diff options
| author | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
|---|---|---|
| committer | Dimitry Andric <dim@FreeBSD.org> | 2019-12-20 19:53:05 +0000 |
| commit | 0b57cec536236d46e3dba9bd041533462f33dbb7 (patch) | |
| tree | 56229dbdbbf76d18580f72f789003db17246c8d9 /contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp | |
| parent | 718ef55ec7785aae63f98f8ca05dc07ed399c16d (diff) | |
Notes
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp')
| -rw-r--r-- | contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp | 6081 |
1 files changed, 0 insertions, 6081 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp b/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp deleted file mode 100644 index 6e2ef67408d9..000000000000 --- a/contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp +++ /dev/null @@ -1,6081 +0,0 @@ -//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Peephole optimize the CFG. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/Optional.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SetOperations.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/ConstantFolding.h" -#include "llvm/Analysis/EHPersonalities.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/MemorySSA.h" -#include "llvm/Analysis/MemorySSAUpdater.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/CallSite.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/ConstantRange.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/NoFolder.h" -#include "llvm/IR/Operator.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/KnownBits.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/ValueMapper.h" -#include <algorithm> -#include <cassert> -#include <climits> -#include <cstddef> -#include <cstdint> -#include <iterator> -#include <map> -#include <set> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "simplifycfg" - -// Chosen as 2 so as to be cheap, but still to have enough power to fold -// a select, so the "clamp" idiom (of a min followed by a max) will be caught. -// To catch this, we need to fold a compare and a select, hence '2' being the -// minimum reasonable default. -static cl::opt<unsigned> PHINodeFoldingThreshold( - "phi-node-folding-threshold", cl::Hidden, cl::init(2), - cl::desc( - "Control the amount of phi node folding to perform (default = 2)")); - -static cl::opt<bool> DupRet( - "simplifycfg-dup-ret", cl::Hidden, cl::init(false), - cl::desc("Duplicate return instructions into unconditional branches")); - -static cl::opt<bool> - SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true), - cl::desc("Sink common instructions down to the end block")); - -static cl::opt<bool> HoistCondStores( - "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true), - cl::desc("Hoist conditional stores if an unconditional store precedes")); - -static cl::opt<bool> MergeCondStores( - "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true), - cl::desc("Hoist conditional stores even if an unconditional store does not " - "precede - hoist multiple conditional stores into a single " - "predicated store")); - -static cl::opt<bool> MergeCondStoresAggressively( - "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false), - cl::desc("When merging conditional stores, do so even if the resultant " - "basic blocks are unlikely to be if-converted as a result")); - -static cl::opt<bool> SpeculateOneExpensiveInst( - "speculate-one-expensive-inst", cl::Hidden, cl::init(true), - cl::desc("Allow exactly one expensive instruction to be speculatively " - "executed")); - -static cl::opt<unsigned> MaxSpeculationDepth( - "max-speculation-depth", cl::Hidden, cl::init(10), - cl::desc("Limit maximum recursion depth when calculating costs of " - "speculatively executed instructions")); - -STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps"); -STATISTIC(NumLinearMaps, - "Number of switch instructions turned into linear mapping"); -STATISTIC(NumLookupTables, - "Number of switch instructions turned into lookup tables"); -STATISTIC( - NumLookupTablesHoles, - "Number of switch instructions turned into lookup tables (holes checked)"); -STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares"); -STATISTIC(NumSinkCommons, - "Number of common instructions sunk down to the end block"); -STATISTIC(NumSpeculations, "Number of speculative executed instructions"); - -namespace { - -// The first field contains the value that the switch produces when a certain -// case group is selected, and the second field is a vector containing the -// cases composing the case group. -using SwitchCaseResultVectorTy = - SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>; - -// The first field contains the phi node that generates a result of the switch -// and the second field contains the value generated for a certain case in the -// switch for that PHI. -using SwitchCaseResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; - -/// ValueEqualityComparisonCase - Represents a case of a switch. -struct ValueEqualityComparisonCase { - ConstantInt *Value; - BasicBlock *Dest; - - ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest) - : Value(Value), Dest(Dest) {} - - bool operator<(ValueEqualityComparisonCase RHS) const { - // Comparing pointers is ok as we only rely on the order for uniquing. - return Value < RHS.Value; - } - - bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; } -}; - -class SimplifyCFGOpt { - const TargetTransformInfo &TTI; - const DataLayout &DL; - SmallPtrSetImpl<BasicBlock *> *LoopHeaders; - const SimplifyCFGOptions &Options; - bool Resimplify; - - Value *isValueEqualityComparison(Instruction *TI); - BasicBlock *GetValueEqualityComparisonCases( - Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases); - bool SimplifyEqualityComparisonWithOnlyPredecessor(Instruction *TI, - BasicBlock *Pred, - IRBuilder<> &Builder); - bool FoldValueComparisonIntoPredecessors(Instruction *TI, - IRBuilder<> &Builder); - - bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder); - bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder); - bool SimplifySingleResume(ResumeInst *RI); - bool SimplifyCommonResume(ResumeInst *RI); - bool SimplifyCleanupReturn(CleanupReturnInst *RI); - bool SimplifyUnreachable(UnreachableInst *UI); - bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder); - bool SimplifyIndirectBr(IndirectBrInst *IBI); - bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder); - bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder); - - bool tryToSimplifyUncondBranchWithICmpInIt(ICmpInst *ICI, - IRBuilder<> &Builder); - -public: - SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL, - SmallPtrSetImpl<BasicBlock *> *LoopHeaders, - const SimplifyCFGOptions &Opts) - : TTI(TTI), DL(DL), LoopHeaders(LoopHeaders), Options(Opts) {} - - bool run(BasicBlock *BB); - bool simplifyOnce(BasicBlock *BB); - - // Helper to set Resimplify and return change indication. - bool requestResimplify() { - Resimplify = true; - return true; - } -}; - -} // end anonymous namespace - -/// Return true if it is safe to merge these two -/// terminator instructions together. -static bool -SafeToMergeTerminators(Instruction *SI1, Instruction *SI2, - SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) { - if (SI1 == SI2) - return false; // Can't merge with self! - - // It is not safe to merge these two switch instructions if they have a common - // successor, and if that successor has a PHI node, and if *that* PHI node has - // conflicting incoming values from the two switch blocks. - BasicBlock *SI1BB = SI1->getParent(); - BasicBlock *SI2BB = SI2->getParent(); - - SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); - bool Fail = false; - for (BasicBlock *Succ : successors(SI2BB)) - if (SI1Succs.count(Succ)) - for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { - PHINode *PN = cast<PHINode>(BBI); - if (PN->getIncomingValueForBlock(SI1BB) != - PN->getIncomingValueForBlock(SI2BB)) { - if (FailBlocks) - FailBlocks->insert(Succ); - Fail = true; - } - } - - return !Fail; -} - -/// Return true if it is safe and profitable to merge these two terminator -/// instructions together, where SI1 is an unconditional branch. PhiNodes will -/// store all PHI nodes in common successors. -static bool -isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2, - Instruction *Cond, - SmallVectorImpl<PHINode *> &PhiNodes) { - if (SI1 == SI2) - return false; // Can't merge with self! - assert(SI1->isUnconditional() && SI2->isConditional()); - - // We fold the unconditional branch if we can easily update all PHI nodes in - // common successors: - // 1> We have a constant incoming value for the conditional branch; - // 2> We have "Cond" as the incoming value for the unconditional branch; - // 3> SI2->getCondition() and Cond have same operands. - CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition()); - if (!Ci2) - return false; - if (!(Cond->getOperand(0) == Ci2->getOperand(0) && - Cond->getOperand(1) == Ci2->getOperand(1)) && - !(Cond->getOperand(0) == Ci2->getOperand(1) && - Cond->getOperand(1) == Ci2->getOperand(0))) - return false; - - BasicBlock *SI1BB = SI1->getParent(); - BasicBlock *SI2BB = SI2->getParent(); - SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB)); - for (BasicBlock *Succ : successors(SI2BB)) - if (SI1Succs.count(Succ)) - for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) { - PHINode *PN = cast<PHINode>(BBI); - if (PN->getIncomingValueForBlock(SI1BB) != Cond || - !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB))) - return false; - PhiNodes.push_back(PN); - } - return true; -} - -/// Update PHI nodes in Succ to indicate that there will now be entries in it -/// from the 'NewPred' block. The values that will be flowing into the PHI nodes -/// will be the same as those coming in from ExistPred, an existing predecessor -/// of Succ. -static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred, - BasicBlock *ExistPred, - MemorySSAUpdater *MSSAU = nullptr) { - for (PHINode &PN : Succ->phis()) - PN.addIncoming(PN.getIncomingValueForBlock(ExistPred), NewPred); - if (MSSAU) - if (auto *MPhi = MSSAU->getMemorySSA()->getMemoryAccess(Succ)) - MPhi->addIncoming(MPhi->getIncomingValueForBlock(ExistPred), NewPred); -} - -/// Compute an abstract "cost" of speculating the given instruction, -/// which is assumed to be safe to speculate. TCC_Free means cheap, -/// TCC_Basic means less cheap, and TCC_Expensive means prohibitively -/// expensive. -static unsigned ComputeSpeculationCost(const User *I, - const TargetTransformInfo &TTI) { - assert(isSafeToSpeculativelyExecute(I) && - "Instruction is not safe to speculatively execute!"); - return TTI.getUserCost(I); -} - -/// If we have a merge point of an "if condition" as accepted above, -/// return true if the specified value dominates the block. We -/// don't handle the true generality of domination here, just a special case -/// which works well enough for us. -/// -/// If AggressiveInsts is non-null, and if V does not dominate BB, we check to -/// see if V (which must be an instruction) and its recursive operands -/// that do not dominate BB have a combined cost lower than CostRemaining and -/// are non-trapping. If both are true, the instruction is inserted into the -/// set and true is returned. -/// -/// The cost for most non-trapping instructions is defined as 1 except for -/// Select whose cost is 2. -/// -/// After this function returns, CostRemaining is decreased by the cost of -/// V plus its non-dominating operands. If that cost is greater than -/// CostRemaining, false is returned and CostRemaining is undefined. -static bool DominatesMergePoint(Value *V, BasicBlock *BB, - SmallPtrSetImpl<Instruction *> &AggressiveInsts, - unsigned &CostRemaining, - const TargetTransformInfo &TTI, - unsigned Depth = 0) { - // It is possible to hit a zero-cost cycle (phi/gep instructions for example), - // so limit the recursion depth. - // TODO: While this recursion limit does prevent pathological behavior, it - // would be better to track visited instructions to avoid cycles. - if (Depth == MaxSpeculationDepth) - return false; - - Instruction *I = dyn_cast<Instruction>(V); - if (!I) { - // Non-instructions all dominate instructions, but not all constantexprs - // can be executed unconditionally. - if (ConstantExpr *C = dyn_cast<ConstantExpr>(V)) - if (C->canTrap()) - return false; - return true; - } - BasicBlock *PBB = I->getParent(); - - // We don't want to allow weird loops that might have the "if condition" in - // the bottom of this block. - if (PBB == BB) - return false; - - // If this instruction is defined in a block that contains an unconditional - // branch to BB, then it must be in the 'conditional' part of the "if - // statement". If not, it definitely dominates the region. - BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()); - if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB) - return true; - - // If we have seen this instruction before, don't count it again. - if (AggressiveInsts.count(I)) - return true; - - // Okay, it looks like the instruction IS in the "condition". Check to - // see if it's a cheap instruction to unconditionally compute, and if it - // only uses stuff defined outside of the condition. If so, hoist it out. - if (!isSafeToSpeculativelyExecute(I)) - return false; - - unsigned Cost = ComputeSpeculationCost(I, TTI); - - // Allow exactly one instruction to be speculated regardless of its cost - // (as long as it is safe to do so). - // This is intended to flatten the CFG even if the instruction is a division - // or other expensive operation. The speculation of an expensive instruction - // is expected to be undone in CodeGenPrepare if the speculation has not - // enabled further IR optimizations. - if (Cost > CostRemaining && - (!SpeculateOneExpensiveInst || !AggressiveInsts.empty() || Depth > 0)) - return false; - - // Avoid unsigned wrap. - CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost; - - // Okay, we can only really hoist these out if their operands do - // not take us over the cost threshold. - for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) - if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI, - Depth + 1)) - return false; - // Okay, it's safe to do this! Remember this instruction. - AggressiveInsts.insert(I); - return true; -} - -/// Extract ConstantInt from value, looking through IntToPtr -/// and PointerNullValue. Return NULL if value is not a constant int. -static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) { - // Normal constant int. - ConstantInt *CI = dyn_cast<ConstantInt>(V); - if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy()) - return CI; - - // This is some kind of pointer constant. Turn it into a pointer-sized - // ConstantInt if possible. - IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType())); - - // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*). - if (isa<ConstantPointerNull>(V)) - return ConstantInt::get(PtrTy, 0); - - // IntToPtr const int. - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) - if (CE->getOpcode() == Instruction::IntToPtr) - if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) { - // The constant is very likely to have the right type already. - if (CI->getType() == PtrTy) - return CI; - else - return cast<ConstantInt>( - ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false)); - } - return nullptr; -} - -namespace { - -/// Given a chain of or (||) or and (&&) comparison of a value against a -/// constant, this will try to recover the information required for a switch -/// structure. -/// It will depth-first traverse the chain of comparison, seeking for patterns -/// like %a == 12 or %a < 4 and combine them to produce a set of integer -/// representing the different cases for the switch. -/// Note that if the chain is composed of '||' it will build the set of elements -/// that matches the comparisons (i.e. any of this value validate the chain) -/// while for a chain of '&&' it will build the set elements that make the test -/// fail. -struct ConstantComparesGatherer { - const DataLayout &DL; - - /// Value found for the switch comparison - Value *CompValue = nullptr; - - /// Extra clause to be checked before the switch - Value *Extra = nullptr; - - /// Set of integers to match in switch - SmallVector<ConstantInt *, 8> Vals; - - /// Number of comparisons matched in the and/or chain - unsigned UsedICmps = 0; - - /// Construct and compute the result for the comparison instruction Cond - ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL) : DL(DL) { - gather(Cond); - } - - ConstantComparesGatherer(const ConstantComparesGatherer &) = delete; - ConstantComparesGatherer & - operator=(const ConstantComparesGatherer &) = delete; - -private: - /// Try to set the current value used for the comparison, it succeeds only if - /// it wasn't set before or if the new value is the same as the old one - bool setValueOnce(Value *NewVal) { - if (CompValue && CompValue != NewVal) - return false; - CompValue = NewVal; - return (CompValue != nullptr); - } - - /// Try to match Instruction "I" as a comparison against a constant and - /// populates the array Vals with the set of values that match (or do not - /// match depending on isEQ). - /// Return false on failure. On success, the Value the comparison matched - /// against is placed in CompValue. - /// If CompValue is already set, the function is expected to fail if a match - /// is found but the value compared to is different. - bool matchInstruction(Instruction *I, bool isEQ) { - // If this is an icmp against a constant, handle this as one of the cases. - ICmpInst *ICI; - ConstantInt *C; - if (!((ICI = dyn_cast<ICmpInst>(I)) && - (C = GetConstantInt(I->getOperand(1), DL)))) { - return false; - } - - Value *RHSVal; - const APInt *RHSC; - - // Pattern match a special case - // (x & ~2^z) == y --> x == y || x == y|2^z - // This undoes a transformation done by instcombine to fuse 2 compares. - if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { - // It's a little bit hard to see why the following transformations are - // correct. Here is a CVC3 program to verify them for 64-bit values: - - /* - ONE : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63); - x : BITVECTOR(64); - y : BITVECTOR(64); - z : BITVECTOR(64); - mask : BITVECTOR(64) = BVSHL(ONE, z); - QUERY( (y & ~mask = y) => - ((x & ~mask = y) <=> (x = y OR x = (y | mask))) - ); - QUERY( (y | mask = y) => - ((x | mask = y) <=> (x = y OR x = (y & ~mask))) - ); - */ - - // Please note that each pattern must be a dual implication (<--> or - // iff). One directional implication can create spurious matches. If the - // implication is only one-way, an unsatisfiable condition on the left - // side can imply a satisfiable condition on the right side. Dual - // implication ensures that satisfiable conditions are transformed to - // other satisfiable conditions and unsatisfiable conditions are - // transformed to other unsatisfiable conditions. - - // Here is a concrete example of a unsatisfiable condition on the left - // implying a satisfiable condition on the right: - // - // mask = (1 << z) - // (x & ~mask) == y --> (x == y || x == (y | mask)) - // - // Substituting y = 3, z = 0 yields: - // (x & -2) == 3 --> (x == 3 || x == 2) - - // Pattern match a special case: - /* - QUERY( (y & ~mask = y) => - ((x & ~mask = y) <=> (x = y OR x = (y | mask))) - ); - */ - if (match(ICI->getOperand(0), - m_And(m_Value(RHSVal), m_APInt(RHSC)))) { - APInt Mask = ~*RHSC; - if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) { - // If we already have a value for the switch, it has to match! - if (!setValueOnce(RHSVal)) - return false; - - Vals.push_back(C); - Vals.push_back( - ConstantInt::get(C->getContext(), - C->getValue() | Mask)); - UsedICmps++; - return true; - } - } - - // Pattern match a special case: - /* - QUERY( (y | mask = y) => - ((x | mask = y) <=> (x = y OR x = (y & ~mask))) - ); - */ - if (match(ICI->getOperand(0), - m_Or(m_Value(RHSVal), m_APInt(RHSC)))) { - APInt Mask = *RHSC; - if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) { - // If we already have a value for the switch, it has to match! - if (!setValueOnce(RHSVal)) - return false; - - Vals.push_back(C); - Vals.push_back(ConstantInt::get(C->getContext(), - C->getValue() & ~Mask)); - UsedICmps++; - return true; - } - } - - // If we already have a value for the switch, it has to match! - if (!setValueOnce(ICI->getOperand(0))) - return false; - - UsedICmps++; - Vals.push_back(C); - return ICI->getOperand(0); - } - - // If we have "x ult 3", for example, then we can add 0,1,2 to the set. - ConstantRange Span = ConstantRange::makeAllowedICmpRegion( - ICI->getPredicate(), C->getValue()); - - // Shift the range if the compare is fed by an add. This is the range - // compare idiom as emitted by instcombine. - Value *CandidateVal = I->getOperand(0); - if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) { - Span = Span.subtract(*RHSC); - CandidateVal = RHSVal; - } - - // If this is an and/!= check, then we are looking to build the set of - // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into - // x != 0 && x != 1. - if (!isEQ) - Span = Span.inverse(); - - // If there are a ton of values, we don't want to make a ginormous switch. - if (Span.isSizeLargerThan(8) || Span.isEmptySet()) { - return false; - } - - // If we already have a value for the switch, it has to match! - if (!setValueOnce(CandidateVal)) - return false; - - // Add all values from the range to the set - for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp) - Vals.push_back(ConstantInt::get(I->getContext(), Tmp)); - - UsedICmps++; - return true; - } - - /// Given a potentially 'or'd or 'and'd together collection of icmp - /// eq/ne/lt/gt instructions that compare a value against a constant, extract - /// the value being compared, and stick the list constants into the Vals - /// vector. - /// One "Extra" case is allowed to differ from the other. - void gather(Value *V) { - Instruction *I = dyn_cast<Instruction>(V); - bool isEQ = (I->getOpcode() == Instruction::Or); - - // Keep a stack (SmallVector for efficiency) for depth-first traversal - SmallVector<Value *, 8> DFT; - SmallPtrSet<Value *, 8> Visited; - - // Initialize - Visited.insert(V); - DFT.push_back(V); - - while (!DFT.empty()) { - V = DFT.pop_back_val(); - - if (Instruction *I = dyn_cast<Instruction>(V)) { - // If it is a || (or && depending on isEQ), process the operands. - if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) { - if (Visited.insert(I->getOperand(1)).second) - DFT.push_back(I->getOperand(1)); - if (Visited.insert(I->getOperand(0)).second) - DFT.push_back(I->getOperand(0)); - continue; - } - - // Try to match the current instruction - if (matchInstruction(I, isEQ)) - // Match succeed, continue the loop - continue; - } - - // One element of the sequence of || (or &&) could not be match as a - // comparison against the same value as the others. - // We allow only one "Extra" case to be checked before the switch - if (!Extra) { - Extra = V; - continue; - } - // Failed to parse a proper sequence, abort now - CompValue = nullptr; - break; - } - } -}; - -} // end anonymous namespace - -static void EraseTerminatorAndDCECond(Instruction *TI, - MemorySSAUpdater *MSSAU = nullptr) { - Instruction *Cond = nullptr; - if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - Cond = dyn_cast<Instruction>(SI->getCondition()); - } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { - if (BI->isConditional()) - Cond = dyn_cast<Instruction>(BI->getCondition()); - } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) { - Cond = dyn_cast<Instruction>(IBI->getAddress()); - } - - TI->eraseFromParent(); - if (Cond) - RecursivelyDeleteTriviallyDeadInstructions(Cond, nullptr, MSSAU); -} - -/// Return true if the specified terminator checks -/// to see if a value is equal to constant integer value. -Value *SimplifyCFGOpt::isValueEqualityComparison(Instruction *TI) { - Value *CV = nullptr; - if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - // Do not permit merging of large switch instructions into their - // predecessors unless there is only one predecessor. - if (!SI->getParent()->hasNPredecessorsOrMore(128 / SI->getNumSuccessors())) - CV = SI->getCondition(); - } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) - if (BI->isConditional() && BI->getCondition()->hasOneUse()) - if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) { - if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL)) - CV = ICI->getOperand(0); - } - - // Unwrap any lossless ptrtoint cast. - if (CV) { - if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) { - Value *Ptr = PTII->getPointerOperand(); - if (PTII->getType() == DL.getIntPtrType(Ptr->getType())) - CV = Ptr; - } - } - return CV; -} - -/// Given a value comparison instruction, -/// decode all of the 'cases' that it represents and return the 'default' block. -BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases( - Instruction *TI, std::vector<ValueEqualityComparisonCase> &Cases) { - if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { - Cases.reserve(SI->getNumCases()); - for (auto Case : SI->cases()) - Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(), - Case.getCaseSuccessor())); - return SI->getDefaultDest(); - } - - BranchInst *BI = cast<BranchInst>(TI); - ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); - BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE); - Cases.push_back(ValueEqualityComparisonCase( - GetConstantInt(ICI->getOperand(1), DL), Succ)); - return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ); -} - -/// Given a vector of bb/value pairs, remove any entries -/// in the list that match the specified block. -static void -EliminateBlockCases(BasicBlock *BB, - std::vector<ValueEqualityComparisonCase> &Cases) { - Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end()); -} - -/// Return true if there are any keys in C1 that exist in C2 as well. -static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1, - std::vector<ValueEqualityComparisonCase> &C2) { - std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2; - - // Make V1 be smaller than V2. - if (V1->size() > V2->size()) - std::swap(V1, V2); - - if (V1->empty()) - return false; - if (V1->size() == 1) { - // Just scan V2. - ConstantInt *TheVal = (*V1)[0].Value; - for (unsigned i = 0, e = V2->size(); i != e; ++i) - if (TheVal == (*V2)[i].Value) - return true; - } - - // Otherwise, just sort both lists and compare element by element. - array_pod_sort(V1->begin(), V1->end()); - array_pod_sort(V2->begin(), V2->end()); - unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size(); - while (i1 != e1 && i2 != e2) { - if ((*V1)[i1].Value == (*V2)[i2].Value) - return true; - if ((*V1)[i1].Value < (*V2)[i2].Value) - ++i1; - else - ++i2; - } - return false; -} - -// Set branch weights on SwitchInst. This sets the metadata if there is at -// least one non-zero weight. -static void setBranchWeights(SwitchInst *SI, ArrayRef<uint32_t> Weights) { - // Check that there is at least one non-zero weight. Otherwise, pass - // nullptr to setMetadata which will erase the existing metadata. - MDNode *N = nullptr; - if (llvm::any_of(Weights, [](uint32_t W) { return W != 0; })) - N = MDBuilder(SI->getParent()->getContext()).createBranchWeights(Weights); - SI->setMetadata(LLVMContext::MD_prof, N); -} - -// Similar to the above, but for branch and select instructions that take -// exactly 2 weights. -static void setBranchWeights(Instruction *I, uint32_t TrueWeight, - uint32_t FalseWeight) { - assert(isa<BranchInst>(I) || isa<SelectInst>(I)); - // Check that there is at least one non-zero weight. Otherwise, pass - // nullptr to setMetadata which will erase the existing metadata. - MDNode *N = nullptr; - if (TrueWeight || FalseWeight) - N = MDBuilder(I->getParent()->getContext()) - .createBranchWeights(TrueWeight, FalseWeight); - I->setMetadata(LLVMContext::MD_prof, N); -} - -/// If TI is known to be a terminator instruction and its block is known to -/// only have a single predecessor block, check to see if that predecessor is -/// also a value comparison with the same value, and if that comparison -/// determines the outcome of this comparison. If so, simplify TI. This does a -/// very limited form of jump threading. -bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor( - Instruction *TI, BasicBlock *Pred, IRBuilder<> &Builder) { - Value *PredVal = isValueEqualityComparison(Pred->getTerminator()); - if (!PredVal) - return false; // Not a value comparison in predecessor. - - Value *ThisVal = isValueEqualityComparison(TI); - assert(ThisVal && "This isn't a value comparison!!"); - if (ThisVal != PredVal) - return false; // Different predicates. - - // TODO: Preserve branch weight metadata, similarly to how - // FoldValueComparisonIntoPredecessors preserves it. - - // Find out information about when control will move from Pred to TI's block. - std::vector<ValueEqualityComparisonCase> PredCases; - BasicBlock *PredDef = - GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases); - EliminateBlockCases(PredDef, PredCases); // Remove default from cases. - - // Find information about how control leaves this block. - std::vector<ValueEqualityComparisonCase> ThisCases; - BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases); - EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases. - - // If TI's block is the default block from Pred's comparison, potentially - // simplify TI based on this knowledge. - if (PredDef == TI->getParent()) { - // If we are here, we know that the value is none of those cases listed in - // PredCases. If there are any cases in ThisCases that are in PredCases, we - // can simplify TI. - if (!ValuesOverlap(PredCases, ThisCases)) - return false; - - if (isa<BranchInst>(TI)) { - // Okay, one of the successors of this condbr is dead. Convert it to a - // uncond br. - assert(ThisCases.size() == 1 && "Branch can only have one case!"); - // Insert the new branch. - Instruction *NI = Builder.CreateBr(ThisDef); - (void)NI; - - // Remove PHI node entries for the dead edge. - ThisCases[0].Dest->removePredecessor(TI->getParent()); - - LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() - << "Through successor TI: " << *TI << "Leaving: " << *NI - << "\n"); - - EraseTerminatorAndDCECond(TI); - return true; - } - - SwitchInstProfUpdateWrapper SI = *cast<SwitchInst>(TI); - // Okay, TI has cases that are statically dead, prune them away. - SmallPtrSet<Constant *, 16> DeadCases; - for (unsigned i = 0, e = PredCases.size(); i != e; ++i) - DeadCases.insert(PredCases[i].Value); - - LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() - << "Through successor TI: " << *TI); - - for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) { - --i; - if (DeadCases.count(i->getCaseValue())) { - i->getCaseSuccessor()->removePredecessor(TI->getParent()); - SI.removeCase(i); - } - } - LLVM_DEBUG(dbgs() << "Leaving: " << *TI << "\n"); - return true; - } - - // Otherwise, TI's block must correspond to some matched value. Find out - // which value (or set of values) this is. - ConstantInt *TIV = nullptr; - BasicBlock *TIBB = TI->getParent(); - for (unsigned i = 0, e = PredCases.size(); i != e; ++i) - if (PredCases[i].Dest == TIBB) { - if (TIV) - return false; // Cannot handle multiple values coming to this block. - TIV = PredCases[i].Value; - } - assert(TIV && "No edge from pred to succ?"); - - // Okay, we found the one constant that our value can be if we get into TI's - // BB. Find out which successor will unconditionally be branched to. - BasicBlock *TheRealDest = nullptr; - for (unsigned i = 0, e = ThisCases.size(); i != e; ++i) - if (ThisCases[i].Value == TIV) { - TheRealDest = ThisCases[i].Dest; - break; - } - - // If not handled by any explicit cases, it is handled by the default case. - if (!TheRealDest) - TheRealDest = ThisDef; - - // Remove PHI node entries for dead edges. - BasicBlock *CheckEdge = TheRealDest; - for (BasicBlock *Succ : successors(TIBB)) - if (Succ != CheckEdge) - Succ->removePredecessor(TIBB); - else - CheckEdge = nullptr; - - // Insert the new branch. - Instruction *NI = Builder.CreateBr(TheRealDest); - (void)NI; - - LLVM_DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator() - << "Through successor TI: " << *TI << "Leaving: " << *NI - << "\n"); - - EraseTerminatorAndDCECond(TI); - return true; -} - -namespace { - -/// This class implements a stable ordering of constant -/// integers that does not depend on their address. This is important for -/// applications that sort ConstantInt's to ensure uniqueness. -struct ConstantIntOrdering { - bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const { - return LHS->getValue().ult(RHS->getValue()); - } -}; - -} // end anonymous namespace - -static int ConstantIntSortPredicate(ConstantInt *const *P1, - ConstantInt *const *P2) { - const ConstantInt *LHS = *P1; - const ConstantInt *RHS = *P2; - if (LHS == RHS) - return 0; - return LHS->getValue().ult(RHS->getValue()) ? 1 : -1; -} - -static inline bool HasBranchWeights(const Instruction *I) { - MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof); - if (ProfMD && ProfMD->getOperand(0)) - if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0))) - return MDS->getString().equals("branch_weights"); - - return false; -} - -/// Get Weights of a given terminator, the default weight is at the front -/// of the vector. If TI is a conditional eq, we need to swap the branch-weight -/// metadata. -static void GetBranchWeights(Instruction *TI, - SmallVectorImpl<uint64_t> &Weights) { - MDNode *MD = TI->getMetadata(LLVMContext::MD_prof); - assert(MD); - for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) { - ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i)); - Weights.push_back(CI->getValue().getZExtValue()); - } - - // If TI is a conditional eq, the default case is the false case, - // and the corresponding branch-weight data is at index 2. We swap the - // default weight to be the first entry. - if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { - assert(Weights.size() == 2); - ICmpInst *ICI = cast<ICmpInst>(BI->getCondition()); - if (ICI->getPredicate() == ICmpInst::ICMP_EQ) - std::swap(Weights.front(), Weights.back()); - } -} - -/// Keep halving the weights until all can fit in uint32_t. -static void FitWeights(MutableArrayRef<uint64_t> Weights) { - uint64_t Max = *std::max_element(Weights.begin(), Weights.end()); - if (Max > UINT_MAX) { - unsigned Offset = 32 - countLeadingZeros(Max); - for (uint64_t &I : Weights) - I >>= Offset; - } -} - -/// The specified terminator is a value equality comparison instruction -/// (either a switch or a branch on "X == c"). -/// See if any of the predecessors of the terminator block are value comparisons -/// on the same value. If so, and if safe to do so, fold them together. -bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(Instruction *TI, - IRBuilder<> &Builder) { - BasicBlock *BB = TI->getParent(); - Value *CV = isValueEqualityComparison(TI); // CondVal - assert(CV && "Not a comparison?"); - bool Changed = false; - - SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB)); - while (!Preds.empty()) { - BasicBlock *Pred = Preds.pop_back_val(); - - // See if the predecessor is a comparison with the same value. - Instruction *PTI = Pred->getTerminator(); - Value *PCV = isValueEqualityComparison(PTI); // PredCondVal - - if (PCV == CV && TI != PTI) { - SmallSetVector<BasicBlock*, 4> FailBlocks; - if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) { - for (auto *Succ : FailBlocks) { - if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split")) - return false; - } - } - - // Figure out which 'cases' to copy from SI to PSI. - std::vector<ValueEqualityComparisonCase> BBCases; - BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases); - - std::vector<ValueEqualityComparisonCase> PredCases; - BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases); - - // Based on whether the default edge from PTI goes to BB or not, fill in - // PredCases and PredDefault with the new switch cases we would like to - // build. - SmallVector<BasicBlock *, 8> NewSuccessors; - - // Update the branch weight metadata along the way - SmallVector<uint64_t, 8> Weights; - bool PredHasWeights = HasBranchWeights(PTI); - bool SuccHasWeights = HasBranchWeights(TI); - - if (PredHasWeights) { - GetBranchWeights(PTI, Weights); - // branch-weight metadata is inconsistent here. - if (Weights.size() != 1 + PredCases.size()) - PredHasWeights = SuccHasWeights = false; - } else if (SuccHasWeights) - // If there are no predecessor weights but there are successor weights, - // populate Weights with 1, which will later be scaled to the sum of - // successor's weights - Weights.assign(1 + PredCases.size(), 1); - - SmallVector<uint64_t, 8> SuccWeights; - if (SuccHasWeights) { - GetBranchWeights(TI, SuccWeights); - // branch-weight metadata is inconsistent here. - if (SuccWeights.size() != 1 + BBCases.size()) - PredHasWeights = SuccHasWeights = false; - } else if (PredHasWeights) - SuccWeights.assign(1 + BBCases.size(), 1); - - if (PredDefault == BB) { - // If this is the default destination from PTI, only the edges in TI - // that don't occur in PTI, or that branch to BB will be activated. - std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; - for (unsigned i = 0, e = PredCases.size(); i != e; ++i) - if (PredCases[i].Dest != BB) - PTIHandled.insert(PredCases[i].Value); - else { - // The default destination is BB, we don't need explicit targets. - std::swap(PredCases[i], PredCases.back()); - - if (PredHasWeights || SuccHasWeights) { - // Increase weight for the default case. - Weights[0] += Weights[i + 1]; - std::swap(Weights[i + 1], Weights.back()); - Weights.pop_back(); - } - - PredCases.pop_back(); - --i; - --e; - } - - // Reconstruct the new switch statement we will be building. - if (PredDefault != BBDefault) { - PredDefault->removePredecessor(Pred); - PredDefault = BBDefault; - NewSuccessors.push_back(BBDefault); - } - - unsigned CasesFromPred = Weights.size(); - uint64_t ValidTotalSuccWeight = 0; - for (unsigned i = 0, e = BBCases.size(); i != e; ++i) - if (!PTIHandled.count(BBCases[i].Value) && - BBCases[i].Dest != BBDefault) { - PredCases.push_back(BBCases[i]); - NewSuccessors.push_back(BBCases[i].Dest); - if (SuccHasWeights || PredHasWeights) { - // The default weight is at index 0, so weight for the ith case - // should be at index i+1. Scale the cases from successor by - // PredDefaultWeight (Weights[0]). - Weights.push_back(Weights[0] * SuccWeights[i + 1]); - ValidTotalSuccWeight += SuccWeights[i + 1]; - } - } - - if (SuccHasWeights || PredHasWeights) { - ValidTotalSuccWeight += SuccWeights[0]; - // Scale the cases from predecessor by ValidTotalSuccWeight. - for (unsigned i = 1; i < CasesFromPred; ++i) - Weights[i] *= ValidTotalSuccWeight; - // Scale the default weight by SuccDefaultWeight (SuccWeights[0]). - Weights[0] *= SuccWeights[0]; - } - } else { - // If this is not the default destination from PSI, only the edges - // in SI that occur in PSI with a destination of BB will be - // activated. - std::set<ConstantInt *, ConstantIntOrdering> PTIHandled; - std::map<ConstantInt *, uint64_t> WeightsForHandled; - for (unsigned i = 0, e = PredCases.size(); i != e; ++i) - if (PredCases[i].Dest == BB) { - PTIHandled.insert(PredCases[i].Value); - - if (PredHasWeights || SuccHasWeights) { - WeightsForHandled[PredCases[i].Value] = Weights[i + 1]; - std::swap(Weights[i + 1], Weights.back()); - Weights.pop_back(); - } - - std::swap(PredCases[i], PredCases.back()); - PredCases.pop_back(); - --i; - --e; - } - - // Okay, now we know which constants were sent to BB from the - // predecessor. Figure out where they will all go now. - for (unsigned i = 0, e = BBCases.size(); i != e; ++i) - if (PTIHandled.count(BBCases[i].Value)) { - // If this is one we are capable of getting... - if (PredHasWeights || SuccHasWeights) - Weights.push_back(WeightsForHandled[BBCases[i].Value]); - PredCases.push_back(BBCases[i]); - NewSuccessors.push_back(BBCases[i].Dest); - PTIHandled.erase( - BBCases[i].Value); // This constant is taken care of - } - - // If there are any constants vectored to BB that TI doesn't handle, - // they must go to the default destination of TI. - for (ConstantInt *I : PTIHandled) { - if (PredHasWeights || SuccHasWeights) - Weights.push_back(WeightsForHandled[I]); - PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault)); - NewSuccessors.push_back(BBDefault); - } - } - - // Okay, at this point, we know which new successor Pred will get. Make - // sure we update the number of entries in the PHI nodes for these - // successors. - for (BasicBlock *NewSuccessor : NewSuccessors) - AddPredecessorToBlock(NewSuccessor, Pred, BB); - - Builder.SetInsertPoint(PTI); - // Convert pointer to int before we switch. - if (CV->getType()->isPointerTy()) { - CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()), - "magicptr"); - } - - // Now that the successors are updated, create the new Switch instruction. - SwitchInst *NewSI = - Builder.CreateSwitch(CV, PredDefault, PredCases.size()); - NewSI->setDebugLoc(PTI->getDebugLoc()); - for (ValueEqualityComparisonCase &V : PredCases) - NewSI->addCase(V.Value, V.Dest); - - if (PredHasWeights || SuccHasWeights) { - // Halve the weights if any of them cannot fit in an uint32_t - FitWeights(Weights); - - SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end()); - - setBranchWeights(NewSI, MDWeights); - } - - EraseTerminatorAndDCECond(PTI); - - // Okay, last check. If BB is still a successor of PSI, then we must - // have an infinite loop case. If so, add an infinitely looping block - // to handle the case to preserve the behavior of the code. - BasicBlock *InfLoopBlock = nullptr; - for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i) - if (NewSI->getSuccessor(i) == BB) { - if (!InfLoopBlock) { - // Insert it at the end of the function, because it's either code, - // or it won't matter if it's hot. :) - InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop", - BB->getParent()); - BranchInst::Create(InfLoopBlock, InfLoopBlock); - } - NewSI->setSuccessor(i, InfLoopBlock); - } - - Changed = true; - } - } - return Changed; -} - -// If we would need to insert a select that uses the value of this invoke -// (comments in HoistThenElseCodeToIf explain why we would need to do this), we -// can't hoist the invoke, as there is nowhere to put the select in this case. -static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2, - Instruction *I1, Instruction *I2) { - for (BasicBlock *Succ : successors(BB1)) { - for (const PHINode &PN : Succ->phis()) { - Value *BB1V = PN.getIncomingValueForBlock(BB1); - Value *BB2V = PN.getIncomingValueForBlock(BB2); - if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) { - return false; - } - } - } - return true; -} - -static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I); - -/// Given a conditional branch that goes to BB1 and BB2, hoist any common code -/// in the two blocks up into the branch block. The caller of this function -/// guarantees that BI's block dominates BB1 and BB2. -static bool HoistThenElseCodeToIf(BranchInst *BI, - const TargetTransformInfo &TTI) { - // This does very trivial matching, with limited scanning, to find identical - // instructions in the two blocks. In particular, we don't want to get into - // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As - // such, we currently just scan for obviously identical instructions in an - // identical order. - BasicBlock *BB1 = BI->getSuccessor(0); // The true destination. - BasicBlock *BB2 = BI->getSuccessor(1); // The false destination - - BasicBlock::iterator BB1_Itr = BB1->begin(); - BasicBlock::iterator BB2_Itr = BB2->begin(); - - Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++; - // Skip debug info if it is not identical. - DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); - DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); - if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { - while (isa<DbgInfoIntrinsic>(I1)) - I1 = &*BB1_Itr++; - while (isa<DbgInfoIntrinsic>(I2)) - I2 = &*BB2_Itr++; - } - // FIXME: Can we define a safety predicate for CallBr? - if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) || - (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) || - isa<CallBrInst>(I1)) - return false; - - BasicBlock *BIParent = BI->getParent(); - - bool Changed = false; - do { - // If we are hoisting the terminator instruction, don't move one (making a - // broken BB), instead clone it, and remove BI. - if (I1->isTerminator()) - goto HoistTerminator; - - // If we're going to hoist a call, make sure that the two instructions we're - // commoning/hoisting are both marked with musttail, or neither of them is - // marked as such. Otherwise, we might end up in a situation where we hoist - // from a block where the terminator is a `ret` to a block where the terminator - // is a `br`, and `musttail` calls expect to be followed by a return. - auto *C1 = dyn_cast<CallInst>(I1); - auto *C2 = dyn_cast<CallInst>(I2); - if (C1 && C2) - if (C1->isMustTailCall() != C2->isMustTailCall()) - return Changed; - - if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2)) - return Changed; - - if (isa<DbgInfoIntrinsic>(I1) || isa<DbgInfoIntrinsic>(I2)) { - assert (isa<DbgInfoIntrinsic>(I1) && isa<DbgInfoIntrinsic>(I2)); - // The debug location is an integral part of a debug info intrinsic - // and can't be separated from it or replaced. Instead of attempting - // to merge locations, simply hoist both copies of the intrinsic. - BIParent->getInstList().splice(BI->getIterator(), - BB1->getInstList(), I1); - BIParent->getInstList().splice(BI->getIterator(), - BB2->getInstList(), I2); - Changed = true; - } else { - // For a normal instruction, we just move one to right before the branch, - // then replace all uses of the other with the first. Finally, we remove - // the now redundant second instruction. - BIParent->getInstList().splice(BI->getIterator(), - BB1->getInstList(), I1); - if (!I2->use_empty()) - I2->replaceAllUsesWith(I1); - I1->andIRFlags(I2); - unsigned KnownIDs[] = {LLVMContext::MD_tbaa, - LLVMContext::MD_range, - LLVMContext::MD_fpmath, - LLVMContext::MD_invariant_load, - LLVMContext::MD_nonnull, - LLVMContext::MD_invariant_group, - LLVMContext::MD_align, - LLVMContext::MD_dereferenceable, - LLVMContext::MD_dereferenceable_or_null, - LLVMContext::MD_mem_parallel_loop_access, - LLVMContext::MD_access_group}; - combineMetadata(I1, I2, KnownIDs, true); - - // I1 and I2 are being combined into a single instruction. Its debug - // location is the merged locations of the original instructions. - I1->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); - - I2->eraseFromParent(); - Changed = true; - } - - I1 = &*BB1_Itr++; - I2 = &*BB2_Itr++; - // Skip debug info if it is not identical. - DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1); - DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2); - if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) { - while (isa<DbgInfoIntrinsic>(I1)) - I1 = &*BB1_Itr++; - while (isa<DbgInfoIntrinsic>(I2)) - I2 = &*BB2_Itr++; - } - } while (I1->isIdenticalToWhenDefined(I2)); - - return true; - -HoistTerminator: - // It may not be possible to hoist an invoke. - // FIXME: Can we define a safety predicate for CallBr? - if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)) - return Changed; - - // TODO: callbr hoisting currently disabled pending further study. - if (isa<CallBrInst>(I1)) - return Changed; - - for (BasicBlock *Succ : successors(BB1)) { - for (PHINode &PN : Succ->phis()) { - Value *BB1V = PN.getIncomingValueForBlock(BB1); - Value *BB2V = PN.getIncomingValueForBlock(BB2); - if (BB1V == BB2V) - continue; - - // Check for passingValueIsAlwaysUndefined here because we would rather - // eliminate undefined control flow then converting it to a select. - if (passingValueIsAlwaysUndefined(BB1V, &PN) || - passingValueIsAlwaysUndefined(BB2V, &PN)) - return Changed; - - if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V)) - return Changed; - if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V)) - return Changed; - } - } - - // Okay, it is safe to hoist the terminator. - Instruction *NT = I1->clone(); - BIParent->getInstList().insert(BI->getIterator(), NT); - if (!NT->getType()->isVoidTy()) { - I1->replaceAllUsesWith(NT); - I2->replaceAllUsesWith(NT); - NT->takeName(I1); - } - - // Ensure terminator gets a debug location, even an unknown one, in case - // it involves inlinable calls. - NT->applyMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()); - - // PHIs created below will adopt NT's merged DebugLoc. - IRBuilder<NoFolder> Builder(NT); - - // Hoisting one of the terminators from our successor is a great thing. - // Unfortunately, the successors of the if/else blocks may have PHI nodes in - // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI - // nodes, so we insert select instruction to compute the final result. - std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects; - for (BasicBlock *Succ : successors(BB1)) { - for (PHINode &PN : Succ->phis()) { - Value *BB1V = PN.getIncomingValueForBlock(BB1); - Value *BB2V = PN.getIncomingValueForBlock(BB2); - if (BB1V == BB2V) - continue; - - // These values do not agree. Insert a select instruction before NT - // that determines the right value. - SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)]; - if (!SI) - SI = cast<SelectInst>( - Builder.CreateSelect(BI->getCondition(), BB1V, BB2V, - BB1V->getName() + "." + BB2V->getName(), BI)); - - // Make the PHI node use the select for all incoming values for BB1/BB2 - for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) - if (PN.getIncomingBlock(i) == BB1 || PN.getIncomingBlock(i) == BB2) - PN.setIncomingValue(i, SI); - } - } - - // Update any PHI nodes in our new successors. - for (BasicBlock *Succ : successors(BB1)) - AddPredecessorToBlock(Succ, BIParent, BB1); - - EraseTerminatorAndDCECond(BI); - return true; -} - -// All instructions in Insts belong to different blocks that all unconditionally -// branch to a common successor. Analyze each instruction and return true if it -// would be possible to sink them into their successor, creating one common -// instruction instead. For every value that would be required to be provided by -// PHI node (because an operand varies in each input block), add to PHIOperands. -static bool canSinkInstructions( - ArrayRef<Instruction *> Insts, - DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) { - // Prune out obviously bad instructions to move. Any non-store instruction - // must have exactly one use, and we check later that use is by a single, - // common PHI instruction in the successor. - for (auto *I : Insts) { - // These instructions may change or break semantics if moved. - if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || - I->getType()->isTokenTy()) - return false; - - // Conservatively return false if I is an inline-asm instruction. Sinking - // and merging inline-asm instructions can potentially create arguments - // that cannot satisfy the inline-asm constraints. - if (const auto *C = dyn_cast<CallBase>(I)) - if (C->isInlineAsm()) - return false; - - // Everything must have only one use too, apart from stores which - // have no uses. - if (!isa<StoreInst>(I) && !I->hasOneUse()) - return false; - } - - const Instruction *I0 = Insts.front(); - for (auto *I : Insts) - if (!I->isSameOperationAs(I0)) - return false; - - // All instructions in Insts are known to be the same opcode. If they aren't - // stores, check the only user of each is a PHI or in the same block as the - // instruction, because if a user is in the same block as an instruction - // we're contemplating sinking, it must already be determined to be sinkable. - if (!isa<StoreInst>(I0)) { - auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); - auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0); - if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool { - auto *U = cast<Instruction>(*I->user_begin()); - return (PNUse && - PNUse->getParent() == Succ && - PNUse->getIncomingValueForBlock(I->getParent()) == I) || - U->getParent() == I->getParent(); - })) - return false; - } - - // Because SROA can't handle speculating stores of selects, try not - // to sink loads or stores of allocas when we'd have to create a PHI for - // the address operand. Also, because it is likely that loads or stores - // of allocas will disappear when Mem2Reg/SROA is run, don't sink them. - // This can cause code churn which can have unintended consequences down - // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244. - // FIXME: This is a workaround for a deficiency in SROA - see - // https://llvm.org/bugs/show_bug.cgi?id=30188 - if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) { - return isa<AllocaInst>(I->getOperand(1)); - })) - return false; - if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) { - return isa<AllocaInst>(I->getOperand(0)); - })) - return false; - - for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) { - if (I0->getOperand(OI)->getType()->isTokenTy()) - // Don't touch any operand of token type. - return false; - - auto SameAsI0 = [&I0, OI](const Instruction *I) { - assert(I->getNumOperands() == I0->getNumOperands()); - return I->getOperand(OI) == I0->getOperand(OI); - }; - if (!all_of(Insts, SameAsI0)) { - if (!canReplaceOperandWithVariable(I0, OI)) - // We can't create a PHI from this GEP. - return false; - // Don't create indirect calls! The called value is the final operand. - if (isa<CallBase>(I0) && OI == OE - 1) { - // FIXME: if the call was *already* indirect, we should do this. - return false; - } - for (auto *I : Insts) - PHIOperands[I].push_back(I->getOperand(OI)); - } - } - return true; -} - -// Assuming canSinkLastInstruction(Blocks) has returned true, sink the last -// instruction of every block in Blocks to their common successor, commoning -// into one instruction. -static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) { - auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0); - - // canSinkLastInstruction returning true guarantees that every block has at - // least one non-terminator instruction. - SmallVector<Instruction*,4> Insts; - for (auto *BB : Blocks) { - Instruction *I = BB->getTerminator(); - do { - I = I->getPrevNode(); - } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front()); - if (!isa<DbgInfoIntrinsic>(I)) - Insts.push_back(I); - } - - // The only checking we need to do now is that all users of all instructions - // are the same PHI node. canSinkLastInstruction should have checked this but - // it is slightly over-aggressive - it gets confused by commutative instructions - // so double-check it here. - Instruction *I0 = Insts.front(); - if (!isa<StoreInst>(I0)) { - auto *PNUse = dyn_cast<PHINode>(*I0->user_begin()); - if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool { - auto *U = cast<Instruction>(*I->user_begin()); - return U == PNUse; - })) - return false; - } - - // We don't need to do any more checking here; canSinkLastInstruction should - // have done it all for us. - SmallVector<Value*, 4> NewOperands; - for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { - // This check is different to that in canSinkLastInstruction. There, we - // cared about the global view once simplifycfg (and instcombine) have - // completed - it takes into account PHIs that become trivially - // simplifiable. However here we need a more local view; if an operand - // differs we create a PHI and rely on instcombine to clean up the very - // small mess we may make. - bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) { - return I->getOperand(O) != I0->getOperand(O); - }); - if (!NeedPHI) { - NewOperands.push_back(I0->getOperand(O)); - continue; - } - - // Create a new PHI in the successor block and populate it. - auto *Op = I0->getOperand(O); - assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); - auto *PN = PHINode::Create(Op->getType(), Insts.size(), - Op->getName() + ".sink", &BBEnd->front()); - for (auto *I : Insts) - PN->addIncoming(I->getOperand(O), I->getParent()); - NewOperands.push_back(PN); - } - - // Arbitrarily use I0 as the new "common" instruction; remap its operands - // and move it to the start of the successor block. - for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) - I0->getOperandUse(O).set(NewOperands[O]); - I0->moveBefore(&*BBEnd->getFirstInsertionPt()); - - // Update metadata and IR flags, and merge debug locations. - for (auto *I : Insts) - if (I != I0) { - // The debug location for the "common" instruction is the merged locations - // of all the commoned instructions. We start with the original location - // of the "common" instruction and iteratively merge each location in the - // loop below. - // This is an N-way merge, which will be inefficient if I0 is a CallInst. - // However, as N-way merge for CallInst is rare, so we use simplified API - // instead of using complex API for N-way merge. - I0->applyMergedLocation(I0->getDebugLoc(), I->getDebugLoc()); - combineMetadataForCSE(I0, I, true); - I0->andIRFlags(I); - } - - if (!isa<StoreInst>(I0)) { - // canSinkLastInstruction checked that all instructions were used by - // one and only one PHI node. Find that now, RAUW it to our common - // instruction and nuke it. - assert(I0->hasOneUse()); - auto *PN = cast<PHINode>(*I0->user_begin()); - PN->replaceAllUsesWith(I0); - PN->eraseFromParent(); - } - - // Finally nuke all instructions apart from the common instruction. - for (auto *I : Insts) - if (I != I0) - I->eraseFromParent(); - - return true; -} - -namespace { - - // LockstepReverseIterator - Iterates through instructions - // in a set of blocks in reverse order from the first non-terminator. - // For example (assume all blocks have size n): - // LockstepReverseIterator I([B1, B2, B3]); - // *I-- = [B1[n], B2[n], B3[n]]; - // *I-- = [B1[n-1], B2[n-1], B3[n-1]]; - // *I-- = [B1[n-2], B2[n-2], B3[n-2]]; - // ... - class LockstepReverseIterator { - ArrayRef<BasicBlock*> Blocks; - SmallVector<Instruction*,4> Insts; - bool Fail; - - public: - LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) : Blocks(Blocks) { - reset(); - } - - void reset() { - Fail = false; - Insts.clear(); - for (auto *BB : Blocks) { - Instruction *Inst = BB->getTerminator(); - for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) - Inst = Inst->getPrevNode(); - if (!Inst) { - // Block wasn't big enough. - Fail = true; - return; - } - Insts.push_back(Inst); - } - } - - bool isValid() const { - return !Fail; - } - - void operator--() { - if (Fail) - return; - for (auto *&Inst : Insts) { - for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);) - Inst = Inst->getPrevNode(); - // Already at beginning of block. - if (!Inst) { - Fail = true; - return; - } - } - } - - ArrayRef<Instruction*> operator * () const { - return Insts; - } - }; - -} // end anonymous namespace - -/// Check whether BB's predecessors end with unconditional branches. If it is -/// true, sink any common code from the predecessors to BB. -/// We also allow one predecessor to end with conditional branch (but no more -/// than one). -static bool SinkCommonCodeFromPredecessors(BasicBlock *BB) { - // We support two situations: - // (1) all incoming arcs are unconditional - // (2) one incoming arc is conditional - // - // (2) is very common in switch defaults and - // else-if patterns; - // - // if (a) f(1); - // else if (b) f(2); - // - // produces: - // - // [if] - // / \ - // [f(1)] [if] - // | | \ - // | | | - // | [f(2)]| - // \ | / - // [ end ] - // - // [end] has two unconditional predecessor arcs and one conditional. The - // conditional refers to the implicit empty 'else' arc. This conditional - // arc can also be caused by an empty default block in a switch. - // - // In this case, we attempt to sink code from all *unconditional* arcs. - // If we can sink instructions from these arcs (determined during the scan - // phase below) we insert a common successor for all unconditional arcs and - // connect that to [end], to enable sinking: - // - // [if] - // / \ - // [x(1)] [if] - // | | \ - // | | \ - // | [x(2)] | - // \ / | - // [sink.split] | - // \ / - // [ end ] - // - SmallVector<BasicBlock*,4> UnconditionalPreds; - Instruction *Cond = nullptr; - for (auto *B : predecessors(BB)) { - auto *T = B->getTerminator(); - if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional()) - UnconditionalPreds.push_back(B); - else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond) - Cond = T; - else - return false; - } - if (UnconditionalPreds.size() < 2) - return false; - - bool Changed = false; - // We take a two-step approach to tail sinking. First we scan from the end of - // each block upwards in lockstep. If the n'th instruction from the end of each - // block can be sunk, those instructions are added to ValuesToSink and we - // carry on. If we can sink an instruction but need to PHI-merge some operands - // (because they're not identical in each instruction) we add these to - // PHIOperands. - unsigned ScanIdx = 0; - SmallPtrSet<Value*,4> InstructionsToSink; - DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands; - LockstepReverseIterator LRI(UnconditionalPreds); - while (LRI.isValid() && - canSinkInstructions(*LRI, PHIOperands)) { - LLVM_DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] - << "\n"); - InstructionsToSink.insert((*LRI).begin(), (*LRI).end()); - ++ScanIdx; - --LRI; - } - - auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) { - unsigned NumPHIdValues = 0; - for (auto *I : *LRI) - for (auto *V : PHIOperands[I]) - if (InstructionsToSink.count(V) == 0) - ++NumPHIdValues; - LLVM_DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n"); - unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size(); - if ((NumPHIdValues % UnconditionalPreds.size()) != 0) - NumPHIInsts++; - - return NumPHIInsts <= 1; - }; - - if (ScanIdx > 0 && Cond) { - // Check if we would actually sink anything first! This mutates the CFG and - // adds an extra block. The goal in doing this is to allow instructions that - // couldn't be sunk before to be sunk - obviously, speculatable instructions - // (such as trunc, add) can be sunk and predicated already. So we check that - // we're going to sink at least one non-speculatable instruction. - LRI.reset(); - unsigned Idx = 0; - bool Profitable = false; - while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) { - if (!isSafeToSpeculativelyExecute((*LRI)[0])) { - Profitable = true; - break; - } - --LRI; - ++Idx; - } - if (!Profitable) - return false; - - LLVM_DEBUG(dbgs() << "SINK: Splitting edge\n"); - // We have a conditional edge and we're going to sink some instructions. - // Insert a new block postdominating all blocks we're going to sink from. - if (!SplitBlockPredecessors(BB, UnconditionalPreds, ".sink.split")) - // Edges couldn't be split. - return false; - Changed = true; - } - - // Now that we've analyzed all potential sinking candidates, perform the - // actual sink. We iteratively sink the last non-terminator of the source - // blocks into their common successor unless doing so would require too - // many PHI instructions to be generated (currently only one PHI is allowed - // per sunk instruction). - // - // We can use InstructionsToSink to discount values needing PHI-merging that will - // actually be sunk in a later iteration. This allows us to be more - // aggressive in what we sink. This does allow a false positive where we - // sink presuming a later value will also be sunk, but stop half way through - // and never actually sink it which means we produce more PHIs than intended. - // This is unlikely in practice though. - for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) { - LLVM_DEBUG(dbgs() << "SINK: Sink: " - << *UnconditionalPreds[0]->getTerminator()->getPrevNode() - << "\n"); - - // Because we've sunk every instruction in turn, the current instruction to - // sink is always at index 0. - LRI.reset(); - if (!ProfitableToSinkInstruction(LRI)) { - // Too many PHIs would be created. - LLVM_DEBUG( - dbgs() << "SINK: stopping here, too many PHIs would be created!\n"); - break; - } - - if (!sinkLastInstruction(UnconditionalPreds)) - return Changed; - NumSinkCommons++; - Changed = true; - } - return Changed; -} - -/// Determine if we can hoist sink a sole store instruction out of a -/// conditional block. -/// -/// We are looking for code like the following: -/// BrBB: -/// store i32 %add, i32* %arrayidx2 -/// ... // No other stores or function calls (we could be calling a memory -/// ... // function). -/// %cmp = icmp ult %x, %y -/// br i1 %cmp, label %EndBB, label %ThenBB -/// ThenBB: -/// store i32 %add5, i32* %arrayidx2 -/// br label EndBB -/// EndBB: -/// ... -/// We are going to transform this into: -/// BrBB: -/// store i32 %add, i32* %arrayidx2 -/// ... // -/// %cmp = icmp ult %x, %y -/// %add.add5 = select i1 %cmp, i32 %add, %add5 -/// store i32 %add.add5, i32* %arrayidx2 -/// ... -/// -/// \return The pointer to the value of the previous store if the store can be -/// hoisted into the predecessor block. 0 otherwise. -static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB, - BasicBlock *StoreBB, BasicBlock *EndBB) { - StoreInst *StoreToHoist = dyn_cast<StoreInst>(I); - if (!StoreToHoist) - return nullptr; - - // Volatile or atomic. - if (!StoreToHoist->isSimple()) - return nullptr; - - Value *StorePtr = StoreToHoist->getPointerOperand(); - - // Look for a store to the same pointer in BrBB. - unsigned MaxNumInstToLookAt = 9; - for (Instruction &CurI : reverse(BrBB->instructionsWithoutDebug())) { - if (!MaxNumInstToLookAt) - break; - --MaxNumInstToLookAt; - - // Could be calling an instruction that affects memory like free(). - if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI)) - return nullptr; - - if (auto *SI = dyn_cast<StoreInst>(&CurI)) { - // Found the previous store make sure it stores to the same location. - if (SI->getPointerOperand() == StorePtr) - // Found the previous store, return its value operand. - return SI->getValueOperand(); - return nullptr; // Unknown store. - } - } - - return nullptr; -} - -/// Speculate a conditional basic block flattening the CFG. -/// -/// Note that this is a very risky transform currently. Speculating -/// instructions like this is most often not desirable. Instead, there is an MI -/// pass which can do it with full awareness of the resource constraints. -/// However, some cases are "obvious" and we should do directly. An example of -/// this is speculating a single, reasonably cheap instruction. -/// -/// There is only one distinct advantage to flattening the CFG at the IR level: -/// it makes very common but simplistic optimizations such as are common in -/// instcombine and the DAG combiner more powerful by removing CFG edges and -/// modeling their effects with easier to reason about SSA value graphs. -/// -/// -/// An illustration of this transform is turning this IR: -/// \code -/// BB: -/// %cmp = icmp ult %x, %y -/// br i1 %cmp, label %EndBB, label %ThenBB -/// ThenBB: -/// %sub = sub %x, %y -/// br label BB2 -/// EndBB: -/// %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ] -/// ... -/// \endcode -/// -/// Into this IR: -/// \code -/// BB: -/// %cmp = icmp ult %x, %y -/// %sub = sub %x, %y -/// %cond = select i1 %cmp, 0, %sub -/// ... -/// \endcode -/// -/// \returns true if the conditional block is removed. -static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB, - const TargetTransformInfo &TTI) { - // Be conservative for now. FP select instruction can often be expensive. - Value *BrCond = BI->getCondition(); - if (isa<FCmpInst>(BrCond)) - return false; - - BasicBlock *BB = BI->getParent(); - BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0); - - // If ThenBB is actually on the false edge of the conditional branch, remember - // to swap the select operands later. - bool Invert = false; - if (ThenBB != BI->getSuccessor(0)) { - assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?"); - Invert = true; - } - assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block"); - - // Keep a count of how many times instructions are used within ThenBB when - // they are candidates for sinking into ThenBB. Specifically: - // - They are defined in BB, and - // - They have no side effects, and - // - All of their uses are in ThenBB. - SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts; - - SmallVector<Instruction *, 4> SpeculatedDbgIntrinsics; - - unsigned SpeculationCost = 0; - Value *SpeculatedStoreValue = nullptr; - StoreInst *SpeculatedStore = nullptr; - for (BasicBlock::iterator BBI = ThenBB->begin(), - BBE = std::prev(ThenBB->end()); - BBI != BBE; ++BBI) { - Instruction *I = &*BBI; - // Skip debug info. - if (isa<DbgInfoIntrinsic>(I)) { - SpeculatedDbgIntrinsics.push_back(I); - continue; - } - - // Only speculatively execute a single instruction (not counting the - // terminator) for now. - ++SpeculationCost; - if (SpeculationCost > 1) - return false; - - // Don't hoist the instruction if it's unsafe or expensive. - if (!isSafeToSpeculativelyExecute(I) && - !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore( - I, BB, ThenBB, EndBB)))) - return false; - if (!SpeculatedStoreValue && - ComputeSpeculationCost(I, TTI) > - PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic) - return false; - - // Store the store speculation candidate. - if (SpeculatedStoreValue) - SpeculatedStore = cast<StoreInst>(I); - - // Do not hoist the instruction if any of its operands are defined but not - // used in BB. The transformation will prevent the operand from - // being sunk into the use block. - for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) { - Instruction *OpI = dyn_cast<Instruction>(*i); - if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects()) - continue; // Not a candidate for sinking. - - ++SinkCandidateUseCounts[OpI]; - } - } - - // Consider any sink candidates which are only used in ThenBB as costs for - // speculation. Note, while we iterate over a DenseMap here, we are summing - // and so iteration order isn't significant. - for (SmallDenseMap<Instruction *, unsigned, 4>::iterator - I = SinkCandidateUseCounts.begin(), - E = SinkCandidateUseCounts.end(); - I != E; ++I) - if (I->first->hasNUses(I->second)) { - ++SpeculationCost; - if (SpeculationCost > 1) - return false; - } - - // Check that the PHI nodes can be converted to selects. - bool HaveRewritablePHIs = false; - for (PHINode &PN : EndBB->phis()) { - Value *OrigV = PN.getIncomingValueForBlock(BB); - Value *ThenV = PN.getIncomingValueForBlock(ThenBB); - - // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf. - // Skip PHIs which are trivial. - if (ThenV == OrigV) - continue; - - // Don't convert to selects if we could remove undefined behavior instead. - if (passingValueIsAlwaysUndefined(OrigV, &PN) || - passingValueIsAlwaysUndefined(ThenV, &PN)) - return false; - - HaveRewritablePHIs = true; - ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV); - ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV); - if (!OrigCE && !ThenCE) - continue; // Known safe and cheap. - - if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) || - (OrigCE && !isSafeToSpeculativelyExecute(OrigCE))) - return false; - unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0; - unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0; - unsigned MaxCost = - 2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic; - if (OrigCost + ThenCost > MaxCost) - return false; - - // Account for the cost of an unfolded ConstantExpr which could end up - // getting expanded into Instructions. - // FIXME: This doesn't account for how many operations are combined in the - // constant expression. - ++SpeculationCost; - if (SpeculationCost > 1) - return false; - } - - // If there are no PHIs to process, bail early. This helps ensure idempotence - // as well. - if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue)) - return false; - - // If we get here, we can hoist the instruction and if-convert. - LLVM_DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";); - - // Insert a select of the value of the speculated store. - if (SpeculatedStoreValue) { - IRBuilder<NoFolder> Builder(BI); - Value *TrueV = SpeculatedStore->getValueOperand(); - Value *FalseV = SpeculatedStoreValue; - if (Invert) - std::swap(TrueV, FalseV); - Value *S = Builder.CreateSelect( - BrCond, TrueV, FalseV, "spec.store.select", BI); - SpeculatedStore->setOperand(0, S); - SpeculatedStore->applyMergedLocation(BI->getDebugLoc(), - SpeculatedStore->getDebugLoc()); - } - - // Metadata can be dependent on the condition we are hoisting above. - // Conservatively strip all metadata on the instruction. - for (auto &I : *ThenBB) - I.dropUnknownNonDebugMetadata(); - - // Hoist the instructions. - BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(), - ThenBB->begin(), std::prev(ThenBB->end())); - - // Insert selects and rewrite the PHI operands. - IRBuilder<NoFolder> Builder(BI); - for (PHINode &PN : EndBB->phis()) { - unsigned OrigI = PN.getBasicBlockIndex(BB); - unsigned ThenI = PN.getBasicBlockIndex(ThenBB); - Value *OrigV = PN.getIncomingValue(OrigI); - Value *ThenV = PN.getIncomingValue(ThenI); - - // Skip PHIs which are trivial. - if (OrigV == ThenV) - continue; - - // Create a select whose true value is the speculatively executed value and - // false value is the preexisting value. Swap them if the branch - // destinations were inverted. - Value *TrueV = ThenV, *FalseV = OrigV; - if (Invert) - std::swap(TrueV, FalseV); - Value *V = Builder.CreateSelect( - BrCond, TrueV, FalseV, "spec.select", BI); - PN.setIncomingValue(OrigI, V); - PN.setIncomingValue(ThenI, V); - } - - // Remove speculated dbg intrinsics. - // FIXME: Is it possible to do this in a more elegant way? Moving/merging the - // dbg value for the different flows and inserting it after the select. - for (Instruction *I : SpeculatedDbgIntrinsics) - I->eraseFromParent(); - - ++NumSpeculations; - return true; -} - -/// Return true if we can thread a branch across this block. -static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) { - unsigned Size = 0; - - for (Instruction &I : BB->instructionsWithoutDebug()) { - if (Size > 10) - return false; // Don't clone large BB's. - ++Size; - - // We can only support instructions that do not define values that are - // live outside of the current basic block. - for (User *U : I.users()) { - Instruction *UI = cast<Instruction>(U); - if (UI->getParent() != BB || isa<PHINode>(UI)) - return false; - } - - // Looks ok, continue checking. - } - - return true; -} - -/// If we have a conditional branch on a PHI node value that is defined in the -/// same block as the branch and if any PHI entries are constants, thread edges -/// corresponding to that entry to be branches to their ultimate destination. -static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL, - AssumptionCache *AC) { - BasicBlock *BB = BI->getParent(); - PHINode *PN = dyn_cast<PHINode>(BI->getCondition()); - // NOTE: we currently cannot transform this case if the PHI node is used - // outside of the block. - if (!PN || PN->getParent() != BB || !PN->hasOneUse()) - return false; - - // Degenerate case of a single entry PHI. - if (PN->getNumIncomingValues() == 1) { - FoldSingleEntryPHINodes(PN->getParent()); - return true; - } - - // Now we know that this block has multiple preds and two succs. - if (!BlockIsSimpleEnoughToThreadThrough(BB)) - return false; - - // Can't fold blocks that contain noduplicate or convergent calls. - if (any_of(*BB, [](const Instruction &I) { - const CallInst *CI = dyn_cast<CallInst>(&I); - return CI && (CI->cannotDuplicate() || CI->isConvergent()); - })) - return false; - - // Okay, this is a simple enough basic block. See if any phi values are - // constants. - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i)); - if (!CB || !CB->getType()->isIntegerTy(1)) - continue; - - // Okay, we now know that all edges from PredBB should be revectored to - // branch to RealDest. - BasicBlock *PredBB = PN->getIncomingBlock(i); - BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue()); - - if (RealDest == BB) - continue; // Skip self loops. - // Skip if the predecessor's terminator is an indirect branch. - if (isa<IndirectBrInst>(PredBB->getTerminator())) - continue; - - // The dest block might have PHI nodes, other predecessors and other - // difficult cases. Instead of being smart about this, just insert a new - // block that jumps to the destination block, effectively splitting - // the edge we are about to create. - BasicBlock *EdgeBB = - BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge", - RealDest->getParent(), RealDest); - BranchInst *CritEdgeBranch = BranchInst::Create(RealDest, EdgeBB); - CritEdgeBranch->setDebugLoc(BI->getDebugLoc()); - - // Update PHI nodes. - AddPredecessorToBlock(RealDest, EdgeBB, BB); - - // BB may have instructions that are being threaded over. Clone these - // instructions into EdgeBB. We know that there will be no uses of the - // cloned instructions outside of EdgeBB. - BasicBlock::iterator InsertPt = EdgeBB->begin(); - DenseMap<Value *, Value *> TranslateMap; // Track translated values. - for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) { - if (PHINode *PN = dyn_cast<PHINode>(BBI)) { - TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB); - continue; - } - // Clone the instruction. - Instruction *N = BBI->clone(); - if (BBI->hasName()) - N->setName(BBI->getName() + ".c"); - - // Update operands due to translation. - for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) { - DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i); - if (PI != TranslateMap.end()) - *i = PI->second; - } - - // Check for trivial simplification. - if (Value *V = SimplifyInstruction(N, {DL, nullptr, nullptr, AC})) { - if (!BBI->use_empty()) - TranslateMap[&*BBI] = V; - if (!N->mayHaveSideEffects()) { - N->deleteValue(); // Instruction folded away, don't need actual inst - N = nullptr; - } - } else { - if (!BBI->use_empty()) - TranslateMap[&*BBI] = N; - } - // Insert the new instruction into its new home. - if (N) - EdgeBB->getInstList().insert(InsertPt, N); - - // Register the new instruction with the assumption cache if necessary. - if (auto *II = dyn_cast_or_null<IntrinsicInst>(N)) - if (II->getIntrinsicID() == Intrinsic::assume) - AC->registerAssumption(II); - } - - // Loop over all of the edges from PredBB to BB, changing them to branch - // to EdgeBB instead. - Instruction *PredBBTI = PredBB->getTerminator(); - for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i) - if (PredBBTI->getSuccessor(i) == BB) { - BB->removePredecessor(PredBB); - PredBBTI->setSuccessor(i, EdgeBB); - } - - // Recurse, simplifying any other constants. - return FoldCondBranchOnPHI(BI, DL, AC) || true; - } - - return false; -} - -/// Given a BB that starts with the specified two-entry PHI node, -/// see if we can eliminate it. -static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI, - const DataLayout &DL) { - // Ok, this is a two entry PHI node. Check to see if this is a simple "if - // statement", which has a very simple dominance structure. Basically, we - // are trying to find the condition that is being branched on, which - // subsequently causes this merge to happen. We really want control - // dependence information for this check, but simplifycfg can't keep it up - // to date, and this catches most of the cases we care about anyway. - BasicBlock *BB = PN->getParent(); - const Function *Fn = BB->getParent(); - if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) - return false; - - BasicBlock *IfTrue, *IfFalse; - Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse); - if (!IfCond || - // Don't bother if the branch will be constant folded trivially. - isa<ConstantInt>(IfCond)) - return false; - - // Okay, we found that we can merge this two-entry phi node into a select. - // Doing so would require us to fold *all* two entry phi nodes in this block. - // At some point this becomes non-profitable (particularly if the target - // doesn't support cmov's). Only do this transformation if there are two or - // fewer PHI nodes in this block. - unsigned NumPhis = 0; - for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I) - if (NumPhis > 2) - return false; - - // Loop over the PHI's seeing if we can promote them all to select - // instructions. While we are at it, keep track of the instructions - // that need to be moved to the dominating block. - SmallPtrSet<Instruction *, 4> AggressiveInsts; - unsigned MaxCostVal0 = PHINodeFoldingThreshold, - MaxCostVal1 = PHINodeFoldingThreshold; - MaxCostVal0 *= TargetTransformInfo::TCC_Basic; - MaxCostVal1 *= TargetTransformInfo::TCC_Basic; - - for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) { - PHINode *PN = cast<PHINode>(II++); - if (Value *V = SimplifyInstruction(PN, {DL, PN})) { - PN->replaceAllUsesWith(V); - PN->eraseFromParent(); - continue; - } - - if (!DominatesMergePoint(PN->getIncomingValue(0), BB, AggressiveInsts, - MaxCostVal0, TTI) || - !DominatesMergePoint(PN->getIncomingValue(1), BB, AggressiveInsts, - MaxCostVal1, TTI)) - return false; - } - - // If we folded the first phi, PN dangles at this point. Refresh it. If - // we ran out of PHIs then we simplified them all. - PN = dyn_cast<PHINode>(BB->begin()); - if (!PN) - return true; - - // Don't fold i1 branches on PHIs which contain binary operators. These can - // often be turned into switches and other things. - if (PN->getType()->isIntegerTy(1) && - (isa<BinaryOperator>(PN->getIncomingValue(0)) || - isa<BinaryOperator>(PN->getIncomingValue(1)) || - isa<BinaryOperator>(IfCond))) - return false; - - // If all PHI nodes are promotable, check to make sure that all instructions - // in the predecessor blocks can be promoted as well. If not, we won't be able - // to get rid of the control flow, so it's not worth promoting to select - // instructions. - BasicBlock *DomBlock = nullptr; - BasicBlock *IfBlock1 = PN->getIncomingBlock(0); - BasicBlock *IfBlock2 = PN->getIncomingBlock(1); - if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) { - IfBlock1 = nullptr; - } else { - DomBlock = *pred_begin(IfBlock1); - for (BasicBlock::iterator I = IfBlock1->begin(); !I->isTerminator(); ++I) - if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { - // This is not an aggressive instruction that we can promote. - // Because of this, we won't be able to get rid of the control flow, so - // the xform is not worth it. - return false; - } - } - - if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) { - IfBlock2 = nullptr; - } else { - DomBlock = *pred_begin(IfBlock2); - for (BasicBlock::iterator I = IfBlock2->begin(); !I->isTerminator(); ++I) - if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) { - // This is not an aggressive instruction that we can promote. - // Because of this, we won't be able to get rid of the control flow, so - // the xform is not worth it. - return false; - } - } - - LLVM_DEBUG(dbgs() << "FOUND IF CONDITION! " << *IfCond - << " T: " << IfTrue->getName() - << " F: " << IfFalse->getName() << "\n"); - - // If we can still promote the PHI nodes after this gauntlet of tests, - // do all of the PHI's now. - Instruction *InsertPt = DomBlock->getTerminator(); - IRBuilder<NoFolder> Builder(InsertPt); - - // Move all 'aggressive' instructions, which are defined in the - // conditional parts of the if's up to the dominating block. - if (IfBlock1) - hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock1); - if (IfBlock2) - hoistAllInstructionsInto(DomBlock, InsertPt, IfBlock2); - - while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { - // Change the PHI node into a select instruction. - Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse); - Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue); - - Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt); - PN->replaceAllUsesWith(Sel); - Sel->takeName(PN); - PN->eraseFromParent(); - } - - // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement - // has been flattened. Change DomBlock to jump directly to our new block to - // avoid other simplifycfg's kicking in on the diamond. - Instruction *OldTI = DomBlock->getTerminator(); - Builder.SetInsertPoint(OldTI); - Builder.CreateBr(BB); - OldTI->eraseFromParent(); - return true; -} - -/// If we found a conditional branch that goes to two returning blocks, -/// try to merge them together into one return, -/// introducing a select if the return values disagree. -static bool SimplifyCondBranchToTwoReturns(BranchInst *BI, - IRBuilder<> &Builder) { - assert(BI->isConditional() && "Must be a conditional branch"); - BasicBlock *TrueSucc = BI->getSuccessor(0); - BasicBlock *FalseSucc = BI->getSuccessor(1); - ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator()); - ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator()); - - // Check to ensure both blocks are empty (just a return) or optionally empty - // with PHI nodes. If there are other instructions, merging would cause extra - // computation on one path or the other. - if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator()) - return false; - if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator()) - return false; - - Builder.SetInsertPoint(BI); - // Okay, we found a branch that is going to two return nodes. If - // there is no return value for this function, just change the - // branch into a return. - if (FalseRet->getNumOperands() == 0) { - TrueSucc->removePredecessor(BI->getParent()); - FalseSucc->removePredecessor(BI->getParent()); - Builder.CreateRetVoid(); - EraseTerminatorAndDCECond(BI); - return true; - } - - // Otherwise, figure out what the true and false return values are - // so we can insert a new select instruction. - Value *TrueValue = TrueRet->getReturnValue(); - Value *FalseValue = FalseRet->getReturnValue(); - - // Unwrap any PHI nodes in the return blocks. - if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue)) - if (TVPN->getParent() == TrueSucc) - TrueValue = TVPN->getIncomingValueForBlock(BI->getParent()); - if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue)) - if (FVPN->getParent() == FalseSucc) - FalseValue = FVPN->getIncomingValueForBlock(BI->getParent()); - - // In order for this transformation to be safe, we must be able to - // unconditionally execute both operands to the return. This is - // normally the case, but we could have a potentially-trapping - // constant expression that prevents this transformation from being - // safe. - if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue)) - if (TCV->canTrap()) - return false; - if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue)) - if (FCV->canTrap()) - return false; - - // Okay, we collected all the mapped values and checked them for sanity, and - // defined to really do this transformation. First, update the CFG. - TrueSucc->removePredecessor(BI->getParent()); - FalseSucc->removePredecessor(BI->getParent()); - - // Insert select instructions where needed. - Value *BrCond = BI->getCondition(); - if (TrueValue) { - // Insert a select if the results differ. - if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) { - } else if (isa<UndefValue>(TrueValue)) { - TrueValue = FalseValue; - } else { - TrueValue = - Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI); - } - } - - Value *RI = - !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue); - - (void)RI; - - LLVM_DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:" - << "\n " << *BI << "NewRet = " << *RI << "TRUEBLOCK: " - << *TrueSucc << "FALSEBLOCK: " << *FalseSucc); - - EraseTerminatorAndDCECond(BI); - - return true; -} - -/// Return true if the given instruction is available -/// in its predecessor block. If yes, the instruction will be removed. -static bool tryCSEWithPredecessor(Instruction *Inst, BasicBlock *PB) { - if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst)) - return false; - for (Instruction &I : *PB) { - Instruction *PBI = &I; - // Check whether Inst and PBI generate the same value. - if (Inst->isIdenticalTo(PBI)) { - Inst->replaceAllUsesWith(PBI); - Inst->eraseFromParent(); - return true; - } - } - return false; -} - -/// Return true if either PBI or BI has branch weight available, and store -/// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does -/// not have branch weight, use 1:1 as its weight. -static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI, - uint64_t &PredTrueWeight, - uint64_t &PredFalseWeight, - uint64_t &SuccTrueWeight, - uint64_t &SuccFalseWeight) { - bool PredHasWeights = - PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight); - bool SuccHasWeights = - BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight); - if (PredHasWeights || SuccHasWeights) { - if (!PredHasWeights) - PredTrueWeight = PredFalseWeight = 1; - if (!SuccHasWeights) - SuccTrueWeight = SuccFalseWeight = 1; - return true; - } else { - return false; - } -} - -/// If this basic block is simple enough, and if a predecessor branches to us -/// and one of our successors, fold the block into the predecessor and use -/// logical operations to pick the right destination. -bool llvm::FoldBranchToCommonDest(BranchInst *BI, MemorySSAUpdater *MSSAU, - unsigned BonusInstThreshold) { - BasicBlock *BB = BI->getParent(); - - const unsigned PredCount = pred_size(BB); - - Instruction *Cond = nullptr; - if (BI->isConditional()) - Cond = dyn_cast<Instruction>(BI->getCondition()); - else { - // For unconditional branch, check for a simple CFG pattern, where - // BB has a single predecessor and BB's successor is also its predecessor's - // successor. If such pattern exists, check for CSE between BB and its - // predecessor. - if (BasicBlock *PB = BB->getSinglePredecessor()) - if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator())) - if (PBI->isConditional() && - (BI->getSuccessor(0) == PBI->getSuccessor(0) || - BI->getSuccessor(0) == PBI->getSuccessor(1))) { - for (auto I = BB->instructionsWithoutDebug().begin(), - E = BB->instructionsWithoutDebug().end(); - I != E;) { - Instruction *Curr = &*I++; - if (isa<CmpInst>(Curr)) { - Cond = Curr; - break; - } - // Quit if we can't remove this instruction. - if (!tryCSEWithPredecessor(Curr, PB)) - return false; - } - } - - if (!Cond) - return false; - } - - if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) || - Cond->getParent() != BB || !Cond->hasOneUse()) - return false; - - // Make sure the instruction after the condition is the cond branch. - BasicBlock::iterator CondIt = ++Cond->getIterator(); - - // Ignore dbg intrinsics. - while (isa<DbgInfoIntrinsic>(CondIt)) - ++CondIt; - - if (&*CondIt != BI) - return false; - - // Only allow this transformation if computing the condition doesn't involve - // too many instructions and these involved instructions can be executed - // unconditionally. We denote all involved instructions except the condition - // as "bonus instructions", and only allow this transformation when the - // number of the bonus instructions we'll need to create when cloning into - // each predecessor does not exceed a certain threshold. - unsigned NumBonusInsts = 0; - for (auto I = BB->begin(); Cond != &*I; ++I) { - // Ignore dbg intrinsics. - if (isa<DbgInfoIntrinsic>(I)) - continue; - if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I)) - return false; - // I has only one use and can be executed unconditionally. - Instruction *User = dyn_cast<Instruction>(I->user_back()); - if (User == nullptr || User->getParent() != BB) - return false; - // I is used in the same BB. Since BI uses Cond and doesn't have more slots - // to use any other instruction, User must be an instruction between next(I) - // and Cond. - - // Account for the cost of duplicating this instruction into each - // predecessor. - NumBonusInsts += PredCount; - // Early exits once we reach the limit. - if (NumBonusInsts > BonusInstThreshold) - return false; - } - - // Cond is known to be a compare or binary operator. Check to make sure that - // neither operand is a potentially-trapping constant expression. - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0))) - if (CE->canTrap()) - return false; - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1))) - if (CE->canTrap()) - return false; - - // Finally, don't infinitely unroll conditional loops. - BasicBlock *TrueDest = BI->getSuccessor(0); - BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr; - if (TrueDest == BB || FalseDest == BB) - return false; - - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { - BasicBlock *PredBlock = *PI; - BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator()); - - // Check that we have two conditional branches. If there is a PHI node in - // the common successor, verify that the same value flows in from both - // blocks. - SmallVector<PHINode *, 4> PHIs; - if (!PBI || PBI->isUnconditional() || - (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) || - (!BI->isConditional() && - !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs))) - continue; - - // Determine if the two branches share a common destination. - Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd; - bool InvertPredCond = false; - - if (BI->isConditional()) { - if (PBI->getSuccessor(0) == TrueDest) { - Opc = Instruction::Or; - } else if (PBI->getSuccessor(1) == FalseDest) { - Opc = Instruction::And; - } else if (PBI->getSuccessor(0) == FalseDest) { - Opc = Instruction::And; - InvertPredCond = true; - } else if (PBI->getSuccessor(1) == TrueDest) { - Opc = Instruction::Or; - InvertPredCond = true; - } else { - continue; - } - } else { - if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest) - continue; - } - - LLVM_DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB); - IRBuilder<> Builder(PBI); - - // If we need to invert the condition in the pred block to match, do so now. - if (InvertPredCond) { - Value *NewCond = PBI->getCondition(); - - if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) { - CmpInst *CI = cast<CmpInst>(NewCond); - CI->setPredicate(CI->getInversePredicate()); - } else { - NewCond = - Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not"); - } - - PBI->setCondition(NewCond); - PBI->swapSuccessors(); - } - - // If we have bonus instructions, clone them into the predecessor block. - // Note that there may be multiple predecessor blocks, so we cannot move - // bonus instructions to a predecessor block. - ValueToValueMapTy VMap; // maps original values to cloned values - // We already make sure Cond is the last instruction before BI. Therefore, - // all instructions before Cond other than DbgInfoIntrinsic are bonus - // instructions. - for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) { - if (isa<DbgInfoIntrinsic>(BonusInst)) - continue; - Instruction *NewBonusInst = BonusInst->clone(); - RemapInstruction(NewBonusInst, VMap, - RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); - VMap[&*BonusInst] = NewBonusInst; - - // If we moved a load, we cannot any longer claim any knowledge about - // its potential value. The previous information might have been valid - // only given the branch precondition. - // For an analogous reason, we must also drop all the metadata whose - // semantics we don't understand. - NewBonusInst->dropUnknownNonDebugMetadata(); - - PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst); - NewBonusInst->takeName(&*BonusInst); - BonusInst->setName(BonusInst->getName() + ".old"); - } - - // Clone Cond into the predecessor basic block, and or/and the - // two conditions together. - Instruction *CondInPred = Cond->clone(); - RemapInstruction(CondInPred, VMap, - RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); - PredBlock->getInstList().insert(PBI->getIterator(), CondInPred); - CondInPred->takeName(Cond); - Cond->setName(CondInPred->getName() + ".old"); - - if (BI->isConditional()) { - Instruction *NewCond = cast<Instruction>( - Builder.CreateBinOp(Opc, PBI->getCondition(), CondInPred, "or.cond")); - PBI->setCondition(NewCond); - - uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; - bool HasWeights = - extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, - SuccTrueWeight, SuccFalseWeight); - SmallVector<uint64_t, 8> NewWeights; - - if (PBI->getSuccessor(0) == BB) { - if (HasWeights) { - // PBI: br i1 %x, BB, FalseDest - // BI: br i1 %y, TrueDest, FalseDest - // TrueWeight is TrueWeight for PBI * TrueWeight for BI. - NewWeights.push_back(PredTrueWeight * SuccTrueWeight); - // FalseWeight is FalseWeight for PBI * TotalWeight for BI + - // TrueWeight for PBI * FalseWeight for BI. - // We assume that total weights of a BranchInst can fit into 32 bits. - // Therefore, we will not have overflow using 64-bit arithmetic. - NewWeights.push_back(PredFalseWeight * - (SuccFalseWeight + SuccTrueWeight) + - PredTrueWeight * SuccFalseWeight); - } - AddPredecessorToBlock(TrueDest, PredBlock, BB, MSSAU); - PBI->setSuccessor(0, TrueDest); - } - if (PBI->getSuccessor(1) == BB) { - if (HasWeights) { - // PBI: br i1 %x, TrueDest, BB - // BI: br i1 %y, TrueDest, FalseDest - // TrueWeight is TrueWeight for PBI * TotalWeight for BI + - // FalseWeight for PBI * TrueWeight for BI. - NewWeights.push_back(PredTrueWeight * - (SuccFalseWeight + SuccTrueWeight) + - PredFalseWeight * SuccTrueWeight); - // FalseWeight is FalseWeight for PBI * FalseWeight for BI. - NewWeights.push_back(PredFalseWeight * SuccFalseWeight); - } - AddPredecessorToBlock(FalseDest, PredBlock, BB, MSSAU); - PBI->setSuccessor(1, FalseDest); - } - if (NewWeights.size() == 2) { - // Halve the weights if any of them cannot fit in an uint32_t - FitWeights(NewWeights); - - SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(), - NewWeights.end()); - setBranchWeights(PBI, MDWeights[0], MDWeights[1]); - } else - PBI->setMetadata(LLVMContext::MD_prof, nullptr); - } else { - // Update PHI nodes in the common successors. - for (unsigned i = 0, e = PHIs.size(); i != e; ++i) { - ConstantInt *PBI_C = cast<ConstantInt>( - PHIs[i]->getIncomingValueForBlock(PBI->getParent())); - assert(PBI_C->getType()->isIntegerTy(1)); - Instruction *MergedCond = nullptr; - if (PBI->getSuccessor(0) == TrueDest) { - // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value) - // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value) - // is false: !PBI_Cond and BI_Value - Instruction *NotCond = cast<Instruction>( - Builder.CreateNot(PBI->getCondition(), "not.cond")); - MergedCond = cast<Instruction>( - Builder.CreateBinOp(Instruction::And, NotCond, CondInPred, - "and.cond")); - if (PBI_C->isOne()) - MergedCond = cast<Instruction>(Builder.CreateBinOp( - Instruction::Or, PBI->getCondition(), MergedCond, "or.cond")); - } else { - // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C) - // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond) - // is false: PBI_Cond and BI_Value - MergedCond = cast<Instruction>(Builder.CreateBinOp( - Instruction::And, PBI->getCondition(), CondInPred, "and.cond")); - if (PBI_C->isOne()) { - Instruction *NotCond = cast<Instruction>( - Builder.CreateNot(PBI->getCondition(), "not.cond")); - MergedCond = cast<Instruction>(Builder.CreateBinOp( - Instruction::Or, NotCond, MergedCond, "or.cond")); - } - } - // Update PHI Node. - PHIs[i]->setIncomingValueForBlock(PBI->getParent(), MergedCond); - } - - // PBI is changed to branch to TrueDest below. Remove itself from - // potential phis from all other successors. - if (MSSAU) - MSSAU->changeCondBranchToUnconditionalTo(PBI, TrueDest); - - // Change PBI from Conditional to Unconditional. - BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI); - EraseTerminatorAndDCECond(PBI, MSSAU); - PBI = New_PBI; - } - - // If BI was a loop latch, it may have had associated loop metadata. - // We need to copy it to the new latch, that is, PBI. - if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop)) - PBI->setMetadata(LLVMContext::MD_loop, LoopMD); - - // TODO: If BB is reachable from all paths through PredBlock, then we - // could replace PBI's branch probabilities with BI's. - - // Copy any debug value intrinsics into the end of PredBlock. - for (Instruction &I : *BB) - if (isa<DbgInfoIntrinsic>(I)) - I.clone()->insertBefore(PBI); - - return true; - } - return false; -} - -// If there is only one store in BB1 and BB2, return it, otherwise return -// nullptr. -static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) { - StoreInst *S = nullptr; - for (auto *BB : {BB1, BB2}) { - if (!BB) - continue; - for (auto &I : *BB) - if (auto *SI = dyn_cast<StoreInst>(&I)) { - if (S) - // Multiple stores seen. - return nullptr; - else - S = SI; - } - } - return S; -} - -static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB, - Value *AlternativeV = nullptr) { - // PHI is going to be a PHI node that allows the value V that is defined in - // BB to be referenced in BB's only successor. - // - // If AlternativeV is nullptr, the only value we care about in PHI is V. It - // doesn't matter to us what the other operand is (it'll never get used). We - // could just create a new PHI with an undef incoming value, but that could - // increase register pressure if EarlyCSE/InstCombine can't fold it with some - // other PHI. So here we directly look for some PHI in BB's successor with V - // as an incoming operand. If we find one, we use it, else we create a new - // one. - // - // If AlternativeV is not nullptr, we care about both incoming values in PHI. - // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV] - // where OtherBB is the single other predecessor of BB's only successor. - PHINode *PHI = nullptr; - BasicBlock *Succ = BB->getSingleSuccessor(); - - for (auto I = Succ->begin(); isa<PHINode>(I); ++I) - if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) { - PHI = cast<PHINode>(I); - if (!AlternativeV) - break; - - assert(Succ->hasNPredecessors(2)); - auto PredI = pred_begin(Succ); - BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI; - if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV) - break; - PHI = nullptr; - } - if (PHI) - return PHI; - - // If V is not an instruction defined in BB, just return it. - if (!AlternativeV && - (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB)) - return V; - - PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front()); - PHI->addIncoming(V, BB); - for (BasicBlock *PredBB : predecessors(Succ)) - if (PredBB != BB) - PHI->addIncoming( - AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB); - return PHI; -} - -static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB, - BasicBlock *QTB, BasicBlock *QFB, - BasicBlock *PostBB, Value *Address, - bool InvertPCond, bool InvertQCond, - const DataLayout &DL) { - auto IsaBitcastOfPointerType = [](const Instruction &I) { - return Operator::getOpcode(&I) == Instruction::BitCast && - I.getType()->isPointerTy(); - }; - - // If we're not in aggressive mode, we only optimize if we have some - // confidence that by optimizing we'll allow P and/or Q to be if-converted. - auto IsWorthwhile = [&](BasicBlock *BB) { - if (!BB) - return true; - // Heuristic: if the block can be if-converted/phi-folded and the - // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to - // thread this store. - unsigned N = 0; - for (auto &I : BB->instructionsWithoutDebug()) { - // Cheap instructions viable for folding. - if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) || - isa<StoreInst>(I)) - ++N; - // Free instructions. - else if (I.isTerminator() || IsaBitcastOfPointerType(I)) - continue; - else - return false; - } - // The store we want to merge is counted in N, so add 1 to make sure - // we're counting the instructions that would be left. - return N <= (PHINodeFoldingThreshold + 1); - }; - - if (!MergeCondStoresAggressively && - (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) || - !IsWorthwhile(QFB))) - return false; - - // For every pointer, there must be exactly two stores, one coming from - // PTB or PFB, and the other from QTB or QFB. We don't support more than one - // store (to any address) in PTB,PFB or QTB,QFB. - // FIXME: We could relax this restriction with a bit more work and performance - // testing. - StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB); - StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB); - if (!PStore || !QStore) - return false; - - // Now check the stores are compatible. - if (!QStore->isUnordered() || !PStore->isUnordered()) - return false; - - // Check that sinking the store won't cause program behavior changes. Sinking - // the store out of the Q blocks won't change any behavior as we're sinking - // from a block to its unconditional successor. But we're moving a store from - // the P blocks down through the middle block (QBI) and past both QFB and QTB. - // So we need to check that there are no aliasing loads or stores in - // QBI, QTB and QFB. We also need to check there are no conflicting memory - // operations between PStore and the end of its parent block. - // - // The ideal way to do this is to query AliasAnalysis, but we don't - // preserve AA currently so that is dangerous. Be super safe and just - // check there are no other memory operations at all. - for (auto &I : *QFB->getSinglePredecessor()) - if (I.mayReadOrWriteMemory()) - return false; - for (auto &I : *QFB) - if (&I != QStore && I.mayReadOrWriteMemory()) - return false; - if (QTB) - for (auto &I : *QTB) - if (&I != QStore && I.mayReadOrWriteMemory()) - return false; - for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end(); - I != E; ++I) - if (&*I != PStore && I->mayReadOrWriteMemory()) - return false; - - // If PostBB has more than two predecessors, we need to split it so we can - // sink the store. - if (std::next(pred_begin(PostBB), 2) != pred_end(PostBB)) { - // We know that QFB's only successor is PostBB. And QFB has a single - // predecessor. If QTB exists, then its only successor is also PostBB. - // If QTB does not exist, then QFB's only predecessor has a conditional - // branch to QFB and PostBB. - BasicBlock *TruePred = QTB ? QTB : QFB->getSinglePredecessor(); - BasicBlock *NewBB = SplitBlockPredecessors(PostBB, { QFB, TruePred}, - "condstore.split"); - if (!NewBB) - return false; - PostBB = NewBB; - } - - // OK, we're going to sink the stores to PostBB. The store has to be - // conditional though, so first create the predicate. - Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator()) - ->getCondition(); - Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator()) - ->getCondition(); - - Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(), - PStore->getParent()); - Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(), - QStore->getParent(), PPHI); - - IRBuilder<> QB(&*PostBB->getFirstInsertionPt()); - - Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond); - Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond); - - if (InvertPCond) - PPred = QB.CreateNot(PPred); - if (InvertQCond) - QPred = QB.CreateNot(QPred); - Value *CombinedPred = QB.CreateOr(PPred, QPred); - - auto *T = - SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false); - QB.SetInsertPoint(T); - StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address)); - AAMDNodes AAMD; - PStore->getAAMetadata(AAMD, /*Merge=*/false); - PStore->getAAMetadata(AAMD, /*Merge=*/true); - SI->setAAMetadata(AAMD); - unsigned PAlignment = PStore->getAlignment(); - unsigned QAlignment = QStore->getAlignment(); - unsigned TypeAlignment = - DL.getABITypeAlignment(SI->getValueOperand()->getType()); - unsigned MinAlignment; - unsigned MaxAlignment; - std::tie(MinAlignment, MaxAlignment) = std::minmax(PAlignment, QAlignment); - // Choose the minimum alignment. If we could prove both stores execute, we - // could use biggest one. In this case, though, we only know that one of the - // stores executes. And we don't know it's safe to take the alignment from a - // store that doesn't execute. - if (MinAlignment != 0) { - // Choose the minimum of all non-zero alignments. - SI->setAlignment(MinAlignment); - } else if (MaxAlignment != 0) { - // Choose the minimal alignment between the non-zero alignment and the ABI - // default alignment for the type of the stored value. - SI->setAlignment(std::min(MaxAlignment, TypeAlignment)); - } else { - // If both alignments are zero, use ABI default alignment for the type of - // the stored value. - SI->setAlignment(TypeAlignment); - } - - QStore->eraseFromParent(); - PStore->eraseFromParent(); - - return true; -} - -static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI, - const DataLayout &DL) { - // The intention here is to find diamonds or triangles (see below) where each - // conditional block contains a store to the same address. Both of these - // stores are conditional, so they can't be unconditionally sunk. But it may - // be profitable to speculatively sink the stores into one merged store at the - // end, and predicate the merged store on the union of the two conditions of - // PBI and QBI. - // - // This can reduce the number of stores executed if both of the conditions are - // true, and can allow the blocks to become small enough to be if-converted. - // This optimization will also chain, so that ladders of test-and-set - // sequences can be if-converted away. - // - // We only deal with simple diamonds or triangles: - // - // PBI or PBI or a combination of the two - // / \ | \ - // PTB PFB | PFB - // \ / | / - // QBI QBI - // / \ | \ - // QTB QFB | QFB - // \ / | / - // PostBB PostBB - // - // We model triangles as a type of diamond with a nullptr "true" block. - // Triangles are canonicalized so that the fallthrough edge is represented by - // a true condition, as in the diagram above. - BasicBlock *PTB = PBI->getSuccessor(0); - BasicBlock *PFB = PBI->getSuccessor(1); - BasicBlock *QTB = QBI->getSuccessor(0); - BasicBlock *QFB = QBI->getSuccessor(1); - BasicBlock *PostBB = QFB->getSingleSuccessor(); - - // Make sure we have a good guess for PostBB. If QTB's only successor is - // QFB, then QFB is a better PostBB. - if (QTB->getSingleSuccessor() == QFB) - PostBB = QFB; - - // If we couldn't find a good PostBB, stop. - if (!PostBB) - return false; - - bool InvertPCond = false, InvertQCond = false; - // Canonicalize fallthroughs to the true branches. - if (PFB == QBI->getParent()) { - std::swap(PFB, PTB); - InvertPCond = true; - } - if (QFB == PostBB) { - std::swap(QFB, QTB); - InvertQCond = true; - } - - // From this point on we can assume PTB or QTB may be fallthroughs but PFB - // and QFB may not. Model fallthroughs as a nullptr block. - if (PTB == QBI->getParent()) - PTB = nullptr; - if (QTB == PostBB) - QTB = nullptr; - - // Legality bailouts. We must have at least the non-fallthrough blocks and - // the post-dominating block, and the non-fallthroughs must only have one - // predecessor. - auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) { - return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S; - }; - if (!HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) || - !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB)) - return false; - if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) || - (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB))) - return false; - if (!QBI->getParent()->hasNUses(2)) - return false; - - // OK, this is a sequence of two diamonds or triangles. - // Check if there are stores in PTB or PFB that are repeated in QTB or QFB. - SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses; - for (auto *BB : {PTB, PFB}) { - if (!BB) - continue; - for (auto &I : *BB) - if (StoreInst *SI = dyn_cast<StoreInst>(&I)) - PStoreAddresses.insert(SI->getPointerOperand()); - } - for (auto *BB : {QTB, QFB}) { - if (!BB) - continue; - for (auto &I : *BB) - if (StoreInst *SI = dyn_cast<StoreInst>(&I)) - QStoreAddresses.insert(SI->getPointerOperand()); - } - - set_intersect(PStoreAddresses, QStoreAddresses); - // set_intersect mutates PStoreAddresses in place. Rename it here to make it - // clear what it contains. - auto &CommonAddresses = PStoreAddresses; - - bool Changed = false; - for (auto *Address : CommonAddresses) - Changed |= mergeConditionalStoreToAddress( - PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond, DL); - return Changed; -} - -/// If we have a conditional branch as a predecessor of another block, -/// this function tries to simplify it. We know -/// that PBI and BI are both conditional branches, and BI is in one of the -/// successor blocks of PBI - PBI branches to BI. -static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI, - const DataLayout &DL) { - assert(PBI->isConditional() && BI->isConditional()); - BasicBlock *BB = BI->getParent(); - - // If this block ends with a branch instruction, and if there is a - // predecessor that ends on a branch of the same condition, make - // this conditional branch redundant. - if (PBI->getCondition() == BI->getCondition() && - PBI->getSuccessor(0) != PBI->getSuccessor(1)) { - // Okay, the outcome of this conditional branch is statically - // knowable. If this block had a single pred, handle specially. - if (BB->getSinglePredecessor()) { - // Turn this into a branch on constant. - bool CondIsTrue = PBI->getSuccessor(0) == BB; - BI->setCondition( - ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue)); - return true; // Nuke the branch on constant. - } - - // Otherwise, if there are multiple predecessors, insert a PHI that merges - // in the constant and simplify the block result. Subsequent passes of - // simplifycfg will thread the block. - if (BlockIsSimpleEnoughToThreadThrough(BB)) { - pred_iterator PB = pred_begin(BB), PE = pred_end(BB); - PHINode *NewPN = PHINode::Create( - Type::getInt1Ty(BB->getContext()), std::distance(PB, PE), - BI->getCondition()->getName() + ".pr", &BB->front()); - // Okay, we're going to insert the PHI node. Since PBI is not the only - // predecessor, compute the PHI'd conditional value for all of the preds. - // Any predecessor where the condition is not computable we keep symbolic. - for (pred_iterator PI = PB; PI != PE; ++PI) { - BasicBlock *P = *PI; - if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI && - PBI->isConditional() && PBI->getCondition() == BI->getCondition() && - PBI->getSuccessor(0) != PBI->getSuccessor(1)) { - bool CondIsTrue = PBI->getSuccessor(0) == BB; - NewPN->addIncoming( - ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue), - P); - } else { - NewPN->addIncoming(BI->getCondition(), P); - } - } - - BI->setCondition(NewPN); - return true; - } - } - - if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition())) - if (CE->canTrap()) - return false; - - // If both branches are conditional and both contain stores to the same - // address, remove the stores from the conditionals and create a conditional - // merged store at the end. - if (MergeCondStores && mergeConditionalStores(PBI, BI, DL)) - return true; - - // If this is a conditional branch in an empty block, and if any - // predecessors are a conditional branch to one of our destinations, - // fold the conditions into logical ops and one cond br. - - // Ignore dbg intrinsics. - if (&*BB->instructionsWithoutDebug().begin() != BI) - return false; - - int PBIOp, BIOp; - if (PBI->getSuccessor(0) == BI->getSuccessor(0)) { - PBIOp = 0; - BIOp = 0; - } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) { - PBIOp = 0; - BIOp = 1; - } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) { - PBIOp = 1; - BIOp = 0; - } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) { - PBIOp = 1; - BIOp = 1; - } else { - return false; - } - - // Check to make sure that the other destination of this branch - // isn't BB itself. If so, this is an infinite loop that will - // keep getting unwound. - if (PBI->getSuccessor(PBIOp) == BB) - return false; - - // Do not perform this transformation if it would require - // insertion of a large number of select instructions. For targets - // without predication/cmovs, this is a big pessimization. - - // Also do not perform this transformation if any phi node in the common - // destination block can trap when reached by BB or PBB (PR17073). In that - // case, it would be unsafe to hoist the operation into a select instruction. - - BasicBlock *CommonDest = PBI->getSuccessor(PBIOp); - unsigned NumPhis = 0; - for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II); - ++II, ++NumPhis) { - if (NumPhis > 2) // Disable this xform. - return false; - - PHINode *PN = cast<PHINode>(II); - Value *BIV = PN->getIncomingValueForBlock(BB); - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV)) - if (CE->canTrap()) - return false; - - unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent()); - Value *PBIV = PN->getIncomingValue(PBBIdx); - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV)) - if (CE->canTrap()) - return false; - } - - // Finally, if everything is ok, fold the branches to logical ops. - BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1); - - LLVM_DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent() - << "AND: " << *BI->getParent()); - - // If OtherDest *is* BB, then BB is a basic block with a single conditional - // branch in it, where one edge (OtherDest) goes back to itself but the other - // exits. We don't *know* that the program avoids the infinite loop - // (even though that seems likely). If we do this xform naively, we'll end up - // recursively unpeeling the loop. Since we know that (after the xform is - // done) that the block *is* infinite if reached, we just make it an obviously - // infinite loop with no cond branch. - if (OtherDest == BB) { - // Insert it at the end of the function, because it's either code, - // or it won't matter if it's hot. :) - BasicBlock *InfLoopBlock = - BasicBlock::Create(BB->getContext(), "infloop", BB->getParent()); - BranchInst::Create(InfLoopBlock, InfLoopBlock); - OtherDest = InfLoopBlock; - } - - LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); - - // BI may have other predecessors. Because of this, we leave - // it alone, but modify PBI. - - // Make sure we get to CommonDest on True&True directions. - Value *PBICond = PBI->getCondition(); - IRBuilder<NoFolder> Builder(PBI); - if (PBIOp) - PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not"); - - Value *BICond = BI->getCondition(); - if (BIOp) - BICond = Builder.CreateNot(BICond, BICond->getName() + ".not"); - - // Merge the conditions. - Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge"); - - // Modify PBI to branch on the new condition to the new dests. - PBI->setCondition(Cond); - PBI->setSuccessor(0, CommonDest); - PBI->setSuccessor(1, OtherDest); - - // Update branch weight for PBI. - uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight; - uint64_t PredCommon, PredOther, SuccCommon, SuccOther; - bool HasWeights = - extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight, - SuccTrueWeight, SuccFalseWeight); - if (HasWeights) { - PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; - PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; - SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; - SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; - // The weight to CommonDest should be PredCommon * SuccTotal + - // PredOther * SuccCommon. - // The weight to OtherDest should be PredOther * SuccOther. - uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) + - PredOther * SuccCommon, - PredOther * SuccOther}; - // Halve the weights if any of them cannot fit in an uint32_t - FitWeights(NewWeights); - - setBranchWeights(PBI, NewWeights[0], NewWeights[1]); - } - - // OtherDest may have phi nodes. If so, add an entry from PBI's - // block that are identical to the entries for BI's block. - AddPredecessorToBlock(OtherDest, PBI->getParent(), BB); - - // We know that the CommonDest already had an edge from PBI to - // it. If it has PHIs though, the PHIs may have different - // entries for BB and PBI's BB. If so, insert a select to make - // them agree. - for (PHINode &PN : CommonDest->phis()) { - Value *BIV = PN.getIncomingValueForBlock(BB); - unsigned PBBIdx = PN.getBasicBlockIndex(PBI->getParent()); - Value *PBIV = PN.getIncomingValue(PBBIdx); - if (BIV != PBIV) { - // Insert a select in PBI to pick the right value. - SelectInst *NV = cast<SelectInst>( - Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux")); - PN.setIncomingValue(PBBIdx, NV); - // Although the select has the same condition as PBI, the original branch - // weights for PBI do not apply to the new select because the select's - // 'logical' edges are incoming edges of the phi that is eliminated, not - // the outgoing edges of PBI. - if (HasWeights) { - uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight; - uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight; - uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight; - uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight; - // The weight to PredCommonDest should be PredCommon * SuccTotal. - // The weight to PredOtherDest should be PredOther * SuccCommon. - uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther), - PredOther * SuccCommon}; - - FitWeights(NewWeights); - - setBranchWeights(NV, NewWeights[0], NewWeights[1]); - } - } - } - - LLVM_DEBUG(dbgs() << "INTO: " << *PBI->getParent()); - LLVM_DEBUG(dbgs() << *PBI->getParent()->getParent()); - - // This basic block is probably dead. We know it has at least - // one fewer predecessor. - return true; -} - -// Simplifies a terminator by replacing it with a branch to TrueBB if Cond is -// true or to FalseBB if Cond is false. -// Takes care of updating the successors and removing the old terminator. -// Also makes sure not to introduce new successors by assuming that edges to -// non-successor TrueBBs and FalseBBs aren't reachable. -static bool SimplifyTerminatorOnSelect(Instruction *OldTerm, Value *Cond, - BasicBlock *TrueBB, BasicBlock *FalseBB, - uint32_t TrueWeight, - uint32_t FalseWeight) { - // Remove any superfluous successor edges from the CFG. - // First, figure out which successors to preserve. - // If TrueBB and FalseBB are equal, only try to preserve one copy of that - // successor. - BasicBlock *KeepEdge1 = TrueBB; - BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr; - - // Then remove the rest. - for (BasicBlock *Succ : successors(OldTerm)) { - // Make sure only to keep exactly one copy of each edge. - if (Succ == KeepEdge1) - KeepEdge1 = nullptr; - else if (Succ == KeepEdge2) - KeepEdge2 = nullptr; - else - Succ->removePredecessor(OldTerm->getParent(), - /*KeepOneInputPHIs=*/true); - } - - IRBuilder<> Builder(OldTerm); - Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc()); - - // Insert an appropriate new terminator. - if (!KeepEdge1 && !KeepEdge2) { - if (TrueBB == FalseBB) - // We were only looking for one successor, and it was present. - // Create an unconditional branch to it. - Builder.CreateBr(TrueBB); - else { - // We found both of the successors we were looking for. - // Create a conditional branch sharing the condition of the select. - BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB); - if (TrueWeight != FalseWeight) - setBranchWeights(NewBI, TrueWeight, FalseWeight); - } - } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) { - // Neither of the selected blocks were successors, so this - // terminator must be unreachable. - new UnreachableInst(OldTerm->getContext(), OldTerm); - } else { - // One of the selected values was a successor, but the other wasn't. - // Insert an unconditional branch to the one that was found; - // the edge to the one that wasn't must be unreachable. - if (!KeepEdge1) - // Only TrueBB was found. - Builder.CreateBr(TrueBB); - else - // Only FalseBB was found. - Builder.CreateBr(FalseBB); - } - - EraseTerminatorAndDCECond(OldTerm); - return true; -} - -// Replaces -// (switch (select cond, X, Y)) on constant X, Y -// with a branch - conditional if X and Y lead to distinct BBs, -// unconditional otherwise. -static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) { - // Check for constant integer values in the select. - ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue()); - ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue()); - if (!TrueVal || !FalseVal) - return false; - - // Find the relevant condition and destinations. - Value *Condition = Select->getCondition(); - BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor(); - BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor(); - - // Get weight for TrueBB and FalseBB. - uint32_t TrueWeight = 0, FalseWeight = 0; - SmallVector<uint64_t, 8> Weights; - bool HasWeights = HasBranchWeights(SI); - if (HasWeights) { - GetBranchWeights(SI, Weights); - if (Weights.size() == 1 + SI->getNumCases()) { - TrueWeight = - (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()]; - FalseWeight = - (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()]; - } - } - - // Perform the actual simplification. - return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight, - FalseWeight); -} - -// Replaces -// (indirectbr (select cond, blockaddress(@fn, BlockA), -// blockaddress(@fn, BlockB))) -// with -// (br cond, BlockA, BlockB). -static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) { - // Check that both operands of the select are block addresses. - BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue()); - BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue()); - if (!TBA || !FBA) - return false; - - // Extract the actual blocks. - BasicBlock *TrueBB = TBA->getBasicBlock(); - BasicBlock *FalseBB = FBA->getBasicBlock(); - - // Perform the actual simplification. - return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0, - 0); -} - -/// This is called when we find an icmp instruction -/// (a seteq/setne with a constant) as the only instruction in a -/// block that ends with an uncond branch. We are looking for a very specific -/// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified. In -/// this case, we merge the first two "or's of icmp" into a switch, but then the -/// default value goes to an uncond block with a seteq in it, we get something -/// like: -/// -/// switch i8 %A, label %DEFAULT [ i8 1, label %end i8 2, label %end ] -/// DEFAULT: -/// %tmp = icmp eq i8 %A, 92 -/// br label %end -/// end: -/// ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ] -/// -/// We prefer to split the edge to 'end' so that there is a true/false entry to -/// the PHI, merging the third icmp into the switch. -bool SimplifyCFGOpt::tryToSimplifyUncondBranchWithICmpInIt( - ICmpInst *ICI, IRBuilder<> &Builder) { - BasicBlock *BB = ICI->getParent(); - - // If the block has any PHIs in it or the icmp has multiple uses, it is too - // complex. - if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse()) - return false; - - Value *V = ICI->getOperand(0); - ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1)); - - // The pattern we're looking for is where our only predecessor is a switch on - // 'V' and this block is the default case for the switch. In this case we can - // fold the compared value into the switch to simplify things. - BasicBlock *Pred = BB->getSinglePredecessor(); - if (!Pred || !isa<SwitchInst>(Pred->getTerminator())) - return false; - - SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator()); - if (SI->getCondition() != V) - return false; - - // If BB is reachable on a non-default case, then we simply know the value of - // V in this block. Substitute it and constant fold the icmp instruction - // away. - if (SI->getDefaultDest() != BB) { - ConstantInt *VVal = SI->findCaseDest(BB); - assert(VVal && "Should have a unique destination value"); - ICI->setOperand(0, VVal); - - if (Value *V = SimplifyInstruction(ICI, {DL, ICI})) { - ICI->replaceAllUsesWith(V); - ICI->eraseFromParent(); - } - // BB is now empty, so it is likely to simplify away. - return requestResimplify(); - } - - // Ok, the block is reachable from the default dest. If the constant we're - // comparing exists in one of the other edges, then we can constant fold ICI - // and zap it. - if (SI->findCaseValue(Cst) != SI->case_default()) { - Value *V; - if (ICI->getPredicate() == ICmpInst::ICMP_EQ) - V = ConstantInt::getFalse(BB->getContext()); - else - V = ConstantInt::getTrue(BB->getContext()); - - ICI->replaceAllUsesWith(V); - ICI->eraseFromParent(); - // BB is now empty, so it is likely to simplify away. - return requestResimplify(); - } - - // The use of the icmp has to be in the 'end' block, by the only PHI node in - // the block. - BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0); - PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back()); - if (PHIUse == nullptr || PHIUse != &SuccBlock->front() || - isa<PHINode>(++BasicBlock::iterator(PHIUse))) - return false; - - // If the icmp is a SETEQ, then the default dest gets false, the new edge gets - // true in the PHI. - Constant *DefaultCst = ConstantInt::getTrue(BB->getContext()); - Constant *NewCst = ConstantInt::getFalse(BB->getContext()); - - if (ICI->getPredicate() == ICmpInst::ICMP_EQ) - std::swap(DefaultCst, NewCst); - - // Replace ICI (which is used by the PHI for the default value) with true or - // false depending on if it is EQ or NE. - ICI->replaceAllUsesWith(DefaultCst); - ICI->eraseFromParent(); - - // Okay, the switch goes to this block on a default value. Add an edge from - // the switch to the merge point on the compared value. - BasicBlock *NewBB = - BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB); - { - SwitchInstProfUpdateWrapper SIW(*SI); - auto W0 = SIW.getSuccessorWeight(0); - SwitchInstProfUpdateWrapper::CaseWeightOpt NewW; - if (W0) { - NewW = ((uint64_t(*W0) + 1) >> 1); - SIW.setSuccessorWeight(0, *NewW); - } - SIW.addCase(Cst, NewBB, NewW); - } - - // NewBB branches to the phi block, add the uncond branch and the phi entry. - Builder.SetInsertPoint(NewBB); - Builder.SetCurrentDebugLocation(SI->getDebugLoc()); - Builder.CreateBr(SuccBlock); - PHIUse->addIncoming(NewCst, NewBB); - return true; -} - -/// The specified branch is a conditional branch. -/// Check to see if it is branching on an or/and chain of icmp instructions, and -/// fold it into a switch instruction if so. -static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder, - const DataLayout &DL) { - Instruction *Cond = dyn_cast<Instruction>(BI->getCondition()); - if (!Cond) - return false; - - // Change br (X == 0 | X == 1), T, F into a switch instruction. - // If this is a bunch of seteq's or'd together, or if it's a bunch of - // 'setne's and'ed together, collect them. - - // Try to gather values from a chain of and/or to be turned into a switch - ConstantComparesGatherer ConstantCompare(Cond, DL); - // Unpack the result - SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals; - Value *CompVal = ConstantCompare.CompValue; - unsigned UsedICmps = ConstantCompare.UsedICmps; - Value *ExtraCase = ConstantCompare.Extra; - - // If we didn't have a multiply compared value, fail. - if (!CompVal) - return false; - - // Avoid turning single icmps into a switch. - if (UsedICmps <= 1) - return false; - - bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or); - - // There might be duplicate constants in the list, which the switch - // instruction can't handle, remove them now. - array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate); - Values.erase(std::unique(Values.begin(), Values.end()), Values.end()); - - // If Extra was used, we require at least two switch values to do the - // transformation. A switch with one value is just a conditional branch. - if (ExtraCase && Values.size() < 2) - return false; - - // TODO: Preserve branch weight metadata, similarly to how - // FoldValueComparisonIntoPredecessors preserves it. - - // Figure out which block is which destination. - BasicBlock *DefaultBB = BI->getSuccessor(1); - BasicBlock *EdgeBB = BI->getSuccessor(0); - if (!TrueWhenEqual) - std::swap(DefaultBB, EdgeBB); - - BasicBlock *BB = BI->getParent(); - - LLVM_DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size() - << " cases into SWITCH. BB is:\n" - << *BB); - - // If there are any extra values that couldn't be folded into the switch - // then we evaluate them with an explicit branch first. Split the block - // right before the condbr to handle it. - if (ExtraCase) { - BasicBlock *NewBB = - BB->splitBasicBlock(BI->getIterator(), "switch.early.test"); - // Remove the uncond branch added to the old block. - Instruction *OldTI = BB->getTerminator(); - Builder.SetInsertPoint(OldTI); - - if (TrueWhenEqual) - Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB); - else - Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB); - - OldTI->eraseFromParent(); - - // If there are PHI nodes in EdgeBB, then we need to add a new entry to them - // for the edge we just added. - AddPredecessorToBlock(EdgeBB, BB, NewBB); - - LLVM_DEBUG(dbgs() << " ** 'icmp' chain unhandled condition: " << *ExtraCase - << "\nEXTRABB = " << *BB); - BB = NewBB; - } - - Builder.SetInsertPoint(BI); - // Convert pointer to int before we switch. - if (CompVal->getType()->isPointerTy()) { - CompVal = Builder.CreatePtrToInt( - CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr"); - } - - // Create the new switch instruction now. - SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size()); - - // Add all of the 'cases' to the switch instruction. - for (unsigned i = 0, e = Values.size(); i != e; ++i) - New->addCase(Values[i], EdgeBB); - - // We added edges from PI to the EdgeBB. As such, if there were any - // PHI nodes in EdgeBB, they need entries to be added corresponding to - // the number of edges added. - for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) { - PHINode *PN = cast<PHINode>(BBI); - Value *InVal = PN->getIncomingValueForBlock(BB); - for (unsigned i = 0, e = Values.size() - 1; i != e; ++i) - PN->addIncoming(InVal, BB); - } - - // Erase the old branch instruction. - EraseTerminatorAndDCECond(BI); - - LLVM_DEBUG(dbgs() << " ** 'icmp' chain result is:\n" << *BB << '\n'); - return true; -} - -bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) { - if (isa<PHINode>(RI->getValue())) - return SimplifyCommonResume(RI); - else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) && - RI->getValue() == RI->getParent()->getFirstNonPHI()) - // The resume must unwind the exception that caused control to branch here. - return SimplifySingleResume(RI); - - return false; -} - -// Simplify resume that is shared by several landing pads (phi of landing pad). -bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) { - BasicBlock *BB = RI->getParent(); - - // Check that there are no other instructions except for debug intrinsics - // between the phi of landing pads (RI->getValue()) and resume instruction. - BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(), - E = RI->getIterator(); - while (++I != E) - if (!isa<DbgInfoIntrinsic>(I)) - return false; - - SmallSetVector<BasicBlock *, 4> TrivialUnwindBlocks; - auto *PhiLPInst = cast<PHINode>(RI->getValue()); - - // Check incoming blocks to see if any of them are trivial. - for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End; - Idx++) { - auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx); - auto *IncomingValue = PhiLPInst->getIncomingValue(Idx); - - // If the block has other successors, we can not delete it because - // it has other dependents. - if (IncomingBB->getUniqueSuccessor() != BB) - continue; - - auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI()); - // Not the landing pad that caused the control to branch here. - if (IncomingValue != LandingPad) - continue; - - bool isTrivial = true; - - I = IncomingBB->getFirstNonPHI()->getIterator(); - E = IncomingBB->getTerminator()->getIterator(); - while (++I != E) - if (!isa<DbgInfoIntrinsic>(I)) { - isTrivial = false; - break; - } - - if (isTrivial) - TrivialUnwindBlocks.insert(IncomingBB); - } - - // If no trivial unwind blocks, don't do any simplifications. - if (TrivialUnwindBlocks.empty()) - return false; - - // Turn all invokes that unwind here into calls. - for (auto *TrivialBB : TrivialUnwindBlocks) { - // Blocks that will be simplified should be removed from the phi node. - // Note there could be multiple edges to the resume block, and we need - // to remove them all. - while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1) - BB->removePredecessor(TrivialBB, true); - - for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB); - PI != PE;) { - BasicBlock *Pred = *PI++; - removeUnwindEdge(Pred); - } - - // In each SimplifyCFG run, only the current processed block can be erased. - // Otherwise, it will break the iteration of SimplifyCFG pass. So instead - // of erasing TrivialBB, we only remove the branch to the common resume - // block so that we can later erase the resume block since it has no - // predecessors. - TrivialBB->getTerminator()->eraseFromParent(); - new UnreachableInst(RI->getContext(), TrivialBB); - } - - // Delete the resume block if all its predecessors have been removed. - if (pred_empty(BB)) - BB->eraseFromParent(); - - return !TrivialUnwindBlocks.empty(); -} - -// Simplify resume that is only used by a single (non-phi) landing pad. -bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) { - BasicBlock *BB = RI->getParent(); - LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI()); - assert(RI->getValue() == LPInst && - "Resume must unwind the exception that caused control to here"); - - // Check that there are no other instructions except for debug intrinsics. - BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator(); - while (++I != E) - if (!isa<DbgInfoIntrinsic>(I)) - return false; - - // Turn all invokes that unwind here into calls and delete the basic block. - for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { - BasicBlock *Pred = *PI++; - removeUnwindEdge(Pred); - } - - // The landingpad is now unreachable. Zap it. - if (LoopHeaders) - LoopHeaders->erase(BB); - BB->eraseFromParent(); - return true; -} - -static bool removeEmptyCleanup(CleanupReturnInst *RI) { - // If this is a trivial cleanup pad that executes no instructions, it can be - // eliminated. If the cleanup pad continues to the caller, any predecessor - // that is an EH pad will be updated to continue to the caller and any - // predecessor that terminates with an invoke instruction will have its invoke - // instruction converted to a call instruction. If the cleanup pad being - // simplified does not continue to the caller, each predecessor will be - // updated to continue to the unwind destination of the cleanup pad being - // simplified. - BasicBlock *BB = RI->getParent(); - CleanupPadInst *CPInst = RI->getCleanupPad(); - if (CPInst->getParent() != BB) - // This isn't an empty cleanup. - return false; - - // We cannot kill the pad if it has multiple uses. This typically arises - // from unreachable basic blocks. - if (!CPInst->hasOneUse()) - return false; - - // Check that there are no other instructions except for benign intrinsics. - BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator(); - while (++I != E) { - auto *II = dyn_cast<IntrinsicInst>(I); - if (!II) - return false; - - Intrinsic::ID IntrinsicID = II->getIntrinsicID(); - switch (IntrinsicID) { - case Intrinsic::dbg_declare: - case Intrinsic::dbg_value: - case Intrinsic::dbg_label: - case Intrinsic::lifetime_end: - break; - default: - return false; - } - } - - // If the cleanup return we are simplifying unwinds to the caller, this will - // set UnwindDest to nullptr. - BasicBlock *UnwindDest = RI->getUnwindDest(); - Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr; - - // We're about to remove BB from the control flow. Before we do, sink any - // PHINodes into the unwind destination. Doing this before changing the - // control flow avoids some potentially slow checks, since we can currently - // be certain that UnwindDest and BB have no common predecessors (since they - // are both EH pads). - if (UnwindDest) { - // First, go through the PHI nodes in UnwindDest and update any nodes that - // reference the block we are removing - for (BasicBlock::iterator I = UnwindDest->begin(), - IE = DestEHPad->getIterator(); - I != IE; ++I) { - PHINode *DestPN = cast<PHINode>(I); - - int Idx = DestPN->getBasicBlockIndex(BB); - // Since BB unwinds to UnwindDest, it has to be in the PHI node. - assert(Idx != -1); - // This PHI node has an incoming value that corresponds to a control - // path through the cleanup pad we are removing. If the incoming - // value is in the cleanup pad, it must be a PHINode (because we - // verified above that the block is otherwise empty). Otherwise, the - // value is either a constant or a value that dominates the cleanup - // pad being removed. - // - // Because BB and UnwindDest are both EH pads, all of their - // predecessors must unwind to these blocks, and since no instruction - // can have multiple unwind destinations, there will be no overlap in - // incoming blocks between SrcPN and DestPN. - Value *SrcVal = DestPN->getIncomingValue(Idx); - PHINode *SrcPN = dyn_cast<PHINode>(SrcVal); - - // Remove the entry for the block we are deleting. - DestPN->removeIncomingValue(Idx, false); - - if (SrcPN && SrcPN->getParent() == BB) { - // If the incoming value was a PHI node in the cleanup pad we are - // removing, we need to merge that PHI node's incoming values into - // DestPN. - for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues(); - SrcIdx != SrcE; ++SrcIdx) { - DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx), - SrcPN->getIncomingBlock(SrcIdx)); - } - } else { - // Otherwise, the incoming value came from above BB and - // so we can just reuse it. We must associate all of BB's - // predecessors with this value. - for (auto *pred : predecessors(BB)) { - DestPN->addIncoming(SrcVal, pred); - } - } - } - - // Sink any remaining PHI nodes directly into UnwindDest. - Instruction *InsertPt = DestEHPad; - for (BasicBlock::iterator I = BB->begin(), - IE = BB->getFirstNonPHI()->getIterator(); - I != IE;) { - // The iterator must be incremented here because the instructions are - // being moved to another block. - PHINode *PN = cast<PHINode>(I++); - if (PN->use_empty()) - // If the PHI node has no uses, just leave it. It will be erased - // when we erase BB below. - continue; - - // Otherwise, sink this PHI node into UnwindDest. - // Any predecessors to UnwindDest which are not already represented - // must be back edges which inherit the value from the path through - // BB. In this case, the PHI value must reference itself. - for (auto *pred : predecessors(UnwindDest)) - if (pred != BB) - PN->addIncoming(PN, pred); - PN->moveBefore(InsertPt); - } - } - - for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) { - // The iterator must be updated here because we are removing this pred. - BasicBlock *PredBB = *PI++; - if (UnwindDest == nullptr) { - removeUnwindEdge(PredBB); - } else { - Instruction *TI = PredBB->getTerminator(); - TI->replaceUsesOfWith(BB, UnwindDest); - } - } - - // The cleanup pad is now unreachable. Zap it. - BB->eraseFromParent(); - return true; -} - -// Try to merge two cleanuppads together. -static bool mergeCleanupPad(CleanupReturnInst *RI) { - // Skip any cleanuprets which unwind to caller, there is nothing to merge - // with. - BasicBlock *UnwindDest = RI->getUnwindDest(); - if (!UnwindDest) - return false; - - // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't - // be safe to merge without code duplication. - if (UnwindDest->getSinglePredecessor() != RI->getParent()) - return false; - - // Verify that our cleanuppad's unwind destination is another cleanuppad. - auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front()); - if (!SuccessorCleanupPad) - return false; - - CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad(); - // Replace any uses of the successor cleanupad with the predecessor pad - // The only cleanuppad uses should be this cleanupret, it's cleanupret and - // funclet bundle operands. - SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad); - // Remove the old cleanuppad. - SuccessorCleanupPad->eraseFromParent(); - // Now, we simply replace the cleanupret with a branch to the unwind - // destination. - BranchInst::Create(UnwindDest, RI->getParent()); - RI->eraseFromParent(); - - return true; -} - -bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) { - // It is possible to transiantly have an undef cleanuppad operand because we - // have deleted some, but not all, dead blocks. - // Eventually, this block will be deleted. - if (isa<UndefValue>(RI->getOperand(0))) - return false; - - if (mergeCleanupPad(RI)) - return true; - - if (removeEmptyCleanup(RI)) - return true; - - return false; -} - -bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) { - BasicBlock *BB = RI->getParent(); - if (!BB->getFirstNonPHIOrDbg()->isTerminator()) - return false; - - // Find predecessors that end with branches. - SmallVector<BasicBlock *, 8> UncondBranchPreds; - SmallVector<BranchInst *, 8> CondBranchPreds; - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { - BasicBlock *P = *PI; - Instruction *PTI = P->getTerminator(); - if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) { - if (BI->isUnconditional()) - UncondBranchPreds.push_back(P); - else - CondBranchPreds.push_back(BI); - } - } - - // If we found some, do the transformation! - if (!UncondBranchPreds.empty() && DupRet) { - while (!UncondBranchPreds.empty()) { - BasicBlock *Pred = UncondBranchPreds.pop_back_val(); - LLVM_DEBUG(dbgs() << "FOLDING: " << *BB - << "INTO UNCOND BRANCH PRED: " << *Pred); - (void)FoldReturnIntoUncondBranch(RI, BB, Pred); - } - - // If we eliminated all predecessors of the block, delete the block now. - if (pred_empty(BB)) { - // We know there are no successors, so just nuke the block. - if (LoopHeaders) - LoopHeaders->erase(BB); - BB->eraseFromParent(); - } - - return true; - } - - // Check out all of the conditional branches going to this return - // instruction. If any of them just select between returns, change the - // branch itself into a select/return pair. - while (!CondBranchPreds.empty()) { - BranchInst *BI = CondBranchPreds.pop_back_val(); - - // Check to see if the non-BB successor is also a return block. - if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) && - isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) && - SimplifyCondBranchToTwoReturns(BI, Builder)) - return true; - } - return false; -} - -bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) { - BasicBlock *BB = UI->getParent(); - - bool Changed = false; - - // If there are any instructions immediately before the unreachable that can - // be removed, do so. - while (UI->getIterator() != BB->begin()) { - BasicBlock::iterator BBI = UI->getIterator(); - --BBI; - // Do not delete instructions that can have side effects which might cause - // the unreachable to not be reachable; specifically, calls and volatile - // operations may have this effect. - if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI)) - break; - - if (BBI->mayHaveSideEffects()) { - if (auto *SI = dyn_cast<StoreInst>(BBI)) { - if (SI->isVolatile()) - break; - } else if (auto *LI = dyn_cast<LoadInst>(BBI)) { - if (LI->isVolatile()) - break; - } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) { - if (RMWI->isVolatile()) - break; - } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) { - if (CXI->isVolatile()) - break; - } else if (isa<CatchPadInst>(BBI)) { - // A catchpad may invoke exception object constructors and such, which - // in some languages can be arbitrary code, so be conservative by - // default. - // For CoreCLR, it just involves a type test, so can be removed. - if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) != - EHPersonality::CoreCLR) - break; - } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) && - !isa<LandingPadInst>(BBI)) { - break; - } - // Note that deleting LandingPad's here is in fact okay, although it - // involves a bit of subtle reasoning. If this inst is a LandingPad, - // all the predecessors of this block will be the unwind edges of Invokes, - // and we can therefore guarantee this block will be erased. - } - - // Delete this instruction (any uses are guaranteed to be dead) - if (!BBI->use_empty()) - BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); - BBI->eraseFromParent(); - Changed = true; - } - - // If the unreachable instruction is the first in the block, take a gander - // at all of the predecessors of this instruction, and simplify them. - if (&BB->front() != UI) - return Changed; - - SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB)); - for (unsigned i = 0, e = Preds.size(); i != e; ++i) { - Instruction *TI = Preds[i]->getTerminator(); - IRBuilder<> Builder(TI); - if (auto *BI = dyn_cast<BranchInst>(TI)) { - if (BI->isUnconditional()) { - if (BI->getSuccessor(0) == BB) { - new UnreachableInst(TI->getContext(), TI); - TI->eraseFromParent(); - Changed = true; - } - } else { - Value* Cond = BI->getCondition(); - if (BI->getSuccessor(0) == BB) { - Builder.CreateAssumption(Builder.CreateNot(Cond)); - Builder.CreateBr(BI->getSuccessor(1)); - EraseTerminatorAndDCECond(BI); - } else if (BI->getSuccessor(1) == BB) { - Builder.CreateAssumption(Cond); - Builder.CreateBr(BI->getSuccessor(0)); - EraseTerminatorAndDCECond(BI); - Changed = true; - } - } - } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { - SwitchInstProfUpdateWrapper SU(*SI); - for (auto i = SU->case_begin(), e = SU->case_end(); i != e;) { - if (i->getCaseSuccessor() != BB) { - ++i; - continue; - } - BB->removePredecessor(SU->getParent()); - i = SU.removeCase(i); - e = SU->case_end(); - Changed = true; - } - } else if (auto *II = dyn_cast<InvokeInst>(TI)) { - if (II->getUnwindDest() == BB) { - removeUnwindEdge(TI->getParent()); - Changed = true; - } - } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) { - if (CSI->getUnwindDest() == BB) { - removeUnwindEdge(TI->getParent()); - Changed = true; - continue; - } - - for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(), - E = CSI->handler_end(); - I != E; ++I) { - if (*I == BB) { - CSI->removeHandler(I); - --I; - --E; - Changed = true; - } - } - if (CSI->getNumHandlers() == 0) { - BasicBlock *CatchSwitchBB = CSI->getParent(); - if (CSI->hasUnwindDest()) { - // Redirect preds to the unwind dest - CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest()); - } else { - // Rewrite all preds to unwind to caller (or from invoke to call). - SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB)); - for (BasicBlock *EHPred : EHPreds) - removeUnwindEdge(EHPred); - } - // The catchswitch is no longer reachable. - new UnreachableInst(CSI->getContext(), CSI); - CSI->eraseFromParent(); - Changed = true; - } - } else if (isa<CleanupReturnInst>(TI)) { - new UnreachableInst(TI->getContext(), TI); - TI->eraseFromParent(); - Changed = true; - } - } - - // If this block is now dead, remove it. - if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) { - // We know there are no successors, so just nuke the block. - if (LoopHeaders) - LoopHeaders->erase(BB); - BB->eraseFromParent(); - return true; - } - - return Changed; -} - -static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) { - assert(Cases.size() >= 1); - - array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate); - for (size_t I = 1, E = Cases.size(); I != E; ++I) { - if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1) - return false; - } - return true; -} - -/// Turn a switch with two reachable destinations into an integer range -/// comparison and branch. -static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) { - assert(SI->getNumCases() > 1 && "Degenerate switch?"); - - bool HasDefault = - !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); - - // Partition the cases into two sets with different destinations. - BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr; - BasicBlock *DestB = nullptr; - SmallVector<ConstantInt *, 16> CasesA; - SmallVector<ConstantInt *, 16> CasesB; - - for (auto Case : SI->cases()) { - BasicBlock *Dest = Case.getCaseSuccessor(); - if (!DestA) - DestA = Dest; - if (Dest == DestA) { - CasesA.push_back(Case.getCaseValue()); - continue; - } - if (!DestB) - DestB = Dest; - if (Dest == DestB) { - CasesB.push_back(Case.getCaseValue()); - continue; - } - return false; // More than two destinations. - } - - assert(DestA && DestB && - "Single-destination switch should have been folded."); - assert(DestA != DestB); - assert(DestB != SI->getDefaultDest()); - assert(!CasesB.empty() && "There must be non-default cases."); - assert(!CasesA.empty() || HasDefault); - - // Figure out if one of the sets of cases form a contiguous range. - SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr; - BasicBlock *ContiguousDest = nullptr; - BasicBlock *OtherDest = nullptr; - if (!CasesA.empty() && CasesAreContiguous(CasesA)) { - ContiguousCases = &CasesA; - ContiguousDest = DestA; - OtherDest = DestB; - } else if (CasesAreContiguous(CasesB)) { - ContiguousCases = &CasesB; - ContiguousDest = DestB; - OtherDest = DestA; - } else - return false; - - // Start building the compare and branch. - - Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back()); - Constant *NumCases = - ConstantInt::get(Offset->getType(), ContiguousCases->size()); - - Value *Sub = SI->getCondition(); - if (!Offset->isNullValue()) - Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off"); - - Value *Cmp; - // If NumCases overflowed, then all possible values jump to the successor. - if (NumCases->isNullValue() && !ContiguousCases->empty()) - Cmp = ConstantInt::getTrue(SI->getContext()); - else - Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch"); - BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest); - - // Update weight for the newly-created conditional branch. - if (HasBranchWeights(SI)) { - SmallVector<uint64_t, 8> Weights; - GetBranchWeights(SI, Weights); - if (Weights.size() == 1 + SI->getNumCases()) { - uint64_t TrueWeight = 0; - uint64_t FalseWeight = 0; - for (size_t I = 0, E = Weights.size(); I != E; ++I) { - if (SI->getSuccessor(I) == ContiguousDest) - TrueWeight += Weights[I]; - else - FalseWeight += Weights[I]; - } - while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) { - TrueWeight /= 2; - FalseWeight /= 2; - } - setBranchWeights(NewBI, TrueWeight, FalseWeight); - } - } - - // Prune obsolete incoming values off the successors' PHI nodes. - for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) { - unsigned PreviousEdges = ContiguousCases->size(); - if (ContiguousDest == SI->getDefaultDest()) - ++PreviousEdges; - for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) - cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); - } - for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) { - unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size(); - if (OtherDest == SI->getDefaultDest()) - ++PreviousEdges; - for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I) - cast<PHINode>(BBI)->removeIncomingValue(SI->getParent()); - } - - // Drop the switch. - SI->eraseFromParent(); - - return true; -} - -/// Compute masked bits for the condition of a switch -/// and use it to remove dead cases. -static bool eliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC, - const DataLayout &DL) { - Value *Cond = SI->getCondition(); - unsigned Bits = Cond->getType()->getIntegerBitWidth(); - KnownBits Known = computeKnownBits(Cond, DL, 0, AC, SI); - - // We can also eliminate cases by determining that their values are outside of - // the limited range of the condition based on how many significant (non-sign) - // bits are in the condition value. - unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1; - unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits; - - // Gather dead cases. - SmallVector<ConstantInt *, 8> DeadCases; - for (auto &Case : SI->cases()) { - const APInt &CaseVal = Case.getCaseValue()->getValue(); - if (Known.Zero.intersects(CaseVal) || !Known.One.isSubsetOf(CaseVal) || - (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) { - DeadCases.push_back(Case.getCaseValue()); - LLVM_DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal - << " is dead.\n"); - } - } - - // If we can prove that the cases must cover all possible values, the - // default destination becomes dead and we can remove it. If we know some - // of the bits in the value, we can use that to more precisely compute the - // number of possible unique case values. - bool HasDefault = - !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); - const unsigned NumUnknownBits = - Bits - (Known.Zero | Known.One).countPopulation(); - assert(NumUnknownBits <= Bits); - if (HasDefault && DeadCases.empty() && - NumUnknownBits < 64 /* avoid overflow */ && - SI->getNumCases() == (1ULL << NumUnknownBits)) { - LLVM_DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n"); - BasicBlock *NewDefault = - SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), ""); - SI->setDefaultDest(&*NewDefault); - SplitBlock(&*NewDefault, &NewDefault->front()); - auto *OldTI = NewDefault->getTerminator(); - new UnreachableInst(SI->getContext(), OldTI); - EraseTerminatorAndDCECond(OldTI); - return true; - } - - if (DeadCases.empty()) - return false; - - SwitchInstProfUpdateWrapper SIW(*SI); - for (ConstantInt *DeadCase : DeadCases) { - SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase); - assert(CaseI != SI->case_default() && - "Case was not found. Probably mistake in DeadCases forming."); - // Prune unused values from PHI nodes. - CaseI->getCaseSuccessor()->removePredecessor(SI->getParent()); - SIW.removeCase(CaseI); - } - - return true; -} - -/// If BB would be eligible for simplification by -/// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated -/// by an unconditional branch), look at the phi node for BB in the successor -/// block and see if the incoming value is equal to CaseValue. If so, return -/// the phi node, and set PhiIndex to BB's index in the phi node. -static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue, - BasicBlock *BB, int *PhiIndex) { - if (BB->getFirstNonPHIOrDbg() != BB->getTerminator()) - return nullptr; // BB must be empty to be a candidate for simplification. - if (!BB->getSinglePredecessor()) - return nullptr; // BB must be dominated by the switch. - - BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator()); - if (!Branch || !Branch->isUnconditional()) - return nullptr; // Terminator must be unconditional branch. - - BasicBlock *Succ = Branch->getSuccessor(0); - - for (PHINode &PHI : Succ->phis()) { - int Idx = PHI.getBasicBlockIndex(BB); - assert(Idx >= 0 && "PHI has no entry for predecessor?"); - - Value *InValue = PHI.getIncomingValue(Idx); - if (InValue != CaseValue) - continue; - - *PhiIndex = Idx; - return &PHI; - } - - return nullptr; -} - -/// Try to forward the condition of a switch instruction to a phi node -/// dominated by the switch, if that would mean that some of the destination -/// blocks of the switch can be folded away. Return true if a change is made. -static bool ForwardSwitchConditionToPHI(SwitchInst *SI) { - using ForwardingNodesMap = DenseMap<PHINode *, SmallVector<int, 4>>; - - ForwardingNodesMap ForwardingNodes; - BasicBlock *SwitchBlock = SI->getParent(); - bool Changed = false; - for (auto &Case : SI->cases()) { - ConstantInt *CaseValue = Case.getCaseValue(); - BasicBlock *CaseDest = Case.getCaseSuccessor(); - - // Replace phi operands in successor blocks that are using the constant case - // value rather than the switch condition variable: - // switchbb: - // switch i32 %x, label %default [ - // i32 17, label %succ - // ... - // succ: - // %r = phi i32 ... [ 17, %switchbb ] ... - // --> - // %r = phi i32 ... [ %x, %switchbb ] ... - - for (PHINode &Phi : CaseDest->phis()) { - // This only works if there is exactly 1 incoming edge from the switch to - // a phi. If there is >1, that means multiple cases of the switch map to 1 - // value in the phi, and that phi value is not the switch condition. Thus, - // this transform would not make sense (the phi would be invalid because - // a phi can't have different incoming values from the same block). - int SwitchBBIdx = Phi.getBasicBlockIndex(SwitchBlock); - if (Phi.getIncomingValue(SwitchBBIdx) == CaseValue && - count(Phi.blocks(), SwitchBlock) == 1) { - Phi.setIncomingValue(SwitchBBIdx, SI->getCondition()); - Changed = true; - } - } - - // Collect phi nodes that are indirectly using this switch's case constants. - int PhiIdx; - if (auto *Phi = FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIdx)) - ForwardingNodes[Phi].push_back(PhiIdx); - } - - for (auto &ForwardingNode : ForwardingNodes) { - PHINode *Phi = ForwardingNode.first; - SmallVectorImpl<int> &Indexes = ForwardingNode.second; - if (Indexes.size() < 2) - continue; - - for (int Index : Indexes) - Phi->setIncomingValue(Index, SI->getCondition()); - Changed = true; - } - - return Changed; -} - -/// Return true if the backend will be able to handle -/// initializing an array of constants like C. -static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) { - if (C->isThreadDependent()) - return false; - if (C->isDLLImportDependent()) - return false; - - if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) && - !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) && - !isa<UndefValue>(C) && !isa<ConstantExpr>(C)) - return false; - - if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { - if (!CE->isGEPWithNoNotionalOverIndexing()) - return false; - if (!ValidLookupTableConstant(CE->getOperand(0), TTI)) - return false; - } - - if (!TTI.shouldBuildLookupTablesForConstant(C)) - return false; - - return true; -} - -/// If V is a Constant, return it. Otherwise, try to look up -/// its constant value in ConstantPool, returning 0 if it's not there. -static Constant * -LookupConstant(Value *V, - const SmallDenseMap<Value *, Constant *> &ConstantPool) { - if (Constant *C = dyn_cast<Constant>(V)) - return C; - return ConstantPool.lookup(V); -} - -/// Try to fold instruction I into a constant. This works for -/// simple instructions such as binary operations where both operands are -/// constant or can be replaced by constants from the ConstantPool. Returns the -/// resulting constant on success, 0 otherwise. -static Constant * -ConstantFold(Instruction *I, const DataLayout &DL, - const SmallDenseMap<Value *, Constant *> &ConstantPool) { - if (SelectInst *Select = dyn_cast<SelectInst>(I)) { - Constant *A = LookupConstant(Select->getCondition(), ConstantPool); - if (!A) - return nullptr; - if (A->isAllOnesValue()) - return LookupConstant(Select->getTrueValue(), ConstantPool); - if (A->isNullValue()) - return LookupConstant(Select->getFalseValue(), ConstantPool); - return nullptr; - } - - SmallVector<Constant *, 4> COps; - for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) { - if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool)) - COps.push_back(A); - else - return nullptr; - } - - if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { - return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0], - COps[1], DL); - } - - return ConstantFoldInstOperands(I, COps, DL); -} - -/// Try to determine the resulting constant values in phi nodes -/// at the common destination basic block, *CommonDest, for one of the case -/// destionations CaseDest corresponding to value CaseVal (0 for the default -/// case), of a switch instruction SI. -static bool -GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest, - BasicBlock **CommonDest, - SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res, - const DataLayout &DL, const TargetTransformInfo &TTI) { - // The block from which we enter the common destination. - BasicBlock *Pred = SI->getParent(); - - // If CaseDest is empty except for some side-effect free instructions through - // which we can constant-propagate the CaseVal, continue to its successor. - SmallDenseMap<Value *, Constant *> ConstantPool; - ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal)); - for (Instruction &I :CaseDest->instructionsWithoutDebug()) { - if (I.isTerminator()) { - // If the terminator is a simple branch, continue to the next block. - if (I.getNumSuccessors() != 1 || I.isExceptionalTerminator()) - return false; - Pred = CaseDest; - CaseDest = I.getSuccessor(0); - } else if (Constant *C = ConstantFold(&I, DL, ConstantPool)) { - // Instruction is side-effect free and constant. - - // If the instruction has uses outside this block or a phi node slot for - // the block, it is not safe to bypass the instruction since it would then - // no longer dominate all its uses. - for (auto &Use : I.uses()) { - User *User = Use.getUser(); - if (Instruction *I = dyn_cast<Instruction>(User)) - if (I->getParent() == CaseDest) - continue; - if (PHINode *Phi = dyn_cast<PHINode>(User)) - if (Phi->getIncomingBlock(Use) == CaseDest) - continue; - return false; - } - - ConstantPool.insert(std::make_pair(&I, C)); - } else { - break; - } - } - - // If we did not have a CommonDest before, use the current one. - if (!*CommonDest) - *CommonDest = CaseDest; - // If the destination isn't the common one, abort. - if (CaseDest != *CommonDest) - return false; - - // Get the values for this case from phi nodes in the destination block. - for (PHINode &PHI : (*CommonDest)->phis()) { - int Idx = PHI.getBasicBlockIndex(Pred); - if (Idx == -1) - continue; - - Constant *ConstVal = - LookupConstant(PHI.getIncomingValue(Idx), ConstantPool); - if (!ConstVal) - return false; - - // Be conservative about which kinds of constants we support. - if (!ValidLookupTableConstant(ConstVal, TTI)) - return false; - - Res.push_back(std::make_pair(&PHI, ConstVal)); - } - - return Res.size() > 0; -} - -// Helper function used to add CaseVal to the list of cases that generate -// Result. Returns the updated number of cases that generate this result. -static uintptr_t MapCaseToResult(ConstantInt *CaseVal, - SwitchCaseResultVectorTy &UniqueResults, - Constant *Result) { - for (auto &I : UniqueResults) { - if (I.first == Result) { - I.second.push_back(CaseVal); - return I.second.size(); - } - } - UniqueResults.push_back( - std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal))); - return 1; -} - -// Helper function that initializes a map containing -// results for the PHI node of the common destination block for a switch -// instruction. Returns false if multiple PHI nodes have been found or if -// there is not a common destination block for the switch. -static bool -InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI, BasicBlock *&CommonDest, - SwitchCaseResultVectorTy &UniqueResults, - Constant *&DefaultResult, const DataLayout &DL, - const TargetTransformInfo &TTI, - uintptr_t MaxUniqueResults, uintptr_t MaxCasesPerResult) { - for (auto &I : SI->cases()) { - ConstantInt *CaseVal = I.getCaseValue(); - - // Resulting value at phi nodes for this case value. - SwitchCaseResultsTy Results; - if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results, - DL, TTI)) - return false; - - // Only one value per case is permitted. - if (Results.size() > 1) - return false; - - // Add the case->result mapping to UniqueResults. - const uintptr_t NumCasesForResult = - MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second); - - // Early out if there are too many cases for this result. - if (NumCasesForResult > MaxCasesPerResult) - return false; - - // Early out if there are too many unique results. - if (UniqueResults.size() > MaxUniqueResults) - return false; - - // Check the PHI consistency. - if (!PHI) - PHI = Results[0].first; - else if (PHI != Results[0].first) - return false; - } - // Find the default result value. - SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults; - BasicBlock *DefaultDest = SI->getDefaultDest(); - GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults, - DL, TTI); - // If the default value is not found abort unless the default destination - // is unreachable. - DefaultResult = - DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr; - if ((!DefaultResult && - !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()))) - return false; - - return true; -} - -// Helper function that checks if it is possible to transform a switch with only -// two cases (or two cases + default) that produces a result into a select. -// Example: -// switch (a) { -// case 10: %0 = icmp eq i32 %a, 10 -// return 10; %1 = select i1 %0, i32 10, i32 4 -// case 20: ----> %2 = icmp eq i32 %a, 20 -// return 2; %3 = select i1 %2, i32 2, i32 %1 -// default: -// return 4; -// } -static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector, - Constant *DefaultResult, Value *Condition, - IRBuilder<> &Builder) { - assert(ResultVector.size() == 2 && - "We should have exactly two unique results at this point"); - // If we are selecting between only two cases transform into a simple - // select or a two-way select if default is possible. - if (ResultVector[0].second.size() == 1 && - ResultVector[1].second.size() == 1) { - ConstantInt *const FirstCase = ResultVector[0].second[0]; - ConstantInt *const SecondCase = ResultVector[1].second[0]; - - bool DefaultCanTrigger = DefaultResult; - Value *SelectValue = ResultVector[1].first; - if (DefaultCanTrigger) { - Value *const ValueCompare = - Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp"); - SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first, - DefaultResult, "switch.select"); - } - Value *const ValueCompare = - Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp"); - return Builder.CreateSelect(ValueCompare, ResultVector[0].first, - SelectValue, "switch.select"); - } - - return nullptr; -} - -// Helper function to cleanup a switch instruction that has been converted into -// a select, fixing up PHI nodes and basic blocks. -static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI, - Value *SelectValue, - IRBuilder<> &Builder) { - BasicBlock *SelectBB = SI->getParent(); - while (PHI->getBasicBlockIndex(SelectBB) >= 0) - PHI->removeIncomingValue(SelectBB); - PHI->addIncoming(SelectValue, SelectBB); - - Builder.CreateBr(PHI->getParent()); - - // Remove the switch. - for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { - BasicBlock *Succ = SI->getSuccessor(i); - - if (Succ == PHI->getParent()) - continue; - Succ->removePredecessor(SelectBB); - } - SI->eraseFromParent(); -} - -/// If the switch is only used to initialize one or more -/// phi nodes in a common successor block with only two different -/// constant values, replace the switch with select. -static bool switchToSelect(SwitchInst *SI, IRBuilder<> &Builder, - const DataLayout &DL, - const TargetTransformInfo &TTI) { - Value *const Cond = SI->getCondition(); - PHINode *PHI = nullptr; - BasicBlock *CommonDest = nullptr; - Constant *DefaultResult; - SwitchCaseResultVectorTy UniqueResults; - // Collect all the cases that will deliver the same value from the switch. - if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult, - DL, TTI, 2, 1)) - return false; - // Selects choose between maximum two values. - if (UniqueResults.size() != 2) - return false; - assert(PHI != nullptr && "PHI for value select not found"); - - Builder.SetInsertPoint(SI); - Value *SelectValue = - ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder); - if (SelectValue) { - RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder); - return true; - } - // The switch couldn't be converted into a select. - return false; -} - -namespace { - -/// This class represents a lookup table that can be used to replace a switch. -class SwitchLookupTable { -public: - /// Create a lookup table to use as a switch replacement with the contents - /// of Values, using DefaultValue to fill any holes in the table. - SwitchLookupTable( - Module &M, uint64_t TableSize, ConstantInt *Offset, - const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, - Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName); - - /// Build instructions with Builder to retrieve the value at - /// the position given by Index in the lookup table. - Value *BuildLookup(Value *Index, IRBuilder<> &Builder); - - /// Return true if a table with TableSize elements of - /// type ElementType would fit in a target-legal register. - static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize, - Type *ElementType); - -private: - // Depending on the contents of the table, it can be represented in - // different ways. - enum { - // For tables where each element contains the same value, we just have to - // store that single value and return it for each lookup. - SingleValueKind, - - // For tables where there is a linear relationship between table index - // and values. We calculate the result with a simple multiplication - // and addition instead of a table lookup. - LinearMapKind, - - // For small tables with integer elements, we can pack them into a bitmap - // that fits into a target-legal register. Values are retrieved by - // shift and mask operations. - BitMapKind, - - // The table is stored as an array of values. Values are retrieved by load - // instructions from the table. - ArrayKind - } Kind; - - // For SingleValueKind, this is the single value. - Constant *SingleValue = nullptr; - - // For BitMapKind, this is the bitmap. - ConstantInt *BitMap = nullptr; - IntegerType *BitMapElementTy = nullptr; - - // For LinearMapKind, these are the constants used to derive the value. - ConstantInt *LinearOffset = nullptr; - ConstantInt *LinearMultiplier = nullptr; - - // For ArrayKind, this is the array. - GlobalVariable *Array = nullptr; -}; - -} // end anonymous namespace - -SwitchLookupTable::SwitchLookupTable( - Module &M, uint64_t TableSize, ConstantInt *Offset, - const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values, - Constant *DefaultValue, const DataLayout &DL, const StringRef &FuncName) { - assert(Values.size() && "Can't build lookup table without values!"); - assert(TableSize >= Values.size() && "Can't fit values in table!"); - - // If all values in the table are equal, this is that value. - SingleValue = Values.begin()->second; - - Type *ValueType = Values.begin()->second->getType(); - - // Build up the table contents. - SmallVector<Constant *, 64> TableContents(TableSize); - for (size_t I = 0, E = Values.size(); I != E; ++I) { - ConstantInt *CaseVal = Values[I].first; - Constant *CaseRes = Values[I].second; - assert(CaseRes->getType() == ValueType); - - uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue(); - TableContents[Idx] = CaseRes; - - if (CaseRes != SingleValue) - SingleValue = nullptr; - } - - // Fill in any holes in the table with the default result. - if (Values.size() < TableSize) { - assert(DefaultValue && - "Need a default value to fill the lookup table holes."); - assert(DefaultValue->getType() == ValueType); - for (uint64_t I = 0; I < TableSize; ++I) { - if (!TableContents[I]) - TableContents[I] = DefaultValue; - } - - if (DefaultValue != SingleValue) - SingleValue = nullptr; - } - - // If each element in the table contains the same value, we only need to store - // that single value. - if (SingleValue) { - Kind = SingleValueKind; - return; - } - - // Check if we can derive the value with a linear transformation from the - // table index. - if (isa<IntegerType>(ValueType)) { - bool LinearMappingPossible = true; - APInt PrevVal; - APInt DistToPrev; - assert(TableSize >= 2 && "Should be a SingleValue table."); - // Check if there is the same distance between two consecutive values. - for (uint64_t I = 0; I < TableSize; ++I) { - ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]); - if (!ConstVal) { - // This is an undef. We could deal with it, but undefs in lookup tables - // are very seldom. It's probably not worth the additional complexity. - LinearMappingPossible = false; - break; - } - const APInt &Val = ConstVal->getValue(); - if (I != 0) { - APInt Dist = Val - PrevVal; - if (I == 1) { - DistToPrev = Dist; - } else if (Dist != DistToPrev) { - LinearMappingPossible = false; - break; - } - } - PrevVal = Val; - } - if (LinearMappingPossible) { - LinearOffset = cast<ConstantInt>(TableContents[0]); - LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev); - Kind = LinearMapKind; - ++NumLinearMaps; - return; - } - } - - // If the type is integer and the table fits in a register, build a bitmap. - if (WouldFitInRegister(DL, TableSize, ValueType)) { - IntegerType *IT = cast<IntegerType>(ValueType); - APInt TableInt(TableSize * IT->getBitWidth(), 0); - for (uint64_t I = TableSize; I > 0; --I) { - TableInt <<= IT->getBitWidth(); - // Insert values into the bitmap. Undef values are set to zero. - if (!isa<UndefValue>(TableContents[I - 1])) { - ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]); - TableInt |= Val->getValue().zext(TableInt.getBitWidth()); - } - } - BitMap = ConstantInt::get(M.getContext(), TableInt); - BitMapElementTy = IT; - Kind = BitMapKind; - ++NumBitMaps; - return; - } - - // Store the table in an array. - ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize); - Constant *Initializer = ConstantArray::get(ArrayTy, TableContents); - - Array = new GlobalVariable(M, ArrayTy, /*isConstant=*/true, - GlobalVariable::PrivateLinkage, Initializer, - "switch.table." + FuncName); - Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - // Set the alignment to that of an array items. We will be only loading one - // value out of it. - Array->setAlignment(DL.getPrefTypeAlignment(ValueType)); - Kind = ArrayKind; -} - -Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) { - switch (Kind) { - case SingleValueKind: - return SingleValue; - case LinearMapKind: { - // Derive the result value from the input value. - Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(), - false, "switch.idx.cast"); - if (!LinearMultiplier->isOne()) - Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult"); - if (!LinearOffset->isZero()) - Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset"); - return Result; - } - case BitMapKind: { - // Type of the bitmap (e.g. i59). - IntegerType *MapTy = BitMap->getType(); - - // Cast Index to the same type as the bitmap. - // Note: The Index is <= the number of elements in the table, so - // truncating it to the width of the bitmask is safe. - Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast"); - - // Multiply the shift amount by the element width. - ShiftAmt = Builder.CreateMul( - ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()), - "switch.shiftamt"); - - // Shift down. - Value *DownShifted = - Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift"); - // Mask off. - return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked"); - } - case ArrayKind: { - // Make sure the table index will not overflow when treated as signed. - IntegerType *IT = cast<IntegerType>(Index->getType()); - uint64_t TableSize = - Array->getInitializer()->getType()->getArrayNumElements(); - if (TableSize > (1ULL << (IT->getBitWidth() - 1))) - Index = Builder.CreateZExt( - Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1), - "switch.tableidx.zext"); - - Value *GEPIndices[] = {Builder.getInt32(0), Index}; - Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array, - GEPIndices, "switch.gep"); - return Builder.CreateLoad( - cast<ArrayType>(Array->getValueType())->getElementType(), GEP, - "switch.load"); - } - } - llvm_unreachable("Unknown lookup table kind!"); -} - -bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL, - uint64_t TableSize, - Type *ElementType) { - auto *IT = dyn_cast<IntegerType>(ElementType); - if (!IT) - return false; - // FIXME: If the type is wider than it needs to be, e.g. i8 but all values - // are <= 15, we could try to narrow the type. - - // Avoid overflow, fitsInLegalInteger uses unsigned int for the width. - if (TableSize >= UINT_MAX / IT->getBitWidth()) - return false; - return DL.fitsInLegalInteger(TableSize * IT->getBitWidth()); -} - -/// Determine whether a lookup table should be built for this switch, based on -/// the number of cases, size of the table, and the types of the results. -static bool -ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize, - const TargetTransformInfo &TTI, const DataLayout &DL, - const SmallDenseMap<PHINode *, Type *> &ResultTypes) { - if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10) - return false; // TableSize overflowed, or mul below might overflow. - - bool AllTablesFitInRegister = true; - bool HasIllegalType = false; - for (const auto &I : ResultTypes) { - Type *Ty = I.second; - - // Saturate this flag to true. - HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty); - - // Saturate this flag to false. - AllTablesFitInRegister = - AllTablesFitInRegister && - SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty); - - // If both flags saturate, we're done. NOTE: This *only* works with - // saturating flags, and all flags have to saturate first due to the - // non-deterministic behavior of iterating over a dense map. - if (HasIllegalType && !AllTablesFitInRegister) - break; - } - - // If each table would fit in a register, we should build it anyway. - if (AllTablesFitInRegister) - return true; - - // Don't build a table that doesn't fit in-register if it has illegal types. - if (HasIllegalType) - return false; - - // The table density should be at least 40%. This is the same criterion as for - // jump tables, see SelectionDAGBuilder::handleJTSwitchCase. - // FIXME: Find the best cut-off. - return SI->getNumCases() * 10 >= TableSize * 4; -} - -/// Try to reuse the switch table index compare. Following pattern: -/// \code -/// if (idx < tablesize) -/// r = table[idx]; // table does not contain default_value -/// else -/// r = default_value; -/// if (r != default_value) -/// ... -/// \endcode -/// Is optimized to: -/// \code -/// cond = idx < tablesize; -/// if (cond) -/// r = table[idx]; -/// else -/// r = default_value; -/// if (cond) -/// ... -/// \endcode -/// Jump threading will then eliminate the second if(cond). -static void reuseTableCompare( - User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch, - Constant *DefaultValue, - const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) { - ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser); - if (!CmpInst) - return; - - // We require that the compare is in the same block as the phi so that jump - // threading can do its work afterwards. - if (CmpInst->getParent() != PhiBlock) - return; - - Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1)); - if (!CmpOp1) - return; - - Value *RangeCmp = RangeCheckBranch->getCondition(); - Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType()); - Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType()); - - // Check if the compare with the default value is constant true or false. - Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(), - DefaultValue, CmpOp1, true); - if (DefaultConst != TrueConst && DefaultConst != FalseConst) - return; - - // Check if the compare with the case values is distinct from the default - // compare result. - for (auto ValuePair : Values) { - Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(), - ValuePair.second, CmpOp1, true); - if (!CaseConst || CaseConst == DefaultConst || isa<UndefValue>(CaseConst)) - return; - assert((CaseConst == TrueConst || CaseConst == FalseConst) && - "Expect true or false as compare result."); - } - - // Check if the branch instruction dominates the phi node. It's a simple - // dominance check, but sufficient for our needs. - // Although this check is invariant in the calling loops, it's better to do it - // at this late stage. Practically we do it at most once for a switch. - BasicBlock *BranchBlock = RangeCheckBranch->getParent(); - for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) { - BasicBlock *Pred = *PI; - if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock) - return; - } - - if (DefaultConst == FalseConst) { - // The compare yields the same result. We can replace it. - CmpInst->replaceAllUsesWith(RangeCmp); - ++NumTableCmpReuses; - } else { - // The compare yields the same result, just inverted. We can replace it. - Value *InvertedTableCmp = BinaryOperator::CreateXor( - RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp", - RangeCheckBranch); - CmpInst->replaceAllUsesWith(InvertedTableCmp); - ++NumTableCmpReuses; - } -} - -/// If the switch is only used to initialize one or more phi nodes in a common -/// successor block with different constant values, replace the switch with -/// lookup tables. -static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder, - const DataLayout &DL, - const TargetTransformInfo &TTI) { - assert(SI->getNumCases() > 1 && "Degenerate switch?"); - - Function *Fn = SI->getParent()->getParent(); - // Only build lookup table when we have a target that supports it or the - // attribute is not set. - if (!TTI.shouldBuildLookupTables() || - (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")) - return false; - - // FIXME: If the switch is too sparse for a lookup table, perhaps we could - // split off a dense part and build a lookup table for that. - - // FIXME: This creates arrays of GEPs to constant strings, which means each - // GEP needs a runtime relocation in PIC code. We should just build one big - // string and lookup indices into that. - - // Ignore switches with less than three cases. Lookup tables will not make - // them faster, so we don't analyze them. - if (SI->getNumCases() < 3) - return false; - - // Figure out the corresponding result for each case value and phi node in the - // common destination, as well as the min and max case values. - assert(!empty(SI->cases())); - SwitchInst::CaseIt CI = SI->case_begin(); - ConstantInt *MinCaseVal = CI->getCaseValue(); - ConstantInt *MaxCaseVal = CI->getCaseValue(); - - BasicBlock *CommonDest = nullptr; - - using ResultListTy = SmallVector<std::pair<ConstantInt *, Constant *>, 4>; - SmallDenseMap<PHINode *, ResultListTy> ResultLists; - - SmallDenseMap<PHINode *, Constant *> DefaultResults; - SmallDenseMap<PHINode *, Type *> ResultTypes; - SmallVector<PHINode *, 4> PHIs; - - for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) { - ConstantInt *CaseVal = CI->getCaseValue(); - if (CaseVal->getValue().slt(MinCaseVal->getValue())) - MinCaseVal = CaseVal; - if (CaseVal->getValue().sgt(MaxCaseVal->getValue())) - MaxCaseVal = CaseVal; - - // Resulting value at phi nodes for this case value. - using ResultsTy = SmallVector<std::pair<PHINode *, Constant *>, 4>; - ResultsTy Results; - if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest, - Results, DL, TTI)) - return false; - - // Append the result from this case to the list for each phi. - for (const auto &I : Results) { - PHINode *PHI = I.first; - Constant *Value = I.second; - if (!ResultLists.count(PHI)) - PHIs.push_back(PHI); - ResultLists[PHI].push_back(std::make_pair(CaseVal, Value)); - } - } - - // Keep track of the result types. - for (PHINode *PHI : PHIs) { - ResultTypes[PHI] = ResultLists[PHI][0].second->getType(); - } - - uint64_t NumResults = ResultLists[PHIs[0]].size(); - APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue(); - uint64_t TableSize = RangeSpread.getLimitedValue() + 1; - bool TableHasHoles = (NumResults < TableSize); - - // If the table has holes, we need a constant result for the default case - // or a bitmask that fits in a register. - SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList; - bool HasDefaultResults = - GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, - DefaultResultsList, DL, TTI); - - bool NeedMask = (TableHasHoles && !HasDefaultResults); - if (NeedMask) { - // As an extra penalty for the validity test we require more cases. - if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark). - return false; - if (!DL.fitsInLegalInteger(TableSize)) - return false; - } - - for (const auto &I : DefaultResultsList) { - PHINode *PHI = I.first; - Constant *Result = I.second; - DefaultResults[PHI] = Result; - } - - if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes)) - return false; - - // Create the BB that does the lookups. - Module &Mod = *CommonDest->getParent()->getParent(); - BasicBlock *LookupBB = BasicBlock::Create( - Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest); - - // Compute the table index value. - Builder.SetInsertPoint(SI); - Value *TableIndex; - if (MinCaseVal->isNullValue()) - TableIndex = SI->getCondition(); - else - TableIndex = Builder.CreateSub(SI->getCondition(), MinCaseVal, - "switch.tableidx"); - - // Compute the maximum table size representable by the integer type we are - // switching upon. - unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits(); - uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize; - assert(MaxTableSize >= TableSize && - "It is impossible for a switch to have more entries than the max " - "representable value of its input integer type's size."); - - // If the default destination is unreachable, or if the lookup table covers - // all values of the conditional variable, branch directly to the lookup table - // BB. Otherwise, check that the condition is within the case range. - const bool DefaultIsReachable = - !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg()); - const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize); - BranchInst *RangeCheckBranch = nullptr; - - if (!DefaultIsReachable || GeneratingCoveredLookupTable) { - Builder.CreateBr(LookupBB); - // Note: We call removeProdecessor later since we need to be able to get the - // PHI value for the default case in case we're using a bit mask. - } else { - Value *Cmp = Builder.CreateICmpULT( - TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize)); - RangeCheckBranch = - Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest()); - } - - // Populate the BB that does the lookups. - Builder.SetInsertPoint(LookupBB); - - if (NeedMask) { - // Before doing the lookup, we do the hole check. The LookupBB is therefore - // re-purposed to do the hole check, and we create a new LookupBB. - BasicBlock *MaskBB = LookupBB; - MaskBB->setName("switch.hole_check"); - LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup", - CommonDest->getParent(), CommonDest); - - // Make the mask's bitwidth at least 8-bit and a power-of-2 to avoid - // unnecessary illegal types. - uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL)); - APInt MaskInt(TableSizePowOf2, 0); - APInt One(TableSizePowOf2, 1); - // Build bitmask; fill in a 1 bit for every case. - const ResultListTy &ResultList = ResultLists[PHIs[0]]; - for (size_t I = 0, E = ResultList.size(); I != E; ++I) { - uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue()) - .getLimitedValue(); - MaskInt |= One << Idx; - } - ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt); - - // Get the TableIndex'th bit of the bitmask. - // If this bit is 0 (meaning hole) jump to the default destination, - // else continue with table lookup. - IntegerType *MapTy = TableMask->getType(); - Value *MaskIndex = - Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex"); - Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted"); - Value *LoBit = Builder.CreateTrunc( - Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit"); - Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest()); - - Builder.SetInsertPoint(LookupBB); - AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent()); - } - - if (!DefaultIsReachable || GeneratingCoveredLookupTable) { - // We cached PHINodes in PHIs. To avoid accessing deleted PHINodes later, - // do not delete PHINodes here. - SI->getDefaultDest()->removePredecessor(SI->getParent(), - /*KeepOneInputPHIs=*/true); - } - - bool ReturnedEarly = false; - for (PHINode *PHI : PHIs) { - const ResultListTy &ResultList = ResultLists[PHI]; - - // If using a bitmask, use any value to fill the lookup table holes. - Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI]; - StringRef FuncName = Fn->getName(); - SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL, - FuncName); - - Value *Result = Table.BuildLookup(TableIndex, Builder); - - // If the result is used to return immediately from the function, we want to - // do that right here. - if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) && - PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) { - Builder.CreateRet(Result); - ReturnedEarly = true; - break; - } - - // Do a small peephole optimization: re-use the switch table compare if - // possible. - if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) { - BasicBlock *PhiBlock = PHI->getParent(); - // Search for compare instructions which use the phi. - for (auto *User : PHI->users()) { - reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList); - } - } - - PHI->addIncoming(Result, LookupBB); - } - - if (!ReturnedEarly) - Builder.CreateBr(CommonDest); - - // Remove the switch. - for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) { - BasicBlock *Succ = SI->getSuccessor(i); - - if (Succ == SI->getDefaultDest()) - continue; - Succ->removePredecessor(SI->getParent()); - } - SI->eraseFromParent(); - - ++NumLookupTables; - if (NeedMask) - ++NumLookupTablesHoles; - return true; -} - -static bool isSwitchDense(ArrayRef<int64_t> Values) { - // See also SelectionDAGBuilder::isDense(), which this function was based on. - uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front(); - uint64_t Range = Diff + 1; - uint64_t NumCases = Values.size(); - // 40% is the default density for building a jump table in optsize/minsize mode. - uint64_t MinDensity = 40; - - return NumCases * 100 >= Range * MinDensity; -} - -/// Try to transform a switch that has "holes" in it to a contiguous sequence -/// of cases. -/// -/// A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be -/// range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}. -/// -/// This converts a sparse switch into a dense switch which allows better -/// lowering and could also allow transforming into a lookup table. -static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder, - const DataLayout &DL, - const TargetTransformInfo &TTI) { - auto *CondTy = cast<IntegerType>(SI->getCondition()->getType()); - if (CondTy->getIntegerBitWidth() > 64 || - !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth())) - return false; - // Only bother with this optimization if there are more than 3 switch cases; - // SDAG will only bother creating jump tables for 4 or more cases. - if (SI->getNumCases() < 4) - return false; - - // This transform is agnostic to the signedness of the input or case values. We - // can treat the case values as signed or unsigned. We can optimize more common - // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values - // as signed. - SmallVector<int64_t,4> Values; - for (auto &C : SI->cases()) - Values.push_back(C.getCaseValue()->getValue().getSExtValue()); - llvm::sort(Values); - - // If the switch is already dense, there's nothing useful to do here. - if (isSwitchDense(Values)) - return false; - - // First, transform the values such that they start at zero and ascend. - int64_t Base = Values[0]; - for (auto &V : Values) - V -= (uint64_t)(Base); - - // Now we have signed numbers that have been shifted so that, given enough - // precision, there are no negative values. Since the rest of the transform - // is bitwise only, we switch now to an unsigned representation. - - // This transform can be done speculatively because it is so cheap - it - // results in a single rotate operation being inserted. - // FIXME: It's possible that optimizing a switch on powers of two might also - // be beneficial - flag values are often powers of two and we could use a CLZ - // as the key function. - - // countTrailingZeros(0) returns 64. As Values is guaranteed to have more than - // one element and LLVM disallows duplicate cases, Shift is guaranteed to be - // less than 64. - unsigned Shift = 64; - for (auto &V : Values) - Shift = std::min(Shift, countTrailingZeros((uint64_t)V)); - assert(Shift < 64); - if (Shift > 0) - for (auto &V : Values) - V = (int64_t)((uint64_t)V >> Shift); - - if (!isSwitchDense(Values)) - // Transform didn't create a dense switch. - return false; - - // The obvious transform is to shift the switch condition right and emit a - // check that the condition actually cleanly divided by GCD, i.e. - // C & (1 << Shift - 1) == 0 - // inserting a new CFG edge to handle the case where it didn't divide cleanly. - // - // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the - // shift and puts the shifted-off bits in the uppermost bits. If any of these - // are nonzero then the switch condition will be very large and will hit the - // default case. - - auto *Ty = cast<IntegerType>(SI->getCondition()->getType()); - Builder.SetInsertPoint(SI); - auto *ShiftC = ConstantInt::get(Ty, Shift); - auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base)); - auto *LShr = Builder.CreateLShr(Sub, ShiftC); - auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift); - auto *Rot = Builder.CreateOr(LShr, Shl); - SI->replaceUsesOfWith(SI->getCondition(), Rot); - - for (auto Case : SI->cases()) { - auto *Orig = Case.getCaseValue(); - auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base); - Case.setValue( - cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue())))); - } - return true; -} - -bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) { - BasicBlock *BB = SI->getParent(); - - if (isValueEqualityComparison(SI)) { - // If we only have one predecessor, and if it is a branch on this value, - // see if that predecessor totally determines the outcome of this switch. - if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) - if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder)) - return requestResimplify(); - - Value *Cond = SI->getCondition(); - if (SelectInst *Select = dyn_cast<SelectInst>(Cond)) - if (SimplifySwitchOnSelect(SI, Select)) - return requestResimplify(); - - // If the block only contains the switch, see if we can fold the block - // away into any preds. - if (SI == &*BB->instructionsWithoutDebug().begin()) - if (FoldValueComparisonIntoPredecessors(SI, Builder)) - return requestResimplify(); - } - - // Try to transform the switch into an icmp and a branch. - if (TurnSwitchRangeIntoICmp(SI, Builder)) - return requestResimplify(); - - // Remove unreachable cases. - if (eliminateDeadSwitchCases(SI, Options.AC, DL)) - return requestResimplify(); - - if (switchToSelect(SI, Builder, DL, TTI)) - return requestResimplify(); - - if (Options.ForwardSwitchCondToPhi && ForwardSwitchConditionToPHI(SI)) - return requestResimplify(); - - // The conversion from switch to lookup tables results in difficult-to-analyze - // code and makes pruning branches much harder. This is a problem if the - // switch expression itself can still be restricted as a result of inlining or - // CVP. Therefore, only apply this transformation during late stages of the - // optimisation pipeline. - if (Options.ConvertSwitchToLookupTable && - SwitchToLookupTable(SI, Builder, DL, TTI)) - return requestResimplify(); - - if (ReduceSwitchRange(SI, Builder, DL, TTI)) - return requestResimplify(); - - return false; -} - -bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) { - BasicBlock *BB = IBI->getParent(); - bool Changed = false; - - // Eliminate redundant destinations. - SmallPtrSet<Value *, 8> Succs; - for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { - BasicBlock *Dest = IBI->getDestination(i); - if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) { - Dest->removePredecessor(BB); - IBI->removeDestination(i); - --i; - --e; - Changed = true; - } - } - - if (IBI->getNumDestinations() == 0) { - // If the indirectbr has no successors, change it to unreachable. - new UnreachableInst(IBI->getContext(), IBI); - EraseTerminatorAndDCECond(IBI); - return true; - } - - if (IBI->getNumDestinations() == 1) { - // If the indirectbr has one successor, change it to a direct branch. - BranchInst::Create(IBI->getDestination(0), IBI); - EraseTerminatorAndDCECond(IBI); - return true; - } - - if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) { - if (SimplifyIndirectBrOnSelect(IBI, SI)) - return requestResimplify(); - } - return Changed; -} - -/// Given an block with only a single landing pad and a unconditional branch -/// try to find another basic block which this one can be merged with. This -/// handles cases where we have multiple invokes with unique landing pads, but -/// a shared handler. -/// -/// We specifically choose to not worry about merging non-empty blocks -/// here. That is a PRE/scheduling problem and is best solved elsewhere. In -/// practice, the optimizer produces empty landing pad blocks quite frequently -/// when dealing with exception dense code. (see: instcombine, gvn, if-else -/// sinking in this file) -/// -/// This is primarily a code size optimization. We need to avoid performing -/// any transform which might inhibit optimization (such as our ability to -/// specialize a particular handler via tail commoning). We do this by not -/// merging any blocks which require us to introduce a phi. Since the same -/// values are flowing through both blocks, we don't lose any ability to -/// specialize. If anything, we make such specialization more likely. -/// -/// TODO - This transformation could remove entries from a phi in the target -/// block when the inputs in the phi are the same for the two blocks being -/// merged. In some cases, this could result in removal of the PHI entirely. -static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI, - BasicBlock *BB) { - auto Succ = BB->getUniqueSuccessor(); - assert(Succ); - // If there's a phi in the successor block, we'd likely have to introduce - // a phi into the merged landing pad block. - if (isa<PHINode>(*Succ->begin())) - return false; - - for (BasicBlock *OtherPred : predecessors(Succ)) { - if (BB == OtherPred) - continue; - BasicBlock::iterator I = OtherPred->begin(); - LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I); - if (!LPad2 || !LPad2->isIdenticalTo(LPad)) - continue; - for (++I; isa<DbgInfoIntrinsic>(I); ++I) - ; - BranchInst *BI2 = dyn_cast<BranchInst>(I); - if (!BI2 || !BI2->isIdenticalTo(BI)) - continue; - - // We've found an identical block. Update our predecessors to take that - // path instead and make ourselves dead. - SmallPtrSet<BasicBlock *, 16> Preds; - Preds.insert(pred_begin(BB), pred_end(BB)); - for (BasicBlock *Pred : Preds) { - InvokeInst *II = cast<InvokeInst>(Pred->getTerminator()); - assert(II->getNormalDest() != BB && II->getUnwindDest() == BB && - "unexpected successor"); - II->setUnwindDest(OtherPred); - } - - // The debug info in OtherPred doesn't cover the merged control flow that - // used to go through BB. We need to delete it or update it. - for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) { - Instruction &Inst = *I; - I++; - if (isa<DbgInfoIntrinsic>(Inst)) - Inst.eraseFromParent(); - } - - SmallPtrSet<BasicBlock *, 16> Succs; - Succs.insert(succ_begin(BB), succ_end(BB)); - for (BasicBlock *Succ : Succs) { - Succ->removePredecessor(BB); - } - - IRBuilder<> Builder(BI); - Builder.CreateUnreachable(); - BI->eraseFromParent(); - return true; - } - return false; -} - -bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI, - IRBuilder<> &Builder) { - BasicBlock *BB = BI->getParent(); - BasicBlock *Succ = BI->getSuccessor(0); - - // If the Terminator is the only non-phi instruction, simplify the block. - // If LoopHeader is provided, check if the block or its successor is a loop - // header. (This is for early invocations before loop simplify and - // vectorization to keep canonical loop forms for nested loops. These blocks - // can be eliminated when the pass is invoked later in the back-end.) - // Note that if BB has only one predecessor then we do not introduce new - // backedge, so we can eliminate BB. - bool NeedCanonicalLoop = - Options.NeedCanonicalLoop && - (LoopHeaders && BB->hasNPredecessorsOrMore(2) && - (LoopHeaders->count(BB) || LoopHeaders->count(Succ))); - BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator(); - if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() && - !NeedCanonicalLoop && TryToSimplifyUncondBranchFromEmptyBlock(BB)) - return true; - - // If the only instruction in the block is a seteq/setne comparison against a - // constant, try to simplify the block. - if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) - if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) { - for (++I; isa<DbgInfoIntrinsic>(I); ++I) - ; - if (I->isTerminator() && - tryToSimplifyUncondBranchWithICmpInIt(ICI, Builder)) - return true; - } - - // See if we can merge an empty landing pad block with another which is - // equivalent. - if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) { - for (++I; isa<DbgInfoIntrinsic>(I); ++I) - ; - if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB)) - return true; - } - - // If this basic block is ONLY a compare and a branch, and if a predecessor - // branches to us and our successor, fold the comparison into the - // predecessor and use logical operations to update the incoming value - // for PHI nodes in common successor. - if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) - return requestResimplify(); - return false; -} - -static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) { - BasicBlock *PredPred = nullptr; - for (auto *P : predecessors(BB)) { - BasicBlock *PPred = P->getSinglePredecessor(); - if (!PPred || (PredPred && PredPred != PPred)) - return nullptr; - PredPred = PPred; - } - return PredPred; -} - -bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) { - BasicBlock *BB = BI->getParent(); - const Function *Fn = BB->getParent(); - if (Fn && Fn->hasFnAttribute(Attribute::OptForFuzzing)) - return false; - - // Conditional branch - if (isValueEqualityComparison(BI)) { - // If we only have one predecessor, and if it is a branch on this value, - // see if that predecessor totally determines the outcome of this - // switch. - if (BasicBlock *OnlyPred = BB->getSinglePredecessor()) - if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder)) - return requestResimplify(); - - // This block must be empty, except for the setcond inst, if it exists. - // Ignore dbg intrinsics. - auto I = BB->instructionsWithoutDebug().begin(); - if (&*I == BI) { - if (FoldValueComparisonIntoPredecessors(BI, Builder)) - return requestResimplify(); - } else if (&*I == cast<Instruction>(BI->getCondition())) { - ++I; - if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder)) - return requestResimplify(); - } - } - - // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction. - if (SimplifyBranchOnICmpChain(BI, Builder, DL)) - return true; - - // If this basic block has dominating predecessor blocks and the dominating - // blocks' conditions imply BI's condition, we know the direction of BI. - Optional<bool> Imp = isImpliedByDomCondition(BI->getCondition(), BI, DL); - if (Imp) { - // Turn this into a branch on constant. - auto *OldCond = BI->getCondition(); - ConstantInt *TorF = *Imp ? ConstantInt::getTrue(BB->getContext()) - : ConstantInt::getFalse(BB->getContext()); - BI->setCondition(TorF); - RecursivelyDeleteTriviallyDeadInstructions(OldCond); - return requestResimplify(); - } - - // If this basic block is ONLY a compare and a branch, and if a predecessor - // branches to us and one of our successors, fold the comparison into the - // predecessor and use logical operations to pick the right destination. - if (FoldBranchToCommonDest(BI, nullptr, Options.BonusInstThreshold)) - return requestResimplify(); - - // We have a conditional branch to two blocks that are only reachable - // from BI. We know that the condbr dominates the two blocks, so see if - // there is any identical code in the "then" and "else" blocks. If so, we - // can hoist it up to the branching block. - if (BI->getSuccessor(0)->getSinglePredecessor()) { - if (BI->getSuccessor(1)->getSinglePredecessor()) { - if (HoistThenElseCodeToIf(BI, TTI)) - return requestResimplify(); - } else { - // If Successor #1 has multiple preds, we may be able to conditionally - // execute Successor #0 if it branches to Successor #1. - Instruction *Succ0TI = BI->getSuccessor(0)->getTerminator(); - if (Succ0TI->getNumSuccessors() == 1 && - Succ0TI->getSuccessor(0) == BI->getSuccessor(1)) - if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI)) - return requestResimplify(); - } - } else if (BI->getSuccessor(1)->getSinglePredecessor()) { - // If Successor #0 has multiple preds, we may be able to conditionally - // execute Successor #1 if it branches to Successor #0. - Instruction *Succ1TI = BI->getSuccessor(1)->getTerminator(); - if (Succ1TI->getNumSuccessors() == 1 && - Succ1TI->getSuccessor(0) == BI->getSuccessor(0)) - if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI)) - return requestResimplify(); - } - - // If this is a branch on a phi node in the current block, thread control - // through this block if any PHI node entries are constants. - if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition())) - if (PN->getParent() == BI->getParent()) - if (FoldCondBranchOnPHI(BI, DL, Options.AC)) - return requestResimplify(); - - // Scan predecessor blocks for conditional branches. - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) - if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) - if (PBI != BI && PBI->isConditional()) - if (SimplifyCondBranchToCondBranch(PBI, BI, DL)) - return requestResimplify(); - - // Look for diamond patterns. - if (MergeCondStores) - if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB)) - if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator())) - if (PBI != BI && PBI->isConditional()) - if (mergeConditionalStores(PBI, BI, DL)) - return requestResimplify(); - - return false; -} - -/// Check if passing a value to an instruction will cause undefined behavior. -static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) { - Constant *C = dyn_cast<Constant>(V); - if (!C) - return false; - - if (I->use_empty()) - return false; - - if (C->isNullValue() || isa<UndefValue>(C)) { - // Only look at the first use, avoid hurting compile time with long uselists - User *Use = *I->user_begin(); - - // Now make sure that there are no instructions in between that can alter - // control flow (eg. calls) - for (BasicBlock::iterator - i = ++BasicBlock::iterator(I), - UI = BasicBlock::iterator(dyn_cast<Instruction>(Use)); - i != UI; ++i) - if (i == I->getParent()->end() || i->mayHaveSideEffects()) - return false; - - // Look through GEPs. A load from a GEP derived from NULL is still undefined - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use)) - if (GEP->getPointerOperand() == I) - return passingValueIsAlwaysUndefined(V, GEP); - - // Look through bitcasts. - if (BitCastInst *BC = dyn_cast<BitCastInst>(Use)) - return passingValueIsAlwaysUndefined(V, BC); - - // Load from null is undefined. - if (LoadInst *LI = dyn_cast<LoadInst>(Use)) - if (!LI->isVolatile()) - return !NullPointerIsDefined(LI->getFunction(), - LI->getPointerAddressSpace()); - - // Store to null is undefined. - if (StoreInst *SI = dyn_cast<StoreInst>(Use)) - if (!SI->isVolatile()) - return (!NullPointerIsDefined(SI->getFunction(), - SI->getPointerAddressSpace())) && - SI->getPointerOperand() == I; - - // A call to null is undefined. - if (auto CS = CallSite(Use)) - return !NullPointerIsDefined(CS->getFunction()) && - CS.getCalledValue() == I; - } - return false; -} - -/// If BB has an incoming value that will always trigger undefined behavior -/// (eg. null pointer dereference), remove the branch leading here. -static bool removeUndefIntroducingPredecessor(BasicBlock *BB) { - for (PHINode &PHI : BB->phis()) - for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) - if (passingValueIsAlwaysUndefined(PHI.getIncomingValue(i), &PHI)) { - Instruction *T = PHI.getIncomingBlock(i)->getTerminator(); - IRBuilder<> Builder(T); - if (BranchInst *BI = dyn_cast<BranchInst>(T)) { - BB->removePredecessor(PHI.getIncomingBlock(i)); - // Turn uncoditional branches into unreachables and remove the dead - // destination from conditional branches. - if (BI->isUnconditional()) - Builder.CreateUnreachable(); - else - Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1) - : BI->getSuccessor(0)); - BI->eraseFromParent(); - return true; - } - // TODO: SwitchInst. - } - - return false; -} - -bool SimplifyCFGOpt::simplifyOnce(BasicBlock *BB) { - bool Changed = false; - - assert(BB && BB->getParent() && "Block not embedded in function!"); - assert(BB->getTerminator() && "Degenerate basic block encountered!"); - - // Remove basic blocks that have no predecessors (except the entry block)... - // or that just have themself as a predecessor. These are unreachable. - if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) || - BB->getSinglePredecessor() == BB) { - LLVM_DEBUG(dbgs() << "Removing BB: \n" << *BB); - DeleteDeadBlock(BB); - return true; - } - - // Check to see if we can constant propagate this terminator instruction - // away... - Changed |= ConstantFoldTerminator(BB, true); - - // Check for and eliminate duplicate PHI nodes in this block. - Changed |= EliminateDuplicatePHINodes(BB); - - // Check for and remove branches that will always cause undefined behavior. - Changed |= removeUndefIntroducingPredecessor(BB); - - // Merge basic blocks into their predecessor if there is only one distinct - // pred, and if there is only one distinct successor of the predecessor, and - // if there are no PHI nodes. - if (MergeBlockIntoPredecessor(BB)) - return true; - - if (SinkCommon && Options.SinkCommonInsts) - Changed |= SinkCommonCodeFromPredecessors(BB); - - IRBuilder<> Builder(BB); - - // If there is a trivial two-entry PHI node in this basic block, and we can - // eliminate it, do so now. - if (auto *PN = dyn_cast<PHINode>(BB->begin())) - if (PN->getNumIncomingValues() == 2) - Changed |= FoldTwoEntryPHINode(PN, TTI, DL); - - Builder.SetInsertPoint(BB->getTerminator()); - if (auto *BI = dyn_cast<BranchInst>(BB->getTerminator())) { - if (BI->isUnconditional()) { - if (SimplifyUncondBranch(BI, Builder)) - return true; - } else { - if (SimplifyCondBranch(BI, Builder)) - return true; - } - } else if (auto *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { - if (SimplifyReturn(RI, Builder)) - return true; - } else if (auto *RI = dyn_cast<ResumeInst>(BB->getTerminator())) { - if (SimplifyResume(RI, Builder)) - return true; - } else if (auto *RI = dyn_cast<CleanupReturnInst>(BB->getTerminator())) { - if (SimplifyCleanupReturn(RI)) - return true; - } else if (auto *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { - if (SimplifySwitch(SI, Builder)) - return true; - } else if (auto *UI = dyn_cast<UnreachableInst>(BB->getTerminator())) { - if (SimplifyUnreachable(UI)) - return true; - } else if (auto *IBI = dyn_cast<IndirectBrInst>(BB->getTerminator())) { - if (SimplifyIndirectBr(IBI)) - return true; - } - - return Changed; -} - -bool SimplifyCFGOpt::run(BasicBlock *BB) { - bool Changed = false; - - // Repeated simplify BB as long as resimplification is requested. - do { - Resimplify = false; - - // Perform one round of simplifcation. Resimplify flag will be set if - // another iteration is requested. - Changed |= simplifyOnce(BB); - } while (Resimplify); - - return Changed; -} - -bool llvm::simplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI, - const SimplifyCFGOptions &Options, - SmallPtrSetImpl<BasicBlock *> *LoopHeaders) { - return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(), LoopHeaders, - Options) - .run(BB); -} |
