diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp')
| -rw-r--r-- | contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp | 1041 |
1 files changed, 0 insertions, 1041 deletions
diff --git a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp b/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp deleted file mode 100644 index f59c906c7b75..000000000000 --- a/contrib/llvm/lib/Bitcode/Writer/ValueEnumerator.cpp +++ /dev/null @@ -1,1041 +0,0 @@ -//===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements the ValueEnumerator class. -// -//===----------------------------------------------------------------------===// - -#include "ValueEnumerator.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalIFunc.h" -#include "llvm/IR/GlobalObject.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/UseListOrder.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueSymbolTable.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <iterator> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -namespace { - -struct OrderMap { - DenseMap<const Value *, std::pair<unsigned, bool>> IDs; - unsigned LastGlobalConstantID = 0; - unsigned LastGlobalValueID = 0; - - OrderMap() = default; - - bool isGlobalConstant(unsigned ID) const { - return ID <= LastGlobalConstantID; - } - - bool isGlobalValue(unsigned ID) const { - return ID <= LastGlobalValueID && !isGlobalConstant(ID); - } - - unsigned size() const { return IDs.size(); } - std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; } - - std::pair<unsigned, bool> lookup(const Value *V) const { - return IDs.lookup(V); - } - - void index(const Value *V) { - // Explicitly sequence get-size and insert-value operations to avoid UB. - unsigned ID = IDs.size() + 1; - IDs[V].first = ID; - } -}; - -} // end anonymous namespace - -static void orderValue(const Value *V, OrderMap &OM) { - if (OM.lookup(V).first) - return; - - if (const Constant *C = dyn_cast<Constant>(V)) - if (C->getNumOperands() && !isa<GlobalValue>(C)) - for (const Value *Op : C->operands()) - if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op)) - orderValue(Op, OM); - - // Note: we cannot cache this lookup above, since inserting into the map - // changes the map's size, and thus affects the other IDs. - OM.index(V); -} - -static OrderMap orderModule(const Module &M) { - // This needs to match the order used by ValueEnumerator::ValueEnumerator() - // and ValueEnumerator::incorporateFunction(). - OrderMap OM; - - // In the reader, initializers of GlobalValues are set *after* all the - // globals have been read. Rather than awkwardly modeling this behaviour - // directly in predictValueUseListOrderImpl(), just assign IDs to - // initializers of GlobalValues before GlobalValues themselves to model this - // implicitly. - for (const GlobalVariable &G : M.globals()) - if (G.hasInitializer()) - if (!isa<GlobalValue>(G.getInitializer())) - orderValue(G.getInitializer(), OM); - for (const GlobalAlias &A : M.aliases()) - if (!isa<GlobalValue>(A.getAliasee())) - orderValue(A.getAliasee(), OM); - for (const GlobalIFunc &I : M.ifuncs()) - if (!isa<GlobalValue>(I.getResolver())) - orderValue(I.getResolver(), OM); - for (const Function &F : M) { - for (const Use &U : F.operands()) - if (!isa<GlobalValue>(U.get())) - orderValue(U.get(), OM); - } - OM.LastGlobalConstantID = OM.size(); - - // Initializers of GlobalValues are processed in - // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather - // than ValueEnumerator, and match the code in predictValueUseListOrderImpl() - // by giving IDs in reverse order. - // - // Since GlobalValues never reference each other directly (just through - // initializers), their relative IDs only matter for determining order of - // uses in their initializers. - for (const Function &F : M) - orderValue(&F, OM); - for (const GlobalAlias &A : M.aliases()) - orderValue(&A, OM); - for (const GlobalIFunc &I : M.ifuncs()) - orderValue(&I, OM); - for (const GlobalVariable &G : M.globals()) - orderValue(&G, OM); - OM.LastGlobalValueID = OM.size(); - - for (const Function &F : M) { - if (F.isDeclaration()) - continue; - // Here we need to match the union of ValueEnumerator::incorporateFunction() - // and WriteFunction(). Basic blocks are implicitly declared before - // anything else (by declaring their size). - for (const BasicBlock &BB : F) - orderValue(&BB, OM); - for (const Argument &A : F.args()) - orderValue(&A, OM); - for (const BasicBlock &BB : F) - for (const Instruction &I : BB) - for (const Value *Op : I.operands()) - if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) || - isa<InlineAsm>(*Op)) - orderValue(Op, OM); - for (const BasicBlock &BB : F) - for (const Instruction &I : BB) - orderValue(&I, OM); - } - return OM; -} - -static void predictValueUseListOrderImpl(const Value *V, const Function *F, - unsigned ID, const OrderMap &OM, - UseListOrderStack &Stack) { - // Predict use-list order for this one. - using Entry = std::pair<const Use *, unsigned>; - SmallVector<Entry, 64> List; - for (const Use &U : V->uses()) - // Check if this user will be serialized. - if (OM.lookup(U.getUser()).first) - List.push_back(std::make_pair(&U, List.size())); - - if (List.size() < 2) - // We may have lost some users. - return; - - bool IsGlobalValue = OM.isGlobalValue(ID); - llvm::sort(List, [&](const Entry &L, const Entry &R) { - const Use *LU = L.first; - const Use *RU = R.first; - if (LU == RU) - return false; - - auto LID = OM.lookup(LU->getUser()).first; - auto RID = OM.lookup(RU->getUser()).first; - - // Global values are processed in reverse order. - // - // Moreover, initializers of GlobalValues are set *after* all the globals - // have been read (despite having earlier IDs). Rather than awkwardly - // modeling this behaviour here, orderModule() has assigned IDs to - // initializers of GlobalValues before GlobalValues themselves. - if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) - return LID < RID; - - // If ID is 4, then expect: 7 6 5 1 2 3. - if (LID < RID) { - if (RID <= ID) - if (!IsGlobalValue) // GlobalValue uses don't get reversed. - return true; - return false; - } - if (RID < LID) { - if (LID <= ID) - if (!IsGlobalValue) // GlobalValue uses don't get reversed. - return false; - return true; - } - - // LID and RID are equal, so we have different operands of the same user. - // Assume operands are added in order for all instructions. - if (LID <= ID) - if (!IsGlobalValue) // GlobalValue uses don't get reversed. - return LU->getOperandNo() < RU->getOperandNo(); - return LU->getOperandNo() > RU->getOperandNo(); - }); - - if (std::is_sorted( - List.begin(), List.end(), - [](const Entry &L, const Entry &R) { return L.second < R.second; })) - // Order is already correct. - return; - - // Store the shuffle. - Stack.emplace_back(V, F, List.size()); - assert(List.size() == Stack.back().Shuffle.size() && "Wrong size"); - for (size_t I = 0, E = List.size(); I != E; ++I) - Stack.back().Shuffle[I] = List[I].second; -} - -static void predictValueUseListOrder(const Value *V, const Function *F, - OrderMap &OM, UseListOrderStack &Stack) { - auto &IDPair = OM[V]; - assert(IDPair.first && "Unmapped value"); - if (IDPair.second) - // Already predicted. - return; - - // Do the actual prediction. - IDPair.second = true; - if (!V->use_empty() && std::next(V->use_begin()) != V->use_end()) - predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack); - - // Recursive descent into constants. - if (const Constant *C = dyn_cast<Constant>(V)) - if (C->getNumOperands()) // Visit GlobalValues. - for (const Value *Op : C->operands()) - if (isa<Constant>(Op)) // Visit GlobalValues. - predictValueUseListOrder(Op, F, OM, Stack); -} - -static UseListOrderStack predictUseListOrder(const Module &M) { - OrderMap OM = orderModule(M); - - // Use-list orders need to be serialized after all the users have been added - // to a value, or else the shuffles will be incomplete. Store them per - // function in a stack. - // - // Aside from function order, the order of values doesn't matter much here. - UseListOrderStack Stack; - - // We want to visit the functions backward now so we can list function-local - // constants in the last Function they're used in. Module-level constants - // have already been visited above. - for (auto I = M.rbegin(), E = M.rend(); I != E; ++I) { - const Function &F = *I; - if (F.isDeclaration()) - continue; - for (const BasicBlock &BB : F) - predictValueUseListOrder(&BB, &F, OM, Stack); - for (const Argument &A : F.args()) - predictValueUseListOrder(&A, &F, OM, Stack); - for (const BasicBlock &BB : F) - for (const Instruction &I : BB) - for (const Value *Op : I.operands()) - if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues. - predictValueUseListOrder(Op, &F, OM, Stack); - for (const BasicBlock &BB : F) - for (const Instruction &I : BB) - predictValueUseListOrder(&I, &F, OM, Stack); - } - - // Visit globals last, since the module-level use-list block will be seen - // before the function bodies are processed. - for (const GlobalVariable &G : M.globals()) - predictValueUseListOrder(&G, nullptr, OM, Stack); - for (const Function &F : M) - predictValueUseListOrder(&F, nullptr, OM, Stack); - for (const GlobalAlias &A : M.aliases()) - predictValueUseListOrder(&A, nullptr, OM, Stack); - for (const GlobalIFunc &I : M.ifuncs()) - predictValueUseListOrder(&I, nullptr, OM, Stack); - for (const GlobalVariable &G : M.globals()) - if (G.hasInitializer()) - predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack); - for (const GlobalAlias &A : M.aliases()) - predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack); - for (const GlobalIFunc &I : M.ifuncs()) - predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack); - for (const Function &F : M) { - for (const Use &U : F.operands()) - predictValueUseListOrder(U.get(), nullptr, OM, Stack); - } - - return Stack; -} - -static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) { - return V.first->getType()->isIntOrIntVectorTy(); -} - -ValueEnumerator::ValueEnumerator(const Module &M, - bool ShouldPreserveUseListOrder) - : ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) { - if (ShouldPreserveUseListOrder) - UseListOrders = predictUseListOrder(M); - - // Enumerate the global variables. - for (const GlobalVariable &GV : M.globals()) - EnumerateValue(&GV); - - // Enumerate the functions. - for (const Function & F : M) { - EnumerateValue(&F); - EnumerateAttributes(F.getAttributes()); - } - - // Enumerate the aliases. - for (const GlobalAlias &GA : M.aliases()) - EnumerateValue(&GA); - - // Enumerate the ifuncs. - for (const GlobalIFunc &GIF : M.ifuncs()) - EnumerateValue(&GIF); - - // Remember what is the cutoff between globalvalue's and other constants. - unsigned FirstConstant = Values.size(); - - // Enumerate the global variable initializers and attributes. - for (const GlobalVariable &GV : M.globals()) { - if (GV.hasInitializer()) - EnumerateValue(GV.getInitializer()); - if (GV.hasAttributes()) - EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex)); - } - - // Enumerate the aliasees. - for (const GlobalAlias &GA : M.aliases()) - EnumerateValue(GA.getAliasee()); - - // Enumerate the ifunc resolvers. - for (const GlobalIFunc &GIF : M.ifuncs()) - EnumerateValue(GIF.getResolver()); - - // Enumerate any optional Function data. - for (const Function &F : M) - for (const Use &U : F.operands()) - EnumerateValue(U.get()); - - // Enumerate the metadata type. - // - // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode - // only encodes the metadata type when it's used as a value. - EnumerateType(Type::getMetadataTy(M.getContext())); - - // Insert constants and metadata that are named at module level into the slot - // pool so that the module symbol table can refer to them... - EnumerateValueSymbolTable(M.getValueSymbolTable()); - EnumerateNamedMetadata(M); - - SmallVector<std::pair<unsigned, MDNode *>, 8> MDs; - for (const GlobalVariable &GV : M.globals()) { - MDs.clear(); - GV.getAllMetadata(MDs); - for (const auto &I : MDs) - // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer - // to write metadata to the global variable's own metadata block - // (PR28134). - EnumerateMetadata(nullptr, I.second); - } - - // Enumerate types used by function bodies and argument lists. - for (const Function &F : M) { - for (const Argument &A : F.args()) - EnumerateType(A.getType()); - - // Enumerate metadata attached to this function. - MDs.clear(); - F.getAllMetadata(MDs); - for (const auto &I : MDs) - EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second); - - for (const BasicBlock &BB : F) - for (const Instruction &I : BB) { - for (const Use &Op : I.operands()) { - auto *MD = dyn_cast<MetadataAsValue>(&Op); - if (!MD) { - EnumerateOperandType(Op); - continue; - } - - // Local metadata is enumerated during function-incorporation. - if (isa<LocalAsMetadata>(MD->getMetadata())) - continue; - - EnumerateMetadata(&F, MD->getMetadata()); - } - EnumerateType(I.getType()); - if (const auto *Call = dyn_cast<CallBase>(&I)) - EnumerateAttributes(Call->getAttributes()); - - // Enumerate metadata attached with this instruction. - MDs.clear(); - I.getAllMetadataOtherThanDebugLoc(MDs); - for (unsigned i = 0, e = MDs.size(); i != e; ++i) - EnumerateMetadata(&F, MDs[i].second); - - // Don't enumerate the location directly -- it has a special record - // type -- but enumerate its operands. - if (DILocation *L = I.getDebugLoc()) - for (const Metadata *Op : L->operands()) - EnumerateMetadata(&F, Op); - } - } - - // Optimize constant ordering. - OptimizeConstants(FirstConstant, Values.size()); - - // Organize metadata ordering. - organizeMetadata(); -} - -unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { - InstructionMapType::const_iterator I = InstructionMap.find(Inst); - assert(I != InstructionMap.end() && "Instruction is not mapped!"); - return I->second; -} - -unsigned ValueEnumerator::getComdatID(const Comdat *C) const { - unsigned ComdatID = Comdats.idFor(C); - assert(ComdatID && "Comdat not found!"); - return ComdatID; -} - -void ValueEnumerator::setInstructionID(const Instruction *I) { - InstructionMap[I] = InstructionCount++; -} - -unsigned ValueEnumerator::getValueID(const Value *V) const { - if (auto *MD = dyn_cast<MetadataAsValue>(V)) - return getMetadataID(MD->getMetadata()); - - ValueMapType::const_iterator I = ValueMap.find(V); - assert(I != ValueMap.end() && "Value not in slotcalculator!"); - return I->second-1; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void ValueEnumerator::dump() const { - print(dbgs(), ValueMap, "Default"); - dbgs() << '\n'; - print(dbgs(), MetadataMap, "MetaData"); - dbgs() << '\n'; -} -#endif - -void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, - const char *Name) const { - OS << "Map Name: " << Name << "\n"; - OS << "Size: " << Map.size() << "\n"; - for (ValueMapType::const_iterator I = Map.begin(), - E = Map.end(); I != E; ++I) { - const Value *V = I->first; - if (V->hasName()) - OS << "Value: " << V->getName(); - else - OS << "Value: [null]\n"; - V->print(errs()); - errs() << '\n'; - - OS << " Uses(" << V->getNumUses() << "):"; - for (const Use &U : V->uses()) { - if (&U != &*V->use_begin()) - OS << ","; - if(U->hasName()) - OS << " " << U->getName(); - else - OS << " [null]"; - - } - OS << "\n\n"; - } -} - -void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map, - const char *Name) const { - OS << "Map Name: " << Name << "\n"; - OS << "Size: " << Map.size() << "\n"; - for (auto I = Map.begin(), E = Map.end(); I != E; ++I) { - const Metadata *MD = I->first; - OS << "Metadata: slot = " << I->second.ID << "\n"; - OS << "Metadata: function = " << I->second.F << "\n"; - MD->print(OS); - OS << "\n"; - } -} - -/// OptimizeConstants - Reorder constant pool for denser encoding. -void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { - if (CstStart == CstEnd || CstStart+1 == CstEnd) return; - - if (ShouldPreserveUseListOrder) - // Optimizing constants makes the use-list order difficult to predict. - // Disable it for now when trying to preserve the order. - return; - - std::stable_sort(Values.begin() + CstStart, Values.begin() + CstEnd, - [this](const std::pair<const Value *, unsigned> &LHS, - const std::pair<const Value *, unsigned> &RHS) { - // Sort by plane. - if (LHS.first->getType() != RHS.first->getType()) - return getTypeID(LHS.first->getType()) < getTypeID(RHS.first->getType()); - // Then by frequency. - return LHS.second > RHS.second; - }); - - // Ensure that integer and vector of integer constants are at the start of the - // constant pool. This is important so that GEP structure indices come before - // gep constant exprs. - std::stable_partition(Values.begin() + CstStart, Values.begin() + CstEnd, - isIntOrIntVectorValue); - - // Rebuild the modified portion of ValueMap. - for (; CstStart != CstEnd; ++CstStart) - ValueMap[Values[CstStart].first] = CstStart+1; -} - -/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol -/// table into the values table. -void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { - for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); - VI != VE; ++VI) - EnumerateValue(VI->getValue()); -} - -/// Insert all of the values referenced by named metadata in the specified -/// module. -void ValueEnumerator::EnumerateNamedMetadata(const Module &M) { - for (const auto &I : M.named_metadata()) - EnumerateNamedMDNode(&I); -} - -void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { - for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) - EnumerateMetadata(nullptr, MD->getOperand(i)); -} - -unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const { - return F ? getValueID(F) + 1 : 0; -} - -void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) { - EnumerateMetadata(getMetadataFunctionID(F), MD); -} - -void ValueEnumerator::EnumerateFunctionLocalMetadata( - const Function &F, const LocalAsMetadata *Local) { - EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local); -} - -void ValueEnumerator::dropFunctionFromMetadata( - MetadataMapType::value_type &FirstMD) { - SmallVector<const MDNode *, 64> Worklist; - auto push = [&Worklist](MetadataMapType::value_type &MD) { - auto &Entry = MD.second; - - // Nothing to do if this metadata isn't tagged. - if (!Entry.F) - return; - - // Drop the function tag. - Entry.F = 0; - - // If this is has an ID and is an MDNode, then its operands have entries as - // well. We need to drop the function from them too. - if (Entry.ID) - if (auto *N = dyn_cast<MDNode>(MD.first)) - Worklist.push_back(N); - }; - push(FirstMD); - while (!Worklist.empty()) - for (const Metadata *Op : Worklist.pop_back_val()->operands()) { - if (!Op) - continue; - auto MD = MetadataMap.find(Op); - if (MD != MetadataMap.end()) - push(*MD); - } -} - -void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) { - // It's vital for reader efficiency that uniqued subgraphs are done in - // post-order; it's expensive when their operands have forward references. - // If a distinct node is referenced from a uniqued node, it'll be delayed - // until the uniqued subgraph has been completely traversed. - SmallVector<const MDNode *, 32> DelayedDistinctNodes; - - // Start by enumerating MD, and then work through its transitive operands in - // post-order. This requires a depth-first search. - SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist; - if (const MDNode *N = enumerateMetadataImpl(F, MD)) - Worklist.push_back(std::make_pair(N, N->op_begin())); - - while (!Worklist.empty()) { - const MDNode *N = Worklist.back().first; - - // Enumerate operands until we hit a new node. We need to traverse these - // nodes' operands before visiting the rest of N's operands. - MDNode::op_iterator I = std::find_if( - Worklist.back().second, N->op_end(), - [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); }); - if (I != N->op_end()) { - auto *Op = cast<MDNode>(*I); - Worklist.back().second = ++I; - - // Delay traversing Op if it's a distinct node and N is uniqued. - if (Op->isDistinct() && !N->isDistinct()) - DelayedDistinctNodes.push_back(Op); - else - Worklist.push_back(std::make_pair(Op, Op->op_begin())); - continue; - } - - // All the operands have been visited. Now assign an ID. - Worklist.pop_back(); - MDs.push_back(N); - MetadataMap[N].ID = MDs.size(); - - // Flush out any delayed distinct nodes; these are all the distinct nodes - // that are leaves in last uniqued subgraph. - if (Worklist.empty() || Worklist.back().first->isDistinct()) { - for (const MDNode *N : DelayedDistinctNodes) - Worklist.push_back(std::make_pair(N, N->op_begin())); - DelayedDistinctNodes.clear(); - } - } -} - -const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F, const Metadata *MD) { - if (!MD) - return nullptr; - - assert( - (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) && - "Invalid metadata kind"); - - auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F))); - MDIndex &Entry = Insertion.first->second; - if (!Insertion.second) { - // Already mapped. If F doesn't match the function tag, drop it. - if (Entry.hasDifferentFunction(F)) - dropFunctionFromMetadata(*Insertion.first); - return nullptr; - } - - // Don't assign IDs to metadata nodes. - if (auto *N = dyn_cast<MDNode>(MD)) - return N; - - // Save the metadata. - MDs.push_back(MD); - Entry.ID = MDs.size(); - - // Enumerate the constant, if any. - if (auto *C = dyn_cast<ConstantAsMetadata>(MD)) - EnumerateValue(C->getValue()); - - return nullptr; -} - -/// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata -/// information reachable from the metadata. -void ValueEnumerator::EnumerateFunctionLocalMetadata( - unsigned F, const LocalAsMetadata *Local) { - assert(F && "Expected a function"); - - // Check to see if it's already in! - MDIndex &Index = MetadataMap[Local]; - if (Index.ID) { - assert(Index.F == F && "Expected the same function"); - return; - } - - MDs.push_back(Local); - Index.F = F; - Index.ID = MDs.size(); - - EnumerateValue(Local->getValue()); -} - -static unsigned getMetadataTypeOrder(const Metadata *MD) { - // Strings are emitted in bulk and must come first. - if (isa<MDString>(MD)) - return 0; - - // ConstantAsMetadata doesn't reference anything. We may as well shuffle it - // to the front since we can detect it. - auto *N = dyn_cast<MDNode>(MD); - if (!N) - return 1; - - // The reader is fast forward references for distinct node operands, but slow - // when uniqued operands are unresolved. - return N->isDistinct() ? 2 : 3; -} - -void ValueEnumerator::organizeMetadata() { - assert(MetadataMap.size() == MDs.size() && - "Metadata map and vector out of sync"); - - if (MDs.empty()) - return; - - // Copy out the index information from MetadataMap in order to choose a new - // order. - SmallVector<MDIndex, 64> Order; - Order.reserve(MetadataMap.size()); - for (const Metadata *MD : MDs) - Order.push_back(MetadataMap.lookup(MD)); - - // Partition: - // - by function, then - // - by isa<MDString> - // and then sort by the original/current ID. Since the IDs are guaranteed to - // be unique, the result of std::sort will be deterministic. There's no need - // for std::stable_sort. - llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) { - return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) < - std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID); - }); - - // Rebuild MDs, index the metadata ranges for each function in FunctionMDs, - // and fix up MetadataMap. - std::vector<const Metadata *> OldMDs; - MDs.swap(OldMDs); - MDs.reserve(OldMDs.size()); - for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) { - auto *MD = Order[I].get(OldMDs); - MDs.push_back(MD); - MetadataMap[MD].ID = I + 1; - if (isa<MDString>(MD)) - ++NumMDStrings; - } - - // Return early if there's nothing for the functions. - if (MDs.size() == Order.size()) - return; - - // Build the function metadata ranges. - MDRange R; - FunctionMDs.reserve(OldMDs.size()); - unsigned PrevF = 0; - for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E; - ++I) { - unsigned F = Order[I].F; - if (!PrevF) { - PrevF = F; - } else if (PrevF != F) { - R.Last = FunctionMDs.size(); - std::swap(R, FunctionMDInfo[PrevF]); - R.First = FunctionMDs.size(); - - ID = MDs.size(); - PrevF = F; - } - - auto *MD = Order[I].get(OldMDs); - FunctionMDs.push_back(MD); - MetadataMap[MD].ID = ++ID; - if (isa<MDString>(MD)) - ++R.NumStrings; - } - R.Last = FunctionMDs.size(); - FunctionMDInfo[PrevF] = R; -} - -void ValueEnumerator::incorporateFunctionMetadata(const Function &F) { - NumModuleMDs = MDs.size(); - - auto R = FunctionMDInfo.lookup(getValueID(&F) + 1); - NumMDStrings = R.NumStrings; - MDs.insert(MDs.end(), FunctionMDs.begin() + R.First, - FunctionMDs.begin() + R.Last); -} - -void ValueEnumerator::EnumerateValue(const Value *V) { - assert(!V->getType()->isVoidTy() && "Can't insert void values!"); - assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!"); - - // Check to see if it's already in! - unsigned &ValueID = ValueMap[V]; - if (ValueID) { - // Increment use count. - Values[ValueID-1].second++; - return; - } - - if (auto *GO = dyn_cast<GlobalObject>(V)) - if (const Comdat *C = GO->getComdat()) - Comdats.insert(C); - - // Enumerate the type of this value. - EnumerateType(V->getType()); - - if (const Constant *C = dyn_cast<Constant>(V)) { - if (isa<GlobalValue>(C)) { - // Initializers for globals are handled explicitly elsewhere. - } else if (C->getNumOperands()) { - // If a constant has operands, enumerate them. This makes sure that if a - // constant has uses (for example an array of const ints), that they are - // inserted also. - - // We prefer to enumerate them with values before we enumerate the user - // itself. This makes it more likely that we can avoid forward references - // in the reader. We know that there can be no cycles in the constants - // graph that don't go through a global variable. - for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); - I != E; ++I) - if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. - EnumerateValue(*I); - - // Finally, add the value. Doing this could make the ValueID reference be - // dangling, don't reuse it. - Values.push_back(std::make_pair(V, 1U)); - ValueMap[V] = Values.size(); - return; - } - } - - // Add the value. - Values.push_back(std::make_pair(V, 1U)); - ValueID = Values.size(); -} - - -void ValueEnumerator::EnumerateType(Type *Ty) { - unsigned *TypeID = &TypeMap[Ty]; - - // We've already seen this type. - if (*TypeID) - return; - - // If it is a non-anonymous struct, mark the type as being visited so that we - // don't recursively visit it. This is safe because we allow forward - // references of these in the bitcode reader. - if (StructType *STy = dyn_cast<StructType>(Ty)) - if (!STy->isLiteral()) - *TypeID = ~0U; - - // Enumerate all of the subtypes before we enumerate this type. This ensures - // that the type will be enumerated in an order that can be directly built. - for (Type *SubTy : Ty->subtypes()) - EnumerateType(SubTy); - - // Refresh the TypeID pointer in case the table rehashed. - TypeID = &TypeMap[Ty]; - - // Check to see if we got the pointer another way. This can happen when - // enumerating recursive types that hit the base case deeper than they start. - // - // If this is actually a struct that we are treating as forward ref'able, - // then emit the definition now that all of its contents are available. - if (*TypeID && *TypeID != ~0U) - return; - - // Add this type now that its contents are all happily enumerated. - Types.push_back(Ty); - - *TypeID = Types.size(); -} - -// Enumerate the types for the specified value. If the value is a constant, -// walk through it, enumerating the types of the constant. -void ValueEnumerator::EnumerateOperandType(const Value *V) { - EnumerateType(V->getType()); - - assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand"); - - const Constant *C = dyn_cast<Constant>(V); - if (!C) - return; - - // If this constant is already enumerated, ignore it, we know its type must - // be enumerated. - if (ValueMap.count(C)) - return; - - // This constant may have operands, make sure to enumerate the types in - // them. - for (const Value *Op : C->operands()) { - // Don't enumerate basic blocks here, this happens as operands to - // blockaddress. - if (isa<BasicBlock>(Op)) - continue; - - EnumerateOperandType(Op); - } -} - -void ValueEnumerator::EnumerateAttributes(AttributeList PAL) { - if (PAL.isEmpty()) return; // null is always 0. - - // Do a lookup. - unsigned &Entry = AttributeListMap[PAL]; - if (Entry == 0) { - // Never saw this before, add it. - AttributeLists.push_back(PAL); - Entry = AttributeLists.size(); - } - - // Do lookups for all attribute groups. - for (unsigned i = PAL.index_begin(), e = PAL.index_end(); i != e; ++i) { - AttributeSet AS = PAL.getAttributes(i); - if (!AS.hasAttributes()) - continue; - IndexAndAttrSet Pair = {i, AS}; - unsigned &Entry = AttributeGroupMap[Pair]; - if (Entry == 0) { - AttributeGroups.push_back(Pair); - Entry = AttributeGroups.size(); - } - } -} - -void ValueEnumerator::incorporateFunction(const Function &F) { - InstructionCount = 0; - NumModuleValues = Values.size(); - - // Add global metadata to the function block. This doesn't include - // LocalAsMetadata. - incorporateFunctionMetadata(F); - - // Adding function arguments to the value table. - for (const auto &I : F.args()) { - EnumerateValue(&I); - if (I.hasAttribute(Attribute::ByVal)) - EnumerateType(I.getParamByValType()); - } - FirstFuncConstantID = Values.size(); - - // Add all function-level constants to the value table. - for (const BasicBlock &BB : F) { - for (const Instruction &I : BB) - for (const Use &OI : I.operands()) { - if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI)) - EnumerateValue(OI); - } - BasicBlocks.push_back(&BB); - ValueMap[&BB] = BasicBlocks.size(); - } - - // Optimize the constant layout. - OptimizeConstants(FirstFuncConstantID, Values.size()); - - // Add the function's parameter attributes so they are available for use in - // the function's instruction. - EnumerateAttributes(F.getAttributes()); - - FirstInstID = Values.size(); - - SmallVector<LocalAsMetadata *, 8> FnLocalMDVector; - // Add all of the instructions. - for (const BasicBlock &BB : F) { - for (const Instruction &I : BB) { - for (const Use &OI : I.operands()) { - if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) - if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) - // Enumerate metadata after the instructions they might refer to. - FnLocalMDVector.push_back(Local); - } - - if (!I.getType()->isVoidTy()) - EnumerateValue(&I); - } - } - - // Add all of the function-local metadata. - for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) { - // At this point, every local values have been incorporated, we shouldn't - // have a metadata operand that references a value that hasn't been seen. - assert(ValueMap.count(FnLocalMDVector[i]->getValue()) && - "Missing value for metadata operand"); - EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]); - } -} - -void ValueEnumerator::purgeFunction() { - /// Remove purged values from the ValueMap. - for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) - ValueMap.erase(Values[i].first); - for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i) - MetadataMap.erase(MDs[i]); - for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) - ValueMap.erase(BasicBlocks[i]); - - Values.resize(NumModuleValues); - MDs.resize(NumModuleMDs); - BasicBlocks.clear(); - NumMDStrings = 0; -} - -static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, - DenseMap<const BasicBlock*, unsigned> &IDMap) { - unsigned Counter = 0; - for (const BasicBlock &BB : *F) - IDMap[&BB] = ++Counter; -} - -/// getGlobalBasicBlockID - This returns the function-specific ID for the -/// specified basic block. This is relatively expensive information, so it -/// should only be used by rare constructs such as address-of-label. -unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { - unsigned &Idx = GlobalBasicBlockIDs[BB]; - if (Idx != 0) - return Idx-1; - - IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); - return getGlobalBasicBlockID(BB); -} - -uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const { - return Log2_32_Ceil(getTypes().size() + 1); -} |
