diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2016-08-16 21:02:59 +0000 | 
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2016-08-16 21:02:59 +0000 | 
| commit | 3ca95b020283db6244cab92ede73c969253b6a31 (patch) | |
| tree | d16e791e58694facd8f68d3e2797a1eaa8018afc /contrib/llvm/lib/Transforms/Utils/Evaluator.cpp | |
| parent | 27067774dce3388702a4cf744d7096c6fb71b688 (diff) | |
| parent | c3aee98e721333f265a88d6bf348e6e468f027d4 (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/Evaluator.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Utils/Evaluator.cpp | 596 | 
1 files changed, 596 insertions, 0 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp b/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp new file mode 100644 index 000000000000..cd130abf4519 --- /dev/null +++ b/contrib/llvm/lib/Transforms/Utils/Evaluator.cpp @@ -0,0 +1,596 @@ +//===- Evaluator.cpp - LLVM IR evaluator ----------------------------------===// +// +//                     The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// Function evaluator for LLVM IR. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Utils/Evaluator.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallSite.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticPrinter.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Operator.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" + +#define DEBUG_TYPE "evaluator" + +using namespace llvm; + +static inline bool +isSimpleEnoughValueToCommit(Constant *C, +                            SmallPtrSetImpl<Constant *> &SimpleConstants, +                            const DataLayout &DL); + +/// Return true if the specified constant can be handled by the code generator. +/// We don't want to generate something like: +///   void *X = &X/42; +/// because the code generator doesn't have a relocation that can handle that. +/// +/// This function should be called if C was not found (but just got inserted) +/// in SimpleConstants to avoid having to rescan the same constants all the +/// time. +static bool +isSimpleEnoughValueToCommitHelper(Constant *C, +                                  SmallPtrSetImpl<Constant *> &SimpleConstants, +                                  const DataLayout &DL) { +  // Simple global addresses are supported, do not allow dllimport or +  // thread-local globals. +  if (auto *GV = dyn_cast<GlobalValue>(C)) +    return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal(); + +  // Simple integer, undef, constant aggregate zero, etc are all supported. +  if (C->getNumOperands() == 0 || isa<BlockAddress>(C)) +    return true; + +  // Aggregate values are safe if all their elements are. +  if (isa<ConstantAggregate>(C)) { +    for (Value *Op : C->operands()) +      if (!isSimpleEnoughValueToCommit(cast<Constant>(Op), SimpleConstants, DL)) +        return false; +    return true; +  } + +  // We don't know exactly what relocations are allowed in constant expressions, +  // so we allow &global+constantoffset, which is safe and uniformly supported +  // across targets. +  ConstantExpr *CE = cast<ConstantExpr>(C); +  switch (CE->getOpcode()) { +  case Instruction::BitCast: +    // Bitcast is fine if the casted value is fine. +    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); + +  case Instruction::IntToPtr: +  case Instruction::PtrToInt: +    // int <=> ptr is fine if the int type is the same size as the +    // pointer type. +    if (DL.getTypeSizeInBits(CE->getType()) != +        DL.getTypeSizeInBits(CE->getOperand(0)->getType())) +      return false; +    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); + +  // GEP is fine if it is simple + constant offset. +  case Instruction::GetElementPtr: +    for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) +      if (!isa<ConstantInt>(CE->getOperand(i))) +        return false; +    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); + +  case Instruction::Add: +    // We allow simple+cst. +    if (!isa<ConstantInt>(CE->getOperand(1))) +      return false; +    return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL); +  } +  return false; +} + +static inline bool +isSimpleEnoughValueToCommit(Constant *C, +                            SmallPtrSetImpl<Constant *> &SimpleConstants, +                            const DataLayout &DL) { +  // If we already checked this constant, we win. +  if (!SimpleConstants.insert(C).second) +    return true; +  // Check the constant. +  return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL); +} + +/// Return true if this constant is simple enough for us to understand.  In +/// particular, if it is a cast to anything other than from one pointer type to +/// another pointer type, we punt.  We basically just support direct accesses to +/// globals and GEP's of globals.  This should be kept up to date with +/// CommitValueTo. +static bool isSimpleEnoughPointerToCommit(Constant *C) { +  // Conservatively, avoid aggregate types. This is because we don't +  // want to worry about them partially overlapping other stores. +  if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType()) +    return false; + +  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) +    // Do not allow weak/*_odr/linkonce linkage or external globals. +    return GV->hasUniqueInitializer(); + +  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { +    // Handle a constantexpr gep. +    if (CE->getOpcode() == Instruction::GetElementPtr && +        isa<GlobalVariable>(CE->getOperand(0)) && +        cast<GEPOperator>(CE)->isInBounds()) { +      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); +      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or +      // external globals. +      if (!GV->hasUniqueInitializer()) +        return false; + +      // The first index must be zero. +      ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin())); +      if (!CI || !CI->isZero()) return false; + +      // The remaining indices must be compile-time known integers within the +      // notional bounds of the corresponding static array types. +      if (!CE->isGEPWithNoNotionalOverIndexing()) +        return false; + +      return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); + +    // A constantexpr bitcast from a pointer to another pointer is a no-op, +    // and we know how to evaluate it by moving the bitcast from the pointer +    // operand to the value operand. +    } else if (CE->getOpcode() == Instruction::BitCast && +               isa<GlobalVariable>(CE->getOperand(0))) { +      // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or +      // external globals. +      return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer(); +    } +  } + +  return false; +} + +/// Return the value that would be computed by a load from P after the stores +/// reflected by 'memory' have been performed.  If we can't decide, return null. +Constant *Evaluator::ComputeLoadResult(Constant *P) { +  // If this memory location has been recently stored, use the stored value: it +  // is the most up-to-date. +  DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P); +  if (I != MutatedMemory.end()) return I->second; + +  // Access it. +  if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { +    if (GV->hasDefinitiveInitializer()) +      return GV->getInitializer(); +    return nullptr; +  } + +  // Handle a constantexpr getelementptr. +  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P)) +    if (CE->getOpcode() == Instruction::GetElementPtr && +        isa<GlobalVariable>(CE->getOperand(0))) { +      GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0)); +      if (GV->hasDefinitiveInitializer()) +        return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE); +    } + +  return nullptr;  // don't know how to evaluate. +} + +/// Evaluate all instructions in block BB, returning true if successful, false +/// if we can't evaluate it.  NewBB returns the next BB that control flows into, +/// or null upon return. +bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst, +                              BasicBlock *&NextBB) { +  // This is the main evaluation loop. +  while (1) { +    Constant *InstResult = nullptr; + +    DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n"); + +    if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) { +      if (!SI->isSimple()) { +        DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n"); +        return false;  // no volatile/atomic accesses. +      } +      Constant *Ptr = getVal(SI->getOperand(1)); +      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { +        DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr); +        Ptr = ConstantFoldConstantExpression(CE, DL, TLI); +        DEBUG(dbgs() << "; To: " << *Ptr << "\n"); +      } +      if (!isSimpleEnoughPointerToCommit(Ptr)) { +        // If this is too complex for us to commit, reject it. +        DEBUG(dbgs() << "Pointer is too complex for us to evaluate store."); +        return false; +      } + +      Constant *Val = getVal(SI->getOperand(0)); + +      // If this might be too difficult for the backend to handle (e.g. the addr +      // of one global variable divided by another) then we can't commit it. +      if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) { +        DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val +              << "\n"); +        return false; +      } + +      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { +        if (CE->getOpcode() == Instruction::BitCast) { +          DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n"); +          // If we're evaluating a store through a bitcast, then we need +          // to pull the bitcast off the pointer type and push it onto the +          // stored value. +          Ptr = CE->getOperand(0); + +          Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType(); + +          // In order to push the bitcast onto the stored value, a bitcast +          // from NewTy to Val's type must be legal.  If it's not, we can try +          // introspecting NewTy to find a legal conversion. +          while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) { +            // If NewTy is a struct, we can convert the pointer to the struct +            // into a pointer to its first member. +            // FIXME: This could be extended to support arrays as well. +            if (StructType *STy = dyn_cast<StructType>(NewTy)) { +              NewTy = STy->getTypeAtIndex(0U); + +              IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32); +              Constant *IdxZero = ConstantInt::get(IdxTy, 0, false); +              Constant * const IdxList[] = {IdxZero, IdxZero}; + +              Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList); +              if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) +                Ptr = ConstantFoldConstantExpression(CE, DL, TLI); + +            // If we can't improve the situation by introspecting NewTy, +            // we have to give up. +            } else { +              DEBUG(dbgs() << "Failed to bitcast constant ptr, can not " +                    "evaluate.\n"); +              return false; +            } +          } + +          // If we found compatible types, go ahead and push the bitcast +          // onto the stored value. +          Val = ConstantExpr::getBitCast(Val, NewTy); + +          DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n"); +        } +      } + +      MutatedMemory[Ptr] = Val; +    } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) { +      InstResult = ConstantExpr::get(BO->getOpcode(), +                                     getVal(BO->getOperand(0)), +                                     getVal(BO->getOperand(1))); +      DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult +            << "\n"); +    } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) { +      InstResult = ConstantExpr::getCompare(CI->getPredicate(), +                                            getVal(CI->getOperand(0)), +                                            getVal(CI->getOperand(1))); +      DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult +            << "\n"); +    } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) { +      InstResult = ConstantExpr::getCast(CI->getOpcode(), +                                         getVal(CI->getOperand(0)), +                                         CI->getType()); +      DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult +            << "\n"); +    } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) { +      InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)), +                                           getVal(SI->getOperand(1)), +                                           getVal(SI->getOperand(2))); +      DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult +            << "\n"); +    } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) { +      InstResult = ConstantExpr::getExtractValue( +          getVal(EVI->getAggregateOperand()), EVI->getIndices()); +      DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult +                   << "\n"); +    } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) { +      InstResult = ConstantExpr::getInsertValue( +          getVal(IVI->getAggregateOperand()), +          getVal(IVI->getInsertedValueOperand()), IVI->getIndices()); +      DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult +                   << "\n"); +    } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) { +      Constant *P = getVal(GEP->getOperand(0)); +      SmallVector<Constant*, 8> GEPOps; +      for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); +           i != e; ++i) +        GEPOps.push_back(getVal(*i)); +      InstResult = +          ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps, +                                         cast<GEPOperator>(GEP)->isInBounds()); +      DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult +            << "\n"); +    } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) { + +      if (!LI->isSimple()) { +        DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n"); +        return false;  // no volatile/atomic accesses. +      } + +      Constant *Ptr = getVal(LI->getOperand(0)); +      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) { +        Ptr = ConstantFoldConstantExpression(CE, DL, TLI); +        DEBUG(dbgs() << "Found a constant pointer expression, constant " +              "folding: " << *Ptr << "\n"); +      } +      InstResult = ComputeLoadResult(Ptr); +      if (!InstResult) { +        DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load." +              "\n"); +        return false; // Could not evaluate load. +      } + +      DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n"); +    } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) { +      if (AI->isArrayAllocation()) { +        DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n"); +        return false;  // Cannot handle array allocs. +      } +      Type *Ty = AI->getAllocatedType(); +      AllocaTmps.push_back( +          make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage, +                                      UndefValue::get(Ty), AI->getName())); +      InstResult = AllocaTmps.back().get(); +      DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n"); +    } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) { +      CallSite CS(&*CurInst); + +      // Debug info can safely be ignored here. +      if (isa<DbgInfoIntrinsic>(CS.getInstruction())) { +        DEBUG(dbgs() << "Ignoring debug info.\n"); +        ++CurInst; +        continue; +      } + +      // Cannot handle inline asm. +      if (isa<InlineAsm>(CS.getCalledValue())) { +        DEBUG(dbgs() << "Found inline asm, can not evaluate.\n"); +        return false; +      } + +      if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) { +        if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) { +          if (MSI->isVolatile()) { +            DEBUG(dbgs() << "Can not optimize a volatile memset " << +                  "intrinsic.\n"); +            return false; +          } +          Constant *Ptr = getVal(MSI->getDest()); +          Constant *Val = getVal(MSI->getValue()); +          Constant *DestVal = ComputeLoadResult(getVal(Ptr)); +          if (Val->isNullValue() && DestVal && DestVal->isNullValue()) { +            // This memset is a no-op. +            DEBUG(dbgs() << "Ignoring no-op memset.\n"); +            ++CurInst; +            continue; +          } +        } + +        if (II->getIntrinsicID() == Intrinsic::lifetime_start || +            II->getIntrinsicID() == Intrinsic::lifetime_end) { +          DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n"); +          ++CurInst; +          continue; +        } + +        if (II->getIntrinsicID() == Intrinsic::invariant_start) { +          // We don't insert an entry into Values, as it doesn't have a +          // meaningful return value. +          if (!II->use_empty()) { +            DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n"); +            return false; +          } +          ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0)); +          Value *PtrArg = getVal(II->getArgOperand(1)); +          Value *Ptr = PtrArg->stripPointerCasts(); +          if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { +            Type *ElemTy = GV->getValueType(); +            if (!Size->isAllOnesValue() && +                Size->getValue().getLimitedValue() >= +                    DL.getTypeStoreSize(ElemTy)) { +              Invariants.insert(GV); +              DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV +                    << "\n"); +            } else { +              DEBUG(dbgs() << "Found a global var, but can not treat it as an " +                    "invariant.\n"); +            } +          } +          // Continue even if we do nothing. +          ++CurInst; +          continue; +        } else if (II->getIntrinsicID() == Intrinsic::assume) { +          DEBUG(dbgs() << "Skipping assume intrinsic.\n"); +          ++CurInst; +          continue; +        } + +        DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n"); +        return false; +      } + +      // Resolve function pointers. +      Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue())); +      if (!Callee || Callee->isInterposable()) { +        DEBUG(dbgs() << "Can not resolve function pointer.\n"); +        return false;  // Cannot resolve. +      } + +      SmallVector<Constant*, 8> Formals; +      for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) +        Formals.push_back(getVal(*i)); + +      if (Callee->isDeclaration()) { +        // If this is a function we can constant fold, do it. +        if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) { +          InstResult = C; +          DEBUG(dbgs() << "Constant folded function call. Result: " << +                *InstResult << "\n"); +        } else { +          DEBUG(dbgs() << "Can not constant fold function call.\n"); +          return false; +        } +      } else { +        if (Callee->getFunctionType()->isVarArg()) { +          DEBUG(dbgs() << "Can not constant fold vararg function call.\n"); +          return false; +        } + +        Constant *RetVal = nullptr; +        // Execute the call, if successful, use the return value. +        ValueStack.emplace_back(); +        if (!EvaluateFunction(Callee, RetVal, Formals)) { +          DEBUG(dbgs() << "Failed to evaluate function.\n"); +          return false; +        } +        ValueStack.pop_back(); +        InstResult = RetVal; + +        if (InstResult) { +          DEBUG(dbgs() << "Successfully evaluated function. Result: " +                       << *InstResult << "\n\n"); +        } else { +          DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n"); +        } +      } +    } else if (isa<TerminatorInst>(CurInst)) { +      DEBUG(dbgs() << "Found a terminator instruction.\n"); + +      if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) { +        if (BI->isUnconditional()) { +          NextBB = BI->getSuccessor(0); +        } else { +          ConstantInt *Cond = +            dyn_cast<ConstantInt>(getVal(BI->getCondition())); +          if (!Cond) return false;  // Cannot determine. + +          NextBB = BI->getSuccessor(!Cond->getZExtValue()); +        } +      } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) { +        ConstantInt *Val = +          dyn_cast<ConstantInt>(getVal(SI->getCondition())); +        if (!Val) return false;  // Cannot determine. +        NextBB = SI->findCaseValue(Val).getCaseSuccessor(); +      } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) { +        Value *Val = getVal(IBI->getAddress())->stripPointerCasts(); +        if (BlockAddress *BA = dyn_cast<BlockAddress>(Val)) +          NextBB = BA->getBasicBlock(); +        else +          return false;  // Cannot determine. +      } else if (isa<ReturnInst>(CurInst)) { +        NextBB = nullptr; +      } else { +        // invoke, unwind, resume, unreachable. +        DEBUG(dbgs() << "Can not handle terminator."); +        return false;  // Cannot handle this terminator. +      } + +      // We succeeded at evaluating this block! +      DEBUG(dbgs() << "Successfully evaluated block.\n"); +      return true; +    } else { +      // Did not know how to evaluate this! +      DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction." +            "\n"); +      return false; +    } + +    if (!CurInst->use_empty()) { +      if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult)) +        InstResult = ConstantFoldConstantExpression(CE, DL, TLI); + +      setVal(&*CurInst, InstResult); +    } + +    // If we just processed an invoke, we finished evaluating the block. +    if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) { +      NextBB = II->getNormalDest(); +      DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n"); +      return true; +    } + +    // Advance program counter. +    ++CurInst; +  } +} + +/// Evaluate a call to function F, returning true if successful, false if we +/// can't evaluate it.  ActualArgs contains the formal arguments for the +/// function. +bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal, +                                 const SmallVectorImpl<Constant*> &ActualArgs) { +  // Check to see if this function is already executing (recursion).  If so, +  // bail out.  TODO: we might want to accept limited recursion. +  if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end()) +    return false; + +  CallStack.push_back(F); + +  // Initialize arguments to the incoming values specified. +  unsigned ArgNo = 0; +  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; +       ++AI, ++ArgNo) +    setVal(&*AI, ActualArgs[ArgNo]); + +  // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such, +  // we can only evaluate any one basic block at most once.  This set keeps +  // track of what we have executed so we can detect recursive cases etc. +  SmallPtrSet<BasicBlock*, 32> ExecutedBlocks; + +  // CurBB - The current basic block we're evaluating. +  BasicBlock *CurBB = &F->front(); + +  BasicBlock::iterator CurInst = CurBB->begin(); + +  while (1) { +    BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings. +    DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n"); + +    if (!EvaluateBlock(CurInst, NextBB)) +      return false; + +    if (!NextBB) { +      // Successfully running until there's no next block means that we found +      // the return.  Fill it the return value and pop the call stack. +      ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator()); +      if (RI->getNumOperands()) +        RetVal = getVal(RI->getOperand(0)); +      CallStack.pop_back(); +      return true; +    } + +    // Okay, we succeeded in evaluating this control flow.  See if we have +    // executed the new block before.  If so, we have a looping function, +    // which we cannot evaluate in reasonable time. +    if (!ExecutedBlocks.insert(NextBB).second) +      return false;  // looped! + +    // Okay, we have never been in this block before.  Check to see if there +    // are any PHI nodes.  If so, evaluate them with information about where +    // we came from. +    PHINode *PN = nullptr; +    for (CurInst = NextBB->begin(); +         (PN = dyn_cast<PHINode>(CurInst)); ++CurInst) +      setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB))); + +    // Advance to the next block. +    CurBB = NextBB; +  } +} +  | 
