diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 | 
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp')
| -rw-r--r-- | contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp | 3159 | 
1 files changed, 0 insertions, 3159 deletions
diff --git a/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp b/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp deleted file mode 100644 index 639b588766a1..000000000000 --- a/contrib/llvm/lib/CodeGen/MachineBlockPlacement.cpp +++ /dev/null @@ -1,3159 +0,0 @@ -//===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements basic block placement transformations using the CFG -// structure and branch probability estimates. -// -// The pass strives to preserve the structure of the CFG (that is, retain -// a topological ordering of basic blocks) in the absence of a *strong* signal -// to the contrary from probabilities. However, within the CFG structure, it -// attempts to choose an ordering which favors placing more likely sequences of -// blocks adjacent to each other. -// -// The algorithm works from the inner-most loop within a function outward, and -// at each stage walks through the basic blocks, trying to coalesce them into -// sequential chains where allowed by the CFG (or demanded by heavy -// probabilities). Finally, it walks the blocks in topological order, and the -// first time it reaches a chain of basic blocks, it schedules them in the -// function in-order. -// -//===----------------------------------------------------------------------===// - -#include "BranchFolding.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/BlockFrequencyInfoImpl.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" -#include "llvm/CodeGen/MachineBranchProbabilityInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineLoopInfo.h" -#include "llvm/CodeGen/MachineModuleInfo.h" -#include "llvm/CodeGen/MachinePostDominators.h" -#include "llvm/CodeGen/TailDuplicator.h" -#include "llvm/CodeGen/TargetInstrInfo.h" -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/CodeGen/TargetPassConfig.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/Function.h" -#include "llvm/Pass.h" -#include "llvm/Support/Allocator.h" -#include "llvm/Support/BlockFrequency.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/CodeGen.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Target/TargetMachine.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <iterator> -#include <memory> -#include <string> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "block-placement" - -STATISTIC(NumCondBranches, "Number of conditional branches"); -STATISTIC(NumUncondBranches, "Number of unconditional branches"); -STATISTIC(CondBranchTakenFreq, -          "Potential frequency of taking conditional branches"); -STATISTIC(UncondBranchTakenFreq, -          "Potential frequency of taking unconditional branches"); - -static cl::opt<unsigned> AlignAllBlock("align-all-blocks", -                                       cl::desc("Force the alignment of all " -                                                "blocks in the function."), -                                       cl::init(0), cl::Hidden); - -static cl::opt<unsigned> AlignAllNonFallThruBlocks( -    "align-all-nofallthru-blocks", -    cl::desc("Force the alignment of all " -             "blocks that have no fall-through predecessors (i.e. don't add " -             "nops that are executed)."), -    cl::init(0), cl::Hidden); - -// FIXME: Find a good default for this flag and remove the flag. -static cl::opt<unsigned> ExitBlockBias( -    "block-placement-exit-block-bias", -    cl::desc("Block frequency percentage a loop exit block needs " -             "over the original exit to be considered the new exit."), -    cl::init(0), cl::Hidden); - -// Definition: -// - Outlining: placement of a basic block outside the chain or hot path. - -static cl::opt<unsigned> LoopToColdBlockRatio( -    "loop-to-cold-block-ratio", -    cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " -             "(frequency of block) is greater than this ratio"), -    cl::init(5), cl::Hidden); - -static cl::opt<bool> ForceLoopColdBlock( -    "force-loop-cold-block", -    cl::desc("Force outlining cold blocks from loops."), -    cl::init(false), cl::Hidden); - -static cl::opt<bool> -    PreciseRotationCost("precise-rotation-cost", -                        cl::desc("Model the cost of loop rotation more " -                                 "precisely by using profile data."), -                        cl::init(false), cl::Hidden); - -static cl::opt<bool> -    ForcePreciseRotationCost("force-precise-rotation-cost", -                             cl::desc("Force the use of precise cost " -                                      "loop rotation strategy."), -                             cl::init(false), cl::Hidden); - -static cl::opt<unsigned> MisfetchCost( -    "misfetch-cost", -    cl::desc("Cost that models the probabilistic risk of an instruction " -             "misfetch due to a jump comparing to falling through, whose cost " -             "is zero."), -    cl::init(1), cl::Hidden); - -static cl::opt<unsigned> JumpInstCost("jump-inst-cost", -                                      cl::desc("Cost of jump instructions."), -                                      cl::init(1), cl::Hidden); -static cl::opt<bool> -TailDupPlacement("tail-dup-placement", -              cl::desc("Perform tail duplication during placement. " -                       "Creates more fallthrough opportunites in " -                       "outline branches."), -              cl::init(true), cl::Hidden); - -static cl::opt<bool> -BranchFoldPlacement("branch-fold-placement", -              cl::desc("Perform branch folding during placement. " -                       "Reduces code size."), -              cl::init(true), cl::Hidden); - -// Heuristic for tail duplication. -static cl::opt<unsigned> TailDupPlacementThreshold( -    "tail-dup-placement-threshold", -    cl::desc("Instruction cutoff for tail duplication during layout. " -             "Tail merging during layout is forced to have a threshold " -             "that won't conflict."), cl::init(2), -    cl::Hidden); - -// Heuristic for aggressive tail duplication. -static cl::opt<unsigned> TailDupPlacementAggressiveThreshold( -    "tail-dup-placement-aggressive-threshold", -    cl::desc("Instruction cutoff for aggressive tail duplication during " -             "layout. Used at -O3. Tail merging during layout is forced to " -             "have a threshold that won't conflict."), cl::init(4), -    cl::Hidden); - -// Heuristic for tail duplication. -static cl::opt<unsigned> TailDupPlacementPenalty( -    "tail-dup-placement-penalty", -    cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. " -             "Copying can increase fallthrough, but it also increases icache " -             "pressure. This parameter controls the penalty to account for that. " -             "Percent as integer."), -    cl::init(2), -    cl::Hidden); - -// Heuristic for triangle chains. -static cl::opt<unsigned> TriangleChainCount( -    "triangle-chain-count", -    cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the " -             "triangle tail duplication heuristic to kick in. 0 to disable."), -    cl::init(2), -    cl::Hidden); - -extern cl::opt<unsigned> StaticLikelyProb; -extern cl::opt<unsigned> ProfileLikelyProb; - -// Internal option used to control BFI display only after MBP pass. -// Defined in CodeGen/MachineBlockFrequencyInfo.cpp: -// -view-block-layout-with-bfi= -extern cl::opt<GVDAGType> ViewBlockLayoutWithBFI; - -// Command line option to specify the name of the function for CFG dump -// Defined in Analysis/BlockFrequencyInfo.cpp:  -view-bfi-func-name= -extern cl::opt<std::string> ViewBlockFreqFuncName; - -namespace { - -class BlockChain; - -/// Type for our function-wide basic block -> block chain mapping. -using BlockToChainMapType = DenseMap<const MachineBasicBlock *, BlockChain *>; - -/// A chain of blocks which will be laid out contiguously. -/// -/// This is the datastructure representing a chain of consecutive blocks that -/// are profitable to layout together in order to maximize fallthrough -/// probabilities and code locality. We also can use a block chain to represent -/// a sequence of basic blocks which have some external (correctness) -/// requirement for sequential layout. -/// -/// Chains can be built around a single basic block and can be merged to grow -/// them. They participate in a block-to-chain mapping, which is updated -/// automatically as chains are merged together. -class BlockChain { -  /// The sequence of blocks belonging to this chain. -  /// -  /// This is the sequence of blocks for a particular chain. These will be laid -  /// out in-order within the function. -  SmallVector<MachineBasicBlock *, 4> Blocks; - -  /// A handle to the function-wide basic block to block chain mapping. -  /// -  /// This is retained in each block chain to simplify the computation of child -  /// block chains for SCC-formation and iteration. We store the edges to child -  /// basic blocks, and map them back to their associated chains using this -  /// structure. -  BlockToChainMapType &BlockToChain; - -public: -  /// Construct a new BlockChain. -  /// -  /// This builds a new block chain representing a single basic block in the -  /// function. It also registers itself as the chain that block participates -  /// in with the BlockToChain mapping. -  BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) -      : Blocks(1, BB), BlockToChain(BlockToChain) { -    assert(BB && "Cannot create a chain with a null basic block"); -    BlockToChain[BB] = this; -  } - -  /// Iterator over blocks within the chain. -  using iterator = SmallVectorImpl<MachineBasicBlock *>::iterator; -  using const_iterator = SmallVectorImpl<MachineBasicBlock *>::const_iterator; - -  /// Beginning of blocks within the chain. -  iterator begin() { return Blocks.begin(); } -  const_iterator begin() const { return Blocks.begin(); } - -  /// End of blocks within the chain. -  iterator end() { return Blocks.end(); } -  const_iterator end() const { return Blocks.end(); } - -  bool remove(MachineBasicBlock* BB) { -    for(iterator i = begin(); i != end(); ++i) { -      if (*i == BB) { -        Blocks.erase(i); -        return true; -      } -    } -    return false; -  } - -  /// Merge a block chain into this one. -  /// -  /// This routine merges a block chain into this one. It takes care of forming -  /// a contiguous sequence of basic blocks, updating the edge list, and -  /// updating the block -> chain mapping. It does not free or tear down the -  /// old chain, but the old chain's block list is no longer valid. -  void merge(MachineBasicBlock *BB, BlockChain *Chain) { -    assert(BB && "Can't merge a null block."); -    assert(!Blocks.empty() && "Can't merge into an empty chain."); - -    // Fast path in case we don't have a chain already. -    if (!Chain) { -      assert(!BlockToChain[BB] && -             "Passed chain is null, but BB has entry in BlockToChain."); -      Blocks.push_back(BB); -      BlockToChain[BB] = this; -      return; -    } - -    assert(BB == *Chain->begin() && "Passed BB is not head of Chain."); -    assert(Chain->begin() != Chain->end()); - -    // Update the incoming blocks to point to this chain, and add them to the -    // chain structure. -    for (MachineBasicBlock *ChainBB : *Chain) { -      Blocks.push_back(ChainBB); -      assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain."); -      BlockToChain[ChainBB] = this; -    } -  } - -#ifndef NDEBUG -  /// Dump the blocks in this chain. -  LLVM_DUMP_METHOD void dump() { -    for (MachineBasicBlock *MBB : *this) -      MBB->dump(); -  } -#endif // NDEBUG - -  /// Count of predecessors of any block within the chain which have not -  /// yet been scheduled.  In general, we will delay scheduling this chain -  /// until those predecessors are scheduled (or we find a sufficiently good -  /// reason to override this heuristic.)  Note that when forming loop chains, -  /// blocks outside the loop are ignored and treated as if they were already -  /// scheduled. -  /// -  /// Note: This field is reinitialized multiple times - once for each loop, -  /// and then once for the function as a whole. -  unsigned UnscheduledPredecessors = 0; -}; - -class MachineBlockPlacement : public MachineFunctionPass { -  /// A type for a block filter set. -  using BlockFilterSet = SmallSetVector<const MachineBasicBlock *, 16>; - -  /// Pair struct containing basic block and taildup profitability -  struct BlockAndTailDupResult { -    MachineBasicBlock *BB; -    bool ShouldTailDup; -  }; - -  /// Triple struct containing edge weight and the edge. -  struct WeightedEdge { -    BlockFrequency Weight; -    MachineBasicBlock *Src; -    MachineBasicBlock *Dest; -  }; - -  /// work lists of blocks that are ready to be laid out -  SmallVector<MachineBasicBlock *, 16> BlockWorkList; -  SmallVector<MachineBasicBlock *, 16> EHPadWorkList; - -  /// Edges that have already been computed as optimal. -  DenseMap<const MachineBasicBlock *, BlockAndTailDupResult> ComputedEdges; - -  /// Machine Function -  MachineFunction *F; - -  /// A handle to the branch probability pass. -  const MachineBranchProbabilityInfo *MBPI; - -  /// A handle to the function-wide block frequency pass. -  std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; - -  /// A handle to the loop info. -  MachineLoopInfo *MLI; - -  /// Preferred loop exit. -  /// Member variable for convenience. It may be removed by duplication deep -  /// in the call stack. -  MachineBasicBlock *PreferredLoopExit; - -  /// A handle to the target's instruction info. -  const TargetInstrInfo *TII; - -  /// A handle to the target's lowering info. -  const TargetLoweringBase *TLI; - -  /// A handle to the post dominator tree. -  MachinePostDominatorTree *MPDT; - -  /// Duplicator used to duplicate tails during placement. -  /// -  /// Placement decisions can open up new tail duplication opportunities, but -  /// since tail duplication affects placement decisions of later blocks, it -  /// must be done inline. -  TailDuplicator TailDup; - -  /// Allocator and owner of BlockChain structures. -  /// -  /// We build BlockChains lazily while processing the loop structure of -  /// a function. To reduce malloc traffic, we allocate them using this -  /// slab-like allocator, and destroy them after the pass completes. An -  /// important guarantee is that this allocator produces stable pointers to -  /// the chains. -  SpecificBumpPtrAllocator<BlockChain> ChainAllocator; - -  /// Function wide BasicBlock to BlockChain mapping. -  /// -  /// This mapping allows efficiently moving from any given basic block to the -  /// BlockChain it participates in, if any. We use it to, among other things, -  /// allow implicitly defining edges between chains as the existing edges -  /// between basic blocks. -  DenseMap<const MachineBasicBlock *, BlockChain *> BlockToChain; - -#ifndef NDEBUG -  /// The set of basic blocks that have terminators that cannot be fully -  /// analyzed.  These basic blocks cannot be re-ordered safely by -  /// MachineBlockPlacement, and we must preserve physical layout of these -  /// blocks and their successors through the pass. -  SmallPtrSet<MachineBasicBlock *, 4> BlocksWithUnanalyzableExits; -#endif - -  /// Decrease the UnscheduledPredecessors count for all blocks in chain, and -  /// if the count goes to 0, add them to the appropriate work list. -  void markChainSuccessors( -      const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, -      const BlockFilterSet *BlockFilter = nullptr); - -  /// Decrease the UnscheduledPredecessors count for a single block, and -  /// if the count goes to 0, add them to the appropriate work list. -  void markBlockSuccessors( -      const BlockChain &Chain, const MachineBasicBlock *BB, -      const MachineBasicBlock *LoopHeaderBB, -      const BlockFilterSet *BlockFilter = nullptr); - -  BranchProbability -  collectViableSuccessors( -      const MachineBasicBlock *BB, const BlockChain &Chain, -      const BlockFilterSet *BlockFilter, -      SmallVector<MachineBasicBlock *, 4> &Successors); -  bool shouldPredBlockBeOutlined( -      const MachineBasicBlock *BB, const MachineBasicBlock *Succ, -      const BlockChain &Chain, const BlockFilterSet *BlockFilter, -      BranchProbability SuccProb, BranchProbability HotProb); -  bool repeatedlyTailDuplicateBlock( -      MachineBasicBlock *BB, MachineBasicBlock *&LPred, -      const MachineBasicBlock *LoopHeaderBB, -      BlockChain &Chain, BlockFilterSet *BlockFilter, -      MachineFunction::iterator &PrevUnplacedBlockIt); -  bool maybeTailDuplicateBlock( -      MachineBasicBlock *BB, MachineBasicBlock *LPred, -      BlockChain &Chain, BlockFilterSet *BlockFilter, -      MachineFunction::iterator &PrevUnplacedBlockIt, -      bool &DuplicatedToLPred); -  bool hasBetterLayoutPredecessor( -      const MachineBasicBlock *BB, const MachineBasicBlock *Succ, -      const BlockChain &SuccChain, BranchProbability SuccProb, -      BranchProbability RealSuccProb, const BlockChain &Chain, -      const BlockFilterSet *BlockFilter); -  BlockAndTailDupResult selectBestSuccessor( -      const MachineBasicBlock *BB, const BlockChain &Chain, -      const BlockFilterSet *BlockFilter); -  MachineBasicBlock *selectBestCandidateBlock( -      const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); -  MachineBasicBlock *getFirstUnplacedBlock( -      const BlockChain &PlacedChain, -      MachineFunction::iterator &PrevUnplacedBlockIt, -      const BlockFilterSet *BlockFilter); - -  /// Add a basic block to the work list if it is appropriate. -  /// -  /// If the optional parameter BlockFilter is provided, only MBB -  /// present in the set will be added to the worklist. If nullptr -  /// is provided, no filtering occurs. -  void fillWorkLists(const MachineBasicBlock *MBB, -                     SmallPtrSetImpl<BlockChain *> &UpdatedPreds, -                     const BlockFilterSet *BlockFilter); - -  void buildChain(const MachineBasicBlock *BB, BlockChain &Chain, -                  BlockFilterSet *BlockFilter = nullptr); -  bool canMoveBottomBlockToTop(const MachineBasicBlock *BottomBlock, -                               const MachineBasicBlock *OldTop); -  bool hasViableTopFallthrough(const MachineBasicBlock *Top, -                               const BlockFilterSet &LoopBlockSet); -  BlockFrequency TopFallThroughFreq(const MachineBasicBlock *Top, -                                    const BlockFilterSet &LoopBlockSet); -  BlockFrequency FallThroughGains(const MachineBasicBlock *NewTop, -                                  const MachineBasicBlock *OldTop, -                                  const MachineBasicBlock *ExitBB, -                                  const BlockFilterSet &LoopBlockSet); -  MachineBasicBlock *findBestLoopTopHelper(MachineBasicBlock *OldTop, -      const MachineLoop &L, const BlockFilterSet &LoopBlockSet); -  MachineBasicBlock *findBestLoopTop( -      const MachineLoop &L, const BlockFilterSet &LoopBlockSet); -  MachineBasicBlock *findBestLoopExit( -      const MachineLoop &L, const BlockFilterSet &LoopBlockSet, -      BlockFrequency &ExitFreq); -  BlockFilterSet collectLoopBlockSet(const MachineLoop &L); -  void buildLoopChains(const MachineLoop &L); -  void rotateLoop( -      BlockChain &LoopChain, const MachineBasicBlock *ExitingBB, -      BlockFrequency ExitFreq, const BlockFilterSet &LoopBlockSet); -  void rotateLoopWithProfile( -      BlockChain &LoopChain, const MachineLoop &L, -      const BlockFilterSet &LoopBlockSet); -  void buildCFGChains(); -  void optimizeBranches(); -  void alignBlocks(); -  /// Returns true if a block should be tail-duplicated to increase fallthrough -  /// opportunities. -  bool shouldTailDuplicate(MachineBasicBlock *BB); -  /// Check the edge frequencies to see if tail duplication will increase -  /// fallthroughs. -  bool isProfitableToTailDup( -    const MachineBasicBlock *BB, const MachineBasicBlock *Succ, -    BranchProbability QProb, -    const BlockChain &Chain, const BlockFilterSet *BlockFilter); - -  /// Check for a trellis layout. -  bool isTrellis(const MachineBasicBlock *BB, -                 const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, -                 const BlockChain &Chain, const BlockFilterSet *BlockFilter); - -  /// Get the best successor given a trellis layout. -  BlockAndTailDupResult getBestTrellisSuccessor( -      const MachineBasicBlock *BB, -      const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, -      BranchProbability AdjustedSumProb, const BlockChain &Chain, -      const BlockFilterSet *BlockFilter); - -  /// Get the best pair of non-conflicting edges. -  static std::pair<WeightedEdge, WeightedEdge> getBestNonConflictingEdges( -      const MachineBasicBlock *BB, -      MutableArrayRef<SmallVector<WeightedEdge, 8>> Edges); - -  /// Returns true if a block can tail duplicate into all unplaced -  /// predecessors. Filters based on loop. -  bool canTailDuplicateUnplacedPreds( -      const MachineBasicBlock *BB, MachineBasicBlock *Succ, -      const BlockChain &Chain, const BlockFilterSet *BlockFilter); - -  /// Find chains of triangles to tail-duplicate where a global analysis works, -  /// but a local analysis would not find them. -  void precomputeTriangleChains(); - -public: -  static char ID; // Pass identification, replacement for typeid - -  MachineBlockPlacement() : MachineFunctionPass(ID) { -    initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); -  } - -  bool runOnMachineFunction(MachineFunction &F) override; - -  bool allowTailDupPlacement() const { -    assert(F); -    return TailDupPlacement && !F->getTarget().requiresStructuredCFG(); -  } - -  void getAnalysisUsage(AnalysisUsage &AU) const override { -    AU.addRequired<MachineBranchProbabilityInfo>(); -    AU.addRequired<MachineBlockFrequencyInfo>(); -    if (TailDupPlacement) -      AU.addRequired<MachinePostDominatorTree>(); -    AU.addRequired<MachineLoopInfo>(); -    AU.addRequired<TargetPassConfig>(); -    MachineFunctionPass::getAnalysisUsage(AU); -  } -}; - -} // end anonymous namespace - -char MachineBlockPlacement::ID = 0; - -char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; - -INITIALIZE_PASS_BEGIN(MachineBlockPlacement, DEBUG_TYPE, -                      "Branch Probability Basic Block Placement", false, false) -INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) -INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) -INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree) -INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) -INITIALIZE_PASS_END(MachineBlockPlacement, DEBUG_TYPE, -                    "Branch Probability Basic Block Placement", false, false) - -#ifndef NDEBUG -/// Helper to print the name of a MBB. -/// -/// Only used by debug logging. -static std::string getBlockName(const MachineBasicBlock *BB) { -  std::string Result; -  raw_string_ostream OS(Result); -  OS << printMBBReference(*BB); -  OS << " ('" << BB->getName() << "')"; -  OS.flush(); -  return Result; -} -#endif - -/// Mark a chain's successors as having one fewer preds. -/// -/// When a chain is being merged into the "placed" chain, this routine will -/// quickly walk the successors of each block in the chain and mark them as -/// having one fewer active predecessor. It also adds any successors of this -/// chain which reach the zero-predecessor state to the appropriate worklist. -void MachineBlockPlacement::markChainSuccessors( -    const BlockChain &Chain, const MachineBasicBlock *LoopHeaderBB, -    const BlockFilterSet *BlockFilter) { -  // Walk all the blocks in this chain, marking their successors as having -  // a predecessor placed. -  for (MachineBasicBlock *MBB : Chain) { -    markBlockSuccessors(Chain, MBB, LoopHeaderBB, BlockFilter); -  } -} - -/// Mark a single block's successors as having one fewer preds. -/// -/// Under normal circumstances, this is only called by markChainSuccessors, -/// but if a block that was to be placed is completely tail-duplicated away, -/// and was duplicated into the chain end, we need to redo markBlockSuccessors -/// for just that block. -void MachineBlockPlacement::markBlockSuccessors( -    const BlockChain &Chain, const MachineBasicBlock *MBB, -    const MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { -  // Add any successors for which this is the only un-placed in-loop -  // predecessor to the worklist as a viable candidate for CFG-neutral -  // placement. No subsequent placement of this block will violate the CFG -  // shape, so we get to use heuristics to choose a favorable placement. -  for (MachineBasicBlock *Succ : MBB->successors()) { -    if (BlockFilter && !BlockFilter->count(Succ)) -      continue; -    BlockChain &SuccChain = *BlockToChain[Succ]; -    // Disregard edges within a fixed chain, or edges to the loop header. -    if (&Chain == &SuccChain || Succ == LoopHeaderBB) -      continue; - -    // This is a cross-chain edge that is within the loop, so decrement the -    // loop predecessor count of the destination chain. -    if (SuccChain.UnscheduledPredecessors == 0 || -        --SuccChain.UnscheduledPredecessors > 0) -      continue; - -    auto *NewBB = *SuccChain.begin(); -    if (NewBB->isEHPad()) -      EHPadWorkList.push_back(NewBB); -    else -      BlockWorkList.push_back(NewBB); -  } -} - -/// This helper function collects the set of successors of block -/// \p BB that are allowed to be its layout successors, and return -/// the total branch probability of edges from \p BB to those -/// blocks. -BranchProbability MachineBlockPlacement::collectViableSuccessors( -    const MachineBasicBlock *BB, const BlockChain &Chain, -    const BlockFilterSet *BlockFilter, -    SmallVector<MachineBasicBlock *, 4> &Successors) { -  // Adjust edge probabilities by excluding edges pointing to blocks that is -  // either not in BlockFilter or is already in the current chain. Consider the -  // following CFG: -  // -  //     --->A -  //     |  / \ -  //     | B   C -  //     |  \ / \ -  //     ----D   E -  // -  // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after -  // A->C is chosen as a fall-through, D won't be selected as a successor of C -  // due to CFG constraint (the probability of C->D is not greater than -  // HotProb to break topo-order). If we exclude E that is not in BlockFilter -  // when calculating the probability of C->D, D will be selected and we -  // will get A C D B as the layout of this loop. -  auto AdjustedSumProb = BranchProbability::getOne(); -  for (MachineBasicBlock *Succ : BB->successors()) { -    bool SkipSucc = false; -    if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { -      SkipSucc = true; -    } else { -      BlockChain *SuccChain = BlockToChain[Succ]; -      if (SuccChain == &Chain) { -        SkipSucc = true; -      } else if (Succ != *SuccChain->begin()) { -        LLVM_DEBUG(dbgs() << "    " << getBlockName(Succ) -                          << " -> Mid chain!\n"); -        continue; -      } -    } -    if (SkipSucc) -      AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); -    else -      Successors.push_back(Succ); -  } - -  return AdjustedSumProb; -} - -/// The helper function returns the branch probability that is adjusted -/// or normalized over the new total \p AdjustedSumProb. -static BranchProbability -getAdjustedProbability(BranchProbability OrigProb, -                       BranchProbability AdjustedSumProb) { -  BranchProbability SuccProb; -  uint32_t SuccProbN = OrigProb.getNumerator(); -  uint32_t SuccProbD = AdjustedSumProb.getNumerator(); -  if (SuccProbN >= SuccProbD) -    SuccProb = BranchProbability::getOne(); -  else -    SuccProb = BranchProbability(SuccProbN, SuccProbD); - -  return SuccProb; -} - -/// Check if \p BB has exactly the successors in \p Successors. -static bool -hasSameSuccessors(MachineBasicBlock &BB, -                  SmallPtrSetImpl<const MachineBasicBlock *> &Successors) { -  if (BB.succ_size() != Successors.size()) -    return false; -  // We don't want to count self-loops -  if (Successors.count(&BB)) -    return false; -  for (MachineBasicBlock *Succ : BB.successors()) -    if (!Successors.count(Succ)) -      return false; -  return true; -} - -/// Check if a block should be tail duplicated to increase fallthrough -/// opportunities. -/// \p BB Block to check. -bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock *BB) { -  // Blocks with single successors don't create additional fallthrough -  // opportunities. Don't duplicate them. TODO: When conditional exits are -  // analyzable, allow them to be duplicated. -  bool IsSimple = TailDup.isSimpleBB(BB); - -  if (BB->succ_size() == 1) -    return false; -  return TailDup.shouldTailDuplicate(IsSimple, *BB); -} - -/// Compare 2 BlockFrequency's with a small penalty for \p A. -/// In order to be conservative, we apply a X% penalty to account for -/// increased icache pressure and static heuristics. For small frequencies -/// we use only the numerators to improve accuracy. For simplicity, we assume the -/// penalty is less than 100% -/// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere. -static bool greaterWithBias(BlockFrequency A, BlockFrequency B, -                            uint64_t EntryFreq) { -  BranchProbability ThresholdProb(TailDupPlacementPenalty, 100); -  BlockFrequency Gain = A - B; -  return (Gain / ThresholdProb).getFrequency() >= EntryFreq; -} - -/// Check the edge frequencies to see if tail duplication will increase -/// fallthroughs. It only makes sense to call this function when -/// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is -/// always locally profitable if we would have picked \p Succ without -/// considering duplication. -bool MachineBlockPlacement::isProfitableToTailDup( -    const MachineBasicBlock *BB, const MachineBasicBlock *Succ, -    BranchProbability QProb, -    const BlockChain &Chain, const BlockFilterSet *BlockFilter) { -  // We need to do a probability calculation to make sure this is profitable. -  // First: does succ have a successor that post-dominates? This affects the -  // calculation. The 2 relevant cases are: -  //    BB         BB -  //    | \Qout    | \Qout -  //   P|  C       |P C -  //    =   C'     =   C' -  //    |  /Qin    |  /Qin -  //    | /        | / -  //    Succ       Succ -  //    / \        | \  V -  //  U/   =V      |U \ -  //  /     \      =   D -  //  D      E     |  / -  //               | / -  //               |/ -  //               PDom -  //  '=' : Branch taken for that CFG edge -  // In the second case, Placing Succ while duplicating it into C prevents the -  // fallthrough of Succ into either D or PDom, because they now have C as an -  // unplaced predecessor - -  // Start by figuring out which case we fall into -  MachineBasicBlock *PDom = nullptr; -  SmallVector<MachineBasicBlock *, 4> SuccSuccs; -  // Only scan the relevant successors -  auto AdjustedSuccSumProb = -      collectViableSuccessors(Succ, Chain, BlockFilter, SuccSuccs); -  BranchProbability PProb = MBPI->getEdgeProbability(BB, Succ); -  auto BBFreq = MBFI->getBlockFreq(BB); -  auto SuccFreq = MBFI->getBlockFreq(Succ); -  BlockFrequency P = BBFreq * PProb; -  BlockFrequency Qout = BBFreq * QProb; -  uint64_t EntryFreq = MBFI->getEntryFreq(); -  // If there are no more successors, it is profitable to copy, as it strictly -  // increases fallthrough. -  if (SuccSuccs.size() == 0) -    return greaterWithBias(P, Qout, EntryFreq); - -  auto BestSuccSucc = BranchProbability::getZero(); -  // Find the PDom or the best Succ if no PDom exists. -  for (MachineBasicBlock *SuccSucc : SuccSuccs) { -    auto Prob = MBPI->getEdgeProbability(Succ, SuccSucc); -    if (Prob > BestSuccSucc) -      BestSuccSucc = Prob; -    if (PDom == nullptr) -      if (MPDT->dominates(SuccSucc, Succ)) { -        PDom = SuccSucc; -        break; -      } -  } -  // For the comparisons, we need to know Succ's best incoming edge that isn't -  // from BB. -  auto SuccBestPred = BlockFrequency(0); -  for (MachineBasicBlock *SuccPred : Succ->predecessors()) { -    if (SuccPred == Succ || SuccPred == BB -        || BlockToChain[SuccPred] == &Chain -        || (BlockFilter && !BlockFilter->count(SuccPred))) -      continue; -    auto Freq = MBFI->getBlockFreq(SuccPred) -        * MBPI->getEdgeProbability(SuccPred, Succ); -    if (Freq > SuccBestPred) -      SuccBestPred = Freq; -  } -  // Qin is Succ's best unplaced incoming edge that isn't BB -  BlockFrequency Qin = SuccBestPred; -  // If it doesn't have a post-dominating successor, here is the calculation: -  //    BB        BB -  //    | \Qout   |  \ -  //   P|  C      |   = -  //    =   C'    |    C -  //    |  /Qin   |     | -  //    | /       |     C' (+Succ) -  //    Succ      Succ /| -  //    / \       |  \/ | -  //  U/   =V     |  == | -  //  /     \     | /  \| -  //  D      E    D     E -  //  '=' : Branch taken for that CFG edge -  //  Cost in the first case is: P + V -  //  For this calculation, we always assume P > Qout. If Qout > P -  //  The result of this function will be ignored at the caller. -  //  Let F = SuccFreq - Qin -  //  Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V - -  if (PDom == nullptr || !Succ->isSuccessor(PDom)) { -    BranchProbability UProb = BestSuccSucc; -    BranchProbability VProb = AdjustedSuccSumProb - UProb; -    BlockFrequency F = SuccFreq - Qin; -    BlockFrequency V = SuccFreq * VProb; -    BlockFrequency QinU = std::min(Qin, F) * UProb; -    BlockFrequency BaseCost = P + V; -    BlockFrequency DupCost = Qout + QinU + std::max(Qin, F) * VProb; -    return greaterWithBias(BaseCost, DupCost, EntryFreq); -  } -  BranchProbability UProb = MBPI->getEdgeProbability(Succ, PDom); -  BranchProbability VProb = AdjustedSuccSumProb - UProb; -  BlockFrequency U = SuccFreq * UProb; -  BlockFrequency V = SuccFreq * VProb; -  BlockFrequency F = SuccFreq - Qin; -  // If there is a post-dominating successor, here is the calculation: -  // BB         BB                 BB          BB -  // | \Qout    |   \               | \Qout     |  \ -  // |P C       |    =              |P C        |   = -  // =   C'     |P    C             =   C'      |P   C -  // |  /Qin    |      |            |  /Qin     |     | -  // | /        |      C' (+Succ)   | /         |     C' (+Succ) -  // Succ       Succ  /|            Succ        Succ /| -  // | \  V     |   \/ |            | \  V      |  \/ | -  // |U \       |U  /\ =?           |U =        |U /\ | -  // =   D      = =  =?|            |   D       | =  =| -  // |  /       |/     D            |  /        |/    D -  // | /        |     /             | =         |    / -  // |/         |    /              |/          |   = -  // Dom         Dom                Dom         Dom -  //  '=' : Branch taken for that CFG edge -  // The cost for taken branches in the first case is P + U -  // Let F = SuccFreq - Qin -  // The cost in the second case (assuming independence), given the layout: -  // BB, Succ, (C+Succ), D, Dom or the layout: -  // BB, Succ, D, Dom, (C+Succ) -  // is Qout + max(F, Qin) * U + min(F, Qin) -  // compare P + U vs Qout + P * U + Qin. -  // -  // The 3rd and 4th cases cover when Dom would be chosen to follow Succ. -  // -  // For the 3rd case, the cost is P + 2 * V -  // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V -  // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V -  if (UProb > AdjustedSuccSumProb / 2 && -      !hasBetterLayoutPredecessor(Succ, PDom, *BlockToChain[PDom], UProb, UProb, -                                  Chain, BlockFilter)) -    // Cases 3 & 4 -    return greaterWithBias( -        (P + V), (Qout + std::max(Qin, F) * VProb + std::min(Qin, F) * UProb), -        EntryFreq); -  // Cases 1 & 2 -  return greaterWithBias((P + U), -                         (Qout + std::min(Qin, F) * AdjustedSuccSumProb + -                          std::max(Qin, F) * UProb), -                         EntryFreq); -} - -/// Check for a trellis layout. \p BB is the upper part of a trellis if its -/// successors form the lower part of a trellis. A successor set S forms the -/// lower part of a trellis if all of the predecessors of S are either in S or -/// have all of S as successors. We ignore trellises where BB doesn't have 2 -/// successors because for fewer than 2, it's trivial, and for 3 or greater they -/// are very uncommon and complex to compute optimally. Allowing edges within S -/// is not strictly a trellis, but the same algorithm works, so we allow it. -bool MachineBlockPlacement::isTrellis( -    const MachineBasicBlock *BB, -    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, -    const BlockChain &Chain, const BlockFilterSet *BlockFilter) { -  // Technically BB could form a trellis with branching factor higher than 2. -  // But that's extremely uncommon. -  if (BB->succ_size() != 2 || ViableSuccs.size() != 2) -    return false; - -  SmallPtrSet<const MachineBasicBlock *, 2> Successors(BB->succ_begin(), -                                                       BB->succ_end()); -  // To avoid reviewing the same predecessors twice. -  SmallPtrSet<const MachineBasicBlock *, 8> SeenPreds; - -  for (MachineBasicBlock *Succ : ViableSuccs) { -    int PredCount = 0; -    for (auto SuccPred : Succ->predecessors()) { -      // Allow triangle successors, but don't count them. -      if (Successors.count(SuccPred)) { -        // Make sure that it is actually a triangle. -        for (MachineBasicBlock *CheckSucc : SuccPred->successors()) -          if (!Successors.count(CheckSucc)) -            return false; -        continue; -      } -      const BlockChain *PredChain = BlockToChain[SuccPred]; -      if (SuccPred == BB || (BlockFilter && !BlockFilter->count(SuccPred)) || -          PredChain == &Chain || PredChain == BlockToChain[Succ]) -        continue; -      ++PredCount; -      // Perform the successor check only once. -      if (!SeenPreds.insert(SuccPred).second) -        continue; -      if (!hasSameSuccessors(*SuccPred, Successors)) -        return false; -    } -    // If one of the successors has only BB as a predecessor, it is not a -    // trellis. -    if (PredCount < 1) -      return false; -  } -  return true; -} - -/// Pick the highest total weight pair of edges that can both be laid out. -/// The edges in \p Edges[0] are assumed to have a different destination than -/// the edges in \p Edges[1]. Simple counting shows that the best pair is either -/// the individual highest weight edges to the 2 different destinations, or in -/// case of a conflict, one of them should be replaced with a 2nd best edge. -std::pair<MachineBlockPlacement::WeightedEdge, -          MachineBlockPlacement::WeightedEdge> -MachineBlockPlacement::getBestNonConflictingEdges( -    const MachineBasicBlock *BB, -    MutableArrayRef<SmallVector<MachineBlockPlacement::WeightedEdge, 8>> -        Edges) { -  // Sort the edges, and then for each successor, find the best incoming -  // predecessor. If the best incoming predecessors aren't the same, -  // then that is clearly the best layout. If there is a conflict, one of the -  // successors will have to fallthrough from the second best predecessor. We -  // compare which combination is better overall. - -  // Sort for highest frequency. -  auto Cmp = [](WeightedEdge A, WeightedEdge B) { return A.Weight > B.Weight; }; - -  llvm::stable_sort(Edges[0], Cmp); -  llvm::stable_sort(Edges[1], Cmp); -  auto BestA = Edges[0].begin(); -  auto BestB = Edges[1].begin(); -  // Arrange for the correct answer to be in BestA and BestB -  // If the 2 best edges don't conflict, the answer is already there. -  if (BestA->Src == BestB->Src) { -    // Compare the total fallthrough of (Best + Second Best) for both pairs -    auto SecondBestA = std::next(BestA); -    auto SecondBestB = std::next(BestB); -    BlockFrequency BestAScore = BestA->Weight + SecondBestB->Weight; -    BlockFrequency BestBScore = BestB->Weight + SecondBestA->Weight; -    if (BestAScore < BestBScore) -      BestA = SecondBestA; -    else -      BestB = SecondBestB; -  } -  // Arrange for the BB edge to be in BestA if it exists. -  if (BestB->Src == BB) -    std::swap(BestA, BestB); -  return std::make_pair(*BestA, *BestB); -} - -/// Get the best successor from \p BB based on \p BB being part of a trellis. -/// We only handle trellises with 2 successors, so the algorithm is -/// straightforward: Find the best pair of edges that don't conflict. We find -/// the best incoming edge for each successor in the trellis. If those conflict, -/// we consider which of them should be replaced with the second best. -/// Upon return the two best edges will be in \p BestEdges. If one of the edges -/// comes from \p BB, it will be in \p BestEdges[0] -MachineBlockPlacement::BlockAndTailDupResult -MachineBlockPlacement::getBestTrellisSuccessor( -    const MachineBasicBlock *BB, -    const SmallVectorImpl<MachineBasicBlock *> &ViableSuccs, -    BranchProbability AdjustedSumProb, const BlockChain &Chain, -    const BlockFilterSet *BlockFilter) { - -  BlockAndTailDupResult Result = {nullptr, false}; -  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), -                                                       BB->succ_end()); - -  // We assume size 2 because it's common. For general n, we would have to do -  // the Hungarian algorithm, but it's not worth the complexity because more -  // than 2 successors is fairly uncommon, and a trellis even more so. -  if (Successors.size() != 2 || ViableSuccs.size() != 2) -    return Result; - -  // Collect the edge frequencies of all edges that form the trellis. -  SmallVector<WeightedEdge, 8> Edges[2]; -  int SuccIndex = 0; -  for (auto Succ : ViableSuccs) { -    for (MachineBasicBlock *SuccPred : Succ->predecessors()) { -      // Skip any placed predecessors that are not BB -      if (SuccPred != BB) -        if ((BlockFilter && !BlockFilter->count(SuccPred)) || -            BlockToChain[SuccPred] == &Chain || -            BlockToChain[SuccPred] == BlockToChain[Succ]) -          continue; -      BlockFrequency EdgeFreq = MBFI->getBlockFreq(SuccPred) * -                                MBPI->getEdgeProbability(SuccPred, Succ); -      Edges[SuccIndex].push_back({EdgeFreq, SuccPred, Succ}); -    } -    ++SuccIndex; -  } - -  // Pick the best combination of 2 edges from all the edges in the trellis. -  WeightedEdge BestA, BestB; -  std::tie(BestA, BestB) = getBestNonConflictingEdges(BB, Edges); - -  if (BestA.Src != BB) { -    // If we have a trellis, and BB doesn't have the best fallthrough edges, -    // we shouldn't choose any successor. We've already looked and there's a -    // better fallthrough edge for all the successors. -    LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n"); -    return Result; -  } - -  // Did we pick the triangle edge? If tail-duplication is profitable, do -  // that instead. Otherwise merge the triangle edge now while we know it is -  // optimal. -  if (BestA.Dest == BestB.Src) { -    // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2 -    // would be better. -    MachineBasicBlock *Succ1 = BestA.Dest; -    MachineBasicBlock *Succ2 = BestB.Dest; -    // Check to see if tail-duplication would be profitable. -    if (allowTailDupPlacement() && shouldTailDuplicate(Succ2) && -        canTailDuplicateUnplacedPreds(BB, Succ2, Chain, BlockFilter) && -        isProfitableToTailDup(BB, Succ2, MBPI->getEdgeProbability(BB, Succ1), -                              Chain, BlockFilter)) { -      LLVM_DEBUG(BranchProbability Succ2Prob = getAdjustedProbability( -                     MBPI->getEdgeProbability(BB, Succ2), AdjustedSumProb); -                 dbgs() << "    Selected: " << getBlockName(Succ2) -                        << ", probability: " << Succ2Prob -                        << " (Tail Duplicate)\n"); -      Result.BB = Succ2; -      Result.ShouldTailDup = true; -      return Result; -    } -  } -  // We have already computed the optimal edge for the other side of the -  // trellis. -  ComputedEdges[BestB.Src] = { BestB.Dest, false }; - -  auto TrellisSucc = BestA.Dest; -  LLVM_DEBUG(BranchProbability SuccProb = getAdjustedProbability( -                 MBPI->getEdgeProbability(BB, TrellisSucc), AdjustedSumProb); -             dbgs() << "    Selected: " << getBlockName(TrellisSucc) -                    << ", probability: " << SuccProb << " (Trellis)\n"); -  Result.BB = TrellisSucc; -  return Result; -} - -/// When the option allowTailDupPlacement() is on, this method checks if the -/// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated -/// into all of its unplaced, unfiltered predecessors, that are not BB. -bool MachineBlockPlacement::canTailDuplicateUnplacedPreds( -    const MachineBasicBlock *BB, MachineBasicBlock *Succ, -    const BlockChain &Chain, const BlockFilterSet *BlockFilter) { -  if (!shouldTailDuplicate(Succ)) -    return false; - -  // For CFG checking. -  SmallPtrSet<const MachineBasicBlock *, 4> Successors(BB->succ_begin(), -                                                       BB->succ_end()); -  for (MachineBasicBlock *Pred : Succ->predecessors()) { -    // Make sure all unplaced and unfiltered predecessors can be -    // tail-duplicated into. -    // Skip any blocks that are already placed or not in this loop. -    if (Pred == BB || (BlockFilter && !BlockFilter->count(Pred)) -        || BlockToChain[Pred] == &Chain) -      continue; -    if (!TailDup.canTailDuplicate(Succ, Pred)) { -      if (Successors.size() > 1 && hasSameSuccessors(*Pred, Successors)) -        // This will result in a trellis after tail duplication, so we don't -        // need to copy Succ into this predecessor. In the presence -        // of a trellis tail duplication can continue to be profitable. -        // For example: -        // A            A -        // |\           |\ -        // | \          | \ -        // |  C         |  C+BB -        // | /          |  | -        // |/           |  | -        // BB    =>     BB | -        // |\           |\/| -        // | \          |/\| -        // |  D         |  D -        // | /          | / -        // |/           |/ -        // Succ         Succ -        // -        // After BB was duplicated into C, the layout looks like the one on the -        // right. BB and C now have the same successors. When considering -        // whether Succ can be duplicated into all its unplaced predecessors, we -        // ignore C. -        // We can do this because C already has a profitable fallthrough, namely -        // D. TODO(iteratee): ignore sufficiently cold predecessors for -        // duplication and for this test. -        // -        // This allows trellises to be laid out in 2 separate chains -        // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic -        // because it allows the creation of 2 fallthrough paths with links -        // between them, and we correctly identify the best layout for these -        // CFGs. We want to extend trellises that the user created in addition -        // to trellises created by tail-duplication, so we just look for the -        // CFG. -        continue; -      return false; -    } -  } -  return true; -} - -/// Find chains of triangles where we believe it would be profitable to -/// tail-duplicate them all, but a local analysis would not find them. -/// There are 3 ways this can be profitable: -/// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with -///    longer chains) -/// 2) The chains are statically correlated. Branch probabilities have a very -///    U-shaped distribution. -///    [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805] -///    If the branches in a chain are likely to be from the same side of the -///    distribution as their predecessor, but are independent at runtime, this -///    transformation is profitable. (Because the cost of being wrong is a small -///    fixed cost, unlike the standard triangle layout where the cost of being -///    wrong scales with the # of triangles.) -/// 3) The chains are dynamically correlated. If the probability that a previous -///    branch was taken positively influences whether the next branch will be -///    taken -/// We believe that 2 and 3 are common enough to justify the small margin in 1. -void MachineBlockPlacement::precomputeTriangleChains() { -  struct TriangleChain { -    std::vector<MachineBasicBlock *> Edges; - -    TriangleChain(MachineBasicBlock *src, MachineBasicBlock *dst) -        : Edges({src, dst}) {} - -    void append(MachineBasicBlock *dst) { -      assert(getKey()->isSuccessor(dst) && -             "Attempting to append a block that is not a successor."); -      Edges.push_back(dst); -    } - -    unsigned count() const { return Edges.size() - 1; } - -    MachineBasicBlock *getKey() const { -      return Edges.back(); -    } -  }; - -  if (TriangleChainCount == 0) -    return; - -  LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n"); -  // Map from last block to the chain that contains it. This allows us to extend -  // chains as we find new triangles. -  DenseMap<const MachineBasicBlock *, TriangleChain> TriangleChainMap; -  for (MachineBasicBlock &BB : *F) { -    // If BB doesn't have 2 successors, it doesn't start a triangle. -    if (BB.succ_size() != 2) -      continue; -    MachineBasicBlock *PDom = nullptr; -    for (MachineBasicBlock *Succ : BB.successors()) { -      if (!MPDT->dominates(Succ, &BB)) -        continue; -      PDom = Succ; -      break; -    } -    // If BB doesn't have a post-dominating successor, it doesn't form a -    // triangle. -    if (PDom == nullptr) -      continue; -    // If PDom has a hint that it is low probability, skip this triangle. -    if (MBPI->getEdgeProbability(&BB, PDom) < BranchProbability(50, 100)) -      continue; -    // If PDom isn't eligible for duplication, this isn't the kind of triangle -    // we're looking for. -    if (!shouldTailDuplicate(PDom)) -      continue; -    bool CanTailDuplicate = true; -    // If PDom can't tail-duplicate into it's non-BB predecessors, then this -    // isn't the kind of triangle we're looking for. -    for (MachineBasicBlock* Pred : PDom->predecessors()) { -      if (Pred == &BB) -        continue; -      if (!TailDup.canTailDuplicate(PDom, Pred)) { -        CanTailDuplicate = false; -        break; -      } -    } -    // If we can't tail-duplicate PDom to its predecessors, then skip this -    // triangle. -    if (!CanTailDuplicate) -      continue; - -    // Now we have an interesting triangle. Insert it if it's not part of an -    // existing chain. -    // Note: This cannot be replaced with a call insert() or emplace() because -    // the find key is BB, but the insert/emplace key is PDom. -    auto Found = TriangleChainMap.find(&BB); -    // If it is, remove the chain from the map, grow it, and put it back in the -    // map with the end as the new key. -    if (Found != TriangleChainMap.end()) { -      TriangleChain Chain = std::move(Found->second); -      TriangleChainMap.erase(Found); -      Chain.append(PDom); -      TriangleChainMap.insert(std::make_pair(Chain.getKey(), std::move(Chain))); -    } else { -      auto InsertResult = TriangleChainMap.try_emplace(PDom, &BB, PDom); -      assert(InsertResult.second && "Block seen twice."); -      (void)InsertResult; -    } -  } - -  // Iterating over a DenseMap is safe here, because the only thing in the body -  // of the loop is inserting into another DenseMap (ComputedEdges). -  // ComputedEdges is never iterated, so this doesn't lead to non-determinism. -  for (auto &ChainPair : TriangleChainMap) { -    TriangleChain &Chain = ChainPair.second; -    // Benchmarking has shown that due to branch correlation duplicating 2 or -    // more triangles is profitable, despite the calculations assuming -    // independence. -    if (Chain.count() < TriangleChainCount) -      continue; -    MachineBasicBlock *dst = Chain.Edges.back(); -    Chain.Edges.pop_back(); -    for (MachineBasicBlock *src : reverse(Chain.Edges)) { -      LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src) << "->" -                        << getBlockName(dst) -                        << " as pre-computed based on triangles.\n"); - -      auto InsertResult = ComputedEdges.insert({src, {dst, true}}); -      assert(InsertResult.second && "Block seen twice."); -      (void)InsertResult; - -      dst = src; -    } -  } -} - -// When profile is not present, return the StaticLikelyProb. -// When profile is available, we need to handle the triangle-shape CFG. -static BranchProbability getLayoutSuccessorProbThreshold( -      const MachineBasicBlock *BB) { -  if (!BB->getParent()->getFunction().hasProfileData()) -    return BranchProbability(StaticLikelyProb, 100); -  if (BB->succ_size() == 2) { -    const MachineBasicBlock *Succ1 = *BB->succ_begin(); -    const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); -    if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { -      /* See case 1 below for the cost analysis. For BB->Succ to -       * be taken with smaller cost, the following needs to hold: -       *   Prob(BB->Succ) > 2 * Prob(BB->Pred) -       *   So the threshold T in the calculation below -       *   (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred) -       *   So T / (1 - T) = 2, Yielding T = 2/3 -       * Also adding user specified branch bias, we have -       *   T = (2/3)*(ProfileLikelyProb/50) -       *     = (2*ProfileLikelyProb)/150) -       */ -      return BranchProbability(2 * ProfileLikelyProb, 150); -    } -  } -  return BranchProbability(ProfileLikelyProb, 100); -} - -/// Checks to see if the layout candidate block \p Succ has a better layout -/// predecessor than \c BB. If yes, returns true. -/// \p SuccProb: The probability adjusted for only remaining blocks. -///   Only used for logging -/// \p RealSuccProb: The un-adjusted probability. -/// \p Chain: The chain that BB belongs to and Succ is being considered for. -/// \p BlockFilter: if non-null, the set of blocks that make up the loop being -///    considered -bool MachineBlockPlacement::hasBetterLayoutPredecessor( -    const MachineBasicBlock *BB, const MachineBasicBlock *Succ, -    const BlockChain &SuccChain, BranchProbability SuccProb, -    BranchProbability RealSuccProb, const BlockChain &Chain, -    const BlockFilterSet *BlockFilter) { - -  // There isn't a better layout when there are no unscheduled predecessors. -  if (SuccChain.UnscheduledPredecessors == 0) -    return false; - -  // There are two basic scenarios here: -  // ------------------------------------- -  // Case 1: triangular shape CFG (if-then): -  //     BB -  //     | \ -  //     |  \ -  //     |   Pred -  //     |   / -  //     Succ -  // In this case, we are evaluating whether to select edge -> Succ, e.g. -  // set Succ as the layout successor of BB. Picking Succ as BB's -  // successor breaks the CFG constraints (FIXME: define these constraints). -  // With this layout, Pred BB -  // is forced to be outlined, so the overall cost will be cost of the -  // branch taken from BB to Pred, plus the cost of back taken branch -  // from Pred to Succ, as well as the additional cost associated -  // with the needed unconditional jump instruction from Pred To Succ. - -  // The cost of the topological order layout is the taken branch cost -  // from BB to Succ, so to make BB->Succ a viable candidate, the following -  // must hold: -  //     2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost -  //      < freq(BB->Succ) *  taken_branch_cost. -  // Ignoring unconditional jump cost, we get -  //    freq(BB->Succ) > 2 * freq(BB->Pred), i.e., -  //    prob(BB->Succ) > 2 * prob(BB->Pred) -  // -  // When real profile data is available, we can precisely compute the -  // probability threshold that is needed for edge BB->Succ to be considered. -  // Without profile data, the heuristic requires the branch bias to be -  // a lot larger to make sure the signal is very strong (e.g. 80% default). -  // ----------------------------------------------------------------- -  // Case 2: diamond like CFG (if-then-else): -  //     S -  //    / \ -  //   |   \ -  //  BB    Pred -  //   \    / -  //    Succ -  //    .. -  // -  // The current block is BB and edge BB->Succ is now being evaluated. -  // Note that edge S->BB was previously already selected because -  // prob(S->BB) > prob(S->Pred). -  // At this point, 2 blocks can be placed after BB: Pred or Succ. If we -  // choose Pred, we will have a topological ordering as shown on the left -  // in the picture below. If we choose Succ, we have the solution as shown -  // on the right: -  // -  //   topo-order: -  // -  //       S-----                             ---S -  //       |    |                             |  | -  //    ---BB   |                             |  BB -  //    |       |                             |  | -  //    |  Pred--                             |  Succ-- -  //    |  |                                  |       | -  //    ---Succ                               ---Pred-- -  // -  // cost = freq(S->Pred) + freq(BB->Succ)    cost = 2 * freq (S->Pred) -  //      = freq(S->Pred) + freq(S->BB) -  // -  // If we have profile data (i.e, branch probabilities can be trusted), the -  // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 * -  // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB). -  // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which -  // means the cost of topological order is greater. -  // When profile data is not available, however, we need to be more -  // conservative. If the branch prediction is wrong, breaking the topo-order -  // will actually yield a layout with large cost. For this reason, we need -  // strong biased branch at block S with Prob(S->BB) in order to select -  // BB->Succ. This is equivalent to looking the CFG backward with backward -  // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without -  // profile data). -  // -------------------------------------------------------------------------- -  // Case 3: forked diamond -  //       S -  //      / \ -  //     /   \ -  //   BB    Pred -  //   | \   / | -  //   |  \ /  | -  //   |   X   | -  //   |  / \  | -  //   | /   \ | -  //   S1     S2 -  // -  // The current block is BB and edge BB->S1 is now being evaluated. -  // As above S->BB was already selected because -  // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2). -  // -  // topo-order: -  // -  //     S-------|                     ---S -  //     |       |                     |  | -  //  ---BB      |                     |  BB -  //  |          |                     |  | -  //  |  Pred----|                     |  S1---- -  //  |  |                             |       | -  //  --(S1 or S2)                     ---Pred-- -  //                                        | -  //                                       S2 -  // -  // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2) -  //    + min(freq(Pred->S1), freq(Pred->S2)) -  // Non-topo-order cost: -  // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2). -  // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2)) -  // is 0. Then the non topo layout is better when -  // freq(S->Pred) < freq(BB->S1). -  // This is exactly what is checked below. -  // Note there are other shapes that apply (Pred may not be a single block, -  // but they all fit this general pattern.) -  BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); - -  // Make sure that a hot successor doesn't have a globally more -  // important predecessor. -  BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; -  bool BadCFGConflict = false; - -  for (MachineBasicBlock *Pred : Succ->predecessors()) { -    if (Pred == Succ || BlockToChain[Pred] == &SuccChain || -        (BlockFilter && !BlockFilter->count(Pred)) || -        BlockToChain[Pred] == &Chain || -        // This check is redundant except for look ahead. This function is -        // called for lookahead by isProfitableToTailDup when BB hasn't been -        // placed yet. -        (Pred == BB)) -      continue; -    // Do backward checking. -    // For all cases above, we need a backward checking to filter out edges that -    // are not 'strongly' biased. -    // BB  Pred -    //  \ / -    //  Succ -    // We select edge BB->Succ if -    //      freq(BB->Succ) > freq(Succ) * HotProb -    //      i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * -    //      HotProb -    //      i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb -    // Case 1 is covered too, because the first equation reduces to: -    // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle) -    BlockFrequency PredEdgeFreq = -        MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); -    if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { -      BadCFGConflict = true; -      break; -    } -  } - -  if (BadCFGConflict) { -    LLVM_DEBUG(dbgs() << "    Not a candidate: " << getBlockName(Succ) << " -> " -                      << SuccProb << " (prob) (non-cold CFG conflict)\n"); -    return true; -  } - -  return false; -} - -/// Select the best successor for a block. -/// -/// This looks across all successors of a particular block and attempts to -/// select the "best" one to be the layout successor. It only considers direct -/// successors which also pass the block filter. It will attempt to avoid -/// breaking CFG structure, but cave and break such structures in the case of -/// very hot successor edges. -/// -/// \returns The best successor block found, or null if none are viable, along -/// with a boolean indicating if tail duplication is necessary. -MachineBlockPlacement::BlockAndTailDupResult -MachineBlockPlacement::selectBestSuccessor( -    const MachineBasicBlock *BB, const BlockChain &Chain, -    const BlockFilterSet *BlockFilter) { -  const BranchProbability HotProb(StaticLikelyProb, 100); - -  BlockAndTailDupResult BestSucc = { nullptr, false }; -  auto BestProb = BranchProbability::getZero(); - -  SmallVector<MachineBasicBlock *, 4> Successors; -  auto AdjustedSumProb = -      collectViableSuccessors(BB, Chain, BlockFilter, Successors); - -  LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB) -                    << "\n"); - -  // if we already precomputed the best successor for BB, return that if still -  // applicable. -  auto FoundEdge = ComputedEdges.find(BB); -  if (FoundEdge != ComputedEdges.end()) { -    MachineBasicBlock *Succ = FoundEdge->second.BB; -    ComputedEdges.erase(FoundEdge); -    BlockChain *SuccChain = BlockToChain[Succ]; -    if (BB->isSuccessor(Succ) && (!BlockFilter || BlockFilter->count(Succ)) && -        SuccChain != &Chain && Succ == *SuccChain->begin()) -      return FoundEdge->second; -  } - -  // if BB is part of a trellis, Use the trellis to determine the optimal -  // fallthrough edges -  if (isTrellis(BB, Successors, Chain, BlockFilter)) -    return getBestTrellisSuccessor(BB, Successors, AdjustedSumProb, Chain, -                                   BlockFilter); - -  // For blocks with CFG violations, we may be able to lay them out anyway with -  // tail-duplication. We keep this vector so we can perform the probability -  // calculations the minimum number of times. -  SmallVector<std::tuple<BranchProbability, MachineBasicBlock *>, 4> -      DupCandidates; -  for (MachineBasicBlock *Succ : Successors) { -    auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); -    BranchProbability SuccProb = -        getAdjustedProbability(RealSuccProb, AdjustedSumProb); - -    BlockChain &SuccChain = *BlockToChain[Succ]; -    // Skip the edge \c BB->Succ if block \c Succ has a better layout -    // predecessor that yields lower global cost. -    if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, -                                   Chain, BlockFilter)) { -      // If tail duplication would make Succ profitable, place it. -      if (allowTailDupPlacement() && shouldTailDuplicate(Succ)) -        DupCandidates.push_back(std::make_tuple(SuccProb, Succ)); -      continue; -    } - -    LLVM_DEBUG( -        dbgs() << "    Candidate: " << getBlockName(Succ) -               << ", probability: " << SuccProb -               << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") -               << "\n"); - -    if (BestSucc.BB && BestProb >= SuccProb) { -      LLVM_DEBUG(dbgs() << "    Not the best candidate, continuing\n"); -      continue; -    } - -    LLVM_DEBUG(dbgs() << "    Setting it as best candidate\n"); -    BestSucc.BB = Succ; -    BestProb = SuccProb; -  } -  // Handle the tail duplication candidates in order of decreasing probability. -  // Stop at the first one that is profitable. Also stop if they are less -  // profitable than BestSucc. Position is important because we preserve it and -  // prefer first best match. Here we aren't comparing in order, so we capture -  // the position instead. -  llvm::stable_sort(DupCandidates, -                    [](std::tuple<BranchProbability, MachineBasicBlock *> L, -                       std::tuple<BranchProbability, MachineBasicBlock *> R) { -                      return std::get<0>(L) > std::get<0>(R); -                    }); -  for (auto &Tup : DupCandidates) { -    BranchProbability DupProb; -    MachineBasicBlock *Succ; -    std::tie(DupProb, Succ) = Tup; -    if (DupProb < BestProb) -      break; -    if (canTailDuplicateUnplacedPreds(BB, Succ, Chain, BlockFilter) -        && (isProfitableToTailDup(BB, Succ, BestProb, Chain, BlockFilter))) { -      LLVM_DEBUG(dbgs() << "    Candidate: " << getBlockName(Succ) -                        << ", probability: " << DupProb -                        << " (Tail Duplicate)\n"); -      BestSucc.BB = Succ; -      BestSucc.ShouldTailDup = true; -      break; -    } -  } - -  if (BestSucc.BB) -    LLVM_DEBUG(dbgs() << "    Selected: " << getBlockName(BestSucc.BB) << "\n"); - -  return BestSucc; -} - -/// Select the best block from a worklist. -/// -/// This looks through the provided worklist as a list of candidate basic -/// blocks and select the most profitable one to place. The definition of -/// profitable only really makes sense in the context of a loop. This returns -/// the most frequently visited block in the worklist, which in the case of -/// a loop, is the one most desirable to be physically close to the rest of the -/// loop body in order to improve i-cache behavior. -/// -/// \returns The best block found, or null if none are viable. -MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( -    const BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { -  // Once we need to walk the worklist looking for a candidate, cleanup the -  // worklist of already placed entries. -  // FIXME: If this shows up on profiles, it could be folded (at the cost of -  // some code complexity) into the loop below. -  WorkList.erase(llvm::remove_if(WorkList, -                                 [&](MachineBasicBlock *BB) { -                                   return BlockToChain.lookup(BB) == &Chain; -                                 }), -                 WorkList.end()); - -  if (WorkList.empty()) -    return nullptr; - -  bool IsEHPad = WorkList[0]->isEHPad(); - -  MachineBasicBlock *BestBlock = nullptr; -  BlockFrequency BestFreq; -  for (MachineBasicBlock *MBB : WorkList) { -    assert(MBB->isEHPad() == IsEHPad && -           "EHPad mismatch between block and work list."); - -    BlockChain &SuccChain = *BlockToChain[MBB]; -    if (&SuccChain == &Chain) -      continue; - -    assert(SuccChain.UnscheduledPredecessors == 0 && -           "Found CFG-violating block"); - -    BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); -    LLVM_DEBUG(dbgs() << "    " << getBlockName(MBB) << " -> "; -               MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); - -    // For ehpad, we layout the least probable first as to avoid jumping back -    // from least probable landingpads to more probable ones. -    // -    // FIXME: Using probability is probably (!) not the best way to achieve -    // this. We should probably have a more principled approach to layout -    // cleanup code. -    // -    // The goal is to get: -    // -    //                 +--------------------------+ -    //                 |                          V -    // InnerLp -> InnerCleanup    OuterLp -> OuterCleanup -> Resume -    // -    // Rather than: -    // -    //                 +-------------------------------------+ -    //                 V                                     | -    // OuterLp -> OuterCleanup -> Resume     InnerLp -> InnerCleanup -    if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) -      continue; - -    BestBlock = MBB; -    BestFreq = CandidateFreq; -  } - -  return BestBlock; -} - -/// Retrieve the first unplaced basic block. -/// -/// This routine is called when we are unable to use the CFG to walk through -/// all of the basic blocks and form a chain due to unnatural loops in the CFG. -/// We walk through the function's blocks in order, starting from the -/// LastUnplacedBlockIt. We update this iterator on each call to avoid -/// re-scanning the entire sequence on repeated calls to this routine. -MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( -    const BlockChain &PlacedChain, -    MachineFunction::iterator &PrevUnplacedBlockIt, -    const BlockFilterSet *BlockFilter) { -  for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; -       ++I) { -    if (BlockFilter && !BlockFilter->count(&*I)) -      continue; -    if (BlockToChain[&*I] != &PlacedChain) { -      PrevUnplacedBlockIt = I; -      // Now select the head of the chain to which the unplaced block belongs -      // as the block to place. This will force the entire chain to be placed, -      // and satisfies the requirements of merging chains. -      return *BlockToChain[&*I]->begin(); -    } -  } -  return nullptr; -} - -void MachineBlockPlacement::fillWorkLists( -    const MachineBasicBlock *MBB, -    SmallPtrSetImpl<BlockChain *> &UpdatedPreds, -    const BlockFilterSet *BlockFilter = nullptr) { -  BlockChain &Chain = *BlockToChain[MBB]; -  if (!UpdatedPreds.insert(&Chain).second) -    return; - -  assert( -      Chain.UnscheduledPredecessors == 0 && -      "Attempting to place block with unscheduled predecessors in worklist."); -  for (MachineBasicBlock *ChainBB : Chain) { -    assert(BlockToChain[ChainBB] == &Chain && -           "Block in chain doesn't match BlockToChain map."); -    for (MachineBasicBlock *Pred : ChainBB->predecessors()) { -      if (BlockFilter && !BlockFilter->count(Pred)) -        continue; -      if (BlockToChain[Pred] == &Chain) -        continue; -      ++Chain.UnscheduledPredecessors; -    } -  } - -  if (Chain.UnscheduledPredecessors != 0) -    return; - -  MachineBasicBlock *BB = *Chain.begin(); -  if (BB->isEHPad()) -    EHPadWorkList.push_back(BB); -  else -    BlockWorkList.push_back(BB); -} - -void MachineBlockPlacement::buildChain( -    const MachineBasicBlock *HeadBB, BlockChain &Chain, -    BlockFilterSet *BlockFilter) { -  assert(HeadBB && "BB must not be null.\n"); -  assert(BlockToChain[HeadBB] == &Chain && "BlockToChainMap mis-match.\n"); -  MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); - -  const MachineBasicBlock *LoopHeaderBB = HeadBB; -  markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); -  MachineBasicBlock *BB = *std::prev(Chain.end()); -  while (true) { -    assert(BB && "null block found at end of chain in loop."); -    assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); -    assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); - - -    // Look for the best viable successor if there is one to place immediately -    // after this block. -    auto Result = selectBestSuccessor(BB, Chain, BlockFilter); -    MachineBasicBlock* BestSucc = Result.BB; -    bool ShouldTailDup = Result.ShouldTailDup; -    if (allowTailDupPlacement()) -      ShouldTailDup |= (BestSucc && shouldTailDuplicate(BestSucc)); - -    // If an immediate successor isn't available, look for the best viable -    // block among those we've identified as not violating the loop's CFG at -    // this point. This won't be a fallthrough, but it will increase locality. -    if (!BestSucc) -      BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); -    if (!BestSucc) -      BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); - -    if (!BestSucc) { -      BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); -      if (!BestSucc) -        break; - -      LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " -                           "layout successor until the CFG reduces\n"); -    } - -    // Placement may have changed tail duplication opportunities. -    // Check for that now. -    if (allowTailDupPlacement() && BestSucc && ShouldTailDup) { -      // If the chosen successor was duplicated into all its predecessors, -      // don't bother laying it out, just go round the loop again with BB as -      // the chain end. -      if (repeatedlyTailDuplicateBlock(BestSucc, BB, LoopHeaderBB, Chain, -                                       BlockFilter, PrevUnplacedBlockIt)) -        continue; -    } - -    // Place this block, updating the datastructures to reflect its placement. -    BlockChain &SuccChain = *BlockToChain[BestSucc]; -    // Zero out UnscheduledPredecessors for the successor we're about to merge in case -    // we selected a successor that didn't fit naturally into the CFG. -    SuccChain.UnscheduledPredecessors = 0; -    LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " -                      << getBlockName(BestSucc) << "\n"); -    markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); -    Chain.merge(BestSucc, &SuccChain); -    BB = *std::prev(Chain.end()); -  } - -  LLVM_DEBUG(dbgs() << "Finished forming chain for header block " -                    << getBlockName(*Chain.begin()) << "\n"); -} - -// If bottom of block BB has only one successor OldTop, in most cases it is -// profitable to move it before OldTop, except the following case: -// -//     -->OldTop<- -//     |    .    | -//     |    .    | -//     |    .    | -//     ---Pred   | -//          |    | -//         BB----- -// -// If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't -// layout the other successor below it, so it can't reduce taken branch. -// In this case we keep its original layout. -bool -MachineBlockPlacement::canMoveBottomBlockToTop( -    const MachineBasicBlock *BottomBlock, -    const MachineBasicBlock *OldTop) { -  if (BottomBlock->pred_size() != 1) -    return true; -  MachineBasicBlock *Pred = *BottomBlock->pred_begin(); -  if (Pred->succ_size() != 2) -    return true; - -  MachineBasicBlock *OtherBB = *Pred->succ_begin(); -  if (OtherBB == BottomBlock) -    OtherBB = *Pred->succ_rbegin(); -  if (OtherBB == OldTop) -    return false; - -  return true; -} - -// Find out the possible fall through frequence to the top of a loop. -BlockFrequency -MachineBlockPlacement::TopFallThroughFreq( -    const MachineBasicBlock *Top, -    const BlockFilterSet &LoopBlockSet) { -  BlockFrequency MaxFreq = 0; -  for (MachineBasicBlock *Pred : Top->predecessors()) { -    BlockChain *PredChain = BlockToChain[Pred]; -    if (!LoopBlockSet.count(Pred) && -        (!PredChain || Pred == *std::prev(PredChain->end()))) { -      // Found a Pred block can be placed before Top. -      // Check if Top is the best successor of Pred. -      auto TopProb = MBPI->getEdgeProbability(Pred, Top); -      bool TopOK = true; -      for (MachineBasicBlock *Succ : Pred->successors()) { -        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); -        BlockChain *SuccChain = BlockToChain[Succ]; -        // Check if Succ can be placed after Pred. -        // Succ should not be in any chain, or it is the head of some chain. -        if (!LoopBlockSet.count(Succ) && (SuccProb > TopProb) && -            (!SuccChain || Succ == *SuccChain->begin())) { -          TopOK = false; -          break; -        } -      } -      if (TopOK) { -        BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * -                                  MBPI->getEdgeProbability(Pred, Top); -        if (EdgeFreq > MaxFreq) -          MaxFreq = EdgeFreq; -      } -    } -  } -  return MaxFreq; -} - -// Compute the fall through gains when move NewTop before OldTop. -// -// In following diagram, edges marked as "-" are reduced fallthrough, edges -// marked as "+" are increased fallthrough, this function computes -// -//      SUM(increased fallthrough) - SUM(decreased fallthrough) -// -//              | -//              | - -//              V -//        --->OldTop -//        |     . -//        |     . -//       +|     .    + -//        |   Pred ---> -//        |     |- -//        |     V -//        --- NewTop <--- -//              |- -//              V -// -BlockFrequency -MachineBlockPlacement::FallThroughGains( -    const MachineBasicBlock *NewTop, -    const MachineBasicBlock *OldTop, -    const MachineBasicBlock *ExitBB, -    const BlockFilterSet &LoopBlockSet) { -  BlockFrequency FallThrough2Top = TopFallThroughFreq(OldTop, LoopBlockSet); -  BlockFrequency FallThrough2Exit = 0; -  if (ExitBB) -    FallThrough2Exit = MBFI->getBlockFreq(NewTop) * -        MBPI->getEdgeProbability(NewTop, ExitBB); -  BlockFrequency BackEdgeFreq = MBFI->getBlockFreq(NewTop) * -      MBPI->getEdgeProbability(NewTop, OldTop); - -  // Find the best Pred of NewTop. -   MachineBasicBlock *BestPred = nullptr; -   BlockFrequency FallThroughFromPred = 0; -   for (MachineBasicBlock *Pred : NewTop->predecessors()) { -     if (!LoopBlockSet.count(Pred)) -       continue; -     BlockChain *PredChain = BlockToChain[Pred]; -     if (!PredChain || Pred == *std::prev(PredChain->end())) { -       BlockFrequency EdgeFreq = MBFI->getBlockFreq(Pred) * -           MBPI->getEdgeProbability(Pred, NewTop); -       if (EdgeFreq > FallThroughFromPred) { -         FallThroughFromPred = EdgeFreq; -         BestPred = Pred; -       } -     } -   } - -   // If NewTop is not placed after Pred, another successor can be placed -   // after Pred. -   BlockFrequency NewFreq = 0; -   if (BestPred) { -     for (MachineBasicBlock *Succ : BestPred->successors()) { -       if ((Succ == NewTop) || (Succ == BestPred) || !LoopBlockSet.count(Succ)) -         continue; -       if (ComputedEdges.find(Succ) != ComputedEdges.end()) -         continue; -       BlockChain *SuccChain = BlockToChain[Succ]; -       if ((SuccChain && (Succ != *SuccChain->begin())) || -           (SuccChain == BlockToChain[BestPred])) -         continue; -       BlockFrequency EdgeFreq = MBFI->getBlockFreq(BestPred) * -           MBPI->getEdgeProbability(BestPred, Succ); -       if (EdgeFreq > NewFreq) -         NewFreq = EdgeFreq; -     } -     BlockFrequency OrigEdgeFreq = MBFI->getBlockFreq(BestPred) * -         MBPI->getEdgeProbability(BestPred, NewTop); -     if (NewFreq > OrigEdgeFreq) { -       // If NewTop is not the best successor of Pred, then Pred doesn't -       // fallthrough to NewTop. So there is no FallThroughFromPred and -       // NewFreq. -       NewFreq = 0; -       FallThroughFromPred = 0; -     } -   } - -   BlockFrequency Result = 0; -   BlockFrequency Gains = BackEdgeFreq + NewFreq; -   BlockFrequency Lost = FallThrough2Top + FallThrough2Exit + -       FallThroughFromPred; -   if (Gains > Lost) -     Result = Gains - Lost; -   return Result; -} - -/// Helper function of findBestLoopTop. Find the best loop top block -/// from predecessors of old top. -/// -/// Look for a block which is strictly better than the old top for laying -/// out before the old top of the loop. This looks for only two patterns: -/// -///     1. a block has only one successor, the old loop top -/// -///        Because such a block will always result in an unconditional jump, -///        rotating it in front of the old top is always profitable. -/// -///     2. a block has two successors, one is old top, another is exit -///        and it has more than one predecessors -/// -///        If it is below one of its predecessors P, only P can fall through to -///        it, all other predecessors need a jump to it, and another conditional -///        jump to loop header. If it is moved before loop header, all its -///        predecessors jump to it, then fall through to loop header. So all its -///        predecessors except P can reduce one taken branch. -///        At the same time, move it before old top increases the taken branch -///        to loop exit block, so the reduced taken branch will be compared with -///        the increased taken branch to the loop exit block. -MachineBasicBlock * -MachineBlockPlacement::findBestLoopTopHelper( -    MachineBasicBlock *OldTop, -    const MachineLoop &L, -    const BlockFilterSet &LoopBlockSet) { -  // Check that the header hasn't been fused with a preheader block due to -  // crazy branches. If it has, we need to start with the header at the top to -  // prevent pulling the preheader into the loop body. -  BlockChain &HeaderChain = *BlockToChain[OldTop]; -  if (!LoopBlockSet.count(*HeaderChain.begin())) -    return OldTop; - -  LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop) -                    << "\n"); - -  BlockFrequency BestGains = 0; -  MachineBasicBlock *BestPred = nullptr; -  for (MachineBasicBlock *Pred : OldTop->predecessors()) { -    if (!LoopBlockSet.count(Pred)) -      continue; -    if (Pred == L.getHeader()) -      continue; -    LLVM_DEBUG(dbgs() << "   old top pred: " << getBlockName(Pred) << ", has " -                      << Pred->succ_size() << " successors, "; -               MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); -    if (Pred->succ_size() > 2) -      continue; - -    MachineBasicBlock *OtherBB = nullptr; -    if (Pred->succ_size() == 2) { -      OtherBB = *Pred->succ_begin(); -      if (OtherBB == OldTop) -        OtherBB = *Pred->succ_rbegin(); -    } - -    if (!canMoveBottomBlockToTop(Pred, OldTop)) -      continue; - -    BlockFrequency Gains = FallThroughGains(Pred, OldTop, OtherBB, -                                            LoopBlockSet); -    if ((Gains > 0) && (Gains > BestGains || -        ((Gains == BestGains) && Pred->isLayoutSuccessor(OldTop)))) { -      BestPred = Pred; -      BestGains = Gains; -    } -  } - -  // If no direct predecessor is fine, just use the loop header. -  if (!BestPred) { -    LLVM_DEBUG(dbgs() << "    final top unchanged\n"); -    return OldTop; -  } - -  // Walk backwards through any straight line of predecessors. -  while (BestPred->pred_size() == 1 && -         (*BestPred->pred_begin())->succ_size() == 1 && -         *BestPred->pred_begin() != L.getHeader()) -    BestPred = *BestPred->pred_begin(); - -  LLVM_DEBUG(dbgs() << "    final top: " << getBlockName(BestPred) << "\n"); -  return BestPred; -} - -/// Find the best loop top block for layout. -/// -/// This function iteratively calls findBestLoopTopHelper, until no new better -/// BB can be found. -MachineBasicBlock * -MachineBlockPlacement::findBestLoopTop(const MachineLoop &L, -                                       const BlockFilterSet &LoopBlockSet) { -  // Placing the latch block before the header may introduce an extra branch -  // that skips this block the first time the loop is executed, which we want -  // to avoid when optimising for size. -  // FIXME: in theory there is a case that does not introduce a new branch, -  // i.e. when the layout predecessor does not fallthrough to the loop header. -  // In practice this never happens though: there always seems to be a preheader -  // that can fallthrough and that is also placed before the header. -  if (F->getFunction().hasOptSize()) -    return L.getHeader(); - -  MachineBasicBlock *OldTop = nullptr; -  MachineBasicBlock *NewTop = L.getHeader(); -  while (NewTop != OldTop) { -    OldTop = NewTop; -    NewTop = findBestLoopTopHelper(OldTop, L, LoopBlockSet); -    if (NewTop != OldTop) -      ComputedEdges[NewTop] = { OldTop, false }; -  } -  return NewTop; -} - -/// Find the best loop exiting block for layout. -/// -/// This routine implements the logic to analyze the loop looking for the best -/// block to layout at the top of the loop. Typically this is done to maximize -/// fallthrough opportunities. -MachineBasicBlock * -MachineBlockPlacement::findBestLoopExit(const MachineLoop &L, -                                        const BlockFilterSet &LoopBlockSet, -                                        BlockFrequency &ExitFreq) { -  // We don't want to layout the loop linearly in all cases. If the loop header -  // is just a normal basic block in the loop, we want to look for what block -  // within the loop is the best one to layout at the top. However, if the loop -  // header has be pre-merged into a chain due to predecessors not having -  // analyzable branches, *and* the predecessor it is merged with is *not* part -  // of the loop, rotating the header into the middle of the loop will create -  // a non-contiguous range of blocks which is Very Bad. So start with the -  // header and only rotate if safe. -  BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; -  if (!LoopBlockSet.count(*HeaderChain.begin())) -    return nullptr; - -  BlockFrequency BestExitEdgeFreq; -  unsigned BestExitLoopDepth = 0; -  MachineBasicBlock *ExitingBB = nullptr; -  // If there are exits to outer loops, loop rotation can severely limit -  // fallthrough opportunities unless it selects such an exit. Keep a set of -  // blocks where rotating to exit with that block will reach an outer loop. -  SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; - -  LLVM_DEBUG(dbgs() << "Finding best loop exit for: " -                    << getBlockName(L.getHeader()) << "\n"); -  for (MachineBasicBlock *MBB : L.getBlocks()) { -    BlockChain &Chain = *BlockToChain[MBB]; -    // Ensure that this block is at the end of a chain; otherwise it could be -    // mid-way through an inner loop or a successor of an unanalyzable branch. -    if (MBB != *std::prev(Chain.end())) -      continue; - -    // Now walk the successors. We need to establish whether this has a viable -    // exiting successor and whether it has a viable non-exiting successor. -    // We store the old exiting state and restore it if a viable looping -    // successor isn't found. -    MachineBasicBlock *OldExitingBB = ExitingBB; -    BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; -    bool HasLoopingSucc = false; -    for (MachineBasicBlock *Succ : MBB->successors()) { -      if (Succ->isEHPad()) -        continue; -      if (Succ == MBB) -        continue; -      BlockChain &SuccChain = *BlockToChain[Succ]; -      // Don't split chains, either this chain or the successor's chain. -      if (&Chain == &SuccChain) { -        LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> " -                          << getBlockName(Succ) << " (chain conflict)\n"); -        continue; -      } - -      auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); -      if (LoopBlockSet.count(Succ)) { -        LLVM_DEBUG(dbgs() << "    looping: " << getBlockName(MBB) << " -> " -                          << getBlockName(Succ) << " (" << SuccProb << ")\n"); -        HasLoopingSucc = true; -        continue; -      } - -      unsigned SuccLoopDepth = 0; -      if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { -        SuccLoopDepth = ExitLoop->getLoopDepth(); -        if (ExitLoop->contains(&L)) -          BlocksExitingToOuterLoop.insert(MBB); -      } - -      BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; -      LLVM_DEBUG(dbgs() << "    exiting: " << getBlockName(MBB) << " -> " -                        << getBlockName(Succ) << " [L:" << SuccLoopDepth -                        << "] ("; -                 MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); -      // Note that we bias this toward an existing layout successor to retain -      // incoming order in the absence of better information. The exit must have -      // a frequency higher than the current exit before we consider breaking -      // the layout. -      BranchProbability Bias(100 - ExitBlockBias, 100); -      if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || -          ExitEdgeFreq > BestExitEdgeFreq || -          (MBB->isLayoutSuccessor(Succ) && -           !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { -        BestExitEdgeFreq = ExitEdgeFreq; -        ExitingBB = MBB; -      } -    } - -    if (!HasLoopingSucc) { -      // Restore the old exiting state, no viable looping successor was found. -      ExitingBB = OldExitingBB; -      BestExitEdgeFreq = OldBestExitEdgeFreq; -    } -  } -  // Without a candidate exiting block or with only a single block in the -  // loop, just use the loop header to layout the loop. -  if (!ExitingBB) { -    LLVM_DEBUG( -        dbgs() << "    No other candidate exit blocks, using loop header\n"); -    return nullptr; -  } -  if (L.getNumBlocks() == 1) { -    LLVM_DEBUG(dbgs() << "    Loop has 1 block, using loop header as exit\n"); -    return nullptr; -  } - -  // Also, if we have exit blocks which lead to outer loops but didn't select -  // one of them as the exiting block we are rotating toward, disable loop -  // rotation altogether. -  if (!BlocksExitingToOuterLoop.empty() && -      !BlocksExitingToOuterLoop.count(ExitingBB)) -    return nullptr; - -  LLVM_DEBUG(dbgs() << "  Best exiting block: " << getBlockName(ExitingBB) -                    << "\n"); -  ExitFreq = BestExitEdgeFreq; -  return ExitingBB; -} - -/// Check if there is a fallthrough to loop header Top. -/// -///   1. Look for a Pred that can be layout before Top. -///   2. Check if Top is the most possible successor of Pred. -bool -MachineBlockPlacement::hasViableTopFallthrough( -    const MachineBasicBlock *Top, -    const BlockFilterSet &LoopBlockSet) { -  for (MachineBasicBlock *Pred : Top->predecessors()) { -    BlockChain *PredChain = BlockToChain[Pred]; -    if (!LoopBlockSet.count(Pred) && -        (!PredChain || Pred == *std::prev(PredChain->end()))) { -      // Found a Pred block can be placed before Top. -      // Check if Top is the best successor of Pred. -      auto TopProb = MBPI->getEdgeProbability(Pred, Top); -      bool TopOK = true; -      for (MachineBasicBlock *Succ : Pred->successors()) { -        auto SuccProb = MBPI->getEdgeProbability(Pred, Succ); -        BlockChain *SuccChain = BlockToChain[Succ]; -        // Check if Succ can be placed after Pred. -        // Succ should not be in any chain, or it is the head of some chain. -        if ((!SuccChain || Succ == *SuccChain->begin()) && SuccProb > TopProb) { -          TopOK = false; -          break; -        } -      } -      if (TopOK) -        return true; -    } -  } -  return false; -} - -/// Attempt to rotate an exiting block to the bottom of the loop. -/// -/// Once we have built a chain, try to rotate it to line up the hot exit block -/// with fallthrough out of the loop if doing so doesn't introduce unnecessary -/// branches. For example, if the loop has fallthrough into its header and out -/// of its bottom already, don't rotate it. -void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, -                                       const MachineBasicBlock *ExitingBB, -                                       BlockFrequency ExitFreq, -                                       const BlockFilterSet &LoopBlockSet) { -  if (!ExitingBB) -    return; - -  MachineBasicBlock *Top = *LoopChain.begin(); -  MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); - -  // If ExitingBB is already the last one in a chain then nothing to do. -  if (Bottom == ExitingBB) -    return; - -  bool ViableTopFallthrough = hasViableTopFallthrough(Top, LoopBlockSet); - -  // If the header has viable fallthrough, check whether the current loop -  // bottom is a viable exiting block. If so, bail out as rotating will -  // introduce an unnecessary branch. -  if (ViableTopFallthrough) { -    for (MachineBasicBlock *Succ : Bottom->successors()) { -      BlockChain *SuccChain = BlockToChain[Succ]; -      if (!LoopBlockSet.count(Succ) && -          (!SuccChain || Succ == *SuccChain->begin())) -        return; -    } - -    // Rotate will destroy the top fallthrough, we need to ensure the new exit -    // frequency is larger than top fallthrough. -    BlockFrequency FallThrough2Top = TopFallThroughFreq(Top, LoopBlockSet); -    if (FallThrough2Top >= ExitFreq) -      return; -  } - -  BlockChain::iterator ExitIt = llvm::find(LoopChain, ExitingBB); -  if (ExitIt == LoopChain.end()) -    return; - -  // Rotating a loop exit to the bottom when there is a fallthrough to top -  // trades the entry fallthrough for an exit fallthrough. -  // If there is no bottom->top edge, but the chosen exit block does have -  // a fallthrough, we break that fallthrough for nothing in return. - -  // Let's consider an example. We have a built chain of basic blocks -  // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block. -  // By doing a rotation we get -  // Bk+1, ..., Bn, B1, ..., Bk -  // Break of fallthrough to B1 is compensated by a fallthrough from Bk. -  // If we had a fallthrough Bk -> Bk+1 it is broken now. -  // It might be compensated by fallthrough Bn -> B1. -  // So we have a condition to avoid creation of extra branch by loop rotation. -  // All below must be true to avoid loop rotation: -  //   If there is a fallthrough to top (B1) -  //   There was fallthrough from chosen exit block (Bk) to next one (Bk+1) -  //   There is no fallthrough from bottom (Bn) to top (B1). -  // Please note that there is no exit fallthrough from Bn because we checked it -  // above. -  if (ViableTopFallthrough) { -    assert(std::next(ExitIt) != LoopChain.end() && -           "Exit should not be last BB"); -    MachineBasicBlock *NextBlockInChain = *std::next(ExitIt); -    if (ExitingBB->isSuccessor(NextBlockInChain)) -      if (!Bottom->isSuccessor(Top)) -        return; -  } - -  LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB) -                    << " at bottom\n"); -  std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); -} - -/// Attempt to rotate a loop based on profile data to reduce branch cost. -/// -/// With profile data, we can determine the cost in terms of missed fall through -/// opportunities when rotating a loop chain and select the best rotation. -/// Basically, there are three kinds of cost to consider for each rotation: -///    1. The possibly missed fall through edge (if it exists) from BB out of -///    the loop to the loop header. -///    2. The possibly missed fall through edges (if they exist) from the loop -///    exits to BB out of the loop. -///    3. The missed fall through edge (if it exists) from the last BB to the -///    first BB in the loop chain. -///  Therefore, the cost for a given rotation is the sum of costs listed above. -///  We select the best rotation with the smallest cost. -void MachineBlockPlacement::rotateLoopWithProfile( -    BlockChain &LoopChain, const MachineLoop &L, -    const BlockFilterSet &LoopBlockSet) { -  auto RotationPos = LoopChain.end(); - -  BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); - -  // A utility lambda that scales up a block frequency by dividing it by a -  // branch probability which is the reciprocal of the scale. -  auto ScaleBlockFrequency = [](BlockFrequency Freq, -                                unsigned Scale) -> BlockFrequency { -    if (Scale == 0) -      return 0; -    // Use operator / between BlockFrequency and BranchProbability to implement -    // saturating multiplication. -    return Freq / BranchProbability(1, Scale); -  }; - -  // Compute the cost of the missed fall-through edge to the loop header if the -  // chain head is not the loop header. As we only consider natural loops with -  // single header, this computation can be done only once. -  BlockFrequency HeaderFallThroughCost(0); -  MachineBasicBlock *ChainHeaderBB = *LoopChain.begin(); -  for (auto *Pred : ChainHeaderBB->predecessors()) { -    BlockChain *PredChain = BlockToChain[Pred]; -    if (!LoopBlockSet.count(Pred) && -        (!PredChain || Pred == *std::prev(PredChain->end()))) { -      auto EdgeFreq = MBFI->getBlockFreq(Pred) * -          MBPI->getEdgeProbability(Pred, ChainHeaderBB); -      auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); -      // If the predecessor has only an unconditional jump to the header, we -      // need to consider the cost of this jump. -      if (Pred->succ_size() == 1) -        FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); -      HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); -    } -  } - -  // Here we collect all exit blocks in the loop, and for each exit we find out -  // its hottest exit edge. For each loop rotation, we define the loop exit cost -  // as the sum of frequencies of exit edges we collect here, excluding the exit -  // edge from the tail of the loop chain. -  SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; -  for (auto BB : LoopChain) { -    auto LargestExitEdgeProb = BranchProbability::getZero(); -    for (auto *Succ : BB->successors()) { -      BlockChain *SuccChain = BlockToChain[Succ]; -      if (!LoopBlockSet.count(Succ) && -          (!SuccChain || Succ == *SuccChain->begin())) { -        auto SuccProb = MBPI->getEdgeProbability(BB, Succ); -        LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); -      } -    } -    if (LargestExitEdgeProb > BranchProbability::getZero()) { -      auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; -      ExitsWithFreq.emplace_back(BB, ExitFreq); -    } -  } - -  // In this loop we iterate every block in the loop chain and calculate the -  // cost assuming the block is the head of the loop chain. When the loop ends, -  // we should have found the best candidate as the loop chain's head. -  for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), -            EndIter = LoopChain.end(); -       Iter != EndIter; Iter++, TailIter++) { -    // TailIter is used to track the tail of the loop chain if the block we are -    // checking (pointed by Iter) is the head of the chain. -    if (TailIter == LoopChain.end()) -      TailIter = LoopChain.begin(); - -    auto TailBB = *TailIter; - -    // Calculate the cost by putting this BB to the top. -    BlockFrequency Cost = 0; - -    // If the current BB is the loop header, we need to take into account the -    // cost of the missed fall through edge from outside of the loop to the -    // header. -    if (Iter != LoopChain.begin()) -      Cost += HeaderFallThroughCost; - -    // Collect the loop exit cost by summing up frequencies of all exit edges -    // except the one from the chain tail. -    for (auto &ExitWithFreq : ExitsWithFreq) -      if (TailBB != ExitWithFreq.first) -        Cost += ExitWithFreq.second; - -    // The cost of breaking the once fall-through edge from the tail to the top -    // of the loop chain. Here we need to consider three cases: -    // 1. If the tail node has only one successor, then we will get an -    //    additional jmp instruction. So the cost here is (MisfetchCost + -    //    JumpInstCost) * tail node frequency. -    // 2. If the tail node has two successors, then we may still get an -    //    additional jmp instruction if the layout successor after the loop -    //    chain is not its CFG successor. Note that the more frequently executed -    //    jmp instruction will be put ahead of the other one. Assume the -    //    frequency of those two branches are x and y, where x is the frequency -    //    of the edge to the chain head, then the cost will be -    //    (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. -    // 3. If the tail node has more than two successors (this rarely happens), -    //    we won't consider any additional cost. -    if (TailBB->isSuccessor(*Iter)) { -      auto TailBBFreq = MBFI->getBlockFreq(TailBB); -      if (TailBB->succ_size() == 1) -        Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), -                                    MisfetchCost + JumpInstCost); -      else if (TailBB->succ_size() == 2) { -        auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); -        auto TailToHeadFreq = TailBBFreq * TailToHeadProb; -        auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) -                                  ? TailBBFreq * TailToHeadProb.getCompl() -                                  : TailToHeadFreq; -        Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + -                ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); -      } -    } - -    LLVM_DEBUG(dbgs() << "The cost of loop rotation by making " -                      << getBlockName(*Iter) -                      << " to the top: " << Cost.getFrequency() << "\n"); - -    if (Cost < SmallestRotationCost) { -      SmallestRotationCost = Cost; -      RotationPos = Iter; -    } -  } - -  if (RotationPos != LoopChain.end()) { -    LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) -                      << " to the top\n"); -    std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); -  } -} - -/// Collect blocks in the given loop that are to be placed. -/// -/// When profile data is available, exclude cold blocks from the returned set; -/// otherwise, collect all blocks in the loop. -MachineBlockPlacement::BlockFilterSet -MachineBlockPlacement::collectLoopBlockSet(const MachineLoop &L) { -  BlockFilterSet LoopBlockSet; - -  // Filter cold blocks off from LoopBlockSet when profile data is available. -  // Collect the sum of frequencies of incoming edges to the loop header from -  // outside. If we treat the loop as a super block, this is the frequency of -  // the loop. Then for each block in the loop, we calculate the ratio between -  // its frequency and the frequency of the loop block. When it is too small, -  // don't add it to the loop chain. If there are outer loops, then this block -  // will be merged into the first outer loop chain for which this block is not -  // cold anymore. This needs precise profile data and we only do this when -  // profile data is available. -  if (F->getFunction().hasProfileData() || ForceLoopColdBlock) { -    BlockFrequency LoopFreq(0); -    for (auto LoopPred : L.getHeader()->predecessors()) -      if (!L.contains(LoopPred)) -        LoopFreq += MBFI->getBlockFreq(LoopPred) * -                    MBPI->getEdgeProbability(LoopPred, L.getHeader()); - -    for (MachineBasicBlock *LoopBB : L.getBlocks()) { -      auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); -      if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) -        continue; -      LoopBlockSet.insert(LoopBB); -    } -  } else -    LoopBlockSet.insert(L.block_begin(), L.block_end()); - -  return LoopBlockSet; -} - -/// Forms basic block chains from the natural loop structures. -/// -/// These chains are designed to preserve the existing *structure* of the code -/// as much as possible. We can then stitch the chains together in a way which -/// both preserves the topological structure and minimizes taken conditional -/// branches. -void MachineBlockPlacement::buildLoopChains(const MachineLoop &L) { -  // First recurse through any nested loops, building chains for those inner -  // loops. -  for (const MachineLoop *InnerLoop : L) -    buildLoopChains(*InnerLoop); - -  assert(BlockWorkList.empty() && -         "BlockWorkList not empty when starting to build loop chains."); -  assert(EHPadWorkList.empty() && -         "EHPadWorkList not empty when starting to build loop chains."); -  BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); - -  // Check if we have profile data for this function. If yes, we will rotate -  // this loop by modeling costs more precisely which requires the profile data -  // for better layout. -  bool RotateLoopWithProfile = -      ForcePreciseRotationCost || -      (PreciseRotationCost && F->getFunction().hasProfileData()); - -  // First check to see if there is an obviously preferable top block for the -  // loop. This will default to the header, but may end up as one of the -  // predecessors to the header if there is one which will result in strictly -  // fewer branches in the loop body. -  MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet); - -  // If we selected just the header for the loop top, look for a potentially -  // profitable exit block in the event that rotating the loop can eliminate -  // branches by placing an exit edge at the bottom. -  // -  // Loops are processed innermost to uttermost, make sure we clear -  // PreferredLoopExit before processing a new loop. -  PreferredLoopExit = nullptr; -  BlockFrequency ExitFreq; -  if (!RotateLoopWithProfile && LoopTop == L.getHeader()) -    PreferredLoopExit = findBestLoopExit(L, LoopBlockSet, ExitFreq); - -  BlockChain &LoopChain = *BlockToChain[LoopTop]; - -  // FIXME: This is a really lame way of walking the chains in the loop: we -  // walk the blocks, and use a set to prevent visiting a particular chain -  // twice. -  SmallPtrSet<BlockChain *, 4> UpdatedPreds; -  assert(LoopChain.UnscheduledPredecessors == 0 && -         "LoopChain should not have unscheduled predecessors."); -  UpdatedPreds.insert(&LoopChain); - -  for (const MachineBasicBlock *LoopBB : LoopBlockSet) -    fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); - -  buildChain(LoopTop, LoopChain, &LoopBlockSet); - -  if (RotateLoopWithProfile) -    rotateLoopWithProfile(LoopChain, L, LoopBlockSet); -  else -    rotateLoop(LoopChain, PreferredLoopExit, ExitFreq, LoopBlockSet); - -  LLVM_DEBUG({ -    // Crash at the end so we get all of the debugging output first. -    bool BadLoop = false; -    if (LoopChain.UnscheduledPredecessors) { -      BadLoop = true; -      dbgs() << "Loop chain contains a block without its preds placed!\n" -             << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n" -             << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; -    } -    for (MachineBasicBlock *ChainBB : LoopChain) { -      dbgs() << "          ... " << getBlockName(ChainBB) << "\n"; -      if (!LoopBlockSet.remove(ChainBB)) { -        // We don't mark the loop as bad here because there are real situations -        // where this can occur. For example, with an unanalyzable fallthrough -        // from a loop block to a non-loop block or vice versa. -        dbgs() << "Loop chain contains a block not contained by the loop!\n" -               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n" -               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n" -               << "  Bad block:    " << getBlockName(ChainBB) << "\n"; -      } -    } - -    if (!LoopBlockSet.empty()) { -      BadLoop = true; -      for (const MachineBasicBlock *LoopBB : LoopBlockSet) -        dbgs() << "Loop contains blocks never placed into a chain!\n" -               << "  Loop header:  " << getBlockName(*L.block_begin()) << "\n" -               << "  Chain header: " << getBlockName(*LoopChain.begin()) << "\n" -               << "  Bad block:    " << getBlockName(LoopBB) << "\n"; -    } -    assert(!BadLoop && "Detected problems with the placement of this loop."); -  }); - -  BlockWorkList.clear(); -  EHPadWorkList.clear(); -} - -void MachineBlockPlacement::buildCFGChains() { -  // Ensure that every BB in the function has an associated chain to simplify -  // the assumptions of the remaining algorithm. -  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. -  for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; -       ++FI) { -    MachineBasicBlock *BB = &*FI; -    BlockChain *Chain = -        new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); -    // Also, merge any blocks which we cannot reason about and must preserve -    // the exact fallthrough behavior for. -    while (true) { -      Cond.clear(); -      MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. -      if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) -        break; - -      MachineFunction::iterator NextFI = std::next(FI); -      MachineBasicBlock *NextBB = &*NextFI; -      // Ensure that the layout successor is a viable block, as we know that -      // fallthrough is a possibility. -      assert(NextFI != FE && "Can't fallthrough past the last block."); -      LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " -                        << getBlockName(BB) << " -> " << getBlockName(NextBB) -                        << "\n"); -      Chain->merge(NextBB, nullptr); -#ifndef NDEBUG -      BlocksWithUnanalyzableExits.insert(&*BB); -#endif -      FI = NextFI; -      BB = NextBB; -    } -  } - -  // Build any loop-based chains. -  PreferredLoopExit = nullptr; -  for (MachineLoop *L : *MLI) -    buildLoopChains(*L); - -  assert(BlockWorkList.empty() && -         "BlockWorkList should be empty before building final chain."); -  assert(EHPadWorkList.empty() && -         "EHPadWorkList should be empty before building final chain."); - -  SmallPtrSet<BlockChain *, 4> UpdatedPreds; -  for (MachineBasicBlock &MBB : *F) -    fillWorkLists(&MBB, UpdatedPreds); - -  BlockChain &FunctionChain = *BlockToChain[&F->front()]; -  buildChain(&F->front(), FunctionChain); - -#ifndef NDEBUG -  using FunctionBlockSetType = SmallPtrSet<MachineBasicBlock *, 16>; -#endif -  LLVM_DEBUG({ -    // Crash at the end so we get all of the debugging output first. -    bool BadFunc = false; -    FunctionBlockSetType FunctionBlockSet; -    for (MachineBasicBlock &MBB : *F) -      FunctionBlockSet.insert(&MBB); - -    for (MachineBasicBlock *ChainBB : FunctionChain) -      if (!FunctionBlockSet.erase(ChainBB)) { -        BadFunc = true; -        dbgs() << "Function chain contains a block not in the function!\n" -               << "  Bad block:    " << getBlockName(ChainBB) << "\n"; -      } - -    if (!FunctionBlockSet.empty()) { -      BadFunc = true; -      for (MachineBasicBlock *RemainingBB : FunctionBlockSet) -        dbgs() << "Function contains blocks never placed into a chain!\n" -               << "  Bad block:    " << getBlockName(RemainingBB) << "\n"; -    } -    assert(!BadFunc && "Detected problems with the block placement."); -  }); - -  // Splice the blocks into place. -  MachineFunction::iterator InsertPos = F->begin(); -  LLVM_DEBUG(dbgs() << "[MBP] Function: " << F->getName() << "\n"); -  for (MachineBasicBlock *ChainBB : FunctionChain) { -    LLVM_DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " -                                                            : "          ... ") -                      << getBlockName(ChainBB) << "\n"); -    if (InsertPos != MachineFunction::iterator(ChainBB)) -      F->splice(InsertPos, ChainBB); -    else -      ++InsertPos; - -    // Update the terminator of the previous block. -    if (ChainBB == *FunctionChain.begin()) -      continue; -    MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); - -    // FIXME: It would be awesome of updateTerminator would just return rather -    // than assert when the branch cannot be analyzed in order to remove this -    // boiler plate. -    Cond.clear(); -    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. - -#ifndef NDEBUG -    if (!BlocksWithUnanalyzableExits.count(PrevBB)) { -      // Given the exact block placement we chose, we may actually not _need_ to -      // be able to edit PrevBB's terminator sequence, but not being _able_ to -      // do that at this point is a bug. -      assert((!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond) || -              !PrevBB->canFallThrough()) && -             "Unexpected block with un-analyzable fallthrough!"); -      Cond.clear(); -      TBB = FBB = nullptr; -    } -#endif - -    // The "PrevBB" is not yet updated to reflect current code layout, so, -    //   o. it may fall-through to a block without explicit "goto" instruction -    //      before layout, and no longer fall-through it after layout; or -    //   o. just opposite. -    // -    // analyzeBranch() may return erroneous value for FBB when these two -    // situations take place. For the first scenario FBB is mistakenly set NULL; -    // for the 2nd scenario, the FBB, which is expected to be NULL, is -    // mistakenly pointing to "*BI". -    // Thus, if the future change needs to use FBB before the layout is set, it -    // has to correct FBB first by using the code similar to the following: -    // -    // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { -    //   PrevBB->updateTerminator(); -    //   Cond.clear(); -    //   TBB = FBB = nullptr; -    //   if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { -    //     // FIXME: This should never take place. -    //     TBB = FBB = nullptr; -    //   } -    // } -    if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) -      PrevBB->updateTerminator(); -  } - -  // Fixup the last block. -  Cond.clear(); -  MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. -  if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) -    F->back().updateTerminator(); - -  BlockWorkList.clear(); -  EHPadWorkList.clear(); -} - -void MachineBlockPlacement::optimizeBranches() { -  BlockChain &FunctionChain = *BlockToChain[&F->front()]; -  SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. - -  // Now that all the basic blocks in the chain have the proper layout, -  // make a final call to AnalyzeBranch with AllowModify set. -  // Indeed, the target may be able to optimize the branches in a way we -  // cannot because all branches may not be analyzable. -  // E.g., the target may be able to remove an unconditional branch to -  // a fallthrough when it occurs after predicated terminators. -  for (MachineBasicBlock *ChainBB : FunctionChain) { -    Cond.clear(); -    MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. -    if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { -      // If PrevBB has a two-way branch, try to re-order the branches -      // such that we branch to the successor with higher probability first. -      if (TBB && !Cond.empty() && FBB && -          MBPI->getEdgeProbability(ChainBB, FBB) > -              MBPI->getEdgeProbability(ChainBB, TBB) && -          !TII->reverseBranchCondition(Cond)) { -        LLVM_DEBUG(dbgs() << "Reverse order of the two branches: " -                          << getBlockName(ChainBB) << "\n"); -        LLVM_DEBUG(dbgs() << "    Edge probability: " -                          << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " -                          << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); -        DebugLoc dl; // FIXME: this is nowhere -        TII->removeBranch(*ChainBB); -        TII->insertBranch(*ChainBB, FBB, TBB, Cond, dl); -        ChainBB->updateTerminator(); -      } -    } -  } -} - -void MachineBlockPlacement::alignBlocks() { -  // Walk through the backedges of the function now that we have fully laid out -  // the basic blocks and align the destination of each backedge. We don't rely -  // exclusively on the loop info here so that we can align backedges in -  // unnatural CFGs and backedges that were introduced purely because of the -  // loop rotations done during this layout pass. -  if (F->getFunction().hasMinSize() || -      (F->getFunction().hasOptSize() && !TLI->alignLoopsWithOptSize())) -    return; -  BlockChain &FunctionChain = *BlockToChain[&F->front()]; -  if (FunctionChain.begin() == FunctionChain.end()) -    return; // Empty chain. - -  const BranchProbability ColdProb(1, 5); // 20% -  BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); -  BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; -  for (MachineBasicBlock *ChainBB : FunctionChain) { -    if (ChainBB == *FunctionChain.begin()) -      continue; - -    // Don't align non-looping basic blocks. These are unlikely to execute -    // enough times to matter in practice. Note that we'll still handle -    // unnatural CFGs inside of a natural outer loop (the common case) and -    // rotated loops. -    MachineLoop *L = MLI->getLoopFor(ChainBB); -    if (!L) -      continue; - -    unsigned Align = TLI->getPrefLoopAlignment(L); -    if (!Align) -      continue; // Don't care about loop alignment. - -    // If the block is cold relative to the function entry don't waste space -    // aligning it. -    BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); -    if (Freq < WeightedEntryFreq) -      continue; - -    // If the block is cold relative to its loop header, don't align it -    // regardless of what edges into the block exist. -    MachineBasicBlock *LoopHeader = L->getHeader(); -    BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); -    if (Freq < (LoopHeaderFreq * ColdProb)) -      continue; - -    // Check for the existence of a non-layout predecessor which would benefit -    // from aligning this block. -    MachineBasicBlock *LayoutPred = -        &*std::prev(MachineFunction::iterator(ChainBB)); - -    // Force alignment if all the predecessors are jumps. We already checked -    // that the block isn't cold above. -    if (!LayoutPred->isSuccessor(ChainBB)) { -      ChainBB->setAlignment(Align); -      continue; -    } - -    // Align this block if the layout predecessor's edge into this block is -    // cold relative to the block. When this is true, other predecessors make up -    // all of the hot entries into the block and thus alignment is likely to be -    // important. -    BranchProbability LayoutProb = -        MBPI->getEdgeProbability(LayoutPred, ChainBB); -    BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; -    if (LayoutEdgeFreq <= (Freq * ColdProb)) -      ChainBB->setAlignment(Align); -  } -} - -/// Tail duplicate \p BB into (some) predecessors if profitable, repeating if -/// it was duplicated into its chain predecessor and removed. -/// \p BB    - Basic block that may be duplicated. -/// -/// \p LPred - Chosen layout predecessor of \p BB. -///            Updated to be the chain end if LPred is removed. -/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. -/// \p BlockFilter - Set of blocks that belong to the loop being laid out. -///                  Used to identify which blocks to update predecessor -///                  counts. -/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was -///                          chosen in the given order due to unnatural CFG -///                          only needed if \p BB is removed and -///                          \p PrevUnplacedBlockIt pointed to \p BB. -/// @return true if \p BB was removed. -bool MachineBlockPlacement::repeatedlyTailDuplicateBlock( -    MachineBasicBlock *BB, MachineBasicBlock *&LPred, -    const MachineBasicBlock *LoopHeaderBB, -    BlockChain &Chain, BlockFilterSet *BlockFilter, -    MachineFunction::iterator &PrevUnplacedBlockIt) { -  bool Removed, DuplicatedToLPred; -  bool DuplicatedToOriginalLPred; -  Removed = maybeTailDuplicateBlock(BB, LPred, Chain, BlockFilter, -                                    PrevUnplacedBlockIt, -                                    DuplicatedToLPred); -  if (!Removed) -    return false; -  DuplicatedToOriginalLPred = DuplicatedToLPred; -  // Iteratively try to duplicate again. It can happen that a block that is -  // duplicated into is still small enough to be duplicated again. -  // No need to call markBlockSuccessors in this case, as the blocks being -  // duplicated from here on are already scheduled. -  // Note that DuplicatedToLPred always implies Removed. -  while (DuplicatedToLPred) { -    assert(Removed && "Block must have been removed to be duplicated into its " -           "layout predecessor."); -    MachineBasicBlock *DupBB, *DupPred; -    // The removal callback causes Chain.end() to be updated when a block is -    // removed. On the first pass through the loop, the chain end should be the -    // same as it was on function entry. On subsequent passes, because we are -    // duplicating the block at the end of the chain, if it is removed the -    // chain will have shrunk by one block. -    BlockChain::iterator ChainEnd = Chain.end(); -    DupBB = *(--ChainEnd); -    // Now try to duplicate again. -    if (ChainEnd == Chain.begin()) -      break; -    DupPred = *std::prev(ChainEnd); -    Removed = maybeTailDuplicateBlock(DupBB, DupPred, Chain, BlockFilter, -                                      PrevUnplacedBlockIt, -                                      DuplicatedToLPred); -  } -  // If BB was duplicated into LPred, it is now scheduled. But because it was -  // removed, markChainSuccessors won't be called for its chain. Instead we -  // call markBlockSuccessors for LPred to achieve the same effect. This must go -  // at the end because repeating the tail duplication can increase the number -  // of unscheduled predecessors. -  LPred = *std::prev(Chain.end()); -  if (DuplicatedToOriginalLPred) -    markBlockSuccessors(Chain, LPred, LoopHeaderBB, BlockFilter); -  return true; -} - -/// Tail duplicate \p BB into (some) predecessors if profitable. -/// \p BB    - Basic block that may be duplicated -/// \p LPred - Chosen layout predecessor of \p BB -/// \p Chain - Chain to which \p LPred belongs, and \p BB will belong. -/// \p BlockFilter - Set of blocks that belong to the loop being laid out. -///                  Used to identify which blocks to update predecessor -///                  counts. -/// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was -///                          chosen in the given order due to unnatural CFG -///                          only needed if \p BB is removed and -///                          \p PrevUnplacedBlockIt pointed to \p BB. -/// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will -///                        only be true if the block was removed. -/// \return  - True if the block was duplicated into all preds and removed. -bool MachineBlockPlacement::maybeTailDuplicateBlock( -    MachineBasicBlock *BB, MachineBasicBlock *LPred, -    BlockChain &Chain, BlockFilterSet *BlockFilter, -    MachineFunction::iterator &PrevUnplacedBlockIt, -    bool &DuplicatedToLPred) { -  DuplicatedToLPred = false; -  if (!shouldTailDuplicate(BB)) -    return false; - -  LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB->getNumber() -                    << "\n"); - -  // This has to be a callback because none of it can be done after -  // BB is deleted. -  bool Removed = false; -  auto RemovalCallback = -      [&](MachineBasicBlock *RemBB) { -        // Signal to outer function -        Removed = true; - -        // Conservative default. -        bool InWorkList = true; -        // Remove from the Chain and Chain Map -        if (BlockToChain.count(RemBB)) { -          BlockChain *Chain = BlockToChain[RemBB]; -          InWorkList = Chain->UnscheduledPredecessors == 0; -          Chain->remove(RemBB); -          BlockToChain.erase(RemBB); -        } - -        // Handle the unplaced block iterator -        if (&(*PrevUnplacedBlockIt) == RemBB) { -          PrevUnplacedBlockIt++; -        } - -        // Handle the Work Lists -        if (InWorkList) { -          SmallVectorImpl<MachineBasicBlock *> &RemoveList = BlockWorkList; -          if (RemBB->isEHPad()) -            RemoveList = EHPadWorkList; -          RemoveList.erase( -              llvm::remove_if(RemoveList, -                              [RemBB](MachineBasicBlock *BB) { -                                return BB == RemBB; -                              }), -              RemoveList.end()); -        } - -        // Handle the filter set -        if (BlockFilter) { -          BlockFilter->remove(RemBB); -        } - -        // Remove the block from loop info. -        MLI->removeBlock(RemBB); -        if (RemBB == PreferredLoopExit) -          PreferredLoopExit = nullptr; - -        LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: " -                          << getBlockName(RemBB) << "\n"); -      }; -  auto RemovalCallbackRef = -      function_ref<void(MachineBasicBlock*)>(RemovalCallback); - -  SmallVector<MachineBasicBlock *, 8> DuplicatedPreds; -  bool IsSimple = TailDup.isSimpleBB(BB); -  TailDup.tailDuplicateAndUpdate(IsSimple, BB, LPred, -                                 &DuplicatedPreds, &RemovalCallbackRef); - -  // Update UnscheduledPredecessors to reflect tail-duplication. -  DuplicatedToLPred = false; -  for (MachineBasicBlock *Pred : DuplicatedPreds) { -    // We're only looking for unscheduled predecessors that match the filter. -    BlockChain* PredChain = BlockToChain[Pred]; -    if (Pred == LPred) -      DuplicatedToLPred = true; -    if (Pred == LPred || (BlockFilter && !BlockFilter->count(Pred)) -        || PredChain == &Chain) -      continue; -    for (MachineBasicBlock *NewSucc : Pred->successors()) { -      if (BlockFilter && !BlockFilter->count(NewSucc)) -        continue; -      BlockChain *NewChain = BlockToChain[NewSucc]; -      if (NewChain != &Chain && NewChain != PredChain) -        NewChain->UnscheduledPredecessors++; -    } -  } -  return Removed; -} - -bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { -  if (skipFunction(MF.getFunction())) -    return false; - -  // Check for single-block functions and skip them. -  if (std::next(MF.begin()) == MF.end()) -    return false; - -  F = &MF; -  MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); -  MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( -      getAnalysis<MachineBlockFrequencyInfo>()); -  MLI = &getAnalysis<MachineLoopInfo>(); -  TII = MF.getSubtarget().getInstrInfo(); -  TLI = MF.getSubtarget().getTargetLowering(); -  MPDT = nullptr; - -  // Initialize PreferredLoopExit to nullptr here since it may never be set if -  // there are no MachineLoops. -  PreferredLoopExit = nullptr; - -  assert(BlockToChain.empty() && -         "BlockToChain map should be empty before starting placement."); -  assert(ComputedEdges.empty() && -         "Computed Edge map should be empty before starting placement."); - -  unsigned TailDupSize = TailDupPlacementThreshold; -  // If only the aggressive threshold is explicitly set, use it. -  if (TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0 && -      TailDupPlacementThreshold.getNumOccurrences() == 0) -    TailDupSize = TailDupPlacementAggressiveThreshold; - -  TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); -  // For aggressive optimization, we can adjust some thresholds to be less -  // conservative. -  if (PassConfig->getOptLevel() >= CodeGenOpt::Aggressive) { -    // At O3 we should be more willing to copy blocks for tail duplication. This -    // increases size pressure, so we only do it at O3 -    // Do this unless only the regular threshold is explicitly set. -    if (TailDupPlacementThreshold.getNumOccurrences() == 0 || -        TailDupPlacementAggressiveThreshold.getNumOccurrences() != 0) -      TailDupSize = TailDupPlacementAggressiveThreshold; -  } - -  if (allowTailDupPlacement()) { -    MPDT = &getAnalysis<MachinePostDominatorTree>(); -    if (MF.getFunction().hasOptSize()) -      TailDupSize = 1; -    bool PreRegAlloc = false; -    TailDup.initMF(MF, PreRegAlloc, MBPI, /* LayoutMode */ true, TailDupSize); -    precomputeTriangleChains(); -  } - -  buildCFGChains(); - -  // Changing the layout can create new tail merging opportunities. -  // TailMerge can create jump into if branches that make CFG irreducible for -  // HW that requires structured CFG. -  bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && -                         PassConfig->getEnableTailMerge() && -                         BranchFoldPlacement; -  // No tail merging opportunities if the block number is less than four. -  if (MF.size() > 3 && EnableTailMerge) { -    unsigned TailMergeSize = TailDupSize + 1; -    BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, -                    *MBPI, TailMergeSize); - -    if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), -                            getAnalysisIfAvailable<MachineModuleInfo>(), MLI, -                            /*AfterPlacement=*/true)) { -      // Redo the layout if tail merging creates/removes/moves blocks. -      BlockToChain.clear(); -      ComputedEdges.clear(); -      // Must redo the post-dominator tree if blocks were changed. -      if (MPDT) -        MPDT->runOnMachineFunction(MF); -      ChainAllocator.DestroyAll(); -      buildCFGChains(); -    } -  } - -  optimizeBranches(); -  alignBlocks(); - -  BlockToChain.clear(); -  ComputedEdges.clear(); -  ChainAllocator.DestroyAll(); - -  if (AlignAllBlock) -    // Align all of the blocks in the function to a specific alignment. -    for (MachineBasicBlock &MBB : MF) -      MBB.setAlignment(AlignAllBlock); -  else if (AlignAllNonFallThruBlocks) { -    // Align all of the blocks that have no fall-through predecessors to a -    // specific alignment. -    for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { -      auto LayoutPred = std::prev(MBI); -      if (!LayoutPred->isSuccessor(&*MBI)) -        MBI->setAlignment(AlignAllNonFallThruBlocks); -    } -  } -  if (ViewBlockLayoutWithBFI != GVDT_None && -      (ViewBlockFreqFuncName.empty() || -       F->getFunction().getName().equals(ViewBlockFreqFuncName))) { -    MBFI->view("MBP." + MF.getName(), false); -  } - - -  // We always return true as we have no way to track whether the final order -  // differs from the original order. -  return true; -} - -namespace { - -/// A pass to compute block placement statistics. -/// -/// A separate pass to compute interesting statistics for evaluating block -/// placement. This is separate from the actual placement pass so that they can -/// be computed in the absence of any placement transformations or when using -/// alternative placement strategies. -class MachineBlockPlacementStats : public MachineFunctionPass { -  /// A handle to the branch probability pass. -  const MachineBranchProbabilityInfo *MBPI; - -  /// A handle to the function-wide block frequency pass. -  const MachineBlockFrequencyInfo *MBFI; - -public: -  static char ID; // Pass identification, replacement for typeid - -  MachineBlockPlacementStats() : MachineFunctionPass(ID) { -    initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); -  } - -  bool runOnMachineFunction(MachineFunction &F) override; - -  void getAnalysisUsage(AnalysisUsage &AU) const override { -    AU.addRequired<MachineBranchProbabilityInfo>(); -    AU.addRequired<MachineBlockFrequencyInfo>(); -    AU.setPreservesAll(); -    MachineFunctionPass::getAnalysisUsage(AU); -  } -}; - -} // end anonymous namespace - -char MachineBlockPlacementStats::ID = 0; - -char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; - -INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", -                      "Basic Block Placement Stats", false, false) -INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) -INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) -INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", -                    "Basic Block Placement Stats", false, false) - -bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { -  // Check for single-block functions and skip them. -  if (std::next(F.begin()) == F.end()) -    return false; - -  MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); -  MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); - -  for (MachineBasicBlock &MBB : F) { -    BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); -    Statistic &NumBranches = -        (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; -    Statistic &BranchTakenFreq = -        (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; -    for (MachineBasicBlock *Succ : MBB.successors()) { -      // Skip if this successor is a fallthrough. -      if (MBB.isLayoutSuccessor(Succ)) -        continue; - -      BlockFrequency EdgeFreq = -          BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); -      ++NumBranches; -      BranchTakenFreq += EdgeFreq.getFrequency(); -    } -  } - -  return false; -}  | 
