diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Target/X86/Disassembler | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/lib/Target/X86/Disassembler')
3 files changed, 0 insertions, 3485 deletions
diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp b/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp deleted file mode 100644 index 9a635bbe5f85..000000000000 --- a/contrib/llvm/lib/Target/X86/Disassembler/X86Disassembler.cpp +++ /dev/null @@ -1,853 +0,0 @@ -//===-- X86Disassembler.cpp - Disassembler for x86 and x86_64 -------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file is part of the X86 Disassembler. -// It contains code to translate the data produced by the decoder into -// MCInsts. -// -// -// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and -// 64-bit X86 instruction sets. The main decode sequence for an assembly -// instruction in this disassembler is: -// -// 1. Read the prefix bytes and determine the attributes of the instruction. -// These attributes, recorded in enum attributeBits -// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM -// provides a mapping from bitmasks to contexts, which are represented by -// enum InstructionContext (ibid.). -// -// 2. Read the opcode, and determine what kind of opcode it is. The -// disassembler distinguishes four kinds of opcodes, which are enumerated in -// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte -// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a -// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context. -// -// 3. Depending on the opcode type, look in one of four ClassDecision structures -// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which -// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get -// a ModRMDecision (ibid.). -// -// 4. Some instructions, such as escape opcodes or extended opcodes, or even -// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the -// ModR/M byte to complete decode. The ModRMDecision's type is an entry from -// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the -// ModR/M byte is required and how to interpret it. -// -// 5. After resolving the ModRMDecision, the disassembler has a unique ID -// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in -// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and -// meanings of its operands. -// -// 6. For each operand, its encoding is an entry from OperandEncoding -// (X86DisassemblerDecoderCommon.h) and its type is an entry from -// OperandType (ibid.). The encoding indicates how to read it from the -// instruction; the type indicates how to interpret the value once it has -// been read. For example, a register operand could be stored in the R/M -// field of the ModR/M byte, the REG field of the ModR/M byte, or added to -// the main opcode. This is orthogonal from its meaning (an GPR or an XMM -// register, for instance). Given this information, the operands can be -// extracted and interpreted. -// -// 7. As the last step, the disassembler translates the instruction information -// and operands into a format understandable by the client - in this case, an -// MCInst for use by the MC infrastructure. -// -// The disassembler is broken broadly into two parts: the table emitter that -// emits the instruction decode tables discussed above during compilation, and -// the disassembler itself. The table emitter is documented in more detail in -// utils/TableGen/X86DisassemblerEmitter.h. -// -// X86Disassembler.cpp contains the code responsible for step 7, and for -// invoking the decoder to execute steps 1-6. -// X86DisassemblerDecoderCommon.h contains the definitions needed by both the -// table emitter and the disassembler. -// X86DisassemblerDecoder.h contains the public interface of the decoder, -// factored out into C for possible use by other projects. -// X86DisassemblerDecoder.c contains the source code of the decoder, which is -// responsible for steps 1-6. -// -//===----------------------------------------------------------------------===// - -#include "MCTargetDesc/X86BaseInfo.h" -#include "MCTargetDesc/X86MCTargetDesc.h" -#include "TargetInfo/X86TargetInfo.h" -#include "X86DisassemblerDecoder.h" -#include "llvm/MC/MCContext.h" -#include "llvm/MC/MCDisassembler/MCDisassembler.h" -#include "llvm/MC/MCExpr.h" -#include "llvm/MC/MCInst.h" -#include "llvm/MC/MCInstrInfo.h" -#include "llvm/MC/MCSubtargetInfo.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/TargetRegistry.h" -#include "llvm/Support/raw_ostream.h" - -using namespace llvm; -using namespace llvm::X86Disassembler; - -#define DEBUG_TYPE "x86-disassembler" - -void llvm::X86Disassembler::Debug(const char *file, unsigned line, - const char *s) { - dbgs() << file << ":" << line << ": " << s; -} - -StringRef llvm::X86Disassembler::GetInstrName(unsigned Opcode, - const void *mii) { - const MCInstrInfo *MII = static_cast<const MCInstrInfo *>(mii); - return MII->getName(Opcode); -} - -#define debug(s) LLVM_DEBUG(Debug(__FILE__, __LINE__, s)); - -namespace llvm { - -// Fill-ins to make the compiler happy. These constants are never actually -// assigned; they are just filler to make an automatically-generated switch -// statement work. -namespace X86 { - enum { - BX_SI = 500, - BX_DI = 501, - BP_SI = 502, - BP_DI = 503, - sib = 504, - sib64 = 505 - }; -} - -} - -static bool translateInstruction(MCInst &target, - InternalInstruction &source, - const MCDisassembler *Dis); - -namespace { - -/// Generic disassembler for all X86 platforms. All each platform class should -/// have to do is subclass the constructor, and provide a different -/// disassemblerMode value. -class X86GenericDisassembler : public MCDisassembler { - std::unique_ptr<const MCInstrInfo> MII; -public: - X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx, - std::unique_ptr<const MCInstrInfo> MII); -public: - DecodeStatus getInstruction(MCInst &instr, uint64_t &size, - ArrayRef<uint8_t> Bytes, uint64_t Address, - raw_ostream &vStream, - raw_ostream &cStream) const override; - -private: - DisassemblerMode fMode; -}; - -} - -X86GenericDisassembler::X86GenericDisassembler( - const MCSubtargetInfo &STI, - MCContext &Ctx, - std::unique_ptr<const MCInstrInfo> MII) - : MCDisassembler(STI, Ctx), MII(std::move(MII)) { - const FeatureBitset &FB = STI.getFeatureBits(); - if (FB[X86::Mode16Bit]) { - fMode = MODE_16BIT; - return; - } else if (FB[X86::Mode32Bit]) { - fMode = MODE_32BIT; - return; - } else if (FB[X86::Mode64Bit]) { - fMode = MODE_64BIT; - return; - } - - llvm_unreachable("Invalid CPU mode"); -} - -namespace { -struct Region { - ArrayRef<uint8_t> Bytes; - uint64_t Base; - Region(ArrayRef<uint8_t> Bytes, uint64_t Base) : Bytes(Bytes), Base(Base) {} -}; -} // end anonymous namespace - -/// A callback function that wraps the readByte method from Region. -/// -/// @param Arg - The generic callback parameter. In this case, this should -/// be a pointer to a Region. -/// @param Byte - A pointer to the byte to be read. -/// @param Address - The address to be read. -static int regionReader(const void *Arg, uint8_t *Byte, uint64_t Address) { - auto *R = static_cast<const Region *>(Arg); - ArrayRef<uint8_t> Bytes = R->Bytes; - unsigned Index = Address - R->Base; - if (Bytes.size() <= Index) - return -1; - *Byte = Bytes[Index]; - return 0; -} - -/// logger - a callback function that wraps the operator<< method from -/// raw_ostream. -/// -/// @param arg - The generic callback parameter. This should be a pointe -/// to a raw_ostream. -/// @param log - A string to be logged. logger() adds a newline. -static void logger(void* arg, const char* log) { - if (!arg) - return; - - raw_ostream &vStream = *(static_cast<raw_ostream*>(arg)); - vStream << log << "\n"; -} - -// -// Public interface for the disassembler -// - -MCDisassembler::DecodeStatus X86GenericDisassembler::getInstruction( - MCInst &Instr, uint64_t &Size, ArrayRef<uint8_t> Bytes, uint64_t Address, - raw_ostream &VStream, raw_ostream &CStream) const { - CommentStream = &CStream; - - InternalInstruction InternalInstr; - - dlog_t LoggerFn = logger; - if (&VStream == &nulls()) - LoggerFn = nullptr; // Disable logging completely if it's going to nulls(). - - Region R(Bytes, Address); - - int Ret = decodeInstruction(&InternalInstr, regionReader, (const void *)&R, - LoggerFn, (void *)&VStream, - (const void *)MII.get(), Address, fMode); - - if (Ret) { - Size = InternalInstr.readerCursor - Address; - return Fail; - } else { - Size = InternalInstr.length; - bool Ret = translateInstruction(Instr, InternalInstr, this); - if (!Ret) { - unsigned Flags = X86::IP_NO_PREFIX; - if (InternalInstr.hasAdSize) - Flags |= X86::IP_HAS_AD_SIZE; - if (!InternalInstr.mandatoryPrefix) { - if (InternalInstr.hasOpSize) - Flags |= X86::IP_HAS_OP_SIZE; - if (InternalInstr.repeatPrefix == 0xf2) - Flags |= X86::IP_HAS_REPEAT_NE; - else if (InternalInstr.repeatPrefix == 0xf3 && - // It should not be 'pause' f3 90 - InternalInstr.opcode != 0x90) - Flags |= X86::IP_HAS_REPEAT; - if (InternalInstr.hasLockPrefix) - Flags |= X86::IP_HAS_LOCK; - } - Instr.setFlags(Flags); - } - return (!Ret) ? Success : Fail; - } -} - -// -// Private code that translates from struct InternalInstructions to MCInsts. -// - -/// translateRegister - Translates an internal register to the appropriate LLVM -/// register, and appends it as an operand to an MCInst. -/// -/// @param mcInst - The MCInst to append to. -/// @param reg - The Reg to append. -static void translateRegister(MCInst &mcInst, Reg reg) { -#define ENTRY(x) X86::x, - static constexpr MCPhysReg llvmRegnums[] = {ALL_REGS}; -#undef ENTRY - - MCPhysReg llvmRegnum = llvmRegnums[reg]; - mcInst.addOperand(MCOperand::createReg(llvmRegnum)); -} - -/// tryAddingSymbolicOperand - trys to add a symbolic operand in place of the -/// immediate Value in the MCInst. -/// -/// @param Value - The immediate Value, has had any PC adjustment made by -/// the caller. -/// @param isBranch - If the instruction is a branch instruction -/// @param Address - The starting address of the instruction -/// @param Offset - The byte offset to this immediate in the instruction -/// @param Width - The byte width of this immediate in the instruction -/// -/// If the getOpInfo() function was set when setupForSymbolicDisassembly() was -/// called then that function is called to get any symbolic information for the -/// immediate in the instruction using the Address, Offset and Width. If that -/// returns non-zero then the symbolic information it returns is used to create -/// an MCExpr and that is added as an operand to the MCInst. If getOpInfo() -/// returns zero and isBranch is true then a symbol look up for immediate Value -/// is done and if a symbol is found an MCExpr is created with that, else -/// an MCExpr with the immediate Value is created. This function returns true -/// if it adds an operand to the MCInst and false otherwise. -static bool tryAddingSymbolicOperand(int64_t Value, bool isBranch, - uint64_t Address, uint64_t Offset, - uint64_t Width, MCInst &MI, - const MCDisassembler *Dis) { - return Dis->tryAddingSymbolicOperand(MI, Value, Address, isBranch, - Offset, Width); -} - -/// tryAddingPcLoadReferenceComment - trys to add a comment as to what is being -/// referenced by a load instruction with the base register that is the rip. -/// These can often be addresses in a literal pool. The Address of the -/// instruction and its immediate Value are used to determine the address -/// being referenced in the literal pool entry. The SymbolLookUp call back will -/// return a pointer to a literal 'C' string if the referenced address is an -/// address into a section with 'C' string literals. -static void tryAddingPcLoadReferenceComment(uint64_t Address, uint64_t Value, - const void *Decoder) { - const MCDisassembler *Dis = static_cast<const MCDisassembler*>(Decoder); - Dis->tryAddingPcLoadReferenceComment(Value, Address); -} - -static const uint8_t segmentRegnums[SEG_OVERRIDE_max] = { - 0, // SEG_OVERRIDE_NONE - X86::CS, - X86::SS, - X86::DS, - X86::ES, - X86::FS, - X86::GS -}; - -/// translateSrcIndex - Appends a source index operand to an MCInst. -/// -/// @param mcInst - The MCInst to append to. -/// @param insn - The internal instruction. -static bool translateSrcIndex(MCInst &mcInst, InternalInstruction &insn) { - unsigned baseRegNo; - - if (insn.mode == MODE_64BIT) - baseRegNo = insn.hasAdSize ? X86::ESI : X86::RSI; - else if (insn.mode == MODE_32BIT) - baseRegNo = insn.hasAdSize ? X86::SI : X86::ESI; - else { - assert(insn.mode == MODE_16BIT); - baseRegNo = insn.hasAdSize ? X86::ESI : X86::SI; - } - MCOperand baseReg = MCOperand::createReg(baseRegNo); - mcInst.addOperand(baseReg); - - MCOperand segmentReg; - segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); - mcInst.addOperand(segmentReg); - return false; -} - -/// translateDstIndex - Appends a destination index operand to an MCInst. -/// -/// @param mcInst - The MCInst to append to. -/// @param insn - The internal instruction. - -static bool translateDstIndex(MCInst &mcInst, InternalInstruction &insn) { - unsigned baseRegNo; - - if (insn.mode == MODE_64BIT) - baseRegNo = insn.hasAdSize ? X86::EDI : X86::RDI; - else if (insn.mode == MODE_32BIT) - baseRegNo = insn.hasAdSize ? X86::DI : X86::EDI; - else { - assert(insn.mode == MODE_16BIT); - baseRegNo = insn.hasAdSize ? X86::EDI : X86::DI; - } - MCOperand baseReg = MCOperand::createReg(baseRegNo); - mcInst.addOperand(baseReg); - return false; -} - -/// translateImmediate - Appends an immediate operand to an MCInst. -/// -/// @param mcInst - The MCInst to append to. -/// @param immediate - The immediate value to append. -/// @param operand - The operand, as stored in the descriptor table. -/// @param insn - The internal instruction. -static void translateImmediate(MCInst &mcInst, uint64_t immediate, - const OperandSpecifier &operand, - InternalInstruction &insn, - const MCDisassembler *Dis) { - // Sign-extend the immediate if necessary. - - OperandType type = (OperandType)operand.type; - - bool isBranch = false; - uint64_t pcrel = 0; - if (type == TYPE_REL) { - isBranch = true; - pcrel = insn.startLocation + - insn.immediateOffset + insn.immediateSize; - switch (operand.encoding) { - default: - break; - case ENCODING_Iv: - switch (insn.displacementSize) { - default: - break; - case 1: - if(immediate & 0x80) - immediate |= ~(0xffull); - break; - case 2: - if(immediate & 0x8000) - immediate |= ~(0xffffull); - break; - case 4: - if(immediate & 0x80000000) - immediate |= ~(0xffffffffull); - break; - case 8: - break; - } - break; - case ENCODING_IB: - if(immediate & 0x80) - immediate |= ~(0xffull); - break; - case ENCODING_IW: - if(immediate & 0x8000) - immediate |= ~(0xffffull); - break; - case ENCODING_ID: - if(immediate & 0x80000000) - immediate |= ~(0xffffffffull); - break; - } - } - // By default sign-extend all X86 immediates based on their encoding. - else if (type == TYPE_IMM) { - switch (operand.encoding) { - default: - break; - case ENCODING_IB: - if(immediate & 0x80) - immediate |= ~(0xffull); - break; - case ENCODING_IW: - if(immediate & 0x8000) - immediate |= ~(0xffffull); - break; - case ENCODING_ID: - if(immediate & 0x80000000) - immediate |= ~(0xffffffffull); - break; - case ENCODING_IO: - break; - } - } - - switch (type) { - case TYPE_XMM: - mcInst.addOperand(MCOperand::createReg(X86::XMM0 + (immediate >> 4))); - return; - case TYPE_YMM: - mcInst.addOperand(MCOperand::createReg(X86::YMM0 + (immediate >> 4))); - return; - case TYPE_ZMM: - mcInst.addOperand(MCOperand::createReg(X86::ZMM0 + (immediate >> 4))); - return; - default: - // operand is 64 bits wide. Do nothing. - break; - } - - if(!tryAddingSymbolicOperand(immediate + pcrel, isBranch, insn.startLocation, - insn.immediateOffset, insn.immediateSize, - mcInst, Dis)) - mcInst.addOperand(MCOperand::createImm(immediate)); - - if (type == TYPE_MOFFS) { - MCOperand segmentReg; - segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); - mcInst.addOperand(segmentReg); - } -} - -/// translateRMRegister - Translates a register stored in the R/M field of the -/// ModR/M byte to its LLVM equivalent and appends it to an MCInst. -/// @param mcInst - The MCInst to append to. -/// @param insn - The internal instruction to extract the R/M field -/// from. -/// @return - 0 on success; -1 otherwise -static bool translateRMRegister(MCInst &mcInst, - InternalInstruction &insn) { - if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { - debug("A R/M register operand may not have a SIB byte"); - return true; - } - - switch (insn.eaBase) { - default: - debug("Unexpected EA base register"); - return true; - case EA_BASE_NONE: - debug("EA_BASE_NONE for ModR/M base"); - return true; -#define ENTRY(x) case EA_BASE_##x: - ALL_EA_BASES -#undef ENTRY - debug("A R/M register operand may not have a base; " - "the operand must be a register."); - return true; -#define ENTRY(x) \ - case EA_REG_##x: \ - mcInst.addOperand(MCOperand::createReg(X86::x)); break; - ALL_REGS -#undef ENTRY - } - - return false; -} - -/// translateRMMemory - Translates a memory operand stored in the Mod and R/M -/// fields of an internal instruction (and possibly its SIB byte) to a memory -/// operand in LLVM's format, and appends it to an MCInst. -/// -/// @param mcInst - The MCInst to append to. -/// @param insn - The instruction to extract Mod, R/M, and SIB fields -/// from. -/// @return - 0 on success; nonzero otherwise -static bool translateRMMemory(MCInst &mcInst, InternalInstruction &insn, - const MCDisassembler *Dis) { - // Addresses in an MCInst are represented as five operands: - // 1. basereg (register) The R/M base, or (if there is a SIB) the - // SIB base - // 2. scaleamount (immediate) 1, or (if there is a SIB) the specified - // scale amount - // 3. indexreg (register) x86_registerNONE, or (if there is a SIB) - // the index (which is multiplied by the - // scale amount) - // 4. displacement (immediate) 0, or the displacement if there is one - // 5. segmentreg (register) x86_registerNONE for now, but could be set - // if we have segment overrides - - MCOperand baseReg; - MCOperand scaleAmount; - MCOperand indexReg; - MCOperand displacement; - MCOperand segmentReg; - uint64_t pcrel = 0; - - if (insn.eaBase == EA_BASE_sib || insn.eaBase == EA_BASE_sib64) { - if (insn.sibBase != SIB_BASE_NONE) { - switch (insn.sibBase) { - default: - debug("Unexpected sibBase"); - return true; -#define ENTRY(x) \ - case SIB_BASE_##x: \ - baseReg = MCOperand::createReg(X86::x); break; - ALL_SIB_BASES -#undef ENTRY - } - } else { - baseReg = MCOperand::createReg(X86::NoRegister); - } - - if (insn.sibIndex != SIB_INDEX_NONE) { - switch (insn.sibIndex) { - default: - debug("Unexpected sibIndex"); - return true; -#define ENTRY(x) \ - case SIB_INDEX_##x: \ - indexReg = MCOperand::createReg(X86::x); break; - EA_BASES_32BIT - EA_BASES_64BIT - REGS_XMM - REGS_YMM - REGS_ZMM -#undef ENTRY - } - } else { - // Use EIZ/RIZ for a few ambiguous cases where the SIB byte is present, - // but no index is used and modrm alone should have been enough. - // -No base register in 32-bit mode. In 64-bit mode this is used to - // avoid rip-relative addressing. - // -Any base register used other than ESP/RSP/R12D/R12. Using these as a - // base always requires a SIB byte. - // -A scale other than 1 is used. - if (insn.sibScale != 1 || - (insn.sibBase == SIB_BASE_NONE && insn.mode != MODE_64BIT) || - (insn.sibBase != SIB_BASE_NONE && - insn.sibBase != SIB_BASE_ESP && insn.sibBase != SIB_BASE_RSP && - insn.sibBase != SIB_BASE_R12D && insn.sibBase != SIB_BASE_R12)) { - indexReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIZ : - X86::RIZ); - } else - indexReg = MCOperand::createReg(X86::NoRegister); - } - - scaleAmount = MCOperand::createImm(insn.sibScale); - } else { - switch (insn.eaBase) { - case EA_BASE_NONE: - if (insn.eaDisplacement == EA_DISP_NONE) { - debug("EA_BASE_NONE and EA_DISP_NONE for ModR/M base"); - return true; - } - if (insn.mode == MODE_64BIT){ - pcrel = insn.startLocation + - insn.displacementOffset + insn.displacementSize; - tryAddingPcLoadReferenceComment(insn.startLocation + - insn.displacementOffset, - insn.displacement + pcrel, Dis); - // Section 2.2.1.6 - baseReg = MCOperand::createReg(insn.addressSize == 4 ? X86::EIP : - X86::RIP); - } - else - baseReg = MCOperand::createReg(X86::NoRegister); - - indexReg = MCOperand::createReg(X86::NoRegister); - break; - case EA_BASE_BX_SI: - baseReg = MCOperand::createReg(X86::BX); - indexReg = MCOperand::createReg(X86::SI); - break; - case EA_BASE_BX_DI: - baseReg = MCOperand::createReg(X86::BX); - indexReg = MCOperand::createReg(X86::DI); - break; - case EA_BASE_BP_SI: - baseReg = MCOperand::createReg(X86::BP); - indexReg = MCOperand::createReg(X86::SI); - break; - case EA_BASE_BP_DI: - baseReg = MCOperand::createReg(X86::BP); - indexReg = MCOperand::createReg(X86::DI); - break; - default: - indexReg = MCOperand::createReg(X86::NoRegister); - switch (insn.eaBase) { - default: - debug("Unexpected eaBase"); - return true; - // Here, we will use the fill-ins defined above. However, - // BX_SI, BX_DI, BP_SI, and BP_DI are all handled above and - // sib and sib64 were handled in the top-level if, so they're only - // placeholders to keep the compiler happy. -#define ENTRY(x) \ - case EA_BASE_##x: \ - baseReg = MCOperand::createReg(X86::x); break; - ALL_EA_BASES -#undef ENTRY -#define ENTRY(x) case EA_REG_##x: - ALL_REGS -#undef ENTRY - debug("A R/M memory operand may not be a register; " - "the base field must be a base."); - return true; - } - } - - scaleAmount = MCOperand::createImm(1); - } - - displacement = MCOperand::createImm(insn.displacement); - - segmentReg = MCOperand::createReg(segmentRegnums[insn.segmentOverride]); - - mcInst.addOperand(baseReg); - mcInst.addOperand(scaleAmount); - mcInst.addOperand(indexReg); - if(!tryAddingSymbolicOperand(insn.displacement + pcrel, false, - insn.startLocation, insn.displacementOffset, - insn.displacementSize, mcInst, Dis)) - mcInst.addOperand(displacement); - mcInst.addOperand(segmentReg); - return false; -} - -/// translateRM - Translates an operand stored in the R/M (and possibly SIB) -/// byte of an instruction to LLVM form, and appends it to an MCInst. -/// -/// @param mcInst - The MCInst to append to. -/// @param operand - The operand, as stored in the descriptor table. -/// @param insn - The instruction to extract Mod, R/M, and SIB fields -/// from. -/// @return - 0 on success; nonzero otherwise -static bool translateRM(MCInst &mcInst, const OperandSpecifier &operand, - InternalInstruction &insn, const MCDisassembler *Dis) { - switch (operand.type) { - default: - debug("Unexpected type for a R/M operand"); - return true; - case TYPE_R8: - case TYPE_R16: - case TYPE_R32: - case TYPE_R64: - case TYPE_Rv: - case TYPE_MM64: - case TYPE_XMM: - case TYPE_YMM: - case TYPE_ZMM: - case TYPE_VK_PAIR: - case TYPE_VK: - case TYPE_DEBUGREG: - case TYPE_CONTROLREG: - case TYPE_BNDR: - return translateRMRegister(mcInst, insn); - case TYPE_M: - case TYPE_MVSIBX: - case TYPE_MVSIBY: - case TYPE_MVSIBZ: - return translateRMMemory(mcInst, insn, Dis); - } -} - -/// translateFPRegister - Translates a stack position on the FPU stack to its -/// LLVM form, and appends it to an MCInst. -/// -/// @param mcInst - The MCInst to append to. -/// @param stackPos - The stack position to translate. -static void translateFPRegister(MCInst &mcInst, - uint8_t stackPos) { - mcInst.addOperand(MCOperand::createReg(X86::ST0 + stackPos)); -} - -/// translateMaskRegister - Translates a 3-bit mask register number to -/// LLVM form, and appends it to an MCInst. -/// -/// @param mcInst - The MCInst to append to. -/// @param maskRegNum - Number of mask register from 0 to 7. -/// @return - false on success; true otherwise. -static bool translateMaskRegister(MCInst &mcInst, - uint8_t maskRegNum) { - if (maskRegNum >= 8) { - debug("Invalid mask register number"); - return true; - } - - mcInst.addOperand(MCOperand::createReg(X86::K0 + maskRegNum)); - return false; -} - -/// translateOperand - Translates an operand stored in an internal instruction -/// to LLVM's format and appends it to an MCInst. -/// -/// @param mcInst - The MCInst to append to. -/// @param operand - The operand, as stored in the descriptor table. -/// @param insn - The internal instruction. -/// @return - false on success; true otherwise. -static bool translateOperand(MCInst &mcInst, const OperandSpecifier &operand, - InternalInstruction &insn, - const MCDisassembler *Dis) { - switch (operand.encoding) { - default: - debug("Unhandled operand encoding during translation"); - return true; - case ENCODING_REG: - translateRegister(mcInst, insn.reg); - return false; - case ENCODING_WRITEMASK: - return translateMaskRegister(mcInst, insn.writemask); - CASE_ENCODING_RM: - CASE_ENCODING_VSIB: - return translateRM(mcInst, operand, insn, Dis); - case ENCODING_IB: - case ENCODING_IW: - case ENCODING_ID: - case ENCODING_IO: - case ENCODING_Iv: - case ENCODING_Ia: - translateImmediate(mcInst, - insn.immediates[insn.numImmediatesTranslated++], - operand, - insn, - Dis); - return false; - case ENCODING_IRC: - mcInst.addOperand(MCOperand::createImm(insn.RC)); - return false; - case ENCODING_SI: - return translateSrcIndex(mcInst, insn); - case ENCODING_DI: - return translateDstIndex(mcInst, insn); - case ENCODING_RB: - case ENCODING_RW: - case ENCODING_RD: - case ENCODING_RO: - case ENCODING_Rv: - translateRegister(mcInst, insn.opcodeRegister); - return false; - case ENCODING_CC: - mcInst.addOperand(MCOperand::createImm(insn.immediates[1])); - return false; - case ENCODING_FP: - translateFPRegister(mcInst, insn.modRM & 7); - return false; - case ENCODING_VVVV: - translateRegister(mcInst, insn.vvvv); - return false; - case ENCODING_DUP: - return translateOperand(mcInst, insn.operands[operand.type - TYPE_DUP0], - insn, Dis); - } -} - -/// translateInstruction - Translates an internal instruction and all its -/// operands to an MCInst. -/// -/// @param mcInst - The MCInst to populate with the instruction's data. -/// @param insn - The internal instruction. -/// @return - false on success; true otherwise. -static bool translateInstruction(MCInst &mcInst, - InternalInstruction &insn, - const MCDisassembler *Dis) { - if (!insn.spec) { - debug("Instruction has no specification"); - return true; - } - - mcInst.clear(); - mcInst.setOpcode(insn.instructionID); - // If when reading the prefix bytes we determined the overlapping 0xf2 or 0xf3 - // prefix bytes should be disassembled as xrelease and xacquire then set the - // opcode to those instead of the rep and repne opcodes. - if (insn.xAcquireRelease) { - if(mcInst.getOpcode() == X86::REP_PREFIX) - mcInst.setOpcode(X86::XRELEASE_PREFIX); - else if(mcInst.getOpcode() == X86::REPNE_PREFIX) - mcInst.setOpcode(X86::XACQUIRE_PREFIX); - } - - insn.numImmediatesTranslated = 0; - - for (const auto &Op : insn.operands) { - if (Op.encoding != ENCODING_NONE) { - if (translateOperand(mcInst, Op, insn, Dis)) { - return true; - } - } - } - - return false; -} - -static MCDisassembler *createX86Disassembler(const Target &T, - const MCSubtargetInfo &STI, - MCContext &Ctx) { - std::unique_ptr<const MCInstrInfo> MII(T.createMCInstrInfo()); - return new X86GenericDisassembler(STI, Ctx, std::move(MII)); -} - -extern "C" void LLVMInitializeX86Disassembler() { - // Register the disassembler. - TargetRegistry::RegisterMCDisassembler(getTheX86_32Target(), - createX86Disassembler); - TargetRegistry::RegisterMCDisassembler(getTheX86_64Target(), - createX86Disassembler); -} diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp deleted file mode 100644 index a241362a271d..000000000000 --- a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.cpp +++ /dev/null @@ -1,1937 +0,0 @@ -//===-- X86DisassemblerDecoder.cpp - Disassembler decoder -----------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file is part of the X86 Disassembler. -// It contains the implementation of the instruction decoder. -// Documentation for the disassembler can be found in X86Disassembler.h. -// -//===----------------------------------------------------------------------===// - -#include <cstdarg> /* for va_*() */ -#include <cstdio> /* for vsnprintf() */ -#include <cstdlib> /* for exit() */ -#include <cstring> /* for memset() */ - -#include "X86DisassemblerDecoder.h" - -using namespace llvm::X86Disassembler; - -/// Specifies whether a ModR/M byte is needed and (if so) which -/// instruction each possible value of the ModR/M byte corresponds to. Once -/// this information is known, we have narrowed down to a single instruction. -struct ModRMDecision { - uint8_t modrm_type; - uint16_t instructionIDs; -}; - -/// Specifies which set of ModR/M->instruction tables to look at -/// given a particular opcode. -struct OpcodeDecision { - ModRMDecision modRMDecisions[256]; -}; - -/// Specifies which opcode->instruction tables to look at given -/// a particular context (set of attributes). Since there are many possible -/// contexts, the decoder first uses CONTEXTS_SYM to determine which context -/// applies given a specific set of attributes. Hence there are only IC_max -/// entries in this table, rather than 2^(ATTR_max). -struct ContextDecision { - OpcodeDecision opcodeDecisions[IC_max]; -}; - -#include "X86GenDisassemblerTables.inc" - -#ifndef NDEBUG -#define debug(s) do { Debug(__FILE__, __LINE__, s); } while (0) -#else -#define debug(s) do { } while (0) -#endif - -/* - * contextForAttrs - Client for the instruction context table. Takes a set of - * attributes and returns the appropriate decode context. - * - * @param attrMask - Attributes, from the enumeration attributeBits. - * @return - The InstructionContext to use when looking up an - * an instruction with these attributes. - */ -static InstructionContext contextForAttrs(uint16_t attrMask) { - return static_cast<InstructionContext>(CONTEXTS_SYM[attrMask]); -} - -/* - * modRMRequired - Reads the appropriate instruction table to determine whether - * the ModR/M byte is required to decode a particular instruction. - * - * @param type - The opcode type (i.e., how many bytes it has). - * @param insnContext - The context for the instruction, as returned by - * contextForAttrs. - * @param opcode - The last byte of the instruction's opcode, not counting - * ModR/M extensions and escapes. - * @return - true if the ModR/M byte is required, false otherwise. - */ -static int modRMRequired(OpcodeType type, - InstructionContext insnContext, - uint16_t opcode) { - const struct ContextDecision* decision = nullptr; - - switch (type) { - case ONEBYTE: - decision = &ONEBYTE_SYM; - break; - case TWOBYTE: - decision = &TWOBYTE_SYM; - break; - case THREEBYTE_38: - decision = &THREEBYTE38_SYM; - break; - case THREEBYTE_3A: - decision = &THREEBYTE3A_SYM; - break; - case XOP8_MAP: - decision = &XOP8_MAP_SYM; - break; - case XOP9_MAP: - decision = &XOP9_MAP_SYM; - break; - case XOPA_MAP: - decision = &XOPA_MAP_SYM; - break; - case THREEDNOW_MAP: - decision = &THREEDNOW_MAP_SYM; - break; - } - - return decision->opcodeDecisions[insnContext].modRMDecisions[opcode]. - modrm_type != MODRM_ONEENTRY; -} - -/* - * decode - Reads the appropriate instruction table to obtain the unique ID of - * an instruction. - * - * @param type - See modRMRequired(). - * @param insnContext - See modRMRequired(). - * @param opcode - See modRMRequired(). - * @param modRM - The ModR/M byte if required, or any value if not. - * @return - The UID of the instruction, or 0 on failure. - */ -static InstrUID decode(OpcodeType type, - InstructionContext insnContext, - uint8_t opcode, - uint8_t modRM) { - const struct ModRMDecision* dec = nullptr; - - switch (type) { - case ONEBYTE: - dec = &ONEBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; - break; - case TWOBYTE: - dec = &TWOBYTE_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; - break; - case THREEBYTE_38: - dec = &THREEBYTE38_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; - break; - case THREEBYTE_3A: - dec = &THREEBYTE3A_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; - break; - case XOP8_MAP: - dec = &XOP8_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; - break; - case XOP9_MAP: - dec = &XOP9_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; - break; - case XOPA_MAP: - dec = &XOPA_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; - break; - case THREEDNOW_MAP: - dec = &THREEDNOW_MAP_SYM.opcodeDecisions[insnContext].modRMDecisions[opcode]; - break; - } - - switch (dec->modrm_type) { - default: - debug("Corrupt table! Unknown modrm_type"); - return 0; - case MODRM_ONEENTRY: - return modRMTable[dec->instructionIDs]; - case MODRM_SPLITRM: - if (modFromModRM(modRM) == 0x3) - return modRMTable[dec->instructionIDs+1]; - return modRMTable[dec->instructionIDs]; - case MODRM_SPLITREG: - if (modFromModRM(modRM) == 0x3) - return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)+8]; - return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)]; - case MODRM_SPLITMISC: - if (modFromModRM(modRM) == 0x3) - return modRMTable[dec->instructionIDs+(modRM & 0x3f)+8]; - return modRMTable[dec->instructionIDs+((modRM & 0x38) >> 3)]; - case MODRM_FULL: - return modRMTable[dec->instructionIDs+modRM]; - } -} - -/* - * specifierForUID - Given a UID, returns the name and operand specification for - * that instruction. - * - * @param uid - The unique ID for the instruction. This should be returned by - * decode(); specifierForUID will not check bounds. - * @return - A pointer to the specification for that instruction. - */ -static const struct InstructionSpecifier *specifierForUID(InstrUID uid) { - return &INSTRUCTIONS_SYM[uid]; -} - -/* - * consumeByte - Uses the reader function provided by the user to consume one - * byte from the instruction's memory and advance the cursor. - * - * @param insn - The instruction with the reader function to use. The cursor - * for this instruction is advanced. - * @param byte - A pointer to a pre-allocated memory buffer to be populated - * with the data read. - * @return - 0 if the read was successful; nonzero otherwise. - */ -static int consumeByte(struct InternalInstruction* insn, uint8_t* byte) { - int ret = insn->reader(insn->readerArg, byte, insn->readerCursor); - - if (!ret) - ++(insn->readerCursor); - - return ret; -} - -/* - * lookAtByte - Like consumeByte, but does not advance the cursor. - * - * @param insn - See consumeByte(). - * @param byte - See consumeByte(). - * @return - See consumeByte(). - */ -static int lookAtByte(struct InternalInstruction* insn, uint8_t* byte) { - return insn->reader(insn->readerArg, byte, insn->readerCursor); -} - -static void unconsumeByte(struct InternalInstruction* insn) { - insn->readerCursor--; -} - -#define CONSUME_FUNC(name, type) \ - static int name(struct InternalInstruction* insn, type* ptr) { \ - type combined = 0; \ - unsigned offset; \ - for (offset = 0; offset < sizeof(type); ++offset) { \ - uint8_t byte; \ - int ret = insn->reader(insn->readerArg, \ - &byte, \ - insn->readerCursor + offset); \ - if (ret) \ - return ret; \ - combined = combined | ((uint64_t)byte << (offset * 8)); \ - } \ - *ptr = combined; \ - insn->readerCursor += sizeof(type); \ - return 0; \ - } - -/* - * consume* - Use the reader function provided by the user to consume data - * values of various sizes from the instruction's memory and advance the - * cursor appropriately. These readers perform endian conversion. - * - * @param insn - See consumeByte(). - * @param ptr - A pointer to a pre-allocated memory of appropriate size to - * be populated with the data read. - * @return - See consumeByte(). - */ -CONSUME_FUNC(consumeInt8, int8_t) -CONSUME_FUNC(consumeInt16, int16_t) -CONSUME_FUNC(consumeInt32, int32_t) -CONSUME_FUNC(consumeUInt16, uint16_t) -CONSUME_FUNC(consumeUInt32, uint32_t) -CONSUME_FUNC(consumeUInt64, uint64_t) - -/* - * dbgprintf - Uses the logging function provided by the user to log a single - * message, typically without a carriage-return. - * - * @param insn - The instruction containing the logging function. - * @param format - See printf(). - * @param ... - See printf(). - */ -static void dbgprintf(struct InternalInstruction* insn, - const char* format, - ...) { - char buffer[256]; - va_list ap; - - if (!insn->dlog) - return; - - va_start(ap, format); - (void)vsnprintf(buffer, sizeof(buffer), format, ap); - va_end(ap); - - insn->dlog(insn->dlogArg, buffer); -} - -static bool isREX(struct InternalInstruction *insn, uint8_t prefix) { - if (insn->mode == MODE_64BIT) - return prefix >= 0x40 && prefix <= 0x4f; - return false; -} - -/* - * setPrefixPresent - Marks that a particular prefix is present as mandatory - * - * @param insn - The instruction to be marked as having the prefix. - * @param prefix - The prefix that is present. - */ -static void setPrefixPresent(struct InternalInstruction *insn, uint8_t prefix) { - uint8_t nextByte; - switch (prefix) { - case 0xf0: - insn->hasLockPrefix = true; - break; - case 0xf2: - case 0xf3: - if (lookAtByte(insn, &nextByte)) - break; - // TODO: - // 1. There could be several 0x66 - // 2. if (nextByte == 0x66) and nextNextByte != 0x0f then - // it's not mandatory prefix - // 3. if (nextByte >= 0x40 && nextByte <= 0x4f) it's REX and we need - // 0x0f exactly after it to be mandatory prefix - if (isREX(insn, nextByte) || nextByte == 0x0f || nextByte == 0x66) - // The last of 0xf2 /0xf3 is mandatory prefix - insn->mandatoryPrefix = prefix; - insn->repeatPrefix = prefix; - break; - case 0x66: - if (lookAtByte(insn, &nextByte)) - break; - // 0x66 can't overwrite existing mandatory prefix and should be ignored - if (!insn->mandatoryPrefix && (nextByte == 0x0f || isREX(insn, nextByte))) - insn->mandatoryPrefix = prefix; - break; - } -} - -/* - * readPrefixes - Consumes all of an instruction's prefix bytes, and marks the - * instruction as having them. Also sets the instruction's default operand, - * address, and other relevant data sizes to report operands correctly. - * - * @param insn - The instruction whose prefixes are to be read. - * @return - 0 if the instruction could be read until the end of the prefix - * bytes, and no prefixes conflicted; nonzero otherwise. - */ -static int readPrefixes(struct InternalInstruction* insn) { - bool isPrefix = true; - uint8_t byte = 0; - uint8_t nextByte; - - dbgprintf(insn, "readPrefixes()"); - - while (isPrefix) { - /* If we fail reading prefixes, just stop here and let the opcode reader deal with it */ - if (consumeByte(insn, &byte)) - break; - - /* - * If the byte is a LOCK/REP/REPNE prefix and not a part of the opcode, then - * break and let it be disassembled as a normal "instruction". - */ - if (insn->readerCursor - 1 == insn->startLocation && byte == 0xf0) // LOCK - break; - - if ((byte == 0xf2 || byte == 0xf3) && !lookAtByte(insn, &nextByte)) { - /* - * If the byte is 0xf2 or 0xf3, and any of the following conditions are - * met: - * - it is followed by a LOCK (0xf0) prefix - * - it is followed by an xchg instruction - * then it should be disassembled as a xacquire/xrelease not repne/rep. - */ - if (((nextByte == 0xf0) || - ((nextByte & 0xfe) == 0x86 || (nextByte & 0xf8) == 0x90))) { - insn->xAcquireRelease = true; - if (!(byte == 0xf3 && nextByte == 0x90)) // PAUSE instruction support - break; - } - /* - * Also if the byte is 0xf3, and the following condition is met: - * - it is followed by a "mov mem, reg" (opcode 0x88/0x89) or - * "mov mem, imm" (opcode 0xc6/0xc7) instructions. - * then it should be disassembled as an xrelease not rep. - */ - if (byte == 0xf3 && (nextByte == 0x88 || nextByte == 0x89 || - nextByte == 0xc6 || nextByte == 0xc7)) { - insn->xAcquireRelease = true; - break; - } - if (isREX(insn, nextByte)) { - uint8_t nnextByte; - // Go to REX prefix after the current one - if (consumeByte(insn, &nnextByte)) - return -1; - // We should be able to read next byte after REX prefix - if (lookAtByte(insn, &nnextByte)) - return -1; - unconsumeByte(insn); - } - } - - switch (byte) { - case 0xf0: /* LOCK */ - case 0xf2: /* REPNE/REPNZ */ - case 0xf3: /* REP or REPE/REPZ */ - setPrefixPresent(insn, byte); - break; - case 0x2e: /* CS segment override -OR- Branch not taken */ - case 0x36: /* SS segment override -OR- Branch taken */ - case 0x3e: /* DS segment override */ - case 0x26: /* ES segment override */ - case 0x64: /* FS segment override */ - case 0x65: /* GS segment override */ - switch (byte) { - case 0x2e: - insn->segmentOverride = SEG_OVERRIDE_CS; - break; - case 0x36: - insn->segmentOverride = SEG_OVERRIDE_SS; - break; - case 0x3e: - insn->segmentOverride = SEG_OVERRIDE_DS; - break; - case 0x26: - insn->segmentOverride = SEG_OVERRIDE_ES; - break; - case 0x64: - insn->segmentOverride = SEG_OVERRIDE_FS; - break; - case 0x65: - insn->segmentOverride = SEG_OVERRIDE_GS; - break; - default: - debug("Unhandled override"); - return -1; - } - setPrefixPresent(insn, byte); - break; - case 0x66: /* Operand-size override */ - insn->hasOpSize = true; - setPrefixPresent(insn, byte); - break; - case 0x67: /* Address-size override */ - insn->hasAdSize = true; - setPrefixPresent(insn, byte); - break; - default: /* Not a prefix byte */ - isPrefix = false; - break; - } - - if (isPrefix) - dbgprintf(insn, "Found prefix 0x%hhx", byte); - } - - insn->vectorExtensionType = TYPE_NO_VEX_XOP; - - if (byte == 0x62) { - uint8_t byte1, byte2; - - if (consumeByte(insn, &byte1)) { - dbgprintf(insn, "Couldn't read second byte of EVEX prefix"); - return -1; - } - - if (lookAtByte(insn, &byte2)) { - dbgprintf(insn, "Couldn't read third byte of EVEX prefix"); - return -1; - } - - if ((insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) && - ((~byte1 & 0xc) == 0xc) && ((byte2 & 0x4) == 0x4)) { - insn->vectorExtensionType = TYPE_EVEX; - } else { - unconsumeByte(insn); /* unconsume byte1 */ - unconsumeByte(insn); /* unconsume byte */ - } - - if (insn->vectorExtensionType == TYPE_EVEX) { - insn->vectorExtensionPrefix[0] = byte; - insn->vectorExtensionPrefix[1] = byte1; - if (consumeByte(insn, &insn->vectorExtensionPrefix[2])) { - dbgprintf(insn, "Couldn't read third byte of EVEX prefix"); - return -1; - } - if (consumeByte(insn, &insn->vectorExtensionPrefix[3])) { - dbgprintf(insn, "Couldn't read fourth byte of EVEX prefix"); - return -1; - } - - /* We simulate the REX prefix for simplicity's sake */ - if (insn->mode == MODE_64BIT) { - insn->rexPrefix = 0x40 - | (wFromEVEX3of4(insn->vectorExtensionPrefix[2]) << 3) - | (rFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 2) - | (xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 1) - | (bFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 0); - } - - dbgprintf(insn, "Found EVEX prefix 0x%hhx 0x%hhx 0x%hhx 0x%hhx", - insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], - insn->vectorExtensionPrefix[2], insn->vectorExtensionPrefix[3]); - } - } else if (byte == 0xc4) { - uint8_t byte1; - - if (lookAtByte(insn, &byte1)) { - dbgprintf(insn, "Couldn't read second byte of VEX"); - return -1; - } - - if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) - insn->vectorExtensionType = TYPE_VEX_3B; - else - unconsumeByte(insn); - - if (insn->vectorExtensionType == TYPE_VEX_3B) { - insn->vectorExtensionPrefix[0] = byte; - consumeByte(insn, &insn->vectorExtensionPrefix[1]); - consumeByte(insn, &insn->vectorExtensionPrefix[2]); - - /* We simulate the REX prefix for simplicity's sake */ - - if (insn->mode == MODE_64BIT) - insn->rexPrefix = 0x40 - | (wFromVEX3of3(insn->vectorExtensionPrefix[2]) << 3) - | (rFromVEX2of3(insn->vectorExtensionPrefix[1]) << 2) - | (xFromVEX2of3(insn->vectorExtensionPrefix[1]) << 1) - | (bFromVEX2of3(insn->vectorExtensionPrefix[1]) << 0); - - dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx 0x%hhx", - insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], - insn->vectorExtensionPrefix[2]); - } - } else if (byte == 0xc5) { - uint8_t byte1; - - if (lookAtByte(insn, &byte1)) { - dbgprintf(insn, "Couldn't read second byte of VEX"); - return -1; - } - - if (insn->mode == MODE_64BIT || (byte1 & 0xc0) == 0xc0) - insn->vectorExtensionType = TYPE_VEX_2B; - else - unconsumeByte(insn); - - if (insn->vectorExtensionType == TYPE_VEX_2B) { - insn->vectorExtensionPrefix[0] = byte; - consumeByte(insn, &insn->vectorExtensionPrefix[1]); - - if (insn->mode == MODE_64BIT) - insn->rexPrefix = 0x40 - | (rFromVEX2of2(insn->vectorExtensionPrefix[1]) << 2); - - switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { - default: - break; - case VEX_PREFIX_66: - insn->hasOpSize = true; - break; - } - - dbgprintf(insn, "Found VEX prefix 0x%hhx 0x%hhx", - insn->vectorExtensionPrefix[0], - insn->vectorExtensionPrefix[1]); - } - } else if (byte == 0x8f) { - uint8_t byte1; - - if (lookAtByte(insn, &byte1)) { - dbgprintf(insn, "Couldn't read second byte of XOP"); - return -1; - } - - if ((byte1 & 0x38) != 0x0) /* 0 in these 3 bits is a POP instruction. */ - insn->vectorExtensionType = TYPE_XOP; - else - unconsumeByte(insn); - - if (insn->vectorExtensionType == TYPE_XOP) { - insn->vectorExtensionPrefix[0] = byte; - consumeByte(insn, &insn->vectorExtensionPrefix[1]); - consumeByte(insn, &insn->vectorExtensionPrefix[2]); - - /* We simulate the REX prefix for simplicity's sake */ - - if (insn->mode == MODE_64BIT) - insn->rexPrefix = 0x40 - | (wFromXOP3of3(insn->vectorExtensionPrefix[2]) << 3) - | (rFromXOP2of3(insn->vectorExtensionPrefix[1]) << 2) - | (xFromXOP2of3(insn->vectorExtensionPrefix[1]) << 1) - | (bFromXOP2of3(insn->vectorExtensionPrefix[1]) << 0); - - switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { - default: - break; - case VEX_PREFIX_66: - insn->hasOpSize = true; - break; - } - - dbgprintf(insn, "Found XOP prefix 0x%hhx 0x%hhx 0x%hhx", - insn->vectorExtensionPrefix[0], insn->vectorExtensionPrefix[1], - insn->vectorExtensionPrefix[2]); - } - } else if (isREX(insn, byte)) { - if (lookAtByte(insn, &nextByte)) - return -1; - insn->rexPrefix = byte; - dbgprintf(insn, "Found REX prefix 0x%hhx", byte); - } else - unconsumeByte(insn); - - if (insn->mode == MODE_16BIT) { - insn->registerSize = (insn->hasOpSize ? 4 : 2); - insn->addressSize = (insn->hasAdSize ? 4 : 2); - insn->displacementSize = (insn->hasAdSize ? 4 : 2); - insn->immediateSize = (insn->hasOpSize ? 4 : 2); - } else if (insn->mode == MODE_32BIT) { - insn->registerSize = (insn->hasOpSize ? 2 : 4); - insn->addressSize = (insn->hasAdSize ? 2 : 4); - insn->displacementSize = (insn->hasAdSize ? 2 : 4); - insn->immediateSize = (insn->hasOpSize ? 2 : 4); - } else if (insn->mode == MODE_64BIT) { - if (insn->rexPrefix && wFromREX(insn->rexPrefix)) { - insn->registerSize = 8; - insn->addressSize = (insn->hasAdSize ? 4 : 8); - insn->displacementSize = 4; - insn->immediateSize = 4; - } else { - insn->registerSize = (insn->hasOpSize ? 2 : 4); - insn->addressSize = (insn->hasAdSize ? 4 : 8); - insn->displacementSize = (insn->hasOpSize ? 2 : 4); - insn->immediateSize = (insn->hasOpSize ? 2 : 4); - } - } - - return 0; -} - -static int readModRM(struct InternalInstruction* insn); - -/* - * readOpcode - Reads the opcode (excepting the ModR/M byte in the case of - * extended or escape opcodes). - * - * @param insn - The instruction whose opcode is to be read. - * @return - 0 if the opcode could be read successfully; nonzero otherwise. - */ -static int readOpcode(struct InternalInstruction* insn) { - /* Determine the length of the primary opcode */ - - uint8_t current; - - dbgprintf(insn, "readOpcode()"); - - insn->opcodeType = ONEBYTE; - - if (insn->vectorExtensionType == TYPE_EVEX) { - switch (mmFromEVEX2of4(insn->vectorExtensionPrefix[1])) { - default: - dbgprintf(insn, "Unhandled mm field for instruction (0x%hhx)", - mmFromEVEX2of4(insn->vectorExtensionPrefix[1])); - return -1; - case VEX_LOB_0F: - insn->opcodeType = TWOBYTE; - return consumeByte(insn, &insn->opcode); - case VEX_LOB_0F38: - insn->opcodeType = THREEBYTE_38; - return consumeByte(insn, &insn->opcode); - case VEX_LOB_0F3A: - insn->opcodeType = THREEBYTE_3A; - return consumeByte(insn, &insn->opcode); - } - } else if (insn->vectorExtensionType == TYPE_VEX_3B) { - switch (mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])) { - default: - dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", - mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])); - return -1; - case VEX_LOB_0F: - insn->opcodeType = TWOBYTE; - return consumeByte(insn, &insn->opcode); - case VEX_LOB_0F38: - insn->opcodeType = THREEBYTE_38; - return consumeByte(insn, &insn->opcode); - case VEX_LOB_0F3A: - insn->opcodeType = THREEBYTE_3A; - return consumeByte(insn, &insn->opcode); - } - } else if (insn->vectorExtensionType == TYPE_VEX_2B) { - insn->opcodeType = TWOBYTE; - return consumeByte(insn, &insn->opcode); - } else if (insn->vectorExtensionType == TYPE_XOP) { - switch (mmmmmFromXOP2of3(insn->vectorExtensionPrefix[1])) { - default: - dbgprintf(insn, "Unhandled m-mmmm field for instruction (0x%hhx)", - mmmmmFromVEX2of3(insn->vectorExtensionPrefix[1])); - return -1; - case XOP_MAP_SELECT_8: - insn->opcodeType = XOP8_MAP; - return consumeByte(insn, &insn->opcode); - case XOP_MAP_SELECT_9: - insn->opcodeType = XOP9_MAP; - return consumeByte(insn, &insn->opcode); - case XOP_MAP_SELECT_A: - insn->opcodeType = XOPA_MAP; - return consumeByte(insn, &insn->opcode); - } - } - - if (consumeByte(insn, ¤t)) - return -1; - - if (current == 0x0f) { - dbgprintf(insn, "Found a two-byte escape prefix (0x%hhx)", current); - - if (consumeByte(insn, ¤t)) - return -1; - - if (current == 0x38) { - dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); - - if (consumeByte(insn, ¤t)) - return -1; - - insn->opcodeType = THREEBYTE_38; - } else if (current == 0x3a) { - dbgprintf(insn, "Found a three-byte escape prefix (0x%hhx)", current); - - if (consumeByte(insn, ¤t)) - return -1; - - insn->opcodeType = THREEBYTE_3A; - } else if (current == 0x0f) { - dbgprintf(insn, "Found a 3dnow escape prefix (0x%hhx)", current); - - // Consume operands before the opcode to comply with the 3DNow encoding - if (readModRM(insn)) - return -1; - - if (consumeByte(insn, ¤t)) - return -1; - - insn->opcodeType = THREEDNOW_MAP; - } else { - dbgprintf(insn, "Didn't find a three-byte escape prefix"); - - insn->opcodeType = TWOBYTE; - } - } else if (insn->mandatoryPrefix) - // The opcode with mandatory prefix must start with opcode escape. - // If not it's legacy repeat prefix - insn->mandatoryPrefix = 0; - - /* - * At this point we have consumed the full opcode. - * Anything we consume from here on must be unconsumed. - */ - - insn->opcode = current; - - return 0; -} - -/* - * getIDWithAttrMask - Determines the ID of an instruction, consuming - * the ModR/M byte as appropriate for extended and escape opcodes, - * and using a supplied attribute mask. - * - * @param instructionID - A pointer whose target is filled in with the ID of the - * instruction. - * @param insn - The instruction whose ID is to be determined. - * @param attrMask - The attribute mask to search. - * @return - 0 if the ModR/M could be read when needed or was not - * needed; nonzero otherwise. - */ -static int getIDWithAttrMask(uint16_t* instructionID, - struct InternalInstruction* insn, - uint16_t attrMask) { - bool hasModRMExtension; - - InstructionContext instructionClass = contextForAttrs(attrMask); - - hasModRMExtension = modRMRequired(insn->opcodeType, - instructionClass, - insn->opcode); - - if (hasModRMExtension) { - if (readModRM(insn)) - return -1; - - *instructionID = decode(insn->opcodeType, - instructionClass, - insn->opcode, - insn->modRM); - } else { - *instructionID = decode(insn->opcodeType, - instructionClass, - insn->opcode, - 0); - } - - return 0; -} - -/* - * is16BitEquivalent - Determines whether two instruction names refer to - * equivalent instructions but one is 16-bit whereas the other is not. - * - * @param orig - The instruction that is not 16-bit - * @param equiv - The instruction that is 16-bit - */ -static bool is16BitEquivalent(const char *orig, const char *equiv) { - off_t i; - - for (i = 0;; i++) { - if (orig[i] == '\0' && equiv[i] == '\0') - return true; - if (orig[i] == '\0' || equiv[i] == '\0') - return false; - if (orig[i] != equiv[i]) { - if ((orig[i] == 'Q' || orig[i] == 'L') && equiv[i] == 'W') - continue; - if ((orig[i] == '6' || orig[i] == '3') && equiv[i] == '1') - continue; - if ((orig[i] == '4' || orig[i] == '2') && equiv[i] == '6') - continue; - return false; - } - } -} - -/* - * is64Bit - Determines whether this instruction is a 64-bit instruction. - * - * @param name - The instruction that is not 16-bit - */ -static bool is64Bit(const char *name) { - off_t i; - - for (i = 0;; ++i) { - if (name[i] == '\0') - return false; - if (name[i] == '6' && name[i+1] == '4') - return true; - } -} - -/* - * getID - Determines the ID of an instruction, consuming the ModR/M byte as - * appropriate for extended and escape opcodes. Determines the attributes and - * context for the instruction before doing so. - * - * @param insn - The instruction whose ID is to be determined. - * @return - 0 if the ModR/M could be read when needed or was not needed; - * nonzero otherwise. - */ -static int getID(struct InternalInstruction* insn, const void *miiArg) { - uint16_t attrMask; - uint16_t instructionID; - - dbgprintf(insn, "getID()"); - - attrMask = ATTR_NONE; - - if (insn->mode == MODE_64BIT) - attrMask |= ATTR_64BIT; - - if (insn->vectorExtensionType != TYPE_NO_VEX_XOP) { - attrMask |= (insn->vectorExtensionType == TYPE_EVEX) ? ATTR_EVEX : ATTR_VEX; - - if (insn->vectorExtensionType == TYPE_EVEX) { - switch (ppFromEVEX3of4(insn->vectorExtensionPrefix[2])) { - case VEX_PREFIX_66: - attrMask |= ATTR_OPSIZE; - break; - case VEX_PREFIX_F3: - attrMask |= ATTR_XS; - break; - case VEX_PREFIX_F2: - attrMask |= ATTR_XD; - break; - } - - if (zFromEVEX4of4(insn->vectorExtensionPrefix[3])) - attrMask |= ATTR_EVEXKZ; - if (bFromEVEX4of4(insn->vectorExtensionPrefix[3])) - attrMask |= ATTR_EVEXB; - if (aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])) - attrMask |= ATTR_EVEXK; - if (lFromEVEX4of4(insn->vectorExtensionPrefix[3])) - attrMask |= ATTR_VEXL; - if (l2FromEVEX4of4(insn->vectorExtensionPrefix[3])) - attrMask |= ATTR_EVEXL2; - } else if (insn->vectorExtensionType == TYPE_VEX_3B) { - switch (ppFromVEX3of3(insn->vectorExtensionPrefix[2])) { - case VEX_PREFIX_66: - attrMask |= ATTR_OPSIZE; - break; - case VEX_PREFIX_F3: - attrMask |= ATTR_XS; - break; - case VEX_PREFIX_F2: - attrMask |= ATTR_XD; - break; - } - - if (lFromVEX3of3(insn->vectorExtensionPrefix[2])) - attrMask |= ATTR_VEXL; - } else if (insn->vectorExtensionType == TYPE_VEX_2B) { - switch (ppFromVEX2of2(insn->vectorExtensionPrefix[1])) { - case VEX_PREFIX_66: - attrMask |= ATTR_OPSIZE; - break; - case VEX_PREFIX_F3: - attrMask |= ATTR_XS; - break; - case VEX_PREFIX_F2: - attrMask |= ATTR_XD; - break; - } - - if (lFromVEX2of2(insn->vectorExtensionPrefix[1])) - attrMask |= ATTR_VEXL; - } else if (insn->vectorExtensionType == TYPE_XOP) { - switch (ppFromXOP3of3(insn->vectorExtensionPrefix[2])) { - case VEX_PREFIX_66: - attrMask |= ATTR_OPSIZE; - break; - case VEX_PREFIX_F3: - attrMask |= ATTR_XS; - break; - case VEX_PREFIX_F2: - attrMask |= ATTR_XD; - break; - } - - if (lFromXOP3of3(insn->vectorExtensionPrefix[2])) - attrMask |= ATTR_VEXL; - } else { - return -1; - } - } else if (!insn->mandatoryPrefix) { - // If we don't have mandatory prefix we should use legacy prefixes here - if (insn->hasOpSize && (insn->mode != MODE_16BIT)) - attrMask |= ATTR_OPSIZE; - if (insn->hasAdSize) - attrMask |= ATTR_ADSIZE; - if (insn->opcodeType == ONEBYTE) { - if (insn->repeatPrefix == 0xf3 && (insn->opcode == 0x90)) - // Special support for PAUSE - attrMask |= ATTR_XS; - } else { - if (insn->repeatPrefix == 0xf2) - attrMask |= ATTR_XD; - else if (insn->repeatPrefix == 0xf3) - attrMask |= ATTR_XS; - } - } else { - switch (insn->mandatoryPrefix) { - case 0xf2: - attrMask |= ATTR_XD; - break; - case 0xf3: - attrMask |= ATTR_XS; - break; - case 0x66: - if (insn->mode != MODE_16BIT) - attrMask |= ATTR_OPSIZE; - break; - case 0x67: - attrMask |= ATTR_ADSIZE; - break; - } - - } - - if (insn->rexPrefix & 0x08) { - attrMask |= ATTR_REXW; - attrMask &= ~ATTR_ADSIZE; - } - - /* - * JCXZ/JECXZ need special handling for 16-bit mode because the meaning - * of the AdSize prefix is inverted w.r.t. 32-bit mode. - */ - if (insn->mode == MODE_16BIT && insn->opcodeType == ONEBYTE && - insn->opcode == 0xE3) - attrMask ^= ATTR_ADSIZE; - - // If we're in 16-bit mode and this is one of the relative jumps and opsize - // prefix isn't present, we need to force the opsize attribute since the - // prefix is inverted relative to 32-bit mode. - if (insn->mode == MODE_16BIT && !insn->hasOpSize && - insn->opcodeType == ONEBYTE && - (insn->opcode == 0xE8 || insn->opcode == 0xE9)) - attrMask |= ATTR_OPSIZE; - - if (insn->mode == MODE_16BIT && !insn->hasOpSize && - insn->opcodeType == TWOBYTE && - insn->opcode >= 0x80 && insn->opcode <= 0x8F) - attrMask |= ATTR_OPSIZE; - - if (getIDWithAttrMask(&instructionID, insn, attrMask)) - return -1; - - /* The following clauses compensate for limitations of the tables. */ - - if (insn->mode != MODE_64BIT && - insn->vectorExtensionType != TYPE_NO_VEX_XOP) { - /* - * The tables can't distinquish between cases where the W-bit is used to - * select register size and cases where its a required part of the opcode. - */ - if ((insn->vectorExtensionType == TYPE_EVEX && - wFromEVEX3of4(insn->vectorExtensionPrefix[2])) || - (insn->vectorExtensionType == TYPE_VEX_3B && - wFromVEX3of3(insn->vectorExtensionPrefix[2])) || - (insn->vectorExtensionType == TYPE_XOP && - wFromXOP3of3(insn->vectorExtensionPrefix[2]))) { - - uint16_t instructionIDWithREXW; - if (getIDWithAttrMask(&instructionIDWithREXW, - insn, attrMask | ATTR_REXW)) { - insn->instructionID = instructionID; - insn->spec = specifierForUID(instructionID); - return 0; - } - - auto SpecName = GetInstrName(instructionIDWithREXW, miiArg); - // If not a 64-bit instruction. Switch the opcode. - if (!is64Bit(SpecName.data())) { - insn->instructionID = instructionIDWithREXW; - insn->spec = specifierForUID(instructionIDWithREXW); - return 0; - } - } - } - - /* - * Absolute moves, umonitor, and movdir64b need special handling. - * -For 16-bit mode because the meaning of the AdSize and OpSize prefixes are - * inverted w.r.t. - * -For 32-bit mode we need to ensure the ADSIZE prefix is observed in - * any position. - */ - if ((insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) || - (insn->opcodeType == TWOBYTE && (insn->opcode == 0xAE)) || - (insn->opcodeType == THREEBYTE_38 && insn->opcode == 0xF8)) { - /* Make sure we observed the prefixes in any position. */ - if (insn->hasAdSize) - attrMask |= ATTR_ADSIZE; - if (insn->hasOpSize) - attrMask |= ATTR_OPSIZE; - - /* In 16-bit, invert the attributes. */ - if (insn->mode == MODE_16BIT) { - attrMask ^= ATTR_ADSIZE; - - /* The OpSize attribute is only valid with the absolute moves. */ - if (insn->opcodeType == ONEBYTE && ((insn->opcode & 0xFC) == 0xA0)) - attrMask ^= ATTR_OPSIZE; - } - - if (getIDWithAttrMask(&instructionID, insn, attrMask)) - return -1; - - insn->instructionID = instructionID; - insn->spec = specifierForUID(instructionID); - return 0; - } - - if ((insn->mode == MODE_16BIT || insn->hasOpSize) && - !(attrMask & ATTR_OPSIZE)) { - /* - * The instruction tables make no distinction between instructions that - * allow OpSize anywhere (i.e., 16-bit operations) and that need it in a - * particular spot (i.e., many MMX operations). In general we're - * conservative, but in the specific case where OpSize is present but not - * in the right place we check if there's a 16-bit operation. - */ - - const struct InstructionSpecifier *spec; - uint16_t instructionIDWithOpsize; - llvm::StringRef specName, specWithOpSizeName; - - spec = specifierForUID(instructionID); - - if (getIDWithAttrMask(&instructionIDWithOpsize, - insn, - attrMask | ATTR_OPSIZE)) { - /* - * ModRM required with OpSize but not present; give up and return version - * without OpSize set - */ - - insn->instructionID = instructionID; - insn->spec = spec; - return 0; - } - - specName = GetInstrName(instructionID, miiArg); - specWithOpSizeName = GetInstrName(instructionIDWithOpsize, miiArg); - - if (is16BitEquivalent(specName.data(), specWithOpSizeName.data()) && - (insn->mode == MODE_16BIT) ^ insn->hasOpSize) { - insn->instructionID = instructionIDWithOpsize; - insn->spec = specifierForUID(instructionIDWithOpsize); - } else { - insn->instructionID = instructionID; - insn->spec = spec; - } - return 0; - } - - if (insn->opcodeType == ONEBYTE && insn->opcode == 0x90 && - insn->rexPrefix & 0x01) { - /* - * NOOP shouldn't decode as NOOP if REX.b is set. Instead - * it should decode as XCHG %r8, %eax. - */ - - const struct InstructionSpecifier *spec; - uint16_t instructionIDWithNewOpcode; - const struct InstructionSpecifier *specWithNewOpcode; - - spec = specifierForUID(instructionID); - - /* Borrow opcode from one of the other XCHGar opcodes */ - insn->opcode = 0x91; - - if (getIDWithAttrMask(&instructionIDWithNewOpcode, - insn, - attrMask)) { - insn->opcode = 0x90; - - insn->instructionID = instructionID; - insn->spec = spec; - return 0; - } - - specWithNewOpcode = specifierForUID(instructionIDWithNewOpcode); - - /* Change back */ - insn->opcode = 0x90; - - insn->instructionID = instructionIDWithNewOpcode; - insn->spec = specWithNewOpcode; - - return 0; - } - - insn->instructionID = instructionID; - insn->spec = specifierForUID(insn->instructionID); - - return 0; -} - -/* - * readSIB - Consumes the SIB byte to determine addressing information for an - * instruction. - * - * @param insn - The instruction whose SIB byte is to be read. - * @return - 0 if the SIB byte was successfully read; nonzero otherwise. - */ -static int readSIB(struct InternalInstruction* insn) { - SIBBase sibBaseBase = SIB_BASE_NONE; - uint8_t index, base; - - dbgprintf(insn, "readSIB()"); - - if (insn->consumedSIB) - return 0; - - insn->consumedSIB = true; - - switch (insn->addressSize) { - case 2: - dbgprintf(insn, "SIB-based addressing doesn't work in 16-bit mode"); - return -1; - case 4: - insn->sibIndexBase = SIB_INDEX_EAX; - sibBaseBase = SIB_BASE_EAX; - break; - case 8: - insn->sibIndexBase = SIB_INDEX_RAX; - sibBaseBase = SIB_BASE_RAX; - break; - } - - if (consumeByte(insn, &insn->sib)) - return -1; - - index = indexFromSIB(insn->sib) | (xFromREX(insn->rexPrefix) << 3); - - if (index == 0x4) { - insn->sibIndex = SIB_INDEX_NONE; - } else { - insn->sibIndex = (SIBIndex)(insn->sibIndexBase + index); - } - - insn->sibScale = 1 << scaleFromSIB(insn->sib); - - base = baseFromSIB(insn->sib) | (bFromREX(insn->rexPrefix) << 3); - - switch (base) { - case 0x5: - case 0xd: - switch (modFromModRM(insn->modRM)) { - case 0x0: - insn->eaDisplacement = EA_DISP_32; - insn->sibBase = SIB_BASE_NONE; - break; - case 0x1: - insn->eaDisplacement = EA_DISP_8; - insn->sibBase = (SIBBase)(sibBaseBase + base); - break; - case 0x2: - insn->eaDisplacement = EA_DISP_32; - insn->sibBase = (SIBBase)(sibBaseBase + base); - break; - case 0x3: - debug("Cannot have Mod = 0b11 and a SIB byte"); - return -1; - } - break; - default: - insn->sibBase = (SIBBase)(sibBaseBase + base); - break; - } - - return 0; -} - -/* - * readDisplacement - Consumes the displacement of an instruction. - * - * @param insn - The instruction whose displacement is to be read. - * @return - 0 if the displacement byte was successfully read; nonzero - * otherwise. - */ -static int readDisplacement(struct InternalInstruction* insn) { - int8_t d8; - int16_t d16; - int32_t d32; - - dbgprintf(insn, "readDisplacement()"); - - if (insn->consumedDisplacement) - return 0; - - insn->consumedDisplacement = true; - insn->displacementOffset = insn->readerCursor - insn->startLocation; - - switch (insn->eaDisplacement) { - case EA_DISP_NONE: - insn->consumedDisplacement = false; - break; - case EA_DISP_8: - if (consumeInt8(insn, &d8)) - return -1; - insn->displacement = d8; - break; - case EA_DISP_16: - if (consumeInt16(insn, &d16)) - return -1; - insn->displacement = d16; - break; - case EA_DISP_32: - if (consumeInt32(insn, &d32)) - return -1; - insn->displacement = d32; - break; - } - - insn->consumedDisplacement = true; - return 0; -} - -/* - * readModRM - Consumes all addressing information (ModR/M byte, SIB byte, and - * displacement) for an instruction and interprets it. - * - * @param insn - The instruction whose addressing information is to be read. - * @return - 0 if the information was successfully read; nonzero otherwise. - */ -static int readModRM(struct InternalInstruction* insn) { - uint8_t mod, rm, reg, evexrm; - - dbgprintf(insn, "readModRM()"); - - if (insn->consumedModRM) - return 0; - - if (consumeByte(insn, &insn->modRM)) - return -1; - insn->consumedModRM = true; - - mod = modFromModRM(insn->modRM); - rm = rmFromModRM(insn->modRM); - reg = regFromModRM(insn->modRM); - - /* - * This goes by insn->registerSize to pick the correct register, which messes - * up if we're using (say) XMM or 8-bit register operands. That gets fixed in - * fixupReg(). - */ - switch (insn->registerSize) { - case 2: - insn->regBase = MODRM_REG_AX; - insn->eaRegBase = EA_REG_AX; - break; - case 4: - insn->regBase = MODRM_REG_EAX; - insn->eaRegBase = EA_REG_EAX; - break; - case 8: - insn->regBase = MODRM_REG_RAX; - insn->eaRegBase = EA_REG_RAX; - break; - } - - reg |= rFromREX(insn->rexPrefix) << 3; - rm |= bFromREX(insn->rexPrefix) << 3; - - evexrm = 0; - if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT) { - reg |= r2FromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; - evexrm = xFromEVEX2of4(insn->vectorExtensionPrefix[1]) << 4; - } - - insn->reg = (Reg)(insn->regBase + reg); - - switch (insn->addressSize) { - case 2: { - EABase eaBaseBase = EA_BASE_BX_SI; - - switch (mod) { - case 0x0: - if (rm == 0x6) { - insn->eaBase = EA_BASE_NONE; - insn->eaDisplacement = EA_DISP_16; - if (readDisplacement(insn)) - return -1; - } else { - insn->eaBase = (EABase)(eaBaseBase + rm); - insn->eaDisplacement = EA_DISP_NONE; - } - break; - case 0x1: - insn->eaBase = (EABase)(eaBaseBase + rm); - insn->eaDisplacement = EA_DISP_8; - insn->displacementSize = 1; - if (readDisplacement(insn)) - return -1; - break; - case 0x2: - insn->eaBase = (EABase)(eaBaseBase + rm); - insn->eaDisplacement = EA_DISP_16; - if (readDisplacement(insn)) - return -1; - break; - case 0x3: - insn->eaBase = (EABase)(insn->eaRegBase + rm); - if (readDisplacement(insn)) - return -1; - break; - } - break; - } - case 4: - case 8: { - EABase eaBaseBase = (insn->addressSize == 4 ? EA_BASE_EAX : EA_BASE_RAX); - - switch (mod) { - case 0x0: - insn->eaDisplacement = EA_DISP_NONE; /* readSIB may override this */ - // In determining whether RIP-relative mode is used (rm=5), - // or whether a SIB byte is present (rm=4), - // the extension bits (REX.b and EVEX.x) are ignored. - switch (rm & 7) { - case 0x4: // SIB byte is present - insn->eaBase = (insn->addressSize == 4 ? - EA_BASE_sib : EA_BASE_sib64); - if (readSIB(insn) || readDisplacement(insn)) - return -1; - break; - case 0x5: // RIP-relative - insn->eaBase = EA_BASE_NONE; - insn->eaDisplacement = EA_DISP_32; - if (readDisplacement(insn)) - return -1; - break; - default: - insn->eaBase = (EABase)(eaBaseBase + rm); - break; - } - break; - case 0x1: - insn->displacementSize = 1; - LLVM_FALLTHROUGH; - case 0x2: - insn->eaDisplacement = (mod == 0x1 ? EA_DISP_8 : EA_DISP_32); - switch (rm & 7) { - case 0x4: // SIB byte is present - insn->eaBase = EA_BASE_sib; - if (readSIB(insn) || readDisplacement(insn)) - return -1; - break; - default: - insn->eaBase = (EABase)(eaBaseBase + rm); - if (readDisplacement(insn)) - return -1; - break; - } - break; - case 0x3: - insn->eaDisplacement = EA_DISP_NONE; - insn->eaBase = (EABase)(insn->eaRegBase + rm + evexrm); - break; - } - break; - } - } /* switch (insn->addressSize) */ - - return 0; -} - -#define GENERIC_FIXUP_FUNC(name, base, prefix, mask) \ - static uint16_t name(struct InternalInstruction *insn, \ - OperandType type, \ - uint8_t index, \ - uint8_t *valid) { \ - *valid = 1; \ - switch (type) { \ - default: \ - debug("Unhandled register type"); \ - *valid = 0; \ - return 0; \ - case TYPE_Rv: \ - return base + index; \ - case TYPE_R8: \ - index &= mask; \ - if (index > 0xf) \ - *valid = 0; \ - if (insn->rexPrefix && \ - index >= 4 && index <= 7) { \ - return prefix##_SPL + (index - 4); \ - } else { \ - return prefix##_AL + index; \ - } \ - case TYPE_R16: \ - index &= mask; \ - if (index > 0xf) \ - *valid = 0; \ - return prefix##_AX + index; \ - case TYPE_R32: \ - index &= mask; \ - if (index > 0xf) \ - *valid = 0; \ - return prefix##_EAX + index; \ - case TYPE_R64: \ - index &= mask; \ - if (index > 0xf) \ - *valid = 0; \ - return prefix##_RAX + index; \ - case TYPE_ZMM: \ - return prefix##_ZMM0 + index; \ - case TYPE_YMM: \ - return prefix##_YMM0 + index; \ - case TYPE_XMM: \ - return prefix##_XMM0 + index; \ - case TYPE_VK: \ - index &= 0xf; \ - if (index > 7) \ - *valid = 0; \ - return prefix##_K0 + index; \ - case TYPE_VK_PAIR: \ - if (index > 7) \ - *valid = 0; \ - return prefix##_K0_K1 + (index / 2); \ - case TYPE_MM64: \ - return prefix##_MM0 + (index & 0x7); \ - case TYPE_SEGMENTREG: \ - if ((index & 7) > 5) \ - *valid = 0; \ - return prefix##_ES + (index & 7); \ - case TYPE_DEBUGREG: \ - return prefix##_DR0 + index; \ - case TYPE_CONTROLREG: \ - return prefix##_CR0 + index; \ - case TYPE_BNDR: \ - if (index > 3) \ - *valid = 0; \ - return prefix##_BND0 + index; \ - case TYPE_MVSIBX: \ - return prefix##_XMM0 + index; \ - case TYPE_MVSIBY: \ - return prefix##_YMM0 + index; \ - case TYPE_MVSIBZ: \ - return prefix##_ZMM0 + index; \ - } \ - } - -/* - * fixup*Value - Consults an operand type to determine the meaning of the - * reg or R/M field. If the operand is an XMM operand, for example, an - * operand would be XMM0 instead of AX, which readModRM() would otherwise - * misinterpret it as. - * - * @param insn - The instruction containing the operand. - * @param type - The operand type. - * @param index - The existing value of the field as reported by readModRM(). - * @param valid - The address of a uint8_t. The target is set to 1 if the - * field is valid for the register class; 0 if not. - * @return - The proper value. - */ -GENERIC_FIXUP_FUNC(fixupRegValue, insn->regBase, MODRM_REG, 0x1f) -GENERIC_FIXUP_FUNC(fixupRMValue, insn->eaRegBase, EA_REG, 0xf) - -/* - * fixupReg - Consults an operand specifier to determine which of the - * fixup*Value functions to use in correcting readModRM()'ss interpretation. - * - * @param insn - See fixup*Value(). - * @param op - The operand specifier. - * @return - 0 if fixup was successful; -1 if the register returned was - * invalid for its class. - */ -static int fixupReg(struct InternalInstruction *insn, - const struct OperandSpecifier *op) { - uint8_t valid; - - dbgprintf(insn, "fixupReg()"); - - switch ((OperandEncoding)op->encoding) { - default: - debug("Expected a REG or R/M encoding in fixupReg"); - return -1; - case ENCODING_VVVV: - insn->vvvv = (Reg)fixupRegValue(insn, - (OperandType)op->type, - insn->vvvv, - &valid); - if (!valid) - return -1; - break; - case ENCODING_REG: - insn->reg = (Reg)fixupRegValue(insn, - (OperandType)op->type, - insn->reg - insn->regBase, - &valid); - if (!valid) - return -1; - break; - CASE_ENCODING_RM: - if (insn->eaBase >= insn->eaRegBase) { - insn->eaBase = (EABase)fixupRMValue(insn, - (OperandType)op->type, - insn->eaBase - insn->eaRegBase, - &valid); - if (!valid) - return -1; - } - break; - } - - return 0; -} - -/* - * readOpcodeRegister - Reads an operand from the opcode field of an - * instruction and interprets it appropriately given the operand width. - * Handles AddRegFrm instructions. - * - * @param insn - the instruction whose opcode field is to be read. - * @param size - The width (in bytes) of the register being specified. - * 1 means AL and friends, 2 means AX, 4 means EAX, and 8 means - * RAX. - * @return - 0 on success; nonzero otherwise. - */ -static int readOpcodeRegister(struct InternalInstruction* insn, uint8_t size) { - dbgprintf(insn, "readOpcodeRegister()"); - - if (size == 0) - size = insn->registerSize; - - switch (size) { - case 1: - insn->opcodeRegister = (Reg)(MODRM_REG_AL + ((bFromREX(insn->rexPrefix) << 3) - | (insn->opcode & 7))); - if (insn->rexPrefix && - insn->opcodeRegister >= MODRM_REG_AL + 0x4 && - insn->opcodeRegister < MODRM_REG_AL + 0x8) { - insn->opcodeRegister = (Reg)(MODRM_REG_SPL - + (insn->opcodeRegister - MODRM_REG_AL - 4)); - } - - break; - case 2: - insn->opcodeRegister = (Reg)(MODRM_REG_AX - + ((bFromREX(insn->rexPrefix) << 3) - | (insn->opcode & 7))); - break; - case 4: - insn->opcodeRegister = (Reg)(MODRM_REG_EAX - + ((bFromREX(insn->rexPrefix) << 3) - | (insn->opcode & 7))); - break; - case 8: - insn->opcodeRegister = (Reg)(MODRM_REG_RAX - + ((bFromREX(insn->rexPrefix) << 3) - | (insn->opcode & 7))); - break; - } - - return 0; -} - -/* - * readImmediate - Consumes an immediate operand from an instruction, given the - * desired operand size. - * - * @param insn - The instruction whose operand is to be read. - * @param size - The width (in bytes) of the operand. - * @return - 0 if the immediate was successfully consumed; nonzero - * otherwise. - */ -static int readImmediate(struct InternalInstruction* insn, uint8_t size) { - uint8_t imm8; - uint16_t imm16; - uint32_t imm32; - uint64_t imm64; - - dbgprintf(insn, "readImmediate()"); - - if (insn->numImmediatesConsumed == 2) { - debug("Already consumed two immediates"); - return -1; - } - - if (size == 0) - size = insn->immediateSize; - else - insn->immediateSize = size; - insn->immediateOffset = insn->readerCursor - insn->startLocation; - - switch (size) { - case 1: - if (consumeByte(insn, &imm8)) - return -1; - insn->immediates[insn->numImmediatesConsumed] = imm8; - break; - case 2: - if (consumeUInt16(insn, &imm16)) - return -1; - insn->immediates[insn->numImmediatesConsumed] = imm16; - break; - case 4: - if (consumeUInt32(insn, &imm32)) - return -1; - insn->immediates[insn->numImmediatesConsumed] = imm32; - break; - case 8: - if (consumeUInt64(insn, &imm64)) - return -1; - insn->immediates[insn->numImmediatesConsumed] = imm64; - break; - } - - insn->numImmediatesConsumed++; - - return 0; -} - -/* - * readVVVV - Consumes vvvv from an instruction if it has a VEX prefix. - * - * @param insn - The instruction whose operand is to be read. - * @return - 0 if the vvvv was successfully consumed; nonzero - * otherwise. - */ -static int readVVVV(struct InternalInstruction* insn) { - dbgprintf(insn, "readVVVV()"); - - int vvvv; - if (insn->vectorExtensionType == TYPE_EVEX) - vvvv = (v2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 4 | - vvvvFromEVEX3of4(insn->vectorExtensionPrefix[2])); - else if (insn->vectorExtensionType == TYPE_VEX_3B) - vvvv = vvvvFromVEX3of3(insn->vectorExtensionPrefix[2]); - else if (insn->vectorExtensionType == TYPE_VEX_2B) - vvvv = vvvvFromVEX2of2(insn->vectorExtensionPrefix[1]); - else if (insn->vectorExtensionType == TYPE_XOP) - vvvv = vvvvFromXOP3of3(insn->vectorExtensionPrefix[2]); - else - return -1; - - if (insn->mode != MODE_64BIT) - vvvv &= 0xf; // Can only clear bit 4. Bit 3 must be cleared later. - - insn->vvvv = static_cast<Reg>(vvvv); - return 0; -} - -/* - * readMaskRegister - Reads an mask register from the opcode field of an - * instruction. - * - * @param insn - The instruction whose opcode field is to be read. - * @return - 0 on success; nonzero otherwise. - */ -static int readMaskRegister(struct InternalInstruction* insn) { - dbgprintf(insn, "readMaskRegister()"); - - if (insn->vectorExtensionType != TYPE_EVEX) - return -1; - - insn->writemask = - static_cast<Reg>(aaaFromEVEX4of4(insn->vectorExtensionPrefix[3])); - return 0; -} - -/* - * readOperands - Consults the specifier for an instruction and consumes all - * operands for that instruction, interpreting them as it goes. - * - * @param insn - The instruction whose operands are to be read and interpreted. - * @return - 0 if all operands could be read; nonzero otherwise. - */ -static int readOperands(struct InternalInstruction* insn) { - int hasVVVV, needVVVV; - int sawRegImm = 0; - - dbgprintf(insn, "readOperands()"); - - /* If non-zero vvvv specified, need to make sure one of the operands - uses it. */ - hasVVVV = !readVVVV(insn); - needVVVV = hasVVVV && (insn->vvvv != 0); - - for (const auto &Op : x86OperandSets[insn->spec->operands]) { - switch (Op.encoding) { - case ENCODING_NONE: - case ENCODING_SI: - case ENCODING_DI: - break; - CASE_ENCODING_VSIB: - // VSIB can use the V2 bit so check only the other bits. - if (needVVVV) - needVVVV = hasVVVV & ((insn->vvvv & 0xf) != 0); - if (readModRM(insn)) - return -1; - - // Reject if SIB wasn't used. - if (insn->eaBase != EA_BASE_sib && insn->eaBase != EA_BASE_sib64) - return -1; - - // If sibIndex was set to SIB_INDEX_NONE, index offset is 4. - if (insn->sibIndex == SIB_INDEX_NONE) - insn->sibIndex = (SIBIndex)(insn->sibIndexBase + 4); - - // If EVEX.v2 is set this is one of the 16-31 registers. - if (insn->vectorExtensionType == TYPE_EVEX && insn->mode == MODE_64BIT && - v2FromEVEX4of4(insn->vectorExtensionPrefix[3])) - insn->sibIndex = (SIBIndex)(insn->sibIndex + 16); - - // Adjust the index register to the correct size. - switch ((OperandType)Op.type) { - default: - debug("Unhandled VSIB index type"); - return -1; - case TYPE_MVSIBX: - insn->sibIndex = (SIBIndex)(SIB_INDEX_XMM0 + - (insn->sibIndex - insn->sibIndexBase)); - break; - case TYPE_MVSIBY: - insn->sibIndex = (SIBIndex)(SIB_INDEX_YMM0 + - (insn->sibIndex - insn->sibIndexBase)); - break; - case TYPE_MVSIBZ: - insn->sibIndex = (SIBIndex)(SIB_INDEX_ZMM0 + - (insn->sibIndex - insn->sibIndexBase)); - break; - } - - // Apply the AVX512 compressed displacement scaling factor. - if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) - insn->displacement *= 1 << (Op.encoding - ENCODING_VSIB); - break; - case ENCODING_REG: - CASE_ENCODING_RM: - if (readModRM(insn)) - return -1; - if (fixupReg(insn, &Op)) - return -1; - // Apply the AVX512 compressed displacement scaling factor. - if (Op.encoding != ENCODING_REG && insn->eaDisplacement == EA_DISP_8) - insn->displacement *= 1 << (Op.encoding - ENCODING_RM); - break; - case ENCODING_IB: - if (sawRegImm) { - /* Saw a register immediate so don't read again and instead split the - previous immediate. FIXME: This is a hack. */ - insn->immediates[insn->numImmediatesConsumed] = - insn->immediates[insn->numImmediatesConsumed - 1] & 0xf; - ++insn->numImmediatesConsumed; - break; - } - if (readImmediate(insn, 1)) - return -1; - if (Op.type == TYPE_XMM || Op.type == TYPE_YMM) - sawRegImm = 1; - break; - case ENCODING_IW: - if (readImmediate(insn, 2)) - return -1; - break; - case ENCODING_ID: - if (readImmediate(insn, 4)) - return -1; - break; - case ENCODING_IO: - if (readImmediate(insn, 8)) - return -1; - break; - case ENCODING_Iv: - if (readImmediate(insn, insn->immediateSize)) - return -1; - break; - case ENCODING_Ia: - if (readImmediate(insn, insn->addressSize)) - return -1; - break; - case ENCODING_IRC: - insn->RC = (l2FromEVEX4of4(insn->vectorExtensionPrefix[3]) << 1) | - lFromEVEX4of4(insn->vectorExtensionPrefix[3]); - break; - case ENCODING_RB: - if (readOpcodeRegister(insn, 1)) - return -1; - break; - case ENCODING_RW: - if (readOpcodeRegister(insn, 2)) - return -1; - break; - case ENCODING_RD: - if (readOpcodeRegister(insn, 4)) - return -1; - break; - case ENCODING_RO: - if (readOpcodeRegister(insn, 8)) - return -1; - break; - case ENCODING_Rv: - if (readOpcodeRegister(insn, 0)) - return -1; - break; - case ENCODING_CC: - insn->immediates[1] = insn->opcode & 0xf; - break; - case ENCODING_FP: - break; - case ENCODING_VVVV: - needVVVV = 0; /* Mark that we have found a VVVV operand. */ - if (!hasVVVV) - return -1; - if (insn->mode != MODE_64BIT) - insn->vvvv = static_cast<Reg>(insn->vvvv & 0x7); - if (fixupReg(insn, &Op)) - return -1; - break; - case ENCODING_WRITEMASK: - if (readMaskRegister(insn)) - return -1; - break; - case ENCODING_DUP: - break; - default: - dbgprintf(insn, "Encountered an operand with an unknown encoding."); - return -1; - } - } - - /* If we didn't find ENCODING_VVVV operand, but non-zero vvvv present, fail */ - if (needVVVV) return -1; - - return 0; -} - -/* - * decodeInstruction - Reads and interprets a full instruction provided by the - * user. - * - * @param insn - A pointer to the instruction to be populated. Must be - * pre-allocated. - * @param reader - The function to be used to read the instruction's bytes. - * @param readerArg - A generic argument to be passed to the reader to store - * any internal state. - * @param logger - If non-NULL, the function to be used to write log messages - * and warnings. - * @param loggerArg - A generic argument to be passed to the logger to store - * any internal state. - * @param startLoc - The address (in the reader's address space) of the first - * byte in the instruction. - * @param mode - The mode (real mode, IA-32e, or IA-32e in 64-bit mode) to - * decode the instruction in. - * @return - 0 if the instruction's memory could be read; nonzero if - * not. - */ -int llvm::X86Disassembler::decodeInstruction( - struct InternalInstruction *insn, byteReader_t reader, - const void *readerArg, dlog_t logger, void *loggerArg, const void *miiArg, - uint64_t startLoc, DisassemblerMode mode) { - memset(insn, 0, sizeof(struct InternalInstruction)); - - insn->reader = reader; - insn->readerArg = readerArg; - insn->dlog = logger; - insn->dlogArg = loggerArg; - insn->startLocation = startLoc; - insn->readerCursor = startLoc; - insn->mode = mode; - insn->numImmediatesConsumed = 0; - - if (readPrefixes(insn) || - readOpcode(insn) || - getID(insn, miiArg) || - insn->instructionID == 0 || - readOperands(insn)) - return -1; - - insn->operands = x86OperandSets[insn->spec->operands]; - - insn->length = insn->readerCursor - insn->startLocation; - - dbgprintf(insn, "Read from 0x%llx to 0x%llx: length %zu", - startLoc, insn->readerCursor, insn->length); - - if (insn->length > 15) - dbgprintf(insn, "Instruction exceeds 15-byte limit"); - - return 0; -} diff --git a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h b/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h deleted file mode 100644 index 7c0a42c019e3..000000000000 --- a/contrib/llvm/lib/Target/X86/Disassembler/X86DisassemblerDecoder.h +++ /dev/null @@ -1,695 +0,0 @@ -//===-- X86DisassemblerDecoderInternal.h - Disassembler decoder -*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file is part of the X86 Disassembler. -// It contains the public interface of the instruction decoder. -// Documentation for the disassembler can be found in X86Disassembler.h. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H -#define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLERDECODER_H - -#include "llvm/ADT/ArrayRef.h" -#include "llvm/Support/X86DisassemblerDecoderCommon.h" - -namespace llvm { -namespace X86Disassembler { - -// Accessor functions for various fields of an Intel instruction -#define modFromModRM(modRM) (((modRM) & 0xc0) >> 6) -#define regFromModRM(modRM) (((modRM) & 0x38) >> 3) -#define rmFromModRM(modRM) ((modRM) & 0x7) -#define scaleFromSIB(sib) (((sib) & 0xc0) >> 6) -#define indexFromSIB(sib) (((sib) & 0x38) >> 3) -#define baseFromSIB(sib) ((sib) & 0x7) -#define wFromREX(rex) (((rex) & 0x8) >> 3) -#define rFromREX(rex) (((rex) & 0x4) >> 2) -#define xFromREX(rex) (((rex) & 0x2) >> 1) -#define bFromREX(rex) ((rex) & 0x1) - -#define rFromEVEX2of4(evex) (((~(evex)) & 0x80) >> 7) -#define xFromEVEX2of4(evex) (((~(evex)) & 0x40) >> 6) -#define bFromEVEX2of4(evex) (((~(evex)) & 0x20) >> 5) -#define r2FromEVEX2of4(evex) (((~(evex)) & 0x10) >> 4) -#define mmFromEVEX2of4(evex) ((evex) & 0x3) -#define wFromEVEX3of4(evex) (((evex) & 0x80) >> 7) -#define vvvvFromEVEX3of4(evex) (((~(evex)) & 0x78) >> 3) -#define ppFromEVEX3of4(evex) ((evex) & 0x3) -#define zFromEVEX4of4(evex) (((evex) & 0x80) >> 7) -#define l2FromEVEX4of4(evex) (((evex) & 0x40) >> 6) -#define lFromEVEX4of4(evex) (((evex) & 0x20) >> 5) -#define bFromEVEX4of4(evex) (((evex) & 0x10) >> 4) -#define v2FromEVEX4of4(evex) (((~evex) & 0x8) >> 3) -#define aaaFromEVEX4of4(evex) ((evex) & 0x7) - -#define rFromVEX2of3(vex) (((~(vex)) & 0x80) >> 7) -#define xFromVEX2of3(vex) (((~(vex)) & 0x40) >> 6) -#define bFromVEX2of3(vex) (((~(vex)) & 0x20) >> 5) -#define mmmmmFromVEX2of3(vex) ((vex) & 0x1f) -#define wFromVEX3of3(vex) (((vex) & 0x80) >> 7) -#define vvvvFromVEX3of3(vex) (((~(vex)) & 0x78) >> 3) -#define lFromVEX3of3(vex) (((vex) & 0x4) >> 2) -#define ppFromVEX3of3(vex) ((vex) & 0x3) - -#define rFromVEX2of2(vex) (((~(vex)) & 0x80) >> 7) -#define vvvvFromVEX2of2(vex) (((~(vex)) & 0x78) >> 3) -#define lFromVEX2of2(vex) (((vex) & 0x4) >> 2) -#define ppFromVEX2of2(vex) ((vex) & 0x3) - -#define rFromXOP2of3(xop) (((~(xop)) & 0x80) >> 7) -#define xFromXOP2of3(xop) (((~(xop)) & 0x40) >> 6) -#define bFromXOP2of3(xop) (((~(xop)) & 0x20) >> 5) -#define mmmmmFromXOP2of3(xop) ((xop) & 0x1f) -#define wFromXOP3of3(xop) (((xop) & 0x80) >> 7) -#define vvvvFromXOP3of3(vex) (((~(vex)) & 0x78) >> 3) -#define lFromXOP3of3(xop) (((xop) & 0x4) >> 2) -#define ppFromXOP3of3(xop) ((xop) & 0x3) - -// These enums represent Intel registers for use by the decoder. -#define REGS_8BIT \ - ENTRY(AL) \ - ENTRY(CL) \ - ENTRY(DL) \ - ENTRY(BL) \ - ENTRY(AH) \ - ENTRY(CH) \ - ENTRY(DH) \ - ENTRY(BH) \ - ENTRY(R8B) \ - ENTRY(R9B) \ - ENTRY(R10B) \ - ENTRY(R11B) \ - ENTRY(R12B) \ - ENTRY(R13B) \ - ENTRY(R14B) \ - ENTRY(R15B) \ - ENTRY(SPL) \ - ENTRY(BPL) \ - ENTRY(SIL) \ - ENTRY(DIL) - -#define EA_BASES_16BIT \ - ENTRY(BX_SI) \ - ENTRY(BX_DI) \ - ENTRY(BP_SI) \ - ENTRY(BP_DI) \ - ENTRY(SI) \ - ENTRY(DI) \ - ENTRY(BP) \ - ENTRY(BX) \ - ENTRY(R8W) \ - ENTRY(R9W) \ - ENTRY(R10W) \ - ENTRY(R11W) \ - ENTRY(R12W) \ - ENTRY(R13W) \ - ENTRY(R14W) \ - ENTRY(R15W) - -#define REGS_16BIT \ - ENTRY(AX) \ - ENTRY(CX) \ - ENTRY(DX) \ - ENTRY(BX) \ - ENTRY(SP) \ - ENTRY(BP) \ - ENTRY(SI) \ - ENTRY(DI) \ - ENTRY(R8W) \ - ENTRY(R9W) \ - ENTRY(R10W) \ - ENTRY(R11W) \ - ENTRY(R12W) \ - ENTRY(R13W) \ - ENTRY(R14W) \ - ENTRY(R15W) - -#define EA_BASES_32BIT \ - ENTRY(EAX) \ - ENTRY(ECX) \ - ENTRY(EDX) \ - ENTRY(EBX) \ - ENTRY(sib) \ - ENTRY(EBP) \ - ENTRY(ESI) \ - ENTRY(EDI) \ - ENTRY(R8D) \ - ENTRY(R9D) \ - ENTRY(R10D) \ - ENTRY(R11D) \ - ENTRY(R12D) \ - ENTRY(R13D) \ - ENTRY(R14D) \ - ENTRY(R15D) - -#define REGS_32BIT \ - ENTRY(EAX) \ - ENTRY(ECX) \ - ENTRY(EDX) \ - ENTRY(EBX) \ - ENTRY(ESP) \ - ENTRY(EBP) \ - ENTRY(ESI) \ - ENTRY(EDI) \ - ENTRY(R8D) \ - ENTRY(R9D) \ - ENTRY(R10D) \ - ENTRY(R11D) \ - ENTRY(R12D) \ - ENTRY(R13D) \ - ENTRY(R14D) \ - ENTRY(R15D) - -#define EA_BASES_64BIT \ - ENTRY(RAX) \ - ENTRY(RCX) \ - ENTRY(RDX) \ - ENTRY(RBX) \ - ENTRY(sib64) \ - ENTRY(RBP) \ - ENTRY(RSI) \ - ENTRY(RDI) \ - ENTRY(R8) \ - ENTRY(R9) \ - ENTRY(R10) \ - ENTRY(R11) \ - ENTRY(R12) \ - ENTRY(R13) \ - ENTRY(R14) \ - ENTRY(R15) - -#define REGS_64BIT \ - ENTRY(RAX) \ - ENTRY(RCX) \ - ENTRY(RDX) \ - ENTRY(RBX) \ - ENTRY(RSP) \ - ENTRY(RBP) \ - ENTRY(RSI) \ - ENTRY(RDI) \ - ENTRY(R8) \ - ENTRY(R9) \ - ENTRY(R10) \ - ENTRY(R11) \ - ENTRY(R12) \ - ENTRY(R13) \ - ENTRY(R14) \ - ENTRY(R15) - -#define REGS_MMX \ - ENTRY(MM0) \ - ENTRY(MM1) \ - ENTRY(MM2) \ - ENTRY(MM3) \ - ENTRY(MM4) \ - ENTRY(MM5) \ - ENTRY(MM6) \ - ENTRY(MM7) - -#define REGS_XMM \ - ENTRY(XMM0) \ - ENTRY(XMM1) \ - ENTRY(XMM2) \ - ENTRY(XMM3) \ - ENTRY(XMM4) \ - ENTRY(XMM5) \ - ENTRY(XMM6) \ - ENTRY(XMM7) \ - ENTRY(XMM8) \ - ENTRY(XMM9) \ - ENTRY(XMM10) \ - ENTRY(XMM11) \ - ENTRY(XMM12) \ - ENTRY(XMM13) \ - ENTRY(XMM14) \ - ENTRY(XMM15) \ - ENTRY(XMM16) \ - ENTRY(XMM17) \ - ENTRY(XMM18) \ - ENTRY(XMM19) \ - ENTRY(XMM20) \ - ENTRY(XMM21) \ - ENTRY(XMM22) \ - ENTRY(XMM23) \ - ENTRY(XMM24) \ - ENTRY(XMM25) \ - ENTRY(XMM26) \ - ENTRY(XMM27) \ - ENTRY(XMM28) \ - ENTRY(XMM29) \ - ENTRY(XMM30) \ - ENTRY(XMM31) - -#define REGS_YMM \ - ENTRY(YMM0) \ - ENTRY(YMM1) \ - ENTRY(YMM2) \ - ENTRY(YMM3) \ - ENTRY(YMM4) \ - ENTRY(YMM5) \ - ENTRY(YMM6) \ - ENTRY(YMM7) \ - ENTRY(YMM8) \ - ENTRY(YMM9) \ - ENTRY(YMM10) \ - ENTRY(YMM11) \ - ENTRY(YMM12) \ - ENTRY(YMM13) \ - ENTRY(YMM14) \ - ENTRY(YMM15) \ - ENTRY(YMM16) \ - ENTRY(YMM17) \ - ENTRY(YMM18) \ - ENTRY(YMM19) \ - ENTRY(YMM20) \ - ENTRY(YMM21) \ - ENTRY(YMM22) \ - ENTRY(YMM23) \ - ENTRY(YMM24) \ - ENTRY(YMM25) \ - ENTRY(YMM26) \ - ENTRY(YMM27) \ - ENTRY(YMM28) \ - ENTRY(YMM29) \ - ENTRY(YMM30) \ - ENTRY(YMM31) - -#define REGS_ZMM \ - ENTRY(ZMM0) \ - ENTRY(ZMM1) \ - ENTRY(ZMM2) \ - ENTRY(ZMM3) \ - ENTRY(ZMM4) \ - ENTRY(ZMM5) \ - ENTRY(ZMM6) \ - ENTRY(ZMM7) \ - ENTRY(ZMM8) \ - ENTRY(ZMM9) \ - ENTRY(ZMM10) \ - ENTRY(ZMM11) \ - ENTRY(ZMM12) \ - ENTRY(ZMM13) \ - ENTRY(ZMM14) \ - ENTRY(ZMM15) \ - ENTRY(ZMM16) \ - ENTRY(ZMM17) \ - ENTRY(ZMM18) \ - ENTRY(ZMM19) \ - ENTRY(ZMM20) \ - ENTRY(ZMM21) \ - ENTRY(ZMM22) \ - ENTRY(ZMM23) \ - ENTRY(ZMM24) \ - ENTRY(ZMM25) \ - ENTRY(ZMM26) \ - ENTRY(ZMM27) \ - ENTRY(ZMM28) \ - ENTRY(ZMM29) \ - ENTRY(ZMM30) \ - ENTRY(ZMM31) - -#define REGS_MASKS \ - ENTRY(K0) \ - ENTRY(K1) \ - ENTRY(K2) \ - ENTRY(K3) \ - ENTRY(K4) \ - ENTRY(K5) \ - ENTRY(K6) \ - ENTRY(K7) - -#define REGS_MASK_PAIRS \ - ENTRY(K0_K1) \ - ENTRY(K2_K3) \ - ENTRY(K4_K5) \ - ENTRY(K6_K7) - -#define REGS_SEGMENT \ - ENTRY(ES) \ - ENTRY(CS) \ - ENTRY(SS) \ - ENTRY(DS) \ - ENTRY(FS) \ - ENTRY(GS) - -#define REGS_DEBUG \ - ENTRY(DR0) \ - ENTRY(DR1) \ - ENTRY(DR2) \ - ENTRY(DR3) \ - ENTRY(DR4) \ - ENTRY(DR5) \ - ENTRY(DR6) \ - ENTRY(DR7) \ - ENTRY(DR8) \ - ENTRY(DR9) \ - ENTRY(DR10) \ - ENTRY(DR11) \ - ENTRY(DR12) \ - ENTRY(DR13) \ - ENTRY(DR14) \ - ENTRY(DR15) - -#define REGS_CONTROL \ - ENTRY(CR0) \ - ENTRY(CR1) \ - ENTRY(CR2) \ - ENTRY(CR3) \ - ENTRY(CR4) \ - ENTRY(CR5) \ - ENTRY(CR6) \ - ENTRY(CR7) \ - ENTRY(CR8) \ - ENTRY(CR9) \ - ENTRY(CR10) \ - ENTRY(CR11) \ - ENTRY(CR12) \ - ENTRY(CR13) \ - ENTRY(CR14) \ - ENTRY(CR15) - -#define REGS_BOUND \ - ENTRY(BND0) \ - ENTRY(BND1) \ - ENTRY(BND2) \ - ENTRY(BND3) - -#define ALL_EA_BASES \ - EA_BASES_16BIT \ - EA_BASES_32BIT \ - EA_BASES_64BIT - -#define ALL_SIB_BASES \ - REGS_32BIT \ - REGS_64BIT - -#define ALL_REGS \ - REGS_8BIT \ - REGS_16BIT \ - REGS_32BIT \ - REGS_64BIT \ - REGS_MMX \ - REGS_XMM \ - REGS_YMM \ - REGS_ZMM \ - REGS_MASKS \ - REGS_MASK_PAIRS \ - REGS_SEGMENT \ - REGS_DEBUG \ - REGS_CONTROL \ - REGS_BOUND \ - ENTRY(RIP) - -/// All possible values of the base field for effective-address -/// computations, a.k.a. the Mod and R/M fields of the ModR/M byte. -/// We distinguish between bases (EA_BASE_*) and registers that just happen -/// to be referred to when Mod == 0b11 (EA_REG_*). -enum EABase { - EA_BASE_NONE, -#define ENTRY(x) EA_BASE_##x, - ALL_EA_BASES -#undef ENTRY -#define ENTRY(x) EA_REG_##x, - ALL_REGS -#undef ENTRY - EA_max -}; - -/// All possible values of the SIB index field. -/// borrows entries from ALL_EA_BASES with the special case that -/// sib is synonymous with NONE. -/// Vector SIB: index can be XMM or YMM. -enum SIBIndex { - SIB_INDEX_NONE, -#define ENTRY(x) SIB_INDEX_##x, - ALL_EA_BASES - REGS_XMM - REGS_YMM - REGS_ZMM -#undef ENTRY - SIB_INDEX_max -}; - -/// All possible values of the SIB base field. -enum SIBBase { - SIB_BASE_NONE, -#define ENTRY(x) SIB_BASE_##x, - ALL_SIB_BASES -#undef ENTRY - SIB_BASE_max -}; - -/// Possible displacement types for effective-address computations. -typedef enum { - EA_DISP_NONE, - EA_DISP_8, - EA_DISP_16, - EA_DISP_32 -} EADisplacement; - -/// All possible values of the reg field in the ModR/M byte. -enum Reg { -#define ENTRY(x) MODRM_REG_##x, - ALL_REGS -#undef ENTRY - MODRM_REG_max -}; - -/// All possible segment overrides. -enum SegmentOverride { - SEG_OVERRIDE_NONE, - SEG_OVERRIDE_CS, - SEG_OVERRIDE_SS, - SEG_OVERRIDE_DS, - SEG_OVERRIDE_ES, - SEG_OVERRIDE_FS, - SEG_OVERRIDE_GS, - SEG_OVERRIDE_max -}; - -/// Possible values for the VEX.m-mmmm field -enum VEXLeadingOpcodeByte { - VEX_LOB_0F = 0x1, - VEX_LOB_0F38 = 0x2, - VEX_LOB_0F3A = 0x3 -}; - -enum XOPMapSelect { - XOP_MAP_SELECT_8 = 0x8, - XOP_MAP_SELECT_9 = 0x9, - XOP_MAP_SELECT_A = 0xA -}; - -/// Possible values for the VEX.pp/EVEX.pp field -enum VEXPrefixCode { - VEX_PREFIX_NONE = 0x0, - VEX_PREFIX_66 = 0x1, - VEX_PREFIX_F3 = 0x2, - VEX_PREFIX_F2 = 0x3 -}; - -enum VectorExtensionType { - TYPE_NO_VEX_XOP = 0x0, - TYPE_VEX_2B = 0x1, - TYPE_VEX_3B = 0x2, - TYPE_EVEX = 0x3, - TYPE_XOP = 0x4 -}; - -/// Type for the byte reader that the consumer must provide to -/// the decoder. Reads a single byte from the instruction's address space. -/// \param arg A baton that the consumer can associate with any internal -/// state that it needs. -/// \param byte A pointer to a single byte in memory that should be set to -/// contain the value at address. -/// \param address The address in the instruction's address space that should -/// be read from. -/// \return -1 if the byte cannot be read for any reason; 0 otherwise. -typedef int (*byteReader_t)(const void *arg, uint8_t *byte, uint64_t address); - -/// Type for the logging function that the consumer can provide to -/// get debugging output from the decoder. -/// \param arg A baton that the consumer can associate with any internal -/// state that it needs. -/// \param log A string that contains the message. Will be reused after -/// the logger returns. -typedef void (*dlog_t)(void *arg, const char *log); - -/// The specification for how to extract and interpret a full instruction and -/// its operands. -struct InstructionSpecifier { - uint16_t operands; -}; - -/// The x86 internal instruction, which is produced by the decoder. -struct InternalInstruction { - // Reader interface (C) - byteReader_t reader; - // Opaque value passed to the reader - const void* readerArg; - // The address of the next byte to read via the reader - uint64_t readerCursor; - - // Logger interface (C) - dlog_t dlog; - // Opaque value passed to the logger - void* dlogArg; - - // General instruction information - - // The mode to disassemble for (64-bit, protected, real) - DisassemblerMode mode; - // The start of the instruction, usable with the reader - uint64_t startLocation; - // The length of the instruction, in bytes - size_t length; - - // Prefix state - - // The possible mandatory prefix - uint8_t mandatoryPrefix; - // The value of the vector extension prefix(EVEX/VEX/XOP), if present - uint8_t vectorExtensionPrefix[4]; - // The type of the vector extension prefix - VectorExtensionType vectorExtensionType; - // The value of the REX prefix, if present - uint8_t rexPrefix; - // The segment override type - SegmentOverride segmentOverride; - // 1 if the prefix byte, 0xf2 or 0xf3 is xacquire or xrelease - bool xAcquireRelease; - - // Address-size override - bool hasAdSize; - // Operand-size override - bool hasOpSize; - // Lock prefix - bool hasLockPrefix; - // The repeat prefix if any - uint8_t repeatPrefix; - - // Sizes of various critical pieces of data, in bytes - uint8_t registerSize; - uint8_t addressSize; - uint8_t displacementSize; - uint8_t immediateSize; - - // Offsets from the start of the instruction to the pieces of data, which is - // needed to find relocation entries for adding symbolic operands. - uint8_t displacementOffset; - uint8_t immediateOffset; - - // opcode state - - // The last byte of the opcode, not counting any ModR/M extension - uint8_t opcode; - - // decode state - - // The type of opcode, used for indexing into the array of decode tables - OpcodeType opcodeType; - // The instruction ID, extracted from the decode table - uint16_t instructionID; - // The specifier for the instruction, from the instruction info table - const InstructionSpecifier *spec; - - // state for additional bytes, consumed during operand decode. Pattern: - // consumed___ indicates that the byte was already consumed and does not - // need to be consumed again. - - // The VEX.vvvv field, which contains a third register operand for some AVX - // instructions. - Reg vvvv; - - // The writemask for AVX-512 instructions which is contained in EVEX.aaa - Reg writemask; - - // The ModR/M byte, which contains most register operands and some portion of - // all memory operands. - bool consumedModRM; - uint8_t modRM; - - // The SIB byte, used for more complex 32- or 64-bit memory operands - bool consumedSIB; - uint8_t sib; - - // The displacement, used for memory operands - bool consumedDisplacement; - int32_t displacement; - - // Immediates. There can be two in some cases - uint8_t numImmediatesConsumed; - uint8_t numImmediatesTranslated; - uint64_t immediates[2]; - - // A register or immediate operand encoded into the opcode - Reg opcodeRegister; - - // Portions of the ModR/M byte - - // These fields determine the allowable values for the ModR/M fields, which - // depend on operand and address widths. - EABase eaRegBase; - Reg regBase; - - // The Mod and R/M fields can encode a base for an effective address, or a - // register. These are separated into two fields here. - EABase eaBase; - EADisplacement eaDisplacement; - // The reg field always encodes a register - Reg reg; - - // SIB state - SIBIndex sibIndexBase; - SIBIndex sibIndex; - uint8_t sibScale; - SIBBase sibBase; - - // Embedded rounding control. - uint8_t RC; - - ArrayRef<OperandSpecifier> operands; -}; - -/// Decode one instruction and store the decoding results in -/// a buffer provided by the consumer. -/// \param insn The buffer to store the instruction in. Allocated by the -/// consumer. -/// \param reader The byteReader_t for the bytes to be read. -/// \param readerArg An argument to pass to the reader for storing context -/// specific to the consumer. May be NULL. -/// \param logger The dlog_t to be used in printing status messages from the -/// disassembler. May be NULL. -/// \param loggerArg An argument to pass to the logger for storing context -/// specific to the logger. May be NULL. -/// \param startLoc The address (in the reader's address space) of the first -/// byte in the instruction. -/// \param mode The mode (16-bit, 32-bit, 64-bit) to decode in. -/// \return Nonzero if there was an error during decode, 0 otherwise. -int decodeInstruction(InternalInstruction *insn, - byteReader_t reader, - const void *readerArg, - dlog_t logger, - void *loggerArg, - const void *miiArg, - uint64_t startLoc, - DisassemblerMode mode); - -/// Print a message to debugs() -/// \param file The name of the file printing the debug message. -/// \param line The line number that printed the debug message. -/// \param s The message to print. -void Debug(const char *file, unsigned line, const char *s); - -StringRef GetInstrName(unsigned Opcode, const void *mii); - -} // namespace X86Disassembler -} // namespace llvm - -#endif |
