV users, the
+/// narrow IV will be isolated for removal by DeleteDeadPHIs.
+///
+/// It would be simpler to delete uses as they are processed, but we must avoid
+/// invalidating SCEV expressions.
+PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
+ // Is this phi an induction variable?
+ const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
+ if (!AddRec)
+ return nullptr;
+
+ // Widen the induction variable expression.
+ const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
+ ? SE->getSignExtendExpr(AddRec, WideType)
+ : SE->getZeroExtendExpr(AddRec, WideType);
+
+ assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
+ "Expect the new IV expression to preserve its type");
+
+ // Can the IV be extended outside the loop without overflow?
+ AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
+ if (!AddRec || AddRec->getLoop() != L)
+ return nullptr;
+
+ // An AddRec must have loop-invariant operands. Since this AddRec is
+ // materialized by a loop header phi, the expression cannot have any post-loop
+ // operands, so they must dominate the loop header.
+ assert(
+ SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
+ SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
+ "Loop header phi recurrence inputs do not dominate the loop");
+
+ // Iterate over IV uses (including transitive ones) looking for IV increments
+ // of the form 'add nsw %iv, <const>'. For each increment and each use of
+ // the increment calculate control-dependent range information basing on
+ // dominating conditions inside of the loop (e.g. a range check inside of the
+ // loop). Calculated ranges are stored in PostIncRangeInfos map.
+ //
+ // Control-dependent range information is later used to prove that a narrow
+ // definition is not negative (see pushNarrowIVUsers). It's difficult to do
+ // this on demand because when pushNarrowIVUsers needs this information some
+ // of the dominating conditions might be already widened.
+ if (UsePostIncrementRanges)
+ calculatePostIncRanges(OrigPhi);
+
+ // The rewriter provides a value for the desired IV expression. This may
+ // either find an existing phi or materialize a new one. Either way, we
+ // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
+ // of the phi-SCC dominates the loop entry.
+ Instruction *InsertPt = &L->getHeader()->front();
+ WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
+
+ // Remembering the WideIV increment generated by SCEVExpander allows
+ // widenIVUse to reuse it when widening the narrow IV's increment. We don't
+ // employ a general reuse mechanism because the call above is the only call to
+ // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
+ if (BasicBlock *LatchBlock = L->getLoopLatch()) {
+ WideInc =
+ cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
+ WideIncExpr = SE->getSCEV(WideInc);
+ // Propagate the debug location associated with the original loop increment
+ // to the new (widened) increment.
+ auto *OrigInc =
+ cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
+ WideInc->setDebugLoc(OrigInc->getDebugLoc());
+ }
+
+ LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
+ ++NumWidened;
+
+ // Traverse the def-use chain using a worklist starting at the original IV.
+ assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
+
+ Widened.insert(OrigPhi);
+ pushNarrowIVUsers(OrigPhi, WidePhi);
+
+ while (!NarrowIVUsers.empty()) {
+ NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
+
+ // Process a def-use edge. This may replace the use, so don't hold a
+ // use_iterator across it.
+ Instruction *WideUse = widenIVUse(DU, Rewriter);
+
+ // Follow all def-use edges from the previous narrow use.
+ if (WideUse)
+ pushNarrowIVUsers(DU.NarrowUse, WideUse);
+
+ // widenIVUse may have removed the def-use edge.
+ if (DU.NarrowDef->use_empty())
+ DeadInsts.emplace_back(DU.NarrowDef);
+ }
+
+ // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
+ // evaluate the same recurrence, we can just copy the debug info over.
+ SmallVector<DbgValueInst *, 1> DbgValues;
+ llvm::findDbgValues(DbgValues, OrigPhi);
+ auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
+ ValueAsMetadata::get(WidePhi));
+ for (auto &DbgValue : DbgValues)
+ DbgValue->setOperand(0, MDPhi);
+ return WidePhi;
+}
+
+/// Calculates control-dependent range for the given def at the given context
+/// by looking at dominating conditions inside of the loop
+void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
+ Instruction *NarrowUser) {
+ using namespace llvm::PatternMatch;
+
+ Value *NarrowDefLHS;
+ const APInt *NarrowDefRHS;
+ if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
+ m_APInt(NarrowDefRHS))) ||
+ !NarrowDefRHS->isNonNegative())
+ return;
+
+ auto UpdateRangeFromCondition = [&] (Value *Condition,
+ bool TrueDest) {
+ CmpInst::Predicate Pred;
+ Value *CmpRHS;
+ if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
+ m_Value(CmpRHS))))
+ return;
+
+ CmpInst::Predicate P =
+ TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
+
+ auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
+ auto CmpConstrainedLHSRange =
+ ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
+ auto NarrowDefRange =
+ CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
+
+ updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
+ };
+
+ auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
+ if (!HasGuards)
+ return;
+
+ for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
+ Ctx->getParent()->rend())) {
+ Value *C = nullptr;
+ if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
+ UpdateRangeFromCondition(C, /*TrueDest=*/true);
+ }
+ };
+
+ UpdateRangeFromGuards(NarrowUser);
+
+ BasicBlock *NarrowUserBB = NarrowUser->getParent();
+ // If NarrowUserBB is statically unreachable asking dominator queries may
+ // yield surprising results. (e.g. the block may not have a dom tree node)
+ if (!DT->isReachableFromEntry(NarrowUserBB))
+ return;
+
+ for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
+ L->contains(DTB->getBlock());
+ DTB = DTB->getIDom()) {
+ auto *BB = DTB->getBlock();
+ auto *TI = BB->getTerminator();
+ UpdateRangeFromGuards(TI);
+
+ auto *BI = dyn_cast<BranchInst>(TI);
+ if (!BI || !BI->isConditional())
+ continue;
+
+ auto *TrueSuccessor = BI->getSuccessor(0);
+ auto *FalseSuccessor = BI->getSuccessor(1);
+
+ auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
+ return BBE.isSingleEdge() &&
+ DT->dominates(BBE, NarrowUser->getParent());
+ };
+
+ if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
+ UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
+
+ if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
+ UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
+ }
+}
+
+/// Calculates PostIncRangeInfos map for the given IV
+void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
+ SmallPtrSet<Instruction *, 16> Visited;
+ SmallVector<Instruction *, 6> Worklist;
+ Worklist.push_back(OrigPhi);
+ Visited.insert(OrigPhi);
+
+ while (!Worklist.empty()) {
+ Instruction *NarrowDef = Worklist.pop_back_val();
+
+ for (Use &U : NarrowDef->uses()) {
+ auto *NarrowUser = cast<Instruction>(U.getUser());
+
+ // Don't go looking outside the current loop.
+ auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
+ if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
+ continue;
+
+ if (!Visited.insert(NarrowUser).second)
+ continue;
+
+ Worklist.push_back(NarrowUser);
+
+ calculatePostIncRange(NarrowDef, NarrowUser);
+ }
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Live IV Reduction - Minimize IVs live across the loop.
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Simplification of IV users based on SCEV evaluation.
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+class IndVarSimplifyVisitor : public IVVisitor {
+ ScalarEvolution *SE;
+ const TargetTransformInfo *TTI;
+ PHINode *IVPhi;
+
+public:
+ WideIVInfo WI;
+
+ IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
+ const TargetTransformInfo *TTI,
+ const DominatorTree *DTree)
+ : SE(SCEV), TTI(TTI), IVPhi(IV) {
+ DT = DTree;
+ WI.NarrowIV = IVPhi;
+ }
+
+ // Implement the interface used by simplifyUsersOfIV.
+ void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
+};
+
+} // end anonymous namespace
+
+/// Iteratively perform simplification on a worklist of IV users. Each
+/// successive simplification may push more users which may themselves be
+/// candidates for simplification.
+///
+/// Sign/Zero extend elimination is interleaved with IV simplification.
+bool IndVarSimplify::simplifyAndExtend(Loop *L,
+ SCEVExpander &Rewriter,
+ LoopInfo *LI) {
+ SmallVector<WideIVInfo, 8> WideIVs;
+
+ auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
+ Intrinsic::getName(Intrinsic::experimental_guard));
+ bool HasGuards = GuardDecl && !GuardDecl->use_empty();
+
+ SmallVector<PHINode*, 8> LoopPhis;
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
+ LoopPhis.push_back(cast<PHINode>(I));
+ }
+ // Each round of simplification iterates through the SimplifyIVUsers worklist
+ // for all current phis, then determines whether any IVs can be
+ // widened. Widening adds new phis to LoopPhis, inducing another round of
+ // simplification on the wide IVs.
+ bool Changed = false;
+ while (!LoopPhis.empty()) {
+ // Evaluate as many IV expressions as possible before widening any IVs. This
+ // forces SCEV to set no-wrap flags before evaluating sign/zero
+ // extension. The first time SCEV attempts to normalize sign/zero extension,
+ // the result becomes final. So for the most predictable results, we delay
+ // evaluation of sign/zero extend evaluation until needed, and avoid running
+ // other SCEV based analysis prior to simplifyAndExtend.
+ do {
+ PHINode *CurrIV = LoopPhis.pop_back_val();
+
+ // Information about sign/zero extensions of CurrIV.
+ IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
+
+ Changed |=
+ simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
+
+ if (Visitor.WI.WidestNativeType) {
+ WideIVs.push_back(Visitor.WI);
+ }
+ } while(!LoopPhis.empty());
+
+ for (; !WideIVs.empty(); WideIVs.pop_back()) {
+ WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
+ if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
+ Changed = true;
+ LoopPhis.push_back(WidePhi);
+ }
+ }
+ }
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
+//===----------------------------------------------------------------------===//
+
+/// Given an Value which is hoped to be part of an add recurance in the given
+/// loop, return the associated Phi node if so. Otherwise, return null. Note
+/// that this is less general than SCEVs AddRec checking.
+static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
+ Instruction *IncI = dyn_cast<Instruction>(IncV);
+ if (!IncI)
+ return nullptr;
+
+ switch (IncI->getOpcode()) {
+ case Instruction::Add:
+ case Instruction::Sub:
+ break;
+ case Instruction::GetElementPtr:
+ // An IV counter must preserve its type.
+ if (IncI->getNumOperands() == 2)
+ break;
+ LLVM_FALLTHROUGH;
+ default:
+ return nullptr;
+ }
+
+ PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
+ if (Phi && Phi->getParent() == L->getHeader()) {
+ if (L->isLoopInvariant(IncI->getOperand(1)))
+ return Phi;
+ return nullptr;
+ }
+ if (IncI->getOpcode() == Instruction::GetElementPtr)
+ return nullptr;
+
+ // Allow add/sub to be commuted.
+ Phi = dyn_cast<PHINode>(IncI->getOperand(1));
+ if (Phi && Phi->getParent() == L->getHeader()) {
+ if (L->isLoopInvariant(IncI->getOperand(0)))
+ return Phi;
+ }
+ return nullptr;
+}
+
+/// Whether the current loop exit test is based on this value. Currently this
+/// is limited to a direct use in the loop condition.
+static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
+ // TODO: Allow non-icmp loop test.
+ if (!ICmp)
+ return false;
+
+ // TODO: Allow indirect use.
+ return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
+}
+
+/// linearFunctionTestReplace policy. Return true unless we can show that the
+/// current exit test is already sufficiently canonical.
+static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
+ assert(L->getLoopLatch() && "Must be in simplified form");
+
+ // Avoid converting a constant or loop invariant test back to a runtime
+ // test. This is critical for when SCEV's cached ExitCount is less precise
+ // than the current IR (such as after we've proven a particular exit is
+ // actually dead and thus the BE count never reaches our ExitCount.)
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ if (L->isLoopInvariant(BI->getCondition()))
+ return false;
+
+ // Do LFTR to simplify the exit condition to an ICMP.
+ ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
+ if (!Cond)
+ return true;
+
+ // Do LFTR to simplify the exit ICMP to EQ/NE
+ ICmpInst::Predicate Pred = Cond->getPredicate();
+ if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
+ return true;
+
+ // Look for a loop invariant RHS
+ Value *LHS = Cond->getOperand(0);
+ Value *RHS = Cond->getOperand(1);
+ if (!L->isLoopInvariant(RHS)) {
+ if (!L->isLoopInvariant(LHS))
+ return true;
+ std::swap(LHS, RHS);
+ }
+ // Look for a simple IV counter LHS
+ PHINode *Phi = dyn_cast<PHINode>(LHS);
+ if (!Phi)
+ Phi = getLoopPhiForCounter(LHS, L);
+
+ if (!Phi)
+ return true;
+
+ // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
+ int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
+ if (Idx < 0)
+ return true;
+
+ // Do LFTR if the exit condition's IV is *not* a simple counter.
+ Value *IncV = Phi->getIncomingValue(Idx);
+ return Phi != getLoopPhiForCounter(IncV, L);
+}
+
+/// Return true if undefined behavior would provable be executed on the path to
+/// OnPathTo if Root produced a posion result. Note that this doesn't say
+/// anything about whether OnPathTo is actually executed or whether Root is
+/// actually poison. This can be used to assess whether a new use of Root can
+/// be added at a location which is control equivalent with OnPathTo (such as
+/// immediately before it) without introducing UB which didn't previously
+/// exist. Note that a false result conveys no information.
+static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
+ Instruction *OnPathTo,
+ DominatorTree *DT) {
+ // Basic approach is to assume Root is poison, propagate poison forward
+ // through all users we can easily track, and then check whether any of those
+ // users are provable UB and must execute before out exiting block might
+ // exit.
+
+ // The set of all recursive users we've visited (which are assumed to all be
+ // poison because of said visit)
+ SmallSet<const Value *, 16> KnownPoison;
+ SmallVector<const Instruction*, 16> Worklist;
+ Worklist.push_back(Root);
+ while (!Worklist.empty()) {
+ const Instruction *I = Worklist.pop_back_val();
+
+ // If we know this must trigger UB on a path leading our target.
+ if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
+ return true;
+
+ // If we can't analyze propagation through this instruction, just skip it
+ // and transitive users. Safe as false is a conservative result.
+ if (!propagatesFullPoison(I) && I != Root)
+ continue;
+
+ if (KnownPoison.insert(I).second)
+ for (const User *User : I->users())
+ Worklist.push_back(cast<Instruction>(User));
+ }
+
+ // Might be non-UB, or might have a path we couldn't prove must execute on
+ // way to exiting bb.
+ return false;
+}
+
+/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
+/// down to checking that all operands are constant and listing instructions
+/// that may hide undef.
+static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
+ unsigned Depth) {
+ if (isa<Constant>(V))
+ return !isa<UndefValue>(V);
+
+ if (Depth >= 6)
+ return false;
+
+ // Conservatively handle non-constant non-instructions. For example, Arguments
+ // may be undef.
+ Instruction *I = dyn_cast<Instruction>(V);
+ if (!I)
+ return false;
+
+ // Load and return values may be undef.
+ if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
+ return false;
+
+ // Optimistically handle other instructions.
+ for (Value *Op : I->operands()) {
+ if (!Visited.insert(Op).second)
+ continue;
+ if (!hasConcreteDefImpl(Op, Visited, Depth+1))
+ return false;
+ }
+ return true;
+}
+
+/// Return true if the given value is concrete. We must prove that undef can
+/// never reach it.
+///
+/// TODO: If we decide that this is a good approach to checking for undef, we
+/// may factor it into a common location.
+static bool hasConcreteDef(Value *V) {
+ SmallPtrSet<Value*, 8> Visited;
+ Visited.insert(V);
+ return hasConcreteDefImpl(V, Visited, 0);
+}
+
+/// Return true if this IV has any uses other than the (soon to be rewritten)
+/// loop exit test.
+static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
+ int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
+ Value *IncV = Phi->getIncomingValue(LatchIdx);
+
+ for (User *U : Phi->users())
+ if (U != Cond && U != IncV) return false;
+
+ for (User *U : IncV->users())
+ if (U != Cond && U != Phi) return false;
+ return true;
+}
+
+/// Return true if the given phi is a "counter" in L. A counter is an
+/// add recurance (of integer or pointer type) with an arbitrary start, and a
+/// step of 1. Note that L must have exactly one latch.
+static bool isLoopCounter(PHINode* Phi, Loop *L,
+ ScalarEvolution *SE) {
+ assert(Phi->getParent() == L->getHeader());
+ assert(L->getLoopLatch());
+
+ if (!SE->isSCEVable(Phi->getType()))
+ return false;
+
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
+ if (!AR || AR->getLoop() != L || !AR->isAffine())
+ return false;
+
+ const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
+ if (!Step || !Step->isOne())
+ return false;
+
+ int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
+ Value *IncV = Phi->getIncomingValue(LatchIdx);
+ return (getLoopPhiForCounter(IncV, L) == Phi);
+}
+
+/// Search the loop header for a loop counter (anadd rec w/step of one)
+/// suitable for use by LFTR. If multiple counters are available, select the
+/// "best" one based profitable heuristics.
+///
+/// BECount may be an i8* pointer type. The pointer difference is already
+/// valid count without scaling the address stride, so it remains a pointer
+/// expression as far as SCEV is concerned.
+static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
+ const SCEV *BECount,
+ ScalarEvolution *SE, DominatorTree *DT) {
+ uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
+
+ Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
+
+ // Loop over all of the PHI nodes, looking for a simple counter.
+ PHINode *BestPhi = nullptr;
+ const SCEV *BestInit = nullptr;
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ assert(LatchBlock && "Must be in simplified form");
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+
+ for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
+ PHINode *Phi = cast<PHINode>(I);
+ if (!isLoopCounter(Phi, L, SE))
+ continue;
+
+ // Avoid comparing an integer IV against a pointer Limit.
+ if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
+ continue;
+
+ const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
+
+ // AR may be a pointer type, while BECount is an integer type.
+ // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
+ // AR may not be a narrower type, or we may never exit.
+ uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
+ if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
+ continue;
+
+ // Avoid reusing a potentially undef value to compute other values that may
+ // have originally had a concrete definition.
+ if (!hasConcreteDef(Phi)) {
+ // We explicitly allow unknown phis as long as they are already used by
+ // the loop exit test. This is legal since performing LFTR could not
+ // increase the number of undef users.
+ Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
+ if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
+ !isLoopExitTestBasedOn(IncPhi, ExitingBB))
+ continue;
+ }
+
+ // Avoid introducing undefined behavior due to poison which didn't exist in
+ // the original program. (Annoyingly, the rules for poison and undef
+ // propagation are distinct, so this does NOT cover the undef case above.)
+ // We have to ensure that we don't introduce UB by introducing a use on an
+ // iteration where said IV produces poison. Our strategy here differs for
+ // pointers and integer IVs. For integers, we strip and reinfer as needed,
+ // see code in linearFunctionTestReplace. For pointers, we restrict
+ // transforms as there is no good way to reinfer inbounds once lost.
+ if (!Phi->getType()->isIntegerTy() &&
+ !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
+ continue;
+
+ const SCEV *Init = AR->getStart();
+
+ if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
+ // Don't force a live loop counter if another IV can be used.
+ if (AlmostDeadIV(Phi, LatchBlock, Cond))
+ continue;
+
+ // Prefer to count-from-zero. This is a more "canonical" counter form. It
+ // also prefers integer to pointer IVs.
+ if (BestInit->isZero() != Init->isZero()) {
+ if (BestInit->isZero())
+ continue;
+ }
+ // If two IVs both count from zero or both count from nonzero then the
+ // narrower is likely a dead phi that has been widened. Use the wider phi
+ // to allow the other to be eliminated.
+ else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
+ continue;
+ }
+ BestPhi = Phi;
+ BestInit = Init;
+ }
+ return BestPhi;
+}
+
+/// Insert an IR expression which computes the value held by the IV IndVar
+/// (which must be an loop counter w/unit stride) after the backedge of loop L
+/// is taken ExitCount times.
+static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
+ const SCEV *ExitCount, bool UsePostInc, Loop *L,
+ SCEVExpander &Rewriter, ScalarEvolution *SE) {
+ assert(isLoopCounter(IndVar, L, SE));
+ const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
+ const SCEV *IVInit = AR->getStart();
+
+ // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
+ // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
+ // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
+ // the existing GEPs whenever possible.
+ if (IndVar->getType()->isPointerTy() &&
+ !ExitCount->getType()->isPointerTy()) {
+ // IVOffset will be the new GEP offset that is interpreted by GEP as a
+ // signed value. ExitCount on the other hand represents the loop trip count,
+ // which is an unsigned value. FindLoopCounter only allows induction
+ // variables that have a positive unit stride of one. This means we don't
+ // have to handle the case of negative offsets (yet) and just need to zero
+ // extend ExitCount.
+ Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
+ const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
+ if (UsePostInc)
+ IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
+
+ // Expand the code for the iteration count.
+ assert(SE->isLoopInvariant(IVOffset, L) &&
+ "Computed iteration count is not loop invariant!");
+
+ // We could handle pointer IVs other than i8*, but we need to compensate for
+ // gep index scaling.
+ assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
+ cast<PointerType>(IndVar->getType())
+ ->getElementType())->isOne() &&
+ "unit stride pointer IV must be i8*");
+
+ const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
+ } else {
+ // In any other case, convert both IVInit and ExitCount to integers before
+ // comparing. This may result in SCEV expansion of pointers, but in practice
+ // SCEV will fold the pointer arithmetic away as such:
+ // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
+ //
+ // Valid Cases: (1) both integers is most common; (2) both may be pointers
+ // for simple memset-style loops.
+ //
+ // IVInit integer and ExitCount pointer would only occur if a canonical IV
+ // were generated on top of case #2, which is not expected.
+
+ assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
+ // For unit stride, IVCount = Start + ExitCount with 2's complement
+ // overflow.
+
+ // For integer IVs, truncate the IV before computing IVInit + BECount,
+ // unless we know apriori that the limit must be a constant when evaluated
+ // in the bitwidth of the IV. We prefer (potentially) keeping a truncate
+ // of the IV in the loop over a (potentially) expensive expansion of the
+ // widened exit count add(zext(add)) expression.
+ if (SE->getTypeSizeInBits(IVInit->getType())
+ > SE->getTypeSizeInBits(ExitCount->getType())) {
+ if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
+ ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
+ else
+ IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
+ }
+
+ const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
+
+ if (UsePostInc)
+ IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
+
+ // Expand the code for the iteration count.
+ assert(SE->isLoopInvariant(IVLimit, L) &&
+ "Computed iteration count is not loop invariant!");
+ // Ensure that we generate the same type as IndVar, or a smaller integer
+ // type. In the presence of null pointer values, we have an integer type
+ // SCEV expression (IVInit) for a pointer type IV value (IndVar).
+ Type *LimitTy = ExitCount->getType()->isPointerTy() ?
+ IndVar->getType() : ExitCount->getType();
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
+ }
+}
+
+/// This method rewrites the exit condition of the loop to be a canonical !=
+/// comparison against the incremented loop induction variable. This pass is
+/// able to rewrite the exit tests of any loop where the SCEV analysis can
+/// determine a loop-invariant trip count of the loop, which is actually a much
+/// broader range than just linear tests.
+bool IndVarSimplify::
+linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
+ const SCEV *ExitCount,
+ PHINode *IndVar, SCEVExpander &Rewriter) {
+ assert(L->getLoopLatch() && "Loop no longer in simplified form?");
+ assert(isLoopCounter(IndVar, L, SE));
+ Instruction * const IncVar =
+ cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
+
+ // Initialize CmpIndVar to the preincremented IV.
+ Value *CmpIndVar = IndVar;
+ bool UsePostInc = false;
+
+ // If the exiting block is the same as the backedge block, we prefer to
+ // compare against the post-incremented value, otherwise we must compare
+ // against the preincremented value.
+ if (ExitingBB == L->getLoopLatch()) {
+ // For pointer IVs, we chose to not strip inbounds which requires us not
+ // to add a potentially UB introducing use. We need to either a) show
+ // the loop test we're modifying is already in post-inc form, or b) show
+ // that adding a use must not introduce UB.
+ bool SafeToPostInc =
+ IndVar->getType()->isIntegerTy() ||
+ isLoopExitTestBasedOn(IncVar, ExitingBB) ||
+ mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
+ if (SafeToPostInc) {
+ UsePostInc = true;
+ CmpIndVar = IncVar;
+ }
+ }
+
+ // It may be necessary to drop nowrap flags on the incrementing instruction
+ // if either LFTR moves from a pre-inc check to a post-inc check (in which
+ // case the increment might have previously been poison on the last iteration
+ // only) or if LFTR switches to a different IV that was previously dynamically
+ // dead (and as such may be arbitrarily poison). We remove any nowrap flags
+ // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
+ // check), because the pre-inc addrec flags may be adopted from the original
+ // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
+ // TODO: This handling is inaccurate for one case: If we switch to a
+ // dynamically dead IV that wraps on the first loop iteration only, which is
+ // not covered by the post-inc addrec. (If the new IV was not dynamically
+ // dead, it could not be poison on the first iteration in the first place.)
+ if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
+ const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
+ if (BO->hasNoUnsignedWrap())
+ BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
+ if (BO->hasNoSignedWrap())
+ BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
+ }
+
+ Value *ExitCnt = genLoopLimit(
+ IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
+ assert(ExitCnt->getType()->isPointerTy() ==
+ IndVar->getType()->isPointerTy() &&
+ "genLoopLimit missed a cast");
+
+ // Insert a new icmp_ne or icmp_eq instruction before the branch.
+ BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
+ ICmpInst::Predicate P;
+ if (L->contains(BI->getSuccessor(0)))
+ P = ICmpInst::ICMP_NE;
+ else
+ P = ICmpInst::ICMP_EQ;
+
+ IRBuilder<> Builder(BI);
+
+ // The new loop exit condition should reuse the debug location of the
+ // original loop exit condition.
+ if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
+ Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
+
+ // For integer IVs, if we evaluated the limit in the narrower bitwidth to
+ // avoid the expensive expansion of the limit expression in the wider type,
+ // emit a truncate to narrow the IV to the ExitCount type. This is safe
+ // since we know (from the exit count bitwidth), that we can't self-wrap in
+ // the narrower type.
+ unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
+ unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
+ if (CmpIndVarSize > ExitCntSize) {
+ assert(!CmpIndVar->getType()->isPointerTy() &&
+ !ExitCnt->getType()->isPointerTy());
+
+ // Before resorting to actually inserting the truncate, use the same
+ // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
+ // the other side of the comparison instead. We still evaluate the limit
+ // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
+ // a truncate within in.
+ bool Extended = false;
+ const SCEV *IV = SE->getSCEV(CmpIndVar);
+ const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
+ ExitCnt->getType());
+ const SCEV *ZExtTrunc =
+ SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
+
+ if (ZExtTrunc == IV) {
+ Extended = true;
+ ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
+ "wide.trip.count");
+ } else {
+ const SCEV *SExtTrunc =
+ SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
+ if (SExtTrunc == IV) {
+ Extended = true;
+ ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
+ "wide.trip.count");
+ }
+ }
+
+ if (Extended) {
+ bool Discard;
+ L->makeLoopInvariant(ExitCnt, Discard);
+ } else
+ CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
+ "lftr.wideiv");
+ }
+ LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
+ << " LHS:" << *CmpIndVar << '\n'
+ << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
+ << "\n"
+ << " RHS:\t" << *ExitCnt << "\n"
+ << "ExitCount:\t" << *ExitCount << "\n"
+ << " was: " << *BI->getCondition() << "\n");
+
+ Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
+ Value *OrigCond = BI->getCondition();
+ // It's tempting to use replaceAllUsesWith here to fully replace the old
+ // comparison, but that's not immediately safe, since users of the old
+ // comparison may not be dominated by the new comparison. Instead, just
+ // update the branch to use the new comparison; in the common case this
+ // will make old comparison dead.
+ BI->setCondition(Cond);
+ DeadInsts.push_back(OrigCond);
+
+ ++NumLFTR;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
+//===----------------------------------------------------------------------===//
+
+/// If there's a single exit block, sink any loop-invariant values that
+/// were defined in the preheader but not used inside the loop into the
+/// exit block to reduce register pressure in the loop.
+bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
+ BasicBlock *ExitBlock = L->getExitBlock();
+ if (!ExitBlock) return false;
+
+ BasicBlock *Preheader = L->getLoopPreheader();
+ if (!Preheader) return false;
+
+ bool MadeAnyChanges = false;
+ BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
+ BasicBlock::iterator I(Preheader->getTerminator());
+ while (I != Preheader->begin()) {
+ --I;
+ // New instructions were inserted at the end of the preheader.
+ if (isa<PHINode>(I))
+ break;
+
+ // Don't move instructions which might have side effects, since the side
+ // effects need to complete before instructions inside the loop. Also don't
+ // move instructions which might read memory, since the loop may modify
+ // memory. Note that it's okay if the instruction might have undefined
+ // behavior: LoopSimplify guarantees that the preheader dominates the exit
+ // block.
+ if (I->mayHaveSideEffects() || I->mayReadFromMemory())
+ continue;
+
+ // Skip debug info intrinsics.
+ if (isa<DbgInfoIntrinsic>(I))
+ continue;
+
+ // Skip eh pad instructions.
+ if (I->isEHPad())
+ continue;
+
+ // Don't sink alloca: we never want to sink static alloca's out of the
+ // entry block, and correctly sinking dynamic alloca's requires
+ // checks for stacksave/stackrestore intrinsics.
+ // FIXME: Refactor this check somehow?
+ if (isa<AllocaInst>(I))
+ continue;
+
+ // Determine if there is a use in or before the loop (direct or
+ // otherwise).
+ bool UsedInLoop = false;
+ for (Use &U : I->uses()) {
+ Instruction *User = cast<Instruction>(U.getUser());
+ BasicBlock *UseBB = User->getParent();
+ if (PHINode *P = dyn_cast<PHINode>(User)) {
+ unsigned i =
+ PHINode::getIncomingValueNumForOperand(U.getOperandNo());
+ UseBB = P->getIncomingBlock(i);
+ }
+ if (UseBB == Preheader || L->contains(UseBB)) {
+ UsedInLoop = true;
+ break;
+ }
+ }
+
+ // If there is, the def must remain in the preheader.
+ if (UsedInLoop)
+ continue;
+
+ // Otherwise, sink it to the exit block.
+ Instruction *ToMove = &*I;
+ bool Done = false;
+
+ if (I != Preheader->begin()) {
+ // Skip debug info intrinsics.
+ do {
+ --I;
+ } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
+
+ if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
+ Done = true;
+ } else {
+ Done = true;
+ }
+
+ MadeAnyChanges = true;
+ ToMove->moveBefore(*ExitBlock, InsertPt);
+ if (Done) break;
+ InsertPt = ToMove->getIterator();
+ }
+
+ return MadeAnyChanges;
+}
+
+bool IndVarSimplify::optimizeLoopExits(Loop *L) {
+ SmallVector<BasicBlock*, 16> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+
+ // Form an expression for the maximum exit count possible for this loop. We
+ // merge the max and exact information to approximate a version of
+ // getMaxBackedgeTakenInfo which isn't restricted to just constants.
+ // TODO: factor this out as a version of getMaxBackedgeTakenCount which
+ // isn't guaranteed to return a constant.
+ SmallVector<const SCEV*, 4> ExitCounts;
+ const SCEV *MaxConstEC = SE->getMaxBackedgeTakenCount(L);
+ if (!isa<SCEVCouldNotCompute>(MaxConstEC))
+ ExitCounts.push_back(MaxConstEC);
+ for (BasicBlock *ExitingBB : ExitingBlocks) {
+ const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
+ if (!isa<SCEVCouldNotCompute>(ExitCount)) {
+ assert(DT->dominates(ExitingBB, L->getLoopLatch()) &&
+ "We should only have known counts for exiting blocks that "
+ "dominate latch!");
+ ExitCounts.push_back(ExitCount);
+ }
+ }
+ if (ExitCounts.empty())
+ return false;
+ const SCEV *MaxExitCount = SE->getUMinFromMismatchedTypes(ExitCounts);
+
+ bool Changed = false;
+ for (BasicBlock *ExitingBB : ExitingBlocks) {
+ // If our exitting block exits multiple loops, we can only rewrite the
+ // innermost one. Otherwise, we're changing how many times the innermost
+ // loop runs before it exits.
+ if (LI->getLoopFor(ExitingBB) != L)
+ continue;
+
+ // Can't rewrite non-branch yet.
+ BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
+ if (!BI)
+ continue;
+
+ // If already constant, nothing to do.
+ if (isa<Constant>(BI->getCondition()))
+ continue;
+
+ const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
+ if (isa<SCEVCouldNotCompute>(ExitCount))
+ continue;
+
+ // If we know we'd exit on the first iteration, rewrite the exit to
+ // reflect this. This does not imply the loop must exit through this
+ // exit; there may be an earlier one taken on the first iteration.
+ // TODO: Given we know the backedge can't be taken, we should go ahead
+ // and break it. Or at least, kill all the header phis and simplify.
+ if (ExitCount->isZero()) {
+ bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
+ auto *OldCond = BI->getCondition();
+ auto *NewCond = ExitIfTrue ? ConstantInt::getTrue(OldCond->getType()) :
+ ConstantInt::getFalse(OldCond->getType());
+ BI->setCondition(NewCond);
+ if (OldCond->use_empty())
+ DeadInsts.push_back(OldCond);
+ Changed = true;
+ continue;
+ }
+
+ // If we end up with a pointer exit count, bail.
+ if (!ExitCount->getType()->isIntegerTy() ||
+ !MaxExitCount->getType()->isIntegerTy())
+ return false;
+
+ Type *WiderType =
+ SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
+ ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
+ MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
+ assert(MaxExitCount->getType() == ExitCount->getType());
+
+ // Can we prove that some other exit must be taken strictly before this
+ // one? TODO: handle cases where ule is known, and equality is covered
+ // by a dominating exit
+ if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
+ MaxExitCount, ExitCount)) {
+ bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
+ auto *OldCond = BI->getCondition();
+ auto *NewCond = ExitIfTrue ? ConstantInt::getFalse(OldCond->getType()) :
+ ConstantInt::getTrue(OldCond->getType());
+ BI->setCondition(NewCond);
+ if (OldCond->use_empty())
+ DeadInsts.push_back(OldCond);
+ Changed = true;
+ continue;
+ }
+
+ // TODO: If we can prove that the exiting iteration is equal to the exit
+ // count for this exit and that no previous exit oppurtunities exist within
+ // the loop, then we can discharge all other exits. (May fall out of
+ // previous TODO.)
+
+ // TODO: If we can't prove any relation between our exit count and the
+ // loops exit count, but taking this exit doesn't require actually running
+ // the loop (i.e. no side effects, no computed values used in exit), then
+ // we can replace the exit test with a loop invariant test which exits on
+ // the first iteration.
+ }
+ return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// IndVarSimplify driver. Manage several subpasses of IV simplification.
+//===----------------------------------------------------------------------===//
+
+bool IndVarSimplify::run(Loop *L) {
+ // We need (and expect!) the incoming loop to be in LCSSA.
+ assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
+ "LCSSA required to run indvars!");
+ bool Changed = false;
+
+ // If LoopSimplify form is not available, stay out of trouble. Some notes:
+ // - LSR currently only supports LoopSimplify-form loops. Indvars'
+ // canonicalization can be a pessimization without LSR to "clean up"
+ // afterwards.
+ // - We depend on having a preheader; in particular,
+ // Loop::getCanonicalInductionVariable only supports loops with preheaders,
+ // and we're in trouble if we can't find the induction variable even when
+ // we've manually inserted one.
+ // - LFTR relies on having a single backedge.
+ if (!L->isLoopSimplifyForm())
+ return false;
+
+ // If there are any floating-point recurrences, attempt to
+ // transform them to use integer recurrences.
+ Changed |= rewriteNonIntegerIVs(L);
+
+ const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
+
+ // Create a rewriter object which we'll use to transform the code with.
+ SCEVExpander Rewriter(*SE, DL, "indvars");
+#ifndef NDEBUG
+ Rewriter.setDebugType(DEBUG_TYPE);
+#endif
+
+ // Eliminate redundant IV users.
+ //
+ // Simplification works best when run before other consumers of SCEV. We
+ // attempt to avoid evaluating SCEVs for sign/zero extend operations until
+ // other expressions involving loop IVs have been evaluated. This helps SCEV
+ // set no-wrap flags before normalizing sign/zero extension.
+ Rewriter.disableCanonicalMode();
+ Changed |= simplifyAndExtend(L, Rewriter, LI);
+
+ // Check to see if this loop has a computable loop-invariant execution count.
+ // If so, this means that we can compute the final value of any expressions
+ // that are recurrent in the loop, and substitute the exit values from the
+ // loop into any instructions outside of the loop that use the final values of
+ // the current expressions.
+ //
+ if (ReplaceExitValue != NeverRepl &&
+ !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
+ Changed |= rewriteLoopExitValues(L, Rewriter);
+
+ // Eliminate redundant IV cycles.
+ NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
+
+ Changed |= optimizeLoopExits(L);
+
+ // If we have a trip count expression, rewrite the loop's exit condition
+ // using it.
+ if (!DisableLFTR) {
+ SmallVector<BasicBlock*, 16> ExitingBlocks;
+ L->getExitingBlocks(ExitingBlocks);
+ for (BasicBlock *ExitingBB : ExitingBlocks) {
+ // Can't rewrite non-branch yet.
+ if (!isa<BranchInst>(ExitingBB->getTerminator()))
+ continue;
+
+ // If our exitting block exits multiple loops, we can only rewrite the
+ // innermost one. Otherwise, we're changing how many times the innermost
+ // loop runs before it exits.
+ if (LI->getLoopFor(ExitingBB) != L)
+ continue;
+
+ if (!needsLFTR(L, ExitingBB))
+ continue;
+
+ const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
+ if (isa<SCEVCouldNotCompute>(ExitCount))
+ continue;
+
+ // This was handled above, but as we form SCEVs, we can sometimes refine
+ // existing ones; this allows exit counts to be folded to zero which
+ // weren't when optimizeLoopExits saw them. Arguably, we should iterate
+ // until stable to handle cases like this better.
+ if (ExitCount->isZero())
+ continue;
+
+ PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
+ if (!IndVar)
+ continue;
+
+ // Avoid high cost expansions. Note: This heuristic is questionable in
+ // that our definition of "high cost" is not exactly principled.
+ if (Rewriter.isHighCostExpansion(ExitCount, L))
+ continue;
+
+ // Check preconditions for proper SCEVExpander operation. SCEV does not
+ // express SCEVExpander's dependencies, such as LoopSimplify. Instead
+ // any pass that uses the SCEVExpander must do it. This does not work
+ // well for loop passes because SCEVExpander makes assumptions about
+ // all loops, while LoopPassManager only forces the current loop to be
+ // simplified.
+ //
+ // FIXME: SCEV expansion has no way to bail out, so the caller must
+ // explicitly check any assumptions made by SCEV. Brittle.
+ const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
+ if (!AR || AR->getLoop()->getLoopPreheader())
+ Changed |= linearFunctionTestReplace(L, ExitingBB,
+ ExitCount, IndVar,
+ Rewriter);
+ }
+ }
+ // Clear the rewriter cache, because values that are in the rewriter's cache
+ // can be deleted in the loop below, causing the AssertingVH in the cache to
+ // trigger.
+ Rewriter.clear();
+
+ // Now that we're done iterating through lists, clean up any instructions
+ // which are now dead.
+ while (!DeadInsts.empty())
+ if (Instruction *Inst =
+ dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
+ Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
+
+ // The Rewriter may not be used from this point on.
+
+ // Loop-invariant instructions in the preheader that aren't used in the
+ // loop may be sunk below the loop to reduce register pressure.
+ Changed |= sinkUnusedInvariants(L);
+
+ // rewriteFirstIterationLoopExitValues does not rely on the computation of
+ // trip count and therefore can further simplify exit values in addition to
+ // rewriteLoopExitValues.
+ Changed |= rewriteFirstIterationLoopExitValues(L);
+
+ // Clean up dead instructions.
+ Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
+
+ // Check a post-condition.
+ assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
+ "Indvars did not preserve LCSSA!");
+
+ // Verify that LFTR, and any other change have not interfered with SCEV's
+ // ability to compute trip count.
+#ifndef NDEBUG
+ if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
+ SE->forgetLoop(L);
+ const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
+ if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
+ SE->getTypeSizeInBits(NewBECount->getType()))
+ NewBECount = SE->getTruncateOrNoop(NewBECount,
+ BackedgeTakenCount->getType());
+ else
+ BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
+ NewBECount->getType());
+ assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
+ }
+#endif
+
+ return Changed;
+}
+
+PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR,
+ LPMUpdater &) {
+ Function *F = L.getHeader()->getParent();
+ const DataLayout &DL = F->getParent()->getDataLayout();
+
+ IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
+ if (!IVS.run(&L))
+ return PreservedAnalyses::all();
+
+ auto PA = getLoopPassPreservedAnalyses();
+ PA.preserveSet<CFGAnalyses>();
+ return PA;
+}
+
+namespace {
+
+struct IndVarSimplifyLegacyPass : public LoopPass {
+ static char ID; // Pass identification, replacement for typeid
+
+ IndVarSimplifyLegacyPass() : LoopPass(ID) {
+ initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L))
+ return false;
+
+ auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
+ auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
+ auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
+ auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
+ auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
+ auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
+ auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
+ const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
+
+ IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
+ return IVS.run(L);
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesCFG();
+ getLoopAnalysisUsage(AU);
+ }
+};
+
+} // end anonymous namespace
+
+char IndVarSimplifyLegacyPass::ID = 0;
+
+INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
+ "Induction Variable Simplification", false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
+ "Induction Variable Simplification", false, false)
+
+Pass *llvm::createIndVarSimplifyPass() {
+ return new IndVarSimplifyLegacyPass();
+}