diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp | 744 |
1 files changed, 0 insertions, 744 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp b/contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp deleted file mode 100644 index 005306cf1898..000000000000 --- a/contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp +++ /dev/null @@ -1,744 +0,0 @@ -//===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements some loop unrolling utilities for peeling loops -// with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for -// unrolling loops with compile-time constant trip counts. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/LoopIterator.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionExpressions.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Cloning.h" -#include "llvm/Transforms/Utils/LoopSimplify.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -#include "llvm/Transforms/Utils/UnrollLoop.h" -#include "llvm/Transforms/Utils/ValueMapper.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <limits> - -using namespace llvm; -using namespace llvm::PatternMatch; - -#define DEBUG_TYPE "loop-unroll" - -STATISTIC(NumPeeled, "Number of loops peeled"); - -static cl::opt<unsigned> UnrollPeelMaxCount( - "unroll-peel-max-count", cl::init(7), cl::Hidden, - cl::desc("Max average trip count which will cause loop peeling.")); - -static cl::opt<unsigned> UnrollForcePeelCount( - "unroll-force-peel-count", cl::init(0), cl::Hidden, - cl::desc("Force a peel count regardless of profiling information.")); - -static cl::opt<bool> UnrollPeelMultiDeoptExit( - "unroll-peel-multi-deopt-exit", cl::init(false), cl::Hidden, - cl::desc("Allow peeling of loops with multiple deopt exits.")); - -// Designates that a Phi is estimated to become invariant after an "infinite" -// number of loop iterations (i.e. only may become an invariant if the loop is -// fully unrolled). -static const unsigned InfiniteIterationsToInvariance = - std::numeric_limits<unsigned>::max(); - -// Check whether we are capable of peeling this loop. -bool llvm::canPeel(Loop *L) { - // Make sure the loop is in simplified form - if (!L->isLoopSimplifyForm()) - return false; - - if (UnrollPeelMultiDeoptExit) { - SmallVector<BasicBlock *, 4> Exits; - L->getUniqueNonLatchExitBlocks(Exits); - - if (!Exits.empty()) { - // Latch's terminator is a conditional branch, Latch is exiting and - // all non Latch exits ends up with deoptimize. - const BasicBlock *Latch = L->getLoopLatch(); - const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator()); - return T && T->isConditional() && L->isLoopExiting(Latch) && - all_of(Exits, [](const BasicBlock *BB) { - return BB->getTerminatingDeoptimizeCall(); - }); - } - } - - // Only peel loops that contain a single exit - if (!L->getExitingBlock() || !L->getUniqueExitBlock()) - return false; - - // Don't try to peel loops where the latch is not the exiting block. - // This can be an indication of two different things: - // 1) The loop is not rotated. - // 2) The loop contains irreducible control flow that involves the latch. - if (L->getLoopLatch() != L->getExitingBlock()) - return false; - - return true; -} - -// This function calculates the number of iterations after which the given Phi -// becomes an invariant. The pre-calculated values are memorized in the map. The -// function (shortcut is I) is calculated according to the following definition: -// Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. -// If %y is a loop invariant, then I(%x) = 1. -// If %y is a Phi from the loop header, I(%x) = I(%y) + 1. -// Otherwise, I(%x) is infinite. -// TODO: Actually if %y is an expression that depends only on Phi %z and some -// loop invariants, we can estimate I(%x) = I(%z) + 1. The example -// looks like: -// %x = phi(0, %a), <-- becomes invariant starting from 3rd iteration. -// %y = phi(0, 5), -// %a = %y + 1. -static unsigned calculateIterationsToInvariance( - PHINode *Phi, Loop *L, BasicBlock *BackEdge, - SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { - assert(Phi->getParent() == L->getHeader() && - "Non-loop Phi should not be checked for turning into invariant."); - assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); - // If we already know the answer, take it from the map. - auto I = IterationsToInvariance.find(Phi); - if (I != IterationsToInvariance.end()) - return I->second; - - // Otherwise we need to analyze the input from the back edge. - Value *Input = Phi->getIncomingValueForBlock(BackEdge); - // Place infinity to map to avoid infinite recursion for cycled Phis. Such - // cycles can never stop on an invariant. - IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; - unsigned ToInvariance = InfiniteIterationsToInvariance; - - if (L->isLoopInvariant(Input)) - ToInvariance = 1u; - else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { - // Only consider Phis in header block. - if (IncPhi->getParent() != L->getHeader()) - return InfiniteIterationsToInvariance; - // If the input becomes an invariant after X iterations, then our Phi - // becomes an invariant after X + 1 iterations. - unsigned InputToInvariance = calculateIterationsToInvariance( - IncPhi, L, BackEdge, IterationsToInvariance); - if (InputToInvariance != InfiniteIterationsToInvariance) - ToInvariance = InputToInvariance + 1u; - } - - // If we found that this Phi lies in an invariant chain, update the map. - if (ToInvariance != InfiniteIterationsToInvariance) - IterationsToInvariance[Phi] = ToInvariance; - return ToInvariance; -} - -// Return the number of iterations to peel off that make conditions in the -// body true/false. For example, if we peel 2 iterations off the loop below, -// the condition i < 2 can be evaluated at compile time. -// for (i = 0; i < n; i++) -// if (i < 2) -// .. -// else -// .. -// } -static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, - ScalarEvolution &SE) { - assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); - unsigned DesiredPeelCount = 0; - - for (auto *BB : L.blocks()) { - auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); - if (!BI || BI->isUnconditional()) - continue; - - // Ignore loop exit condition. - if (L.getLoopLatch() == BB) - continue; - - Value *Condition = BI->getCondition(); - Value *LeftVal, *RightVal; - CmpInst::Predicate Pred; - if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) - continue; - - const SCEV *LeftSCEV = SE.getSCEV(LeftVal); - const SCEV *RightSCEV = SE.getSCEV(RightVal); - - // Do not consider predicates that are known to be true or false - // independently of the loop iteration. - if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) || - SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV, - RightSCEV)) - continue; - - // Check if we have a condition with one AddRec and one non AddRec - // expression. Normalize LeftSCEV to be the AddRec. - if (!isa<SCEVAddRecExpr>(LeftSCEV)) { - if (isa<SCEVAddRecExpr>(RightSCEV)) { - std::swap(LeftSCEV, RightSCEV); - Pred = ICmpInst::getSwappedPredicate(Pred); - } else - continue; - } - - const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); - - // Avoid huge SCEV computations in the loop below, make sure we only - // consider AddRecs of the loop we are trying to peel and avoid - // non-monotonic predicates, as we will not be able to simplify the loop - // body. - // FIXME: For the non-monotonic predicates ICMP_EQ and ICMP_NE we can - // simplify the loop, if we peel 1 additional iteration, if there - // is no wrapping. - bool Increasing; - if (!LeftAR->isAffine() || LeftAR->getLoop() != &L || - !SE.isMonotonicPredicate(LeftAR, Pred, Increasing)) - continue; - (void)Increasing; - - // Check if extending the current DesiredPeelCount lets us evaluate Pred - // or !Pred in the loop body statically. - unsigned NewPeelCount = DesiredPeelCount; - - const SCEV *IterVal = LeftAR->evaluateAtIteration( - SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); - - // If the original condition is not known, get the negated predicate - // (which holds on the else branch) and check if it is known. This allows - // us to peel of iterations that make the original condition false. - if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) - Pred = ICmpInst::getInversePredicate(Pred); - - const SCEV *Step = LeftAR->getStepRecurrence(SE); - while (NewPeelCount < MaxPeelCount && - SE.isKnownPredicate(Pred, IterVal, RightSCEV)) { - IterVal = SE.getAddExpr(IterVal, Step); - NewPeelCount++; - } - - // Only peel the loop if the monotonic predicate !Pred becomes known in the - // first iteration of the loop body after peeling. - if (NewPeelCount > DesiredPeelCount && - SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, - RightSCEV)) - DesiredPeelCount = NewPeelCount; - } - - return DesiredPeelCount; -} - -// Return the number of iterations we want to peel off. -void llvm::computePeelCount(Loop *L, unsigned LoopSize, - TargetTransformInfo::UnrollingPreferences &UP, - unsigned &TripCount, ScalarEvolution &SE) { - assert(LoopSize > 0 && "Zero loop size is not allowed!"); - // Save the UP.PeelCount value set by the target in - // TTI.getUnrollingPreferences or by the flag -unroll-peel-count. - unsigned TargetPeelCount = UP.PeelCount; - UP.PeelCount = 0; - if (!canPeel(L)) - return; - - // Only try to peel innermost loops. - if (!L->empty()) - return; - - // If the user provided a peel count, use that. - bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; - if (UserPeelCount) { - LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount - << " iterations.\n"); - UP.PeelCount = UnrollForcePeelCount; - return; - } - - // Skip peeling if it's disabled. - if (!UP.AllowPeeling) - return; - - // Here we try to get rid of Phis which become invariants after 1, 2, ..., N - // iterations of the loop. For this we compute the number for iterations after - // which every Phi is guaranteed to become an invariant, and try to peel the - // maximum number of iterations among these values, thus turning all those - // Phis into invariants. - // First, check that we can peel at least one iteration. - if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) { - // Store the pre-calculated values here. - SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; - // Now go through all Phis to calculate their the number of iterations they - // need to become invariants. - // Start the max computation with the UP.PeelCount value set by the target - // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. - unsigned DesiredPeelCount = TargetPeelCount; - BasicBlock *BackEdge = L->getLoopLatch(); - assert(BackEdge && "Loop is not in simplified form?"); - for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { - PHINode *Phi = cast<PHINode>(&*BI); - unsigned ToInvariance = calculateIterationsToInvariance( - Phi, L, BackEdge, IterationsToInvariance); - if (ToInvariance != InfiniteIterationsToInvariance) - DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); - } - - // Pay respect to limitations implied by loop size and the max peel count. - unsigned MaxPeelCount = UnrollPeelMaxCount; - MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1); - - DesiredPeelCount = std::max(DesiredPeelCount, - countToEliminateCompares(*L, MaxPeelCount, SE)); - - if (DesiredPeelCount > 0) { - DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); - // Consider max peel count limitation. - assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); - LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount - << " iteration(s) to turn" - << " some Phis into invariants.\n"); - UP.PeelCount = DesiredPeelCount; - return; - } - } - - // Bail if we know the statically calculated trip count. - // In this case we rather prefer partial unrolling. - if (TripCount) - return; - - // If we don't know the trip count, but have reason to believe the average - // trip count is low, peeling should be beneficial, since we will usually - // hit the peeled section. - // We only do this in the presence of profile information, since otherwise - // our estimates of the trip count are not reliable enough. - if (L->getHeader()->getParent()->hasProfileData()) { - Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); - if (!PeelCount) - return; - - LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount - << "\n"); - - if (*PeelCount) { - if ((*PeelCount <= UnrollPeelMaxCount) && - (LoopSize * (*PeelCount + 1) <= UP.Threshold)) { - LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount - << " iterations.\n"); - UP.PeelCount = *PeelCount; - return; - } - LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); - LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); - LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) - << "\n"); - LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n"); - } - } -} - -/// Update the branch weights of the latch of a peeled-off loop -/// iteration. -/// This sets the branch weights for the latch of the recently peeled off loop -/// iteration correctly. -/// Our goal is to make sure that: -/// a) The total weight of all the copies of the loop body is preserved. -/// b) The total weight of the loop exit is preserved. -/// c) The body weight is reasonably distributed between the peeled iterations. -/// -/// \param Header The copy of the header block that belongs to next iteration. -/// \param LatchBR The copy of the latch branch that belongs to this iteration. -/// \param IterNumber The serial number of the iteration that was just -/// peeled off. -/// \param AvgIters The average number of iterations we expect the loop to have. -/// \param[in,out] PeeledHeaderWeight The total number of dynamic loop -/// iterations that are unaccounted for. As an input, it represents the number -/// of times we expect to enter the header of the iteration currently being -/// peeled off. The output is the number of times we expect to enter the -/// header of the next iteration. -static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, - unsigned IterNumber, unsigned AvgIters, - uint64_t &PeeledHeaderWeight) { - if (!PeeledHeaderWeight) - return; - // FIXME: Pick a more realistic distribution. - // Currently the proportion of weight we assign to the fall-through - // side of the branch drops linearly with the iteration number, and we use - // a 0.9 fudge factor to make the drop-off less sharp... - uint64_t FallThruWeight = - PeeledHeaderWeight * ((float)(AvgIters - IterNumber) / AvgIters * 0.9); - uint64_t ExitWeight = PeeledHeaderWeight - FallThruWeight; - PeeledHeaderWeight -= ExitWeight; - - unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); - MDBuilder MDB(LatchBR->getContext()); - MDNode *WeightNode = - HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThruWeight) - : MDB.createBranchWeights(FallThruWeight, ExitWeight); - LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); -} - -/// Initialize the weights. -/// -/// \param Header The header block. -/// \param LatchBR The latch branch. -/// \param AvgIters The average number of iterations we expect the loop to have. -/// \param[out] ExitWeight The # of times the edge from Latch to Exit is taken. -/// \param[out] CurHeaderWeight The # of times the header is executed. -static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR, - unsigned AvgIters, uint64_t &ExitWeight, - uint64_t &CurHeaderWeight) { - uint64_t TrueWeight, FalseWeight; - if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) - return; - unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; - ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; - // The # of times the loop body executes is the sum of the exit block - // is taken and the # of times the backedges are taken. - CurHeaderWeight = TrueWeight + FalseWeight; -} - -/// Update the weights of original Latch block after peeling off all iterations. -/// -/// \param Header The header block. -/// \param LatchBR The latch branch. -/// \param ExitWeight The weight of the edge from Latch to Exit block. -/// \param CurHeaderWeight The # of time the header is executed. -static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR, - uint64_t ExitWeight, uint64_t CurHeaderWeight) { - // Adjust the branch weights on the loop exit. - if (!ExitWeight) - return; - - // The backedge count is the difference of current header weight and - // current loop exit weight. If the current header weight is smaller than - // the current loop exit weight, we mark the loop backedge weight as 1. - uint64_t BackEdgeWeight = 0; - if (ExitWeight < CurHeaderWeight) - BackEdgeWeight = CurHeaderWeight - ExitWeight; - else - BackEdgeWeight = 1; - MDBuilder MDB(LatchBR->getContext()); - unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; - MDNode *WeightNode = - HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight) - : MDB.createBranchWeights(BackEdgeWeight, ExitWeight); - LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); -} - -/// Clones the body of the loop L, putting it between \p InsertTop and \p -/// InsertBot. -/// \param IterNumber The serial number of the iteration currently being -/// peeled off. -/// \param ExitEdges The exit edges of the original loop. -/// \param[out] NewBlocks A list of the blocks in the newly created clone -/// \param[out] VMap The value map between the loop and the new clone. -/// \param LoopBlocks A helper for DFS-traversal of the loop. -/// \param LVMap A value-map that maps instructions from the original loop to -/// instructions in the last peeled-off iteration. -static void cloneLoopBlocks( - Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, - SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *> > &ExitEdges, - SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, - ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, - LoopInfo *LI) { - BasicBlock *Header = L->getHeader(); - BasicBlock *Latch = L->getLoopLatch(); - BasicBlock *PreHeader = L->getLoopPreheader(); - - Function *F = Header->getParent(); - LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); - LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); - Loop *ParentLoop = L->getParentLoop(); - - // For each block in the original loop, create a new copy, - // and update the value map with the newly created values. - for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { - BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); - NewBlocks.push_back(NewBB); - - if (ParentLoop) - ParentLoop->addBasicBlockToLoop(NewBB, *LI); - - VMap[*BB] = NewBB; - - // If dominator tree is available, insert nodes to represent cloned blocks. - if (DT) { - if (Header == *BB) - DT->addNewBlock(NewBB, InsertTop); - else { - DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); - // VMap must contain entry for IDom, as the iteration order is RPO. - DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); - } - } - } - - // Hook-up the control flow for the newly inserted blocks. - // The new header is hooked up directly to the "top", which is either - // the original loop preheader (for the first iteration) or the previous - // iteration's exiting block (for every other iteration) - InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); - - // Similarly, for the latch: - // The original exiting edge is still hooked up to the loop exit. - // The backedge now goes to the "bottom", which is either the loop's real - // header (for the last peeled iteration) or the copied header of the next - // iteration (for every other iteration) - BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); - BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); - for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx) - if (LatchBR->getSuccessor(idx) == Header) { - LatchBR->setSuccessor(idx, InsertBot); - break; - } - if (DT) - DT->changeImmediateDominator(InsertBot, NewLatch); - - // The new copy of the loop body starts with a bunch of PHI nodes - // that pick an incoming value from either the preheader, or the previous - // loop iteration. Since this copy is no longer part of the loop, we - // resolve this statically: - // For the first iteration, we use the value from the preheader directly. - // For any other iteration, we replace the phi with the value generated by - // the immediately preceding clone of the loop body (which represents - // the previous iteration). - for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { - PHINode *NewPHI = cast<PHINode>(VMap[&*I]); - if (IterNumber == 0) { - VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); - } else { - Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); - Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); - if (LatchInst && L->contains(LatchInst)) - VMap[&*I] = LVMap[LatchInst]; - else - VMap[&*I] = LatchVal; - } - cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); - } - - // Fix up the outgoing values - we need to add a value for the iteration - // we've just created. Note that this must happen *after* the incoming - // values are adjusted, since the value going out of the latch may also be - // a value coming into the header. - for (auto Edge : ExitEdges) - for (PHINode &PHI : Edge.second->phis()) { - Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); - Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); - if (LatchInst && L->contains(LatchInst)) - LatchVal = VMap[LatchVal]; - PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); - } - - // LastValueMap is updated with the values for the current loop - // which are used the next time this function is called. - for (const auto &KV : VMap) - LVMap[KV.first] = KV.second; -} - -/// Peel off the first \p PeelCount iterations of loop \p L. -/// -/// Note that this does not peel them off as a single straight-line block. -/// Rather, each iteration is peeled off separately, and needs to check the -/// exit condition. -/// For loops that dynamically execute \p PeelCount iterations or less -/// this provides a benefit, since the peeled off iterations, which account -/// for the bulk of dynamic execution, can be further simplified by scalar -/// optimizations. -bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, - ScalarEvolution *SE, DominatorTree *DT, - AssumptionCache *AC, bool PreserveLCSSA) { - assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); - assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); - - LoopBlocksDFS LoopBlocks(L); - LoopBlocks.perform(LI); - - BasicBlock *Header = L->getHeader(); - BasicBlock *PreHeader = L->getLoopPreheader(); - BasicBlock *Latch = L->getLoopLatch(); - SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; - L->getExitEdges(ExitEdges); - - DenseMap<BasicBlock *, BasicBlock *> ExitIDom; - if (DT) { - assert(L->hasDedicatedExits() && "No dedicated exits?"); - for (auto Edge : ExitEdges) { - if (ExitIDom.count(Edge.second)) - continue; - BasicBlock *BB = DT->getNode(Edge.second)->getIDom()->getBlock(); - assert(L->contains(BB) && "IDom is not in a loop"); - ExitIDom[Edge.second] = BB; - } - } - - Function *F = Header->getParent(); - - // Set up all the necessary basic blocks. It is convenient to split the - // preheader into 3 parts - two blocks to anchor the peeled copy of the loop - // body, and a new preheader for the "real" loop. - - // Peeling the first iteration transforms. - // - // PreHeader: - // ... - // Header: - // LoopBody - // If (cond) goto Header - // Exit: - // - // into - // - // InsertTop: - // LoopBody - // If (!cond) goto Exit - // InsertBot: - // NewPreHeader: - // ... - // Header: - // LoopBody - // If (cond) goto Header - // Exit: - // - // Each following iteration will split the current bottom anchor in two, - // and put the new copy of the loop body between these two blocks. That is, - // after peeling another iteration from the example above, we'll split - // InsertBot, and get: - // - // InsertTop: - // LoopBody - // If (!cond) goto Exit - // InsertBot: - // LoopBody - // If (!cond) goto Exit - // InsertBot.next: - // NewPreHeader: - // ... - // Header: - // LoopBody - // If (cond) goto Header - // Exit: - - BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); - BasicBlock *InsertBot = - SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); - BasicBlock *NewPreHeader = - SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); - - InsertTop->setName(Header->getName() + ".peel.begin"); - InsertBot->setName(Header->getName() + ".peel.next"); - NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); - - ValueToValueMapTy LVMap; - - // If we have branch weight information, we'll want to update it for the - // newly created branches. - BranchInst *LatchBR = - cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); - uint64_t ExitWeight = 0, CurHeaderWeight = 0; - initBranchWeights(Header, LatchBR, PeelCount, ExitWeight, CurHeaderWeight); - - // For each peeled-off iteration, make a copy of the loop. - for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { - SmallVector<BasicBlock *, 8> NewBlocks; - ValueToValueMapTy VMap; - - // Subtract the exit weight from the current header weight -- the exit - // weight is exactly the weight of the previous iteration's header. - // FIXME: due to the way the distribution is constructed, we need a - // guard here to make sure we don't end up with non-positive weights. - if (ExitWeight < CurHeaderWeight) - CurHeaderWeight -= ExitWeight; - else - CurHeaderWeight = 1; - - cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, - LoopBlocks, VMap, LVMap, DT, LI); - - // Remap to use values from the current iteration instead of the - // previous one. - remapInstructionsInBlocks(NewBlocks, VMap); - - if (DT) { - // Latches of the cloned loops dominate over the loop exit, so idom of the - // latter is the first cloned loop body, as original PreHeader dominates - // the original loop body. - if (Iter == 0) - for (auto Exit : ExitIDom) - DT->changeImmediateDominator(Exit.first, - cast<BasicBlock>(LVMap[Exit.second])); -#ifdef EXPENSIVE_CHECKS - assert(DT->verify(DominatorTree::VerificationLevel::Fast)); -#endif - } - - auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); - updateBranchWeights(InsertBot, LatchBRCopy, Iter, - PeelCount, ExitWeight); - // Remove Loop metadata from the latch branch instruction - // because it is not the Loop's latch branch anymore. - LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); - - InsertTop = InsertBot; - InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); - InsertBot->setName(Header->getName() + ".peel.next"); - - F->getBasicBlockList().splice(InsertTop->getIterator(), - F->getBasicBlockList(), - NewBlocks[0]->getIterator(), F->end()); - } - - // Now adjust the phi nodes in the loop header to get their initial values - // from the last peeled-off iteration instead of the preheader. - for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { - PHINode *PHI = cast<PHINode>(I); - Value *NewVal = PHI->getIncomingValueForBlock(Latch); - Instruction *LatchInst = dyn_cast<Instruction>(NewVal); - if (LatchInst && L->contains(LatchInst)) - NewVal = LVMap[LatchInst]; - - PHI->setIncomingValueForBlock(NewPreHeader, NewVal); - } - - fixupBranchWeights(Header, LatchBR, ExitWeight, CurHeaderWeight); - - if (Loop *ParentLoop = L->getParentLoop()) - L = ParentLoop; - - // We modified the loop, update SE. - SE->forgetTopmostLoop(L); - - // Finally DomtTree must be correct. - assert(DT->verify(DominatorTree::VerificationLevel::Fast)); - - // FIXME: Incrementally update loop-simplify - simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA); - - NumPeeled++; - - return true; -} |
