diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp')
| -rw-r--r-- | contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp | 2954 |
1 files changed, 2954 insertions, 0 deletions
diff --git a/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp b/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp new file mode 100644 index 000000000000..f9fc698a4a9b --- /dev/null +++ b/contrib/llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp @@ -0,0 +1,2954 @@ +//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This transformation analyzes and transforms the induction variables (and +// computations derived from them) into simpler forms suitable for subsequent +// analysis and transformation. +// +// If the trip count of a loop is computable, this pass also makes the following +// changes: +// 1. The exit condition for the loop is canonicalized to compare the +// induction value against the exit value. This turns loops like: +// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' +// 2. Any use outside of the loop of an expression derived from the indvar +// is changed to compute the derived value outside of the loop, eliminating +// the dependence on the exit value of the induction variable. If the only +// purpose of the loop is to compute the exit value of some derived +// expression, this transformation will make the loop dead. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/IndVarSimplify.h" +#include "llvm/ADT/APFloat.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/ConstantRange.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Operator.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueHandle.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Scalar/LoopPassManager.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/SimplifyIndVar.h" +#include <cassert> +#include <cstdint> +#include <utility> + +using namespace llvm; + +#define DEBUG_TYPE "indvars" + +STATISTIC(NumWidened , "Number of indvars widened"); +STATISTIC(NumReplaced , "Number of exit values replaced"); +STATISTIC(NumLFTR , "Number of loop exit tests replaced"); +STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); +STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); + +// Trip count verification can be enabled by default under NDEBUG if we +// implement a strong expression equivalence checker in SCEV. Until then, we +// use the verify-indvars flag, which may assert in some cases. +static cl::opt<bool> VerifyIndvars( + "verify-indvars", cl::Hidden, + cl::desc("Verify the ScalarEvolution result after running indvars")); + +enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, NoHardUse, AlwaysRepl }; + +static cl::opt<ReplaceExitVal> ReplaceExitValue( + "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), + cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), + cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), + clEnumValN(OnlyCheapRepl, "cheap", + "only replace exit value when the cost is cheap"), + clEnumValN(NoHardUse, "noharduse", + "only replace exit values when loop def likely dead"), + clEnumValN(AlwaysRepl, "always", + "always replace exit value whenever possible"))); + +static cl::opt<bool> UsePostIncrementRanges( + "indvars-post-increment-ranges", cl::Hidden, + cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), + cl::init(true)); + +static cl::opt<bool> +DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), + cl::desc("Disable Linear Function Test Replace optimization")); + +namespace { + +struct RewritePhi; + +class IndVarSimplify { + LoopInfo *LI; + ScalarEvolution *SE; + DominatorTree *DT; + const DataLayout &DL; + TargetLibraryInfo *TLI; + const TargetTransformInfo *TTI; + + SmallVector<WeakTrackingVH, 16> DeadInsts; + + bool isValidRewrite(Value *FromVal, Value *ToVal); + + bool handleFloatingPointIV(Loop *L, PHINode *PH); + bool rewriteNonIntegerIVs(Loop *L); + + bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); + bool optimizeLoopExits(Loop *L); + + bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); + bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); + bool rewriteFirstIterationLoopExitValues(Loop *L); + bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const; + + bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, + const SCEV *ExitCount, + PHINode *IndVar, SCEVExpander &Rewriter); + + bool sinkUnusedInvariants(Loop *L); + +public: + IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, + const DataLayout &DL, TargetLibraryInfo *TLI, + TargetTransformInfo *TTI) + : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} + + bool run(Loop *L); +}; + +} // end anonymous namespace + +/// Return true if the SCEV expansion generated by the rewriter can replace the +/// original value. SCEV guarantees that it produces the same value, but the way +/// it is produced may be illegal IR. Ideally, this function will only be +/// called for verification. +bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { + // If an SCEV expression subsumed multiple pointers, its expansion could + // reassociate the GEP changing the base pointer. This is illegal because the + // final address produced by a GEP chain must be inbounds relative to its + // underlying object. Otherwise basic alias analysis, among other things, + // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid + // producing an expression involving multiple pointers. Until then, we must + // bail out here. + // + // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject + // because it understands lcssa phis while SCEV does not. + Value *FromPtr = FromVal; + Value *ToPtr = ToVal; + if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { + FromPtr = GEP->getPointerOperand(); + } + if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { + ToPtr = GEP->getPointerOperand(); + } + if (FromPtr != FromVal || ToPtr != ToVal) { + // Quickly check the common case + if (FromPtr == ToPtr) + return true; + + // SCEV may have rewritten an expression that produces the GEP's pointer + // operand. That's ok as long as the pointer operand has the same base + // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the + // base of a recurrence. This handles the case in which SCEV expansion + // converts a pointer type recurrence into a nonrecurrent pointer base + // indexed by an integer recurrence. + + // If the GEP base pointer is a vector of pointers, abort. + if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) + return false; + + const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); + const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); + if (FromBase == ToBase) + return true; + + LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase + << " != " << *ToBase << "\n"); + + return false; + } + return true; +} + +/// Determine the insertion point for this user. By default, insert immediately +/// before the user. SCEVExpander or LICM will hoist loop invariants out of the +/// loop. For PHI nodes, there may be multiple uses, so compute the nearest +/// common dominator for the incoming blocks. A nullptr can be returned if no +/// viable location is found: it may happen if User is a PHI and Def only comes +/// to this PHI from unreachable blocks. +static Instruction *getInsertPointForUses(Instruction *User, Value *Def, + DominatorTree *DT, LoopInfo *LI) { + PHINode *PHI = dyn_cast<PHINode>(User); + if (!PHI) + return User; + + Instruction *InsertPt = nullptr; + for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { + if (PHI->getIncomingValue(i) != Def) + continue; + + BasicBlock *InsertBB = PHI->getIncomingBlock(i); + + if (!DT->isReachableFromEntry(InsertBB)) + continue; + + if (!InsertPt) { + InsertPt = InsertBB->getTerminator(); + continue; + } + InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); + InsertPt = InsertBB->getTerminator(); + } + + // If we have skipped all inputs, it means that Def only comes to Phi from + // unreachable blocks. + if (!InsertPt) + return nullptr; + + auto *DefI = dyn_cast<Instruction>(Def); + if (!DefI) + return InsertPt; + + assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); + + auto *L = LI->getLoopFor(DefI->getParent()); + assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); + + for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) + if (LI->getLoopFor(DTN->getBlock()) == L) + return DTN->getBlock()->getTerminator(); + + llvm_unreachable("DefI dominates InsertPt!"); +} + +//===----------------------------------------------------------------------===// +// rewriteNonIntegerIVs and helpers. Prefer integer IVs. +//===----------------------------------------------------------------------===// + +/// Convert APF to an integer, if possible. +static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { + bool isExact = false; + // See if we can convert this to an int64_t + uint64_t UIntVal; + if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, + APFloat::rmTowardZero, &isExact) != APFloat::opOK || + !isExact) + return false; + IntVal = UIntVal; + return true; +} + +/// If the loop has floating induction variable then insert corresponding +/// integer induction variable if possible. +/// For example, +/// for(double i = 0; i < 10000; ++i) +/// bar(i) +/// is converted into +/// for(int i = 0; i < 10000; ++i) +/// bar((double)i); +bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { + unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); + unsigned BackEdge = IncomingEdge^1; + + // Check incoming value. + auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); + + int64_t InitValue; + if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) + return false; + + // Check IV increment. Reject this PN if increment operation is not + // an add or increment value can not be represented by an integer. + auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); + if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; + + // If this is not an add of the PHI with a constantfp, or if the constant fp + // is not an integer, bail out. + ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); + int64_t IncValue; + if (IncValueVal == nullptr || Incr->getOperand(0) != PN || + !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) + return false; + + // Check Incr uses. One user is PN and the other user is an exit condition + // used by the conditional terminator. + Value::user_iterator IncrUse = Incr->user_begin(); + Instruction *U1 = cast<Instruction>(*IncrUse++); + if (IncrUse == Incr->user_end()) return false; + Instruction *U2 = cast<Instruction>(*IncrUse++); + if (IncrUse != Incr->user_end()) return false; + + // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't + // only used by a branch, we can't transform it. + FCmpInst *Compare = dyn_cast<FCmpInst>(U1); + if (!Compare) + Compare = dyn_cast<FCmpInst>(U2); + if (!Compare || !Compare->hasOneUse() || + !isa<BranchInst>(Compare->user_back())) + return false; + + BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); + + // We need to verify that the branch actually controls the iteration count + // of the loop. If not, the new IV can overflow and no one will notice. + // The branch block must be in the loop and one of the successors must be out + // of the loop. + assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); + if (!L->contains(TheBr->getParent()) || + (L->contains(TheBr->getSuccessor(0)) && + L->contains(TheBr->getSuccessor(1)))) + return false; + + // If it isn't a comparison with an integer-as-fp (the exit value), we can't + // transform it. + ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); + int64_t ExitValue; + if (ExitValueVal == nullptr || + !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) + return false; + + // Find new predicate for integer comparison. + CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; + switch (Compare->getPredicate()) { + default: return false; // Unknown comparison. + case CmpInst::FCMP_OEQ: + case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; + case CmpInst::FCMP_ONE: + case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; + case CmpInst::FCMP_OGT: + case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; + case CmpInst::FCMP_OGE: + case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; + case CmpInst::FCMP_OLT: + case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; + case CmpInst::FCMP_OLE: + case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; + } + + // We convert the floating point induction variable to a signed i32 value if + // we can. This is only safe if the comparison will not overflow in a way + // that won't be trapped by the integer equivalent operations. Check for this + // now. + // TODO: We could use i64 if it is native and the range requires it. + + // The start/stride/exit values must all fit in signed i32. + if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) + return false; + + // If not actually striding (add x, 0.0), avoid touching the code. + if (IncValue == 0) + return false; + + // Positive and negative strides have different safety conditions. + if (IncValue > 0) { + // If we have a positive stride, we require the init to be less than the + // exit value. + if (InitValue >= ExitValue) + return false; + + uint32_t Range = uint32_t(ExitValue-InitValue); + // Check for infinite loop, either: + // while (i <= Exit) or until (i > Exit) + if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { + if (++Range == 0) return false; // Range overflows. + } + + unsigned Leftover = Range % uint32_t(IncValue); + + // If this is an equality comparison, we require that the strided value + // exactly land on the exit value, otherwise the IV condition will wrap + // around and do things the fp IV wouldn't. + if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && + Leftover != 0) + return false; + + // If the stride would wrap around the i32 before exiting, we can't + // transform the IV. + if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) + return false; + } else { + // If we have a negative stride, we require the init to be greater than the + // exit value. + if (InitValue <= ExitValue) + return false; + + uint32_t Range = uint32_t(InitValue-ExitValue); + // Check for infinite loop, either: + // while (i >= Exit) or until (i < Exit) + if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { + if (++Range == 0) return false; // Range overflows. + } + + unsigned Leftover = Range % uint32_t(-IncValue); + + // If this is an equality comparison, we require that the strided value + // exactly land on the exit value, otherwise the IV condition will wrap + // around and do things the fp IV wouldn't. + if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && + Leftover != 0) + return false; + + // If the stride would wrap around the i32 before exiting, we can't + // transform the IV. + if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) + return false; + } + + IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); + + // Insert new integer induction variable. + PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); + NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), + PN->getIncomingBlock(IncomingEdge)); + + Value *NewAdd = + BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), + Incr->getName()+".int", Incr); + NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); + + ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, + ConstantInt::get(Int32Ty, ExitValue), + Compare->getName()); + + // In the following deletions, PN may become dead and may be deleted. + // Use a WeakTrackingVH to observe whether this happens. + WeakTrackingVH WeakPH = PN; + + // Delete the old floating point exit comparison. The branch starts using the + // new comparison. + NewCompare->takeName(Compare); + Compare->replaceAllUsesWith(NewCompare); + RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); + + // Delete the old floating point increment. + Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); + RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); + + // If the FP induction variable still has uses, this is because something else + // in the loop uses its value. In order to canonicalize the induction + // variable, we chose to eliminate the IV and rewrite it in terms of an + // int->fp cast. + // + // We give preference to sitofp over uitofp because it is faster on most + // platforms. + if (WeakPH) { + Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", + &*PN->getParent()->getFirstInsertionPt()); + PN->replaceAllUsesWith(Conv); + RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); + } + return true; +} + +bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { + // First step. Check to see if there are any floating-point recurrences. + // If there are, change them into integer recurrences, permitting analysis by + // the SCEV routines. + BasicBlock *Header = L->getHeader(); + + SmallVector<WeakTrackingVH, 8> PHIs; + for (PHINode &PN : Header->phis()) + PHIs.push_back(&PN); + + bool Changed = false; + for (unsigned i = 0, e = PHIs.size(); i != e; ++i) + if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) + Changed |= handleFloatingPointIV(L, PN); + + // If the loop previously had floating-point IV, ScalarEvolution + // may not have been able to compute a trip count. Now that we've done some + // re-writing, the trip count may be computable. + if (Changed) + SE->forgetLoop(L); + return Changed; +} + +namespace { + +// Collect information about PHI nodes which can be transformed in +// rewriteLoopExitValues. +struct RewritePhi { + PHINode *PN; + + // Ith incoming value. + unsigned Ith; + + // Exit value after expansion. + Value *Val; + + // High Cost when expansion. + bool HighCost; + + RewritePhi(PHINode *P, unsigned I, Value *V, bool H) + : PN(P), Ith(I), Val(V), HighCost(H) {} +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// rewriteLoopExitValues - Optimize IV users outside the loop. +// As a side effect, reduces the amount of IV processing within the loop. +//===----------------------------------------------------------------------===// + +bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const { + SmallPtrSet<const Instruction *, 8> Visited; + SmallVector<const Instruction *, 8> WorkList; + Visited.insert(I); + WorkList.push_back(I); + while (!WorkList.empty()) { + const Instruction *Curr = WorkList.pop_back_val(); + // This use is outside the loop, nothing to do. + if (!L->contains(Curr)) + continue; + // Do we assume it is a "hard" use which will not be eliminated easily? + if (Curr->mayHaveSideEffects()) + return true; + // Otherwise, add all its users to worklist. + for (auto U : Curr->users()) { + auto *UI = cast<Instruction>(U); + if (Visited.insert(UI).second) + WorkList.push_back(UI); + } + } + return false; +} + +/// Check to see if this loop has a computable loop-invariant execution count. +/// If so, this means that we can compute the final value of any expressions +/// that are recurrent in the loop, and substitute the exit values from the loop +/// into any instructions outside of the loop that use the final values of the +/// current expressions. +/// +/// This is mostly redundant with the regular IndVarSimplify activities that +/// happen later, except that it's more powerful in some cases, because it's +/// able to brute-force evaluate arbitrary instructions as long as they have +/// constant operands at the beginning of the loop. +bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { + // Check a pre-condition. + assert(L->isRecursivelyLCSSAForm(*DT, *LI) && + "Indvars did not preserve LCSSA!"); + + SmallVector<BasicBlock*, 8> ExitBlocks; + L->getUniqueExitBlocks(ExitBlocks); + + SmallVector<RewritePhi, 8> RewritePhiSet; + // Find all values that are computed inside the loop, but used outside of it. + // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan + // the exit blocks of the loop to find them. + for (BasicBlock *ExitBB : ExitBlocks) { + // If there are no PHI nodes in this exit block, then no values defined + // inside the loop are used on this path, skip it. + PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); + if (!PN) continue; + + unsigned NumPreds = PN->getNumIncomingValues(); + + // Iterate over all of the PHI nodes. + BasicBlock::iterator BBI = ExitBB->begin(); + while ((PN = dyn_cast<PHINode>(BBI++))) { + if (PN->use_empty()) + continue; // dead use, don't replace it + + if (!SE->isSCEVable(PN->getType())) + continue; + + // It's necessary to tell ScalarEvolution about this explicitly so that + // it can walk the def-use list and forget all SCEVs, as it may not be + // watching the PHI itself. Once the new exit value is in place, there + // may not be a def-use connection between the loop and every instruction + // which got a SCEVAddRecExpr for that loop. + SE->forgetValue(PN); + + // Iterate over all of the values in all the PHI nodes. + for (unsigned i = 0; i != NumPreds; ++i) { + // If the value being merged in is not integer or is not defined + // in the loop, skip it. + Value *InVal = PN->getIncomingValue(i); + if (!isa<Instruction>(InVal)) + continue; + + // If this pred is for a subloop, not L itself, skip it. + if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) + continue; // The Block is in a subloop, skip it. + + // Check that InVal is defined in the loop. + Instruction *Inst = cast<Instruction>(InVal); + if (!L->contains(Inst)) + continue; + + // Okay, this instruction has a user outside of the current loop + // and varies predictably *inside* the loop. Evaluate the value it + // contains when the loop exits, if possible. + const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); + if (!SE->isLoopInvariant(ExitValue, L) || + !isSafeToExpand(ExitValue, *SE)) + continue; + + // Computing the value outside of the loop brings no benefit if it is + // definitely used inside the loop in a way which can not be optimized + // away. Avoid doing so unless we know we have a value which computes + // the ExitValue already. TODO: This should be merged into SCEV + // expander to leverage its knowledge of existing expressions. + if (ReplaceExitValue != AlwaysRepl && + !isa<SCEVConstant>(ExitValue) && !isa<SCEVUnknown>(ExitValue) && + hasHardUserWithinLoop(L, Inst)) + continue; + + bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); + Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); + + LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal + << '\n' + << " LoopVal = " << *Inst << "\n"); + + if (!isValidRewrite(Inst, ExitVal)) { + DeadInsts.push_back(ExitVal); + continue; + } + +#ifndef NDEBUG + // If we reuse an instruction from a loop which is neither L nor one of + // its containing loops, we end up breaking LCSSA form for this loop by + // creating a new use of its instruction. + if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) + if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) + if (EVL != L) + assert(EVL->contains(L) && "LCSSA breach detected!"); +#endif + + // Collect all the candidate PHINodes to be rewritten. + RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); + } + } + } + + bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); + + bool Changed = false; + // Transformation. + for (const RewritePhi &Phi : RewritePhiSet) { + PHINode *PN = Phi.PN; + Value *ExitVal = Phi.Val; + + // Only do the rewrite when the ExitValue can be expanded cheaply. + // If LoopCanBeDel is true, rewrite exit value aggressively. + if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { + DeadInsts.push_back(ExitVal); + continue; + } + + Changed = true; + ++NumReplaced; + Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); + PN->setIncomingValue(Phi.Ith, ExitVal); + + // If this instruction is dead now, delete it. Don't do it now to avoid + // invalidating iterators. + if (isInstructionTriviallyDead(Inst, TLI)) + DeadInsts.push_back(Inst); + + // Replace PN with ExitVal if that is legal and does not break LCSSA. + if (PN->getNumIncomingValues() == 1 && + LI->replacementPreservesLCSSAForm(PN, ExitVal)) { + PN->replaceAllUsesWith(ExitVal); + PN->eraseFromParent(); + } + } + + // The insertion point instruction may have been deleted; clear it out + // so that the rewriter doesn't trip over it later. + Rewriter.clearInsertPoint(); + return Changed; +} + +//===---------------------------------------------------------------------===// +// rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know +// they will exit at the first iteration. +//===---------------------------------------------------------------------===// + +/// Check to see if this loop has loop invariant conditions which lead to loop +/// exits. If so, we know that if the exit path is taken, it is at the first +/// loop iteration. This lets us predict exit values of PHI nodes that live in +/// loop header. +bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { + // Verify the input to the pass is already in LCSSA form. + assert(L->isLCSSAForm(*DT)); + + SmallVector<BasicBlock *, 8> ExitBlocks; + L->getUniqueExitBlocks(ExitBlocks); + + bool MadeAnyChanges = false; + for (auto *ExitBB : ExitBlocks) { + // If there are no more PHI nodes in this exit block, then no more + // values defined inside the loop are used on this path. + for (PHINode &PN : ExitBB->phis()) { + for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); + IncomingValIdx != E; ++IncomingValIdx) { + auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); + + // Can we prove that the exit must run on the first iteration if it + // runs at all? (i.e. early exits are fine for our purposes, but + // traces which lead to this exit being taken on the 2nd iteration + // aren't.) Note that this is about whether the exit branch is + // executed, not about whether it is taken. + if (!L->getLoopLatch() || + !DT->dominates(IncomingBB, L->getLoopLatch())) + continue; + + // Get condition that leads to the exit path. + auto *TermInst = IncomingBB->getTerminator(); + + Value *Cond = nullptr; + if (auto *BI = dyn_cast<BranchInst>(TermInst)) { + // Must be a conditional branch, otherwise the block + // should not be in the loop. + Cond = BI->getCondition(); + } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) + Cond = SI->getCondition(); + else + continue; + + if (!L->isLoopInvariant(Cond)) + continue; + + auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); + + // Only deal with PHIs in the loop header. + if (!ExitVal || ExitVal->getParent() != L->getHeader()) + continue; + + // If ExitVal is a PHI on the loop header, then we know its + // value along this exit because the exit can only be taken + // on the first iteration. + auto *LoopPreheader = L->getLoopPreheader(); + assert(LoopPreheader && "Invalid loop"); + int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); + if (PreheaderIdx != -1) { + assert(ExitVal->getParent() == L->getHeader() && + "ExitVal must be in loop header"); + MadeAnyChanges = true; + PN.setIncomingValue(IncomingValIdx, + ExitVal->getIncomingValue(PreheaderIdx)); + } + } + } + } + return MadeAnyChanges; +} + +/// Check whether it is possible to delete the loop after rewriting exit +/// value. If it is possible, ignore ReplaceExitValue and do rewriting +/// aggressively. +bool IndVarSimplify::canLoopBeDeleted( + Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { + BasicBlock *Preheader = L->getLoopPreheader(); + // If there is no preheader, the loop will not be deleted. + if (!Preheader) + return false; + + // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. + // We obviate multiple ExitingBlocks case for simplicity. + // TODO: If we see testcase with multiple ExitingBlocks can be deleted + // after exit value rewriting, we can enhance the logic here. + SmallVector<BasicBlock *, 4> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + SmallVector<BasicBlock *, 8> ExitBlocks; + L->getUniqueExitBlocks(ExitBlocks); + if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) + return false; + + BasicBlock *ExitBlock = ExitBlocks[0]; + BasicBlock::iterator BI = ExitBlock->begin(); + while (PHINode *P = dyn_cast<PHINode>(BI)) { + Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); + + // If the Incoming value of P is found in RewritePhiSet, we know it + // could be rewritten to use a loop invariant value in transformation + // phase later. Skip it in the loop invariant check below. + bool found = false; + for (const RewritePhi &Phi : RewritePhiSet) { + unsigned i = Phi.Ith; + if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { + found = true; + break; + } + } + + Instruction *I; + if (!found && (I = dyn_cast<Instruction>(Incoming))) + if (!L->hasLoopInvariantOperands(I)) + return false; + + ++BI; + } + + for (auto *BB : L->blocks()) + if (llvm::any_of(*BB, [](Instruction &I) { + return I.mayHaveSideEffects(); + })) + return false; + + return true; +} + +//===----------------------------------------------------------------------===// +// IV Widening - Extend the width of an IV to cover its widest uses. +//===----------------------------------------------------------------------===// + +namespace { + +// Collect information about induction variables that are used by sign/zero +// extend operations. This information is recorded by CollectExtend and provides +// the input to WidenIV. +struct WideIVInfo { + PHINode *NarrowIV = nullptr; + + // Widest integer type created [sz]ext + Type *WidestNativeType = nullptr; + + // Was a sext user seen before a zext? + bool IsSigned = false; +}; + +} // end anonymous namespace + +/// Update information about the induction variable that is extended by this +/// sign or zero extend operation. This is used to determine the final width of +/// the IV before actually widening it. +static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, + const TargetTransformInfo *TTI) { + bool IsSigned = Cast->getOpcode() == Instruction::SExt; + if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) + return; + + Type *Ty = Cast->getType(); + uint64_t Width = SE->getTypeSizeInBits(Ty); + if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) + return; + + // Check that `Cast` actually extends the induction variable (we rely on this + // later). This takes care of cases where `Cast` is extending a truncation of + // the narrow induction variable, and thus can end up being narrower than the + // "narrow" induction variable. + uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); + if (NarrowIVWidth >= Width) + return; + + // Cast is either an sext or zext up to this point. + // We should not widen an indvar if arithmetics on the wider indvar are more + // expensive than those on the narrower indvar. We check only the cost of ADD + // because at least an ADD is required to increment the induction variable. We + // could compute more comprehensively the cost of all instructions on the + // induction variable when necessary. + if (TTI && + TTI->getArithmeticInstrCost(Instruction::Add, Ty) > + TTI->getArithmeticInstrCost(Instruction::Add, + Cast->getOperand(0)->getType())) { + return; + } + + if (!WI.WidestNativeType) { + WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); + WI.IsSigned = IsSigned; + return; + } + + // We extend the IV to satisfy the sign of its first user, arbitrarily. + if (WI.IsSigned != IsSigned) + return; + + if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) + WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); +} + +namespace { + +/// Record a link in the Narrow IV def-use chain along with the WideIV that +/// computes the same value as the Narrow IV def. This avoids caching Use* +/// pointers. +struct NarrowIVDefUse { + Instruction *NarrowDef = nullptr; + Instruction *NarrowUse = nullptr; + Instruction *WideDef = nullptr; + + // True if the narrow def is never negative. Tracking this information lets + // us use a sign extension instead of a zero extension or vice versa, when + // profitable and legal. + bool NeverNegative = false; + + NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, + bool NeverNegative) + : NarrowDef(ND), NarrowUse(NU), WideDef(WD), + NeverNegative(NeverNegative) {} +}; + +/// The goal of this transform is to remove sign and zero extends without +/// creating any new induction variables. To do this, it creates a new phi of +/// the wider type and redirects all users, either removing extends or inserting +/// truncs whenever we stop propagating the type. +class WidenIV { + // Parameters + PHINode *OrigPhi; + Type *WideType; + + // Context + LoopInfo *LI; + Loop *L; + ScalarEvolution *SE; + DominatorTree *DT; + + // Does the module have any calls to the llvm.experimental.guard intrinsic + // at all? If not we can avoid scanning instructions looking for guards. + bool HasGuards; + + // Result + PHINode *WidePhi = nullptr; + Instruction *WideInc = nullptr; + const SCEV *WideIncExpr = nullptr; + SmallVectorImpl<WeakTrackingVH> &DeadInsts; + + SmallPtrSet<Instruction *,16> Widened; + SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; + + enum ExtendKind { ZeroExtended, SignExtended, Unknown }; + + // A map tracking the kind of extension used to widen each narrow IV + // and narrow IV user. + // Key: pointer to a narrow IV or IV user. + // Value: the kind of extension used to widen this Instruction. + DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; + + using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; + + // A map with control-dependent ranges for post increment IV uses. The key is + // a pair of IV def and a use of this def denoting the context. The value is + // a ConstantRange representing possible values of the def at the given + // context. + DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; + + Optional<ConstantRange> getPostIncRangeInfo(Value *Def, + Instruction *UseI) { + DefUserPair Key(Def, UseI); + auto It = PostIncRangeInfos.find(Key); + return It == PostIncRangeInfos.end() + ? Optional<ConstantRange>(None) + : Optional<ConstantRange>(It->second); + } + + void calculatePostIncRanges(PHINode *OrigPhi); + void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); + + void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { + DefUserPair Key(Def, UseI); + auto It = PostIncRangeInfos.find(Key); + if (It == PostIncRangeInfos.end()) + PostIncRangeInfos.insert({Key, R}); + else + It->second = R.intersectWith(It->second); + } + +public: + WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, + DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, + bool HasGuards) + : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), + L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), + HasGuards(HasGuards), DeadInsts(DI) { + assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); + ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; + } + + PHINode *createWideIV(SCEVExpander &Rewriter); + +protected: + Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, + Instruction *Use); + + Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); + Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, + const SCEVAddRecExpr *WideAR); + Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); + + ExtendKind getExtendKind(Instruction *I); + + using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; + + WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); + + WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); + + const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, + unsigned OpCode) const; + + Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); + + bool widenLoopCompare(NarrowIVDefUse DU); + bool widenWithVariantLoadUse(NarrowIVDefUse DU); + void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); + + void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); +}; + +} // end anonymous namespace + +Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, + bool IsSigned, Instruction *Use) { + // Set the debug location and conservative insertion point. + IRBuilder<> Builder(Use); + // Hoist the insertion point into loop preheaders as far as possible. + for (const Loop *L = LI->getLoopFor(Use->getParent()); + L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); + L = L->getParentLoop()) + Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); + + return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : + Builder.CreateZExt(NarrowOper, WideType); +} + +/// Instantiate a wide operation to replace a narrow operation. This only needs +/// to handle operations that can evaluation to SCEVAddRec. It can safely return +/// 0 for any operation we decide not to clone. +Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, + const SCEVAddRecExpr *WideAR) { + unsigned Opcode = DU.NarrowUse->getOpcode(); + switch (Opcode) { + default: + return nullptr; + case Instruction::Add: + case Instruction::Mul: + case Instruction::UDiv: + case Instruction::Sub: + return cloneArithmeticIVUser(DU, WideAR); + + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: + case Instruction::Shl: + case Instruction::LShr: + case Instruction::AShr: + return cloneBitwiseIVUser(DU); + } +} + +Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { + Instruction *NarrowUse = DU.NarrowUse; + Instruction *NarrowDef = DU.NarrowDef; + Instruction *WideDef = DU.WideDef; + + LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); + + // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything + // about the narrow operand yet so must insert a [sz]ext. It is probably loop + // invariant and will be folded or hoisted. If it actually comes from a + // widened IV, it should be removed during a future call to widenIVUse. + bool IsSigned = getExtendKind(NarrowDef) == SignExtended; + Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) + ? WideDef + : createExtendInst(NarrowUse->getOperand(0), WideType, + IsSigned, NarrowUse); + Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) + ? WideDef + : createExtendInst(NarrowUse->getOperand(1), WideType, + IsSigned, NarrowUse); + + auto *NarrowBO = cast<BinaryOperator>(NarrowUse); + auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, + NarrowBO->getName()); + IRBuilder<> Builder(NarrowUse); + Builder.Insert(WideBO); + WideBO->copyIRFlags(NarrowBO); + return WideBO; +} + +Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, + const SCEVAddRecExpr *WideAR) { + Instruction *NarrowUse = DU.NarrowUse; + Instruction *NarrowDef = DU.NarrowDef; + Instruction *WideDef = DU.WideDef; + + LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); + + unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; + + // We're trying to find X such that + // + // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X + // + // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), + // and check using SCEV if any of them are correct. + + // Returns true if extending NonIVNarrowDef according to `SignExt` is a + // correct solution to X. + auto GuessNonIVOperand = [&](bool SignExt) { + const SCEV *WideLHS; + const SCEV *WideRHS; + + auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { + if (SignExt) + return SE->getSignExtendExpr(S, Ty); + return SE->getZeroExtendExpr(S, Ty); + }; + + if (IVOpIdx == 0) { + WideLHS = SE->getSCEV(WideDef); + const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); + WideRHS = GetExtend(NarrowRHS, WideType); + } else { + const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); + WideLHS = GetExtend(NarrowLHS, WideType); + WideRHS = SE->getSCEV(WideDef); + } + + // WideUse is "WideDef `op.wide` X" as described in the comment. + const SCEV *WideUse = nullptr; + + switch (NarrowUse->getOpcode()) { + default: + llvm_unreachable("No other possibility!"); + + case Instruction::Add: + WideUse = SE->getAddExpr(WideLHS, WideRHS); + break; + + case Instruction::Mul: + WideUse = SE->getMulExpr(WideLHS, WideRHS); + break; + + case Instruction::UDiv: + WideUse = SE->getUDivExpr(WideLHS, WideRHS); + break; + + case Instruction::Sub: + WideUse = SE->getMinusSCEV(WideLHS, WideRHS); + break; + } + + return WideUse == WideAR; + }; + + bool SignExtend = getExtendKind(NarrowDef) == SignExtended; + if (!GuessNonIVOperand(SignExtend)) { + SignExtend = !SignExtend; + if (!GuessNonIVOperand(SignExtend)) + return nullptr; + } + + Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) + ? WideDef + : createExtendInst(NarrowUse->getOperand(0), WideType, + SignExtend, NarrowUse); + Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) + ? WideDef + : createExtendInst(NarrowUse->getOperand(1), WideType, + SignExtend, NarrowUse); + + auto *NarrowBO = cast<BinaryOperator>(NarrowUse); + auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, + NarrowBO->getName()); + + IRBuilder<> Builder(NarrowUse); + Builder.Insert(WideBO); + WideBO->copyIRFlags(NarrowBO); + return WideBO; +} + +WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { + auto It = ExtendKindMap.find(I); + assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); + return It->second; +} + +const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, + unsigned OpCode) const { + if (OpCode == Instruction::Add) + return SE->getAddExpr(LHS, RHS); + if (OpCode == Instruction::Sub) + return SE->getMinusSCEV(LHS, RHS); + if (OpCode == Instruction::Mul) + return SE->getMulExpr(LHS, RHS); + + llvm_unreachable("Unsupported opcode."); +} + +/// No-wrap operations can transfer sign extension of their result to their +/// operands. Generate the SCEV value for the widened operation without +/// actually modifying the IR yet. If the expression after extending the +/// operands is an AddRec for this loop, return the AddRec and the kind of +/// extension used. +WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { + // Handle the common case of add<nsw/nuw> + const unsigned OpCode = DU.NarrowUse->getOpcode(); + // Only Add/Sub/Mul instructions supported yet. + if (OpCode != Instruction::Add && OpCode != Instruction::Sub && + OpCode != Instruction::Mul) + return {nullptr, Unknown}; + + // One operand (NarrowDef) has already been extended to WideDef. Now determine + // if extending the other will lead to a recurrence. + const unsigned ExtendOperIdx = + DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; + assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); + + const SCEV *ExtendOperExpr = nullptr; + const OverflowingBinaryOperator *OBO = + cast<OverflowingBinaryOperator>(DU.NarrowUse); + ExtendKind ExtKind = getExtendKind(DU.NarrowDef); + if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) + ExtendOperExpr = SE->getSignExtendExpr( + SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); + else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) + ExtendOperExpr = SE->getZeroExtendExpr( + SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); + else + return {nullptr, Unknown}; + + // When creating this SCEV expr, don't apply the current operations NSW or NUW + // flags. This instruction may be guarded by control flow that the no-wrap + // behavior depends on. Non-control-equivalent instructions can be mapped to + // the same SCEV expression, and it would be incorrect to transfer NSW/NUW + // semantics to those operations. + const SCEV *lhs = SE->getSCEV(DU.WideDef); + const SCEV *rhs = ExtendOperExpr; + + // Let's swap operands to the initial order for the case of non-commutative + // operations, like SUB. See PR21014. + if (ExtendOperIdx == 0) + std::swap(lhs, rhs); + const SCEVAddRecExpr *AddRec = + dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); + + if (!AddRec || AddRec->getLoop() != L) + return {nullptr, Unknown}; + + return {AddRec, ExtKind}; +} + +/// Is this instruction potentially interesting for further simplification after +/// widening it's type? In other words, can the extend be safely hoisted out of +/// the loop with SCEV reducing the value to a recurrence on the same loop. If +/// so, return the extended recurrence and the kind of extension used. Otherwise +/// return {nullptr, Unknown}. +WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { + if (!SE->isSCEVable(DU.NarrowUse->getType())) + return {nullptr, Unknown}; + + const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); + if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= + SE->getTypeSizeInBits(WideType)) { + // NarrowUse implicitly widens its operand. e.g. a gep with a narrow + // index. So don't follow this use. + return {nullptr, Unknown}; + } + + const SCEV *WideExpr; + ExtendKind ExtKind; + if (DU.NeverNegative) { + WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); + if (isa<SCEVAddRecExpr>(WideExpr)) + ExtKind = SignExtended; + else { + WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); + ExtKind = ZeroExtended; + } + } else if (getExtendKind(DU.NarrowDef) == SignExtended) { + WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); + ExtKind = SignExtended; + } else { + WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); + ExtKind = ZeroExtended; + } + const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); + if (!AddRec || AddRec->getLoop() != L) + return {nullptr, Unknown}; + return {AddRec, ExtKind}; +} + +/// This IV user cannot be widened. Replace this use of the original narrow IV +/// with a truncation of the new wide IV to isolate and eliminate the narrow IV. +static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { + auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); + if (!InsertPt) + return; + LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " + << *DU.NarrowUse << "\n"); + IRBuilder<> Builder(InsertPt); + Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); + DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); +} + +/// If the narrow use is a compare instruction, then widen the compare +// (and possibly the other operand). The extend operation is hoisted into the +// loop preheader as far as possible. +bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { + ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); + if (!Cmp) + return false; + + // We can legally widen the comparison in the following two cases: + // + // - The signedness of the IV extension and comparison match + // + // - The narrow IV is always positive (and thus its sign extension is equal + // to its zero extension). For instance, let's say we're zero extending + // %narrow for the following use + // + // icmp slt i32 %narrow, %val ... (A) + // + // and %narrow is always positive. Then + // + // (A) == icmp slt i32 sext(%narrow), sext(%val) + // == icmp slt i32 zext(%narrow), sext(%val) + bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; + if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) + return false; + + Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); + unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); + unsigned IVWidth = SE->getTypeSizeInBits(WideType); + assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); + + // Widen the compare instruction. + auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); + if (!InsertPt) + return false; + IRBuilder<> Builder(InsertPt); + DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); + + // Widen the other operand of the compare, if necessary. + if (CastWidth < IVWidth) { + Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); + DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); + } + return true; +} + +/// If the narrow use is an instruction whose two operands are the defining +/// instruction of DU and a load instruction, then we have the following: +/// if the load is hoisted outside the loop, then we do not reach this function +/// as scalar evolution analysis works fine in widenIVUse with variables +/// hoisted outside the loop and efficient code is subsequently generated by +/// not emitting truncate instructions. But when the load is not hoisted +/// (whether due to limitation in alias analysis or due to a true legality), +/// then scalar evolution can not proceed with loop variant values and +/// inefficient code is generated. This function handles the non-hoisted load +/// special case by making the optimization generate the same type of code for +/// hoisted and non-hoisted load (widen use and eliminate sign extend +/// instruction). This special case is important especially when the induction +/// variables are affecting addressing mode in code generation. +bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { + Instruction *NarrowUse = DU.NarrowUse; + Instruction *NarrowDef = DU.NarrowDef; + Instruction *WideDef = DU.WideDef; + + // Handle the common case of add<nsw/nuw> + const unsigned OpCode = NarrowUse->getOpcode(); + // Only Add/Sub/Mul instructions are supported. + if (OpCode != Instruction::Add && OpCode != Instruction::Sub && + OpCode != Instruction::Mul) + return false; + + // The operand that is not defined by NarrowDef of DU. Let's call it the + // other operand. + unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; + assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && + "bad DU"); + + const SCEV *ExtendOperExpr = nullptr; + const OverflowingBinaryOperator *OBO = + cast<OverflowingBinaryOperator>(NarrowUse); + ExtendKind ExtKind = getExtendKind(NarrowDef); + if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) + ExtendOperExpr = SE->getSignExtendExpr( + SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); + else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) + ExtendOperExpr = SE->getZeroExtendExpr( + SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); + else + return false; + + // We are interested in the other operand being a load instruction. + // But, we should look into relaxing this restriction later on. + auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); + if (I && I->getOpcode() != Instruction::Load) + return false; + + // Verifying that Defining operand is an AddRec + const SCEV *Op1 = SE->getSCEV(WideDef); + const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); + if (!AddRecOp1 || AddRecOp1->getLoop() != L) + return false; + // Verifying that other operand is an Extend. + if (ExtKind == SignExtended) { + if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) + return false; + } else { + if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) + return false; + } + + if (ExtKind == SignExtended) { + for (Use &U : NarrowUse->uses()) { + SExtInst *User = dyn_cast<SExtInst>(U.getUser()); + if (!User || User->getType() != WideType) + return false; + } + } else { // ExtKind == ZeroExtended + for (Use &U : NarrowUse->uses()) { + ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); + if (!User || User->getType() != WideType) + return false; + } + } + + return true; +} + +/// Special Case for widening with variant Loads (see +/// WidenIV::widenWithVariantLoadUse). This is the code generation part. +void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { + Instruction *NarrowUse = DU.NarrowUse; + Instruction *NarrowDef = DU.NarrowDef; + Instruction *WideDef = DU.WideDef; + + ExtendKind ExtKind = getExtendKind(NarrowDef); + + LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); + + // Generating a widening use instruction. + Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) + ? WideDef + : createExtendInst(NarrowUse->getOperand(0), WideType, + ExtKind, NarrowUse); + Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) + ? WideDef + : createExtendInst(NarrowUse->getOperand(1), WideType, + ExtKind, NarrowUse); + + auto *NarrowBO = cast<BinaryOperator>(NarrowUse); + auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, + NarrowBO->getName()); + IRBuilder<> Builder(NarrowUse); + Builder.Insert(WideBO); + WideBO->copyIRFlags(NarrowBO); + + if (ExtKind == SignExtended) + ExtendKindMap[NarrowUse] = SignExtended; + else + ExtendKindMap[NarrowUse] = ZeroExtended; + + // Update the Use. + if (ExtKind == SignExtended) { + for (Use &U : NarrowUse->uses()) { + SExtInst *User = dyn_cast<SExtInst>(U.getUser()); + if (User && User->getType() == WideType) { + LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " + << *WideBO << "\n"); + ++NumElimExt; + User->replaceAllUsesWith(WideBO); + DeadInsts.emplace_back(User); + } + } + } else { // ExtKind == ZeroExtended + for (Use &U : NarrowUse->uses()) { + ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); + if (User && User->getType() == WideType) { + LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " + << *WideBO << "\n"); + ++NumElimExt; + User->replaceAllUsesWith(WideBO); + DeadInsts.emplace_back(User); + } + } + } +} + +/// Determine whether an individual user of the narrow IV can be widened. If so, +/// return the wide clone of the user. +Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { + assert(ExtendKindMap.count(DU.NarrowDef) && + "Should already know the kind of extension used to widen NarrowDef"); + + // Stop traversing the def-use chain at inner-loop phis or post-loop phis. + if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { + if (LI->getLoopFor(UsePhi->getParent()) != L) { + // For LCSSA phis, sink the truncate outside the loop. + // After SimplifyCFG most loop exit targets have a single predecessor. + // Otherwise fall back to a truncate within the loop. + if (UsePhi->getNumOperands() != 1) + truncateIVUse(DU, DT, LI); + else { + // Widening the PHI requires us to insert a trunc. The logical place + // for this trunc is in the same BB as the PHI. This is not possible if + // the BB is terminated by a catchswitch. + if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) + return nullptr; + + PHINode *WidePhi = + PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", + UsePhi); + WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); + IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); + Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); + UsePhi->replaceAllUsesWith(Trunc); + DeadInsts.emplace_back(UsePhi); + LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " + << *WidePhi << "\n"); + } + return nullptr; + } + } + + // This narrow use can be widened by a sext if it's non-negative or its narrow + // def was widended by a sext. Same for zext. + auto canWidenBySExt = [&]() { + return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; + }; + auto canWidenByZExt = [&]() { + return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; + }; + + // Our raison d'etre! Eliminate sign and zero extension. + if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || + (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { + Value *NewDef = DU.WideDef; + if (DU.NarrowUse->getType() != WideType) { + unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); + unsigned IVWidth = SE->getTypeSizeInBits(WideType); + if (CastWidth < IVWidth) { + // The cast isn't as wide as the IV, so insert a Trunc. + IRBuilder<> Builder(DU.NarrowUse); + NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); + } + else { + // A wider extend was hidden behind a narrower one. This may induce + // another round of IV widening in which the intermediate IV becomes + // dead. It should be very rare. + LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi + << " not wide enough to subsume " << *DU.NarrowUse + << "\n"); + DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); + NewDef = DU.NarrowUse; + } + } + if (NewDef != DU.NarrowUse) { + LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse + << " replaced by " << *DU.WideDef << "\n"); + ++NumElimExt; + DU.NarrowUse->replaceAllUsesWith(NewDef); + DeadInsts.emplace_back(DU.NarrowUse); + } + // Now that the extend is gone, we want to expose it's uses for potential + // further simplification. We don't need to directly inform SimplifyIVUsers + // of the new users, because their parent IV will be processed later as a + // new loop phi. If we preserved IVUsers analysis, we would also want to + // push the uses of WideDef here. + + // No further widening is needed. The deceased [sz]ext had done it for us. + return nullptr; + } + + // Does this user itself evaluate to a recurrence after widening? + WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); + if (!WideAddRec.first) + WideAddRec = getWideRecurrence(DU); + + assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); + if (!WideAddRec.first) { + // If use is a loop condition, try to promote the condition instead of + // truncating the IV first. + if (widenLoopCompare(DU)) + return nullptr; + + // We are here about to generate a truncate instruction that may hurt + // performance because the scalar evolution expression computed earlier + // in WideAddRec.first does not indicate a polynomial induction expression. + // In that case, look at the operands of the use instruction to determine + // if we can still widen the use instead of truncating its operand. + if (widenWithVariantLoadUse(DU)) { + widenWithVariantLoadUseCodegen(DU); + return nullptr; + } + + // This user does not evaluate to a recurrence after widening, so don't + // follow it. Instead insert a Trunc to kill off the original use, + // eventually isolating the original narrow IV so it can be removed. + truncateIVUse(DU, DT, LI); + return nullptr; + } + // Assume block terminators cannot evaluate to a recurrence. We can't to + // insert a Trunc after a terminator if there happens to be a critical edge. + assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && + "SCEV is not expected to evaluate a block terminator"); + + // Reuse the IV increment that SCEVExpander created as long as it dominates + // NarrowUse. + Instruction *WideUse = nullptr; + if (WideAddRec.first == WideIncExpr && + Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) + WideUse = WideInc; + else { + WideUse = cloneIVUser(DU, WideAddRec.first); + if (!WideUse) + return nullptr; + } + // Evaluation of WideAddRec ensured that the narrow expression could be + // extended outside the loop without overflow. This suggests that the wide use + // evaluates to the same expression as the extended narrow use, but doesn't + // absolutely guarantee it. Hence the following failsafe check. In rare cases + // where it fails, we simply throw away the newly created wide use. + if (WideAddRec.first != SE->getSCEV(WideUse)) { + LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " + << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first + << "\n"); + DeadInsts.emplace_back(WideUse); + return nullptr; + } + + ExtendKindMap[DU.NarrowUse] = WideAddRec.second; + // Returning WideUse pushes it on the worklist. + return WideUse; +} + +/// Add eligible users of NarrowDef to NarrowIVUsers. +void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { + const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); + bool NonNegativeDef = + SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, + SE->getConstant(NarrowSCEV->getType(), 0)); + for (User *U : NarrowDef->users()) { + Instruction *NarrowUser = cast<Instruction>(U); + + // Handle data flow merges and bizarre phi cycles. + if (!Widened.insert(NarrowUser).second) + continue; + + bool NonNegativeUse = false; + if (!NonNegativeDef) { + // We might have a control-dependent range information for this context. + if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) + NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); + } + + NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, + NonNegativeDef || NonNegativeUse); + } +} + +/// Process a single induction variable. First use the SCEVExpander to create a +/// wide induction variable that evaluates to the same recurrence as the +/// original narrow IV. Then use a worklist to forward traverse the narrow IV's +/// def-use chain. After widenIVUse has processed all interesting IV users, the +/// narrow IV will be isolated for removal by DeleteDeadPHIs. +/// +/// It would be simpler to delete uses as they are processed, but we must avoid +/// invalidating SCEV expressions. +PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { + // Is this phi an induction variable? + const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); + if (!AddRec) + return nullptr; + + // Widen the induction variable expression. + const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended + ? SE->getSignExtendExpr(AddRec, WideType) + : SE->getZeroExtendExpr(AddRec, WideType); + + assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && + "Expect the new IV expression to preserve its type"); + + // Can the IV be extended outside the loop without overflow? + AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); + if (!AddRec || AddRec->getLoop() != L) + return nullptr; + + // An AddRec must have loop-invariant operands. Since this AddRec is + // materialized by a loop header phi, the expression cannot have any post-loop + // operands, so they must dominate the loop header. + assert( + SE->properlyDominates(AddRec->getStart(), L->getHeader()) && + SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && + "Loop header phi recurrence inputs do not dominate the loop"); + + // Iterate over IV uses (including transitive ones) looking for IV increments + // of the form 'add nsw %iv, <const>'. For each increment and each use of + // the increment calculate control-dependent range information basing on + // dominating conditions inside of the loop (e.g. a range check inside of the + // loop). Calculated ranges are stored in PostIncRangeInfos map. + // + // Control-dependent range information is later used to prove that a narrow + // definition is not negative (see pushNarrowIVUsers). It's difficult to do + // this on demand because when pushNarrowIVUsers needs this information some + // of the dominating conditions might be already widened. + if (UsePostIncrementRanges) + calculatePostIncRanges(OrigPhi); + + // The rewriter provides a value for the desired IV expression. This may + // either find an existing phi or materialize a new one. Either way, we + // expect a well-formed cyclic phi-with-increments. i.e. any operand not part + // of the phi-SCC dominates the loop entry. + Instruction *InsertPt = &L->getHeader()->front(); + WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); + + // Remembering the WideIV increment generated by SCEVExpander allows + // widenIVUse to reuse it when widening the narrow IV's increment. We don't + // employ a general reuse mechanism because the call above is the only call to + // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. + if (BasicBlock *LatchBlock = L->getLoopLatch()) { + WideInc = + cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); + WideIncExpr = SE->getSCEV(WideInc); + // Propagate the debug location associated with the original loop increment + // to the new (widened) increment. + auto *OrigInc = + cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); + WideInc->setDebugLoc(OrigInc->getDebugLoc()); + } + + LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); + ++NumWidened; + + // Traverse the def-use chain using a worklist starting at the original IV. + assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); + + Widened.insert(OrigPhi); + pushNarrowIVUsers(OrigPhi, WidePhi); + + while (!NarrowIVUsers.empty()) { + NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); + + // Process a def-use edge. This may replace the use, so don't hold a + // use_iterator across it. + Instruction *WideUse = widenIVUse(DU, Rewriter); + + // Follow all def-use edges from the previous narrow use. + if (WideUse) + pushNarrowIVUsers(DU.NarrowUse, WideUse); + + // widenIVUse may have removed the def-use edge. + if (DU.NarrowDef->use_empty()) + DeadInsts.emplace_back(DU.NarrowDef); + } + + // Attach any debug information to the new PHI. Since OrigPhi and WidePHI + // evaluate the same recurrence, we can just copy the debug info over. + SmallVector<DbgValueInst *, 1> DbgValues; + llvm::findDbgValues(DbgValues, OrigPhi); + auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), + ValueAsMetadata::get(WidePhi)); + for (auto &DbgValue : DbgValues) + DbgValue->setOperand(0, MDPhi); + return WidePhi; +} + +/// Calculates control-dependent range for the given def at the given context +/// by looking at dominating conditions inside of the loop +void WidenIV::calculatePostIncRange(Instruction *NarrowDef, + Instruction *NarrowUser) { + using namespace llvm::PatternMatch; + + Value *NarrowDefLHS; + const APInt *NarrowDefRHS; + if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), + m_APInt(NarrowDefRHS))) || + !NarrowDefRHS->isNonNegative()) + return; + + auto UpdateRangeFromCondition = [&] (Value *Condition, + bool TrueDest) { + CmpInst::Predicate Pred; + Value *CmpRHS; + if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), + m_Value(CmpRHS)))) + return; + + CmpInst::Predicate P = + TrueDest ? Pred : CmpInst::getInversePredicate(Pred); + + auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); + auto CmpConstrainedLHSRange = + ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); + auto NarrowDefRange = + CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); + + updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); + }; + + auto UpdateRangeFromGuards = [&](Instruction *Ctx) { + if (!HasGuards) + return; + + for (Instruction &I : make_range(Ctx->getIterator().getReverse(), + Ctx->getParent()->rend())) { + Value *C = nullptr; + if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) + UpdateRangeFromCondition(C, /*TrueDest=*/true); + } + }; + + UpdateRangeFromGuards(NarrowUser); + + BasicBlock *NarrowUserBB = NarrowUser->getParent(); + // If NarrowUserBB is statically unreachable asking dominator queries may + // yield surprising results. (e.g. the block may not have a dom tree node) + if (!DT->isReachableFromEntry(NarrowUserBB)) + return; + + for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); + L->contains(DTB->getBlock()); + DTB = DTB->getIDom()) { + auto *BB = DTB->getBlock(); + auto *TI = BB->getTerminator(); + UpdateRangeFromGuards(TI); + + auto *BI = dyn_cast<BranchInst>(TI); + if (!BI || !BI->isConditional()) + continue; + + auto *TrueSuccessor = BI->getSuccessor(0); + auto *FalseSuccessor = BI->getSuccessor(1); + + auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { + return BBE.isSingleEdge() && + DT->dominates(BBE, NarrowUser->getParent()); + }; + + if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) + UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); + + if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) + UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); + } +} + +/// Calculates PostIncRangeInfos map for the given IV +void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { + SmallPtrSet<Instruction *, 16> Visited; + SmallVector<Instruction *, 6> Worklist; + Worklist.push_back(OrigPhi); + Visited.insert(OrigPhi); + + while (!Worklist.empty()) { + Instruction *NarrowDef = Worklist.pop_back_val(); + + for (Use &U : NarrowDef->uses()) { + auto *NarrowUser = cast<Instruction>(U.getUser()); + + // Don't go looking outside the current loop. + auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; + if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) + continue; + + if (!Visited.insert(NarrowUser).second) + continue; + + Worklist.push_back(NarrowUser); + + calculatePostIncRange(NarrowDef, NarrowUser); + } + } +} + +//===----------------------------------------------------------------------===// +// Live IV Reduction - Minimize IVs live across the loop. +//===----------------------------------------------------------------------===// + +//===----------------------------------------------------------------------===// +// Simplification of IV users based on SCEV evaluation. +//===----------------------------------------------------------------------===// + +namespace { + +class IndVarSimplifyVisitor : public IVVisitor { + ScalarEvolution *SE; + const TargetTransformInfo *TTI; + PHINode *IVPhi; + +public: + WideIVInfo WI; + + IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, + const TargetTransformInfo *TTI, + const DominatorTree *DTree) + : SE(SCEV), TTI(TTI), IVPhi(IV) { + DT = DTree; + WI.NarrowIV = IVPhi; + } + + // Implement the interface used by simplifyUsersOfIV. + void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } +}; + +} // end anonymous namespace + +/// Iteratively perform simplification on a worklist of IV users. Each +/// successive simplification may push more users which may themselves be +/// candidates for simplification. +/// +/// Sign/Zero extend elimination is interleaved with IV simplification. +bool IndVarSimplify::simplifyAndExtend(Loop *L, + SCEVExpander &Rewriter, + LoopInfo *LI) { + SmallVector<WideIVInfo, 8> WideIVs; + + auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( + Intrinsic::getName(Intrinsic::experimental_guard)); + bool HasGuards = GuardDecl && !GuardDecl->use_empty(); + + SmallVector<PHINode*, 8> LoopPhis; + for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { + LoopPhis.push_back(cast<PHINode>(I)); + } + // Each round of simplification iterates through the SimplifyIVUsers worklist + // for all current phis, then determines whether any IVs can be + // widened. Widening adds new phis to LoopPhis, inducing another round of + // simplification on the wide IVs. + bool Changed = false; + while (!LoopPhis.empty()) { + // Evaluate as many IV expressions as possible before widening any IVs. This + // forces SCEV to set no-wrap flags before evaluating sign/zero + // extension. The first time SCEV attempts to normalize sign/zero extension, + // the result becomes final. So for the most predictable results, we delay + // evaluation of sign/zero extend evaluation until needed, and avoid running + // other SCEV based analysis prior to simplifyAndExtend. + do { + PHINode *CurrIV = LoopPhis.pop_back_val(); + + // Information about sign/zero extensions of CurrIV. + IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); + + Changed |= + simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); + + if (Visitor.WI.WidestNativeType) { + WideIVs.push_back(Visitor.WI); + } + } while(!LoopPhis.empty()); + + for (; !WideIVs.empty(); WideIVs.pop_back()) { + WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); + if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { + Changed = true; + LoopPhis.push_back(WidePhi); + } + } + } + return Changed; +} + +//===----------------------------------------------------------------------===// +// linearFunctionTestReplace and its kin. Rewrite the loop exit condition. +//===----------------------------------------------------------------------===// + +/// Given an Value which is hoped to be part of an add recurance in the given +/// loop, return the associated Phi node if so. Otherwise, return null. Note +/// that this is less general than SCEVs AddRec checking. +static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { + Instruction *IncI = dyn_cast<Instruction>(IncV); + if (!IncI) + return nullptr; + + switch (IncI->getOpcode()) { + case Instruction::Add: + case Instruction::Sub: + break; + case Instruction::GetElementPtr: + // An IV counter must preserve its type. + if (IncI->getNumOperands() == 2) + break; + LLVM_FALLTHROUGH; + default: + return nullptr; + } + + PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); + if (Phi && Phi->getParent() == L->getHeader()) { + if (L->isLoopInvariant(IncI->getOperand(1))) + return Phi; + return nullptr; + } + if (IncI->getOpcode() == Instruction::GetElementPtr) + return nullptr; + + // Allow add/sub to be commuted. + Phi = dyn_cast<PHINode>(IncI->getOperand(1)); + if (Phi && Phi->getParent() == L->getHeader()) { + if (L->isLoopInvariant(IncI->getOperand(0))) + return Phi; + } + return nullptr; +} + +/// Whether the current loop exit test is based on this value. Currently this +/// is limited to a direct use in the loop condition. +static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); + // TODO: Allow non-icmp loop test. + if (!ICmp) + return false; + + // TODO: Allow indirect use. + return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; +} + +/// linearFunctionTestReplace policy. Return true unless we can show that the +/// current exit test is already sufficiently canonical. +static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { + assert(L->getLoopLatch() && "Must be in simplified form"); + + // Avoid converting a constant or loop invariant test back to a runtime + // test. This is critical for when SCEV's cached ExitCount is less precise + // than the current IR (such as after we've proven a particular exit is + // actually dead and thus the BE count never reaches our ExitCount.) + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + if (L->isLoopInvariant(BI->getCondition())) + return false; + + // Do LFTR to simplify the exit condition to an ICMP. + ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); + if (!Cond) + return true; + + // Do LFTR to simplify the exit ICMP to EQ/NE + ICmpInst::Predicate Pred = Cond->getPredicate(); + if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) + return true; + + // Look for a loop invariant RHS + Value *LHS = Cond->getOperand(0); + Value *RHS = Cond->getOperand(1); + if (!L->isLoopInvariant(RHS)) { + if (!L->isLoopInvariant(LHS)) + return true; + std::swap(LHS, RHS); + } + // Look for a simple IV counter LHS + PHINode *Phi = dyn_cast<PHINode>(LHS); + if (!Phi) + Phi = getLoopPhiForCounter(LHS, L); + + if (!Phi) + return true; + + // Do LFTR if PHI node is defined in the loop, but is *not* a counter. + int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); + if (Idx < 0) + return true; + + // Do LFTR if the exit condition's IV is *not* a simple counter. + Value *IncV = Phi->getIncomingValue(Idx); + return Phi != getLoopPhiForCounter(IncV, L); +} + +/// Return true if undefined behavior would provable be executed on the path to +/// OnPathTo if Root produced a posion result. Note that this doesn't say +/// anything about whether OnPathTo is actually executed or whether Root is +/// actually poison. This can be used to assess whether a new use of Root can +/// be added at a location which is control equivalent with OnPathTo (such as +/// immediately before it) without introducing UB which didn't previously +/// exist. Note that a false result conveys no information. +static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, + Instruction *OnPathTo, + DominatorTree *DT) { + // Basic approach is to assume Root is poison, propagate poison forward + // through all users we can easily track, and then check whether any of those + // users are provable UB and must execute before out exiting block might + // exit. + + // The set of all recursive users we've visited (which are assumed to all be + // poison because of said visit) + SmallSet<const Value *, 16> KnownPoison; + SmallVector<const Instruction*, 16> Worklist; + Worklist.push_back(Root); + while (!Worklist.empty()) { + const Instruction *I = Worklist.pop_back_val(); + + // If we know this must trigger UB on a path leading our target. + if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) + return true; + + // If we can't analyze propagation through this instruction, just skip it + // and transitive users. Safe as false is a conservative result. + if (!propagatesFullPoison(I) && I != Root) + continue; + + if (KnownPoison.insert(I).second) + for (const User *User : I->users()) + Worklist.push_back(cast<Instruction>(User)); + } + + // Might be non-UB, or might have a path we couldn't prove must execute on + // way to exiting bb. + return false; +} + +/// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils +/// down to checking that all operands are constant and listing instructions +/// that may hide undef. +static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, + unsigned Depth) { + if (isa<Constant>(V)) + return !isa<UndefValue>(V); + + if (Depth >= 6) + return false; + + // Conservatively handle non-constant non-instructions. For example, Arguments + // may be undef. + Instruction *I = dyn_cast<Instruction>(V); + if (!I) + return false; + + // Load and return values may be undef. + if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) + return false; + + // Optimistically handle other instructions. + for (Value *Op : I->operands()) { + if (!Visited.insert(Op).second) + continue; + if (!hasConcreteDefImpl(Op, Visited, Depth+1)) + return false; + } + return true; +} + +/// Return true if the given value is concrete. We must prove that undef can +/// never reach it. +/// +/// TODO: If we decide that this is a good approach to checking for undef, we +/// may factor it into a common location. +static bool hasConcreteDef(Value *V) { + SmallPtrSet<Value*, 8> Visited; + Visited.insert(V); + return hasConcreteDefImpl(V, Visited, 0); +} + +/// Return true if this IV has any uses other than the (soon to be rewritten) +/// loop exit test. +static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { + int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); + Value *IncV = Phi->getIncomingValue(LatchIdx); + + for (User *U : Phi->users()) + if (U != Cond && U != IncV) return false; + + for (User *U : IncV->users()) + if (U != Cond && U != Phi) return false; + return true; +} + +/// Return true if the given phi is a "counter" in L. A counter is an +/// add recurance (of integer or pointer type) with an arbitrary start, and a +/// step of 1. Note that L must have exactly one latch. +static bool isLoopCounter(PHINode* Phi, Loop *L, + ScalarEvolution *SE) { + assert(Phi->getParent() == L->getHeader()); + assert(L->getLoopLatch()); + + if (!SE->isSCEVable(Phi->getType())) + return false; + + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); + if (!AR || AR->getLoop() != L || !AR->isAffine()) + return false; + + const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); + if (!Step || !Step->isOne()) + return false; + + int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); + Value *IncV = Phi->getIncomingValue(LatchIdx); + return (getLoopPhiForCounter(IncV, L) == Phi); +} + +/// Search the loop header for a loop counter (anadd rec w/step of one) +/// suitable for use by LFTR. If multiple counters are available, select the +/// "best" one based profitable heuristics. +/// +/// BECount may be an i8* pointer type. The pointer difference is already +/// valid count without scaling the address stride, so it remains a pointer +/// expression as far as SCEV is concerned. +static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, + const SCEV *BECount, + ScalarEvolution *SE, DominatorTree *DT) { + uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); + + Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); + + // Loop over all of the PHI nodes, looking for a simple counter. + PHINode *BestPhi = nullptr; + const SCEV *BestInit = nullptr; + BasicBlock *LatchBlock = L->getLoopLatch(); + assert(LatchBlock && "Must be in simplified form"); + const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); + + for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { + PHINode *Phi = cast<PHINode>(I); + if (!isLoopCounter(Phi, L, SE)) + continue; + + // Avoid comparing an integer IV against a pointer Limit. + if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) + continue; + + const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); + + // AR may be a pointer type, while BECount is an integer type. + // AR may be wider than BECount. With eq/ne tests overflow is immaterial. + // AR may not be a narrower type, or we may never exit. + uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); + if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) + continue; + + // Avoid reusing a potentially undef value to compute other values that may + // have originally had a concrete definition. + if (!hasConcreteDef(Phi)) { + // We explicitly allow unknown phis as long as they are already used by + // the loop exit test. This is legal since performing LFTR could not + // increase the number of undef users. + Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); + if (!isLoopExitTestBasedOn(Phi, ExitingBB) && + !isLoopExitTestBasedOn(IncPhi, ExitingBB)) + continue; + } + + // Avoid introducing undefined behavior due to poison which didn't exist in + // the original program. (Annoyingly, the rules for poison and undef + // propagation are distinct, so this does NOT cover the undef case above.) + // We have to ensure that we don't introduce UB by introducing a use on an + // iteration where said IV produces poison. Our strategy here differs for + // pointers and integer IVs. For integers, we strip and reinfer as needed, + // see code in linearFunctionTestReplace. For pointers, we restrict + // transforms as there is no good way to reinfer inbounds once lost. + if (!Phi->getType()->isIntegerTy() && + !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) + continue; + + const SCEV *Init = AR->getStart(); + + if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { + // Don't force a live loop counter if another IV can be used. + if (AlmostDeadIV(Phi, LatchBlock, Cond)) + continue; + + // Prefer to count-from-zero. This is a more "canonical" counter form. It + // also prefers integer to pointer IVs. + if (BestInit->isZero() != Init->isZero()) { + if (BestInit->isZero()) + continue; + } + // If two IVs both count from zero or both count from nonzero then the + // narrower is likely a dead phi that has been widened. Use the wider phi + // to allow the other to be eliminated. + else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) + continue; + } + BestPhi = Phi; + BestInit = Init; + } + return BestPhi; +} + +/// Insert an IR expression which computes the value held by the IV IndVar +/// (which must be an loop counter w/unit stride) after the backedge of loop L +/// is taken ExitCount times. +static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, + const SCEV *ExitCount, bool UsePostInc, Loop *L, + SCEVExpander &Rewriter, ScalarEvolution *SE) { + assert(isLoopCounter(IndVar, L, SE)); + const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); + const SCEV *IVInit = AR->getStart(); + + // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter + // finds a valid pointer IV. Sign extend ExitCount in order to materialize a + // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing + // the existing GEPs whenever possible. + if (IndVar->getType()->isPointerTy() && + !ExitCount->getType()->isPointerTy()) { + // IVOffset will be the new GEP offset that is interpreted by GEP as a + // signed value. ExitCount on the other hand represents the loop trip count, + // which is an unsigned value. FindLoopCounter only allows induction + // variables that have a positive unit stride of one. This means we don't + // have to handle the case of negative offsets (yet) and just need to zero + // extend ExitCount. + Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); + const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); + if (UsePostInc) + IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); + + // Expand the code for the iteration count. + assert(SE->isLoopInvariant(IVOffset, L) && + "Computed iteration count is not loop invariant!"); + + // We could handle pointer IVs other than i8*, but we need to compensate for + // gep index scaling. + assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), + cast<PointerType>(IndVar->getType()) + ->getElementType())->isOne() && + "unit stride pointer IV must be i8*"); + + const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); + } else { + // In any other case, convert both IVInit and ExitCount to integers before + // comparing. This may result in SCEV expansion of pointers, but in practice + // SCEV will fold the pointer arithmetic away as such: + // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). + // + // Valid Cases: (1) both integers is most common; (2) both may be pointers + // for simple memset-style loops. + // + // IVInit integer and ExitCount pointer would only occur if a canonical IV + // were generated on top of case #2, which is not expected. + + assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); + // For unit stride, IVCount = Start + ExitCount with 2's complement + // overflow. + + // For integer IVs, truncate the IV before computing IVInit + BECount, + // unless we know apriori that the limit must be a constant when evaluated + // in the bitwidth of the IV. We prefer (potentially) keeping a truncate + // of the IV in the loop over a (potentially) expensive expansion of the + // widened exit count add(zext(add)) expression. + if (SE->getTypeSizeInBits(IVInit->getType()) + > SE->getTypeSizeInBits(ExitCount->getType())) { + if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) + ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); + else + IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); + } + + const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); + + if (UsePostInc) + IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); + + // Expand the code for the iteration count. + assert(SE->isLoopInvariant(IVLimit, L) && + "Computed iteration count is not loop invariant!"); + // Ensure that we generate the same type as IndVar, or a smaller integer + // type. In the presence of null pointer values, we have an integer type + // SCEV expression (IVInit) for a pointer type IV value (IndVar). + Type *LimitTy = ExitCount->getType()->isPointerTy() ? + IndVar->getType() : ExitCount->getType(); + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); + } +} + +/// This method rewrites the exit condition of the loop to be a canonical != +/// comparison against the incremented loop induction variable. This pass is +/// able to rewrite the exit tests of any loop where the SCEV analysis can +/// determine a loop-invariant trip count of the loop, which is actually a much +/// broader range than just linear tests. +bool IndVarSimplify:: +linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, + const SCEV *ExitCount, + PHINode *IndVar, SCEVExpander &Rewriter) { + assert(L->getLoopLatch() && "Loop no longer in simplified form?"); + assert(isLoopCounter(IndVar, L, SE)); + Instruction * const IncVar = + cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); + + // Initialize CmpIndVar to the preincremented IV. + Value *CmpIndVar = IndVar; + bool UsePostInc = false; + + // If the exiting block is the same as the backedge block, we prefer to + // compare against the post-incremented value, otherwise we must compare + // against the preincremented value. + if (ExitingBB == L->getLoopLatch()) { + // For pointer IVs, we chose to not strip inbounds which requires us not + // to add a potentially UB introducing use. We need to either a) show + // the loop test we're modifying is already in post-inc form, or b) show + // that adding a use must not introduce UB. + bool SafeToPostInc = + IndVar->getType()->isIntegerTy() || + isLoopExitTestBasedOn(IncVar, ExitingBB) || + mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); + if (SafeToPostInc) { + UsePostInc = true; + CmpIndVar = IncVar; + } + } + + // It may be necessary to drop nowrap flags on the incrementing instruction + // if either LFTR moves from a pre-inc check to a post-inc check (in which + // case the increment might have previously been poison on the last iteration + // only) or if LFTR switches to a different IV that was previously dynamically + // dead (and as such may be arbitrarily poison). We remove any nowrap flags + // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc + // check), because the pre-inc addrec flags may be adopted from the original + // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. + // TODO: This handling is inaccurate for one case: If we switch to a + // dynamically dead IV that wraps on the first loop iteration only, which is + // not covered by the post-inc addrec. (If the new IV was not dynamically + // dead, it could not be poison on the first iteration in the first place.) + if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { + const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); + if (BO->hasNoUnsignedWrap()) + BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); + if (BO->hasNoSignedWrap()) + BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); + } + + Value *ExitCnt = genLoopLimit( + IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); + assert(ExitCnt->getType()->isPointerTy() == + IndVar->getType()->isPointerTy() && + "genLoopLimit missed a cast"); + + // Insert a new icmp_ne or icmp_eq instruction before the branch. + BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); + ICmpInst::Predicate P; + if (L->contains(BI->getSuccessor(0))) + P = ICmpInst::ICMP_NE; + else + P = ICmpInst::ICMP_EQ; + + IRBuilder<> Builder(BI); + + // The new loop exit condition should reuse the debug location of the + // original loop exit condition. + if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) + Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); + + // For integer IVs, if we evaluated the limit in the narrower bitwidth to + // avoid the expensive expansion of the limit expression in the wider type, + // emit a truncate to narrow the IV to the ExitCount type. This is safe + // since we know (from the exit count bitwidth), that we can't self-wrap in + // the narrower type. + unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); + unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); + if (CmpIndVarSize > ExitCntSize) { + assert(!CmpIndVar->getType()->isPointerTy() && + !ExitCnt->getType()->isPointerTy()); + + // Before resorting to actually inserting the truncate, use the same + // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend + // the other side of the comparison instead. We still evaluate the limit + // in the narrower bitwidth, we just prefer a zext/sext outside the loop to + // a truncate within in. + bool Extended = false; + const SCEV *IV = SE->getSCEV(CmpIndVar); + const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), + ExitCnt->getType()); + const SCEV *ZExtTrunc = + SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); + + if (ZExtTrunc == IV) { + Extended = true; + ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), + "wide.trip.count"); + } else { + const SCEV *SExtTrunc = + SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); + if (SExtTrunc == IV) { + Extended = true; + ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), + "wide.trip.count"); + } + } + + if (Extended) { + bool Discard; + L->makeLoopInvariant(ExitCnt, Discard); + } else + CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), + "lftr.wideiv"); + } + LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" + << " LHS:" << *CmpIndVar << '\n' + << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") + << "\n" + << " RHS:\t" << *ExitCnt << "\n" + << "ExitCount:\t" << *ExitCount << "\n" + << " was: " << *BI->getCondition() << "\n"); + + Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); + Value *OrigCond = BI->getCondition(); + // It's tempting to use replaceAllUsesWith here to fully replace the old + // comparison, but that's not immediately safe, since users of the old + // comparison may not be dominated by the new comparison. Instead, just + // update the branch to use the new comparison; in the common case this + // will make old comparison dead. + BI->setCondition(Cond); + DeadInsts.push_back(OrigCond); + + ++NumLFTR; + return true; +} + +//===----------------------------------------------------------------------===// +// sinkUnusedInvariants. A late subpass to cleanup loop preheaders. +//===----------------------------------------------------------------------===// + +/// If there's a single exit block, sink any loop-invariant values that +/// were defined in the preheader but not used inside the loop into the +/// exit block to reduce register pressure in the loop. +bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { + BasicBlock *ExitBlock = L->getExitBlock(); + if (!ExitBlock) return false; + + BasicBlock *Preheader = L->getLoopPreheader(); + if (!Preheader) return false; + + bool MadeAnyChanges = false; + BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); + BasicBlock::iterator I(Preheader->getTerminator()); + while (I != Preheader->begin()) { + --I; + // New instructions were inserted at the end of the preheader. + if (isa<PHINode>(I)) + break; + + // Don't move instructions which might have side effects, since the side + // effects need to complete before instructions inside the loop. Also don't + // move instructions which might read memory, since the loop may modify + // memory. Note that it's okay if the instruction might have undefined + // behavior: LoopSimplify guarantees that the preheader dominates the exit + // block. + if (I->mayHaveSideEffects() || I->mayReadFromMemory()) + continue; + + // Skip debug info intrinsics. + if (isa<DbgInfoIntrinsic>(I)) + continue; + + // Skip eh pad instructions. + if (I->isEHPad()) + continue; + + // Don't sink alloca: we never want to sink static alloca's out of the + // entry block, and correctly sinking dynamic alloca's requires + // checks for stacksave/stackrestore intrinsics. + // FIXME: Refactor this check somehow? + if (isa<AllocaInst>(I)) + continue; + + // Determine if there is a use in or before the loop (direct or + // otherwise). + bool UsedInLoop = false; + for (Use &U : I->uses()) { + Instruction *User = cast<Instruction>(U.getUser()); + BasicBlock *UseBB = User->getParent(); + if (PHINode *P = dyn_cast<PHINode>(User)) { + unsigned i = + PHINode::getIncomingValueNumForOperand(U.getOperandNo()); + UseBB = P->getIncomingBlock(i); + } + if (UseBB == Preheader || L->contains(UseBB)) { + UsedInLoop = true; + break; + } + } + + // If there is, the def must remain in the preheader. + if (UsedInLoop) + continue; + + // Otherwise, sink it to the exit block. + Instruction *ToMove = &*I; + bool Done = false; + + if (I != Preheader->begin()) { + // Skip debug info intrinsics. + do { + --I; + } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); + + if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) + Done = true; + } else { + Done = true; + } + + MadeAnyChanges = true; + ToMove->moveBefore(*ExitBlock, InsertPt); + if (Done) break; + InsertPt = ToMove->getIterator(); + } + + return MadeAnyChanges; +} + +bool IndVarSimplify::optimizeLoopExits(Loop *L) { + SmallVector<BasicBlock*, 16> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + + // Form an expression for the maximum exit count possible for this loop. We + // merge the max and exact information to approximate a version of + // getMaxBackedgeTakenInfo which isn't restricted to just constants. + // TODO: factor this out as a version of getMaxBackedgeTakenCount which + // isn't guaranteed to return a constant. + SmallVector<const SCEV*, 4> ExitCounts; + const SCEV *MaxConstEC = SE->getMaxBackedgeTakenCount(L); + if (!isa<SCEVCouldNotCompute>(MaxConstEC)) + ExitCounts.push_back(MaxConstEC); + for (BasicBlock *ExitingBB : ExitingBlocks) { + const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); + if (!isa<SCEVCouldNotCompute>(ExitCount)) { + assert(DT->dominates(ExitingBB, L->getLoopLatch()) && + "We should only have known counts for exiting blocks that " + "dominate latch!"); + ExitCounts.push_back(ExitCount); + } + } + if (ExitCounts.empty()) + return false; + const SCEV *MaxExitCount = SE->getUMinFromMismatchedTypes(ExitCounts); + + bool Changed = false; + for (BasicBlock *ExitingBB : ExitingBlocks) { + // If our exitting block exits multiple loops, we can only rewrite the + // innermost one. Otherwise, we're changing how many times the innermost + // loop runs before it exits. + if (LI->getLoopFor(ExitingBB) != L) + continue; + + // Can't rewrite non-branch yet. + BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); + if (!BI) + continue; + + // If already constant, nothing to do. + if (isa<Constant>(BI->getCondition())) + continue; + + const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); + if (isa<SCEVCouldNotCompute>(ExitCount)) + continue; + + // If we know we'd exit on the first iteration, rewrite the exit to + // reflect this. This does not imply the loop must exit through this + // exit; there may be an earlier one taken on the first iteration. + // TODO: Given we know the backedge can't be taken, we should go ahead + // and break it. Or at least, kill all the header phis and simplify. + if (ExitCount->isZero()) { + bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); + auto *OldCond = BI->getCondition(); + auto *NewCond = ExitIfTrue ? ConstantInt::getTrue(OldCond->getType()) : + ConstantInt::getFalse(OldCond->getType()); + BI->setCondition(NewCond); + if (OldCond->use_empty()) + DeadInsts.push_back(OldCond); + Changed = true; + continue; + } + + // If we end up with a pointer exit count, bail. + if (!ExitCount->getType()->isIntegerTy() || + !MaxExitCount->getType()->isIntegerTy()) + return false; + + Type *WiderType = + SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); + ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); + MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); + assert(MaxExitCount->getType() == ExitCount->getType()); + + // Can we prove that some other exit must be taken strictly before this + // one? TODO: handle cases where ule is known, and equality is covered + // by a dominating exit + if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, + MaxExitCount, ExitCount)) { + bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); + auto *OldCond = BI->getCondition(); + auto *NewCond = ExitIfTrue ? ConstantInt::getFalse(OldCond->getType()) : + ConstantInt::getTrue(OldCond->getType()); + BI->setCondition(NewCond); + if (OldCond->use_empty()) + DeadInsts.push_back(OldCond); + Changed = true; + continue; + } + + // TODO: If we can prove that the exiting iteration is equal to the exit + // count for this exit and that no previous exit oppurtunities exist within + // the loop, then we can discharge all other exits. (May fall out of + // previous TODO.) + + // TODO: If we can't prove any relation between our exit count and the + // loops exit count, but taking this exit doesn't require actually running + // the loop (i.e. no side effects, no computed values used in exit), then + // we can replace the exit test with a loop invariant test which exits on + // the first iteration. + } + return Changed; +} + +//===----------------------------------------------------------------------===// +// IndVarSimplify driver. Manage several subpasses of IV simplification. +//===----------------------------------------------------------------------===// + +bool IndVarSimplify::run(Loop *L) { + // We need (and expect!) the incoming loop to be in LCSSA. + assert(L->isRecursivelyLCSSAForm(*DT, *LI) && + "LCSSA required to run indvars!"); + bool Changed = false; + + // If LoopSimplify form is not available, stay out of trouble. Some notes: + // - LSR currently only supports LoopSimplify-form loops. Indvars' + // canonicalization can be a pessimization without LSR to "clean up" + // afterwards. + // - We depend on having a preheader; in particular, + // Loop::getCanonicalInductionVariable only supports loops with preheaders, + // and we're in trouble if we can't find the induction variable even when + // we've manually inserted one. + // - LFTR relies on having a single backedge. + if (!L->isLoopSimplifyForm()) + return false; + + // If there are any floating-point recurrences, attempt to + // transform them to use integer recurrences. + Changed |= rewriteNonIntegerIVs(L); + + const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); + + // Create a rewriter object which we'll use to transform the code with. + SCEVExpander Rewriter(*SE, DL, "indvars"); +#ifndef NDEBUG + Rewriter.setDebugType(DEBUG_TYPE); +#endif + + // Eliminate redundant IV users. + // + // Simplification works best when run before other consumers of SCEV. We + // attempt to avoid evaluating SCEVs for sign/zero extend operations until + // other expressions involving loop IVs have been evaluated. This helps SCEV + // set no-wrap flags before normalizing sign/zero extension. + Rewriter.disableCanonicalMode(); + Changed |= simplifyAndExtend(L, Rewriter, LI); + + // Check to see if this loop has a computable loop-invariant execution count. + // If so, this means that we can compute the final value of any expressions + // that are recurrent in the loop, and substitute the exit values from the + // loop into any instructions outside of the loop that use the final values of + // the current expressions. + // + if (ReplaceExitValue != NeverRepl && + !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) + Changed |= rewriteLoopExitValues(L, Rewriter); + + // Eliminate redundant IV cycles. + NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); + + Changed |= optimizeLoopExits(L); + + // If we have a trip count expression, rewrite the loop's exit condition + // using it. + if (!DisableLFTR) { + SmallVector<BasicBlock*, 16> ExitingBlocks; + L->getExitingBlocks(ExitingBlocks); + for (BasicBlock *ExitingBB : ExitingBlocks) { + // Can't rewrite non-branch yet. + if (!isa<BranchInst>(ExitingBB->getTerminator())) + continue; + + // If our exitting block exits multiple loops, we can only rewrite the + // innermost one. Otherwise, we're changing how many times the innermost + // loop runs before it exits. + if (LI->getLoopFor(ExitingBB) != L) + continue; + + if (!needsLFTR(L, ExitingBB)) + continue; + + const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); + if (isa<SCEVCouldNotCompute>(ExitCount)) + continue; + + // This was handled above, but as we form SCEVs, we can sometimes refine + // existing ones; this allows exit counts to be folded to zero which + // weren't when optimizeLoopExits saw them. Arguably, we should iterate + // until stable to handle cases like this better. + if (ExitCount->isZero()) + continue; + + PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); + if (!IndVar) + continue; + + // Avoid high cost expansions. Note: This heuristic is questionable in + // that our definition of "high cost" is not exactly principled. + if (Rewriter.isHighCostExpansion(ExitCount, L)) + continue; + + // Check preconditions for proper SCEVExpander operation. SCEV does not + // express SCEVExpander's dependencies, such as LoopSimplify. Instead + // any pass that uses the SCEVExpander must do it. This does not work + // well for loop passes because SCEVExpander makes assumptions about + // all loops, while LoopPassManager only forces the current loop to be + // simplified. + // + // FIXME: SCEV expansion has no way to bail out, so the caller must + // explicitly check any assumptions made by SCEV. Brittle. + const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); + if (!AR || AR->getLoop()->getLoopPreheader()) + Changed |= linearFunctionTestReplace(L, ExitingBB, + ExitCount, IndVar, + Rewriter); + } + } + // Clear the rewriter cache, because values that are in the rewriter's cache + // can be deleted in the loop below, causing the AssertingVH in the cache to + // trigger. + Rewriter.clear(); + + // Now that we're done iterating through lists, clean up any instructions + // which are now dead. + while (!DeadInsts.empty()) + if (Instruction *Inst = + dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) + Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); + + // The Rewriter may not be used from this point on. + + // Loop-invariant instructions in the preheader that aren't used in the + // loop may be sunk below the loop to reduce register pressure. + Changed |= sinkUnusedInvariants(L); + + // rewriteFirstIterationLoopExitValues does not rely on the computation of + // trip count and therefore can further simplify exit values in addition to + // rewriteLoopExitValues. + Changed |= rewriteFirstIterationLoopExitValues(L); + + // Clean up dead instructions. + Changed |= DeleteDeadPHIs(L->getHeader(), TLI); + + // Check a post-condition. + assert(L->isRecursivelyLCSSAForm(*DT, *LI) && + "Indvars did not preserve LCSSA!"); + + // Verify that LFTR, and any other change have not interfered with SCEV's + // ability to compute trip count. +#ifndef NDEBUG + if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { + SE->forgetLoop(L); + const SCEV *NewBECount = SE->getBackedgeTakenCount(L); + if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < + SE->getTypeSizeInBits(NewBECount->getType())) + NewBECount = SE->getTruncateOrNoop(NewBECount, + BackedgeTakenCount->getType()); + else + BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, + NewBECount->getType()); + assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); + } +#endif + + return Changed; +} + +PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, + LoopStandardAnalysisResults &AR, + LPMUpdater &) { + Function *F = L.getHeader()->getParent(); + const DataLayout &DL = F->getParent()->getDataLayout(); + + IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); + if (!IVS.run(&L)) + return PreservedAnalyses::all(); + + auto PA = getLoopPassPreservedAnalyses(); + PA.preserveSet<CFGAnalyses>(); + return PA; +} + +namespace { + +struct IndVarSimplifyLegacyPass : public LoopPass { + static char ID; // Pass identification, replacement for typeid + + IndVarSimplifyLegacyPass() : LoopPass(ID) { + initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM) override { + if (skipLoop(L)) + return false; + + auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); + auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; + auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); + auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; + const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); + + IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); + return IVS.run(L); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + getLoopAnalysisUsage(AU); + } +}; + +} // end anonymous namespace + +char IndVarSimplifyLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", + "Induction Variable Simplification", false, false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", + "Induction Variable Simplification", false, false) + +Pass *llvm::createIndVarSimplifyPass() { + return new IndVarSimplifyLegacyPass(); +} |
